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Abstract

Two fluid (TF) ideal magnetohydrodynamics (MHD) equa-
tions are a generalized form of the ideal MHD equations in which
the electrons and ions are considered as separate species. The de-
sign of efficient numerical schemes for the these equations is com-
plicated on account of the non-linearities and the presence of stiff
source terms, particularly for realistic charge to mass ratios. We
design novel finite volume schemes based on an implicit-explicit
(IMEX) time stepping routine. The special structure of the two-
fluid MHD equations enable us to split the source terms carefully
in order to ensure that only local (in each cell) equations need
to be solved at each time step. Furthermore, these equations are
solved exactly. Benchmark numerical experiments are presented
to illustrate the efficiency of new approach.

1 Introduction

Flows in plasmas are frequently modeled by the equations of ideal magne-
tohydrodynamics (MHD). These equations combine the Euler equations
for compressible flow together with Maxwell’s equations for magnetic
fields. These equations assume quasi-neutrality i.e. the difference in
number density of ions and electrons is ignored.

However, in many applications like fast magnetic reconnection, the
assumption of quasi-neutrality is violated. In such cases, one resorts to
extended MHD models for the plasmas. A popular example models the
flow of two different species, one electron and one ion, separately. This
result in the so-called two fluid MHD (TF-MHD) equations (see [1], [2]).
In non-dimensional form, these equations are,

∂ρi

∂t
+∇ · (ρi#vi) = 0, (1.1a)

∂(ρi#vi)
∂t

+∇ ·
(
ρi#vi#v

!
i + piI

)
=

1
r̂g

ρi( #E + #vi × #B), (1.1b)
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∂Ei

∂t
+∇ · ((Ei + pi)#vi) =

1
r̂g

ρi( #E · #vi), (1.1c)

∂ρe

∂t
+∇ · (ρe#ve) = 0, (1.1d)

∂(ρe#ve)
∂t

+∇ ·
(
ρe#ve#v

!
e + peI

)
= −λm

r̂g
ρe( #E + #ve × #B), (1.1e)

∂Ee

∂t
+∇ · ((Ee + pe)#ve) = −λm

r̂g
ρe( #E · #ve), (1.1f)

∂ #B

∂t
+∇× #E + κ∇ψ = 0, (1.1g)

∂ #E

∂t
− ĉ2∇× #B + ξĉ2∇φ = − 1

λ̂2
dr̂g

(riρi#vi + reρe#ve), (1.1h)

∂φ

∂t
+ ξ∇ · #E =

ξ

λ̂2
dr̂g

(riρi + reρe), (1.1i)

∂ψ

∂t
+ κĉ2∇ · #B = 0. (1.1j)

Here subscript {i, e} refers to the ion and electron species respectively,
ρ{i,e} are densities, #v{i,e} = (vx

{i,e}, v
y
{i,e}, v

z
{i,e}) are velocities, E{i,e} are

the energies, p{i,e} are the pressures, #B = (Bx, By, Bz) is magnetic field,
#E = (Ex, Ey, Ez) is electric field, φ, ψ are the potentials and ξ, κ are the
speeds for Maxwell’s equations. Also ri = qi

mi
and re = qe

me
are charge

to mass ratios of ions and electrons respectively.
The Eqns. (1.1a)-(1.1c) represent the conservation of mass, momen-

tum and energy for the ions. The source term in (1.1b) represents the
Lorentz force acting on ions due to the electric and magnetic fields.
Similarly Eqns.(1.1d)-(1.1f) represent conservation of these quantities
for electrons. Eqns. (1.1g)-(1.1j) are the perfectly hyperbolic Maxwell’s
(PHM) equations (see [4]). These equations satisfy the divergence free
condition approximately, and are consistent with the hyperbolic struc-
ture of the fluid equations. In addition we assume that both ions and
electrons satisfy ideal gas law with gas constant γ = 5

3 .
Many physically significant parameters appear in the non dimension-

alized form of the TF equations. Here, r̂g = miv
T
i

qiB0x0
is the normalized ion

Larmor radius, λm = mi/me is the ion-electron mass ratio, ĉ = c/vT
i is

the normalized speed of light and λ̂d = λd/rg is the ion Debye length
normalized with Larmor radius. Also vT

i is the reference thermal ve-
locity of ions, B0 is the reference magnetic field and x0 is the reference
length. Ion mass mi is assumed to be 1. Note that when Larmor radius
r̂g → 0, the TF model approaches the MHD limit. Similarly for r̂g →∞
(1.1) reduce to simple flow (Euler) equations for ions and electrons. TF
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equations model the intermediate physics between these two limits.
For simplicity, we will focus on the TF equations in one space dimen-

sion for the rest of this paper. Eqns. (1.1) can be written as a system
of balance laws,

Ut + F(U)x = S(U). (1.2)

Here the vector of unknowns U, the flux vector F and the source vector
S can be read from (1.1). It is well known that solutions of (1.2) con-
sist of discontinuities in the form of shocks and contact discontinuities.
Numerical algorithms have to take into account the formation of these
complex waves and their interactions. Finite volume methods (FVM)
have been quite successful in approximating balance laws of the form
(1.2) (see [3]). In particular, one has to device suitable numerical flux
functions in order to approximate these waves.

However, the most challenging issue in designing efficient algorithms
for (1.1) is the stiffness of the source terms. As an example, consider a
generic situation involving a mass ratio of 1832.6, non-dimensonal Debye
length of 0.01, and Larmor radius of 0.005. Assuming that all the other
quantities are of O(1), the strength of source term is 3.6652×109. Thus,
explicit time stepping will be extremely expensive computationally due
to small time steps.

The TF equations have received some attention in recent years. In [1],
the authors used a second order operator splitting approach and a fourth
order Runge-Kutta (RK4) method to discretize source terms in time.
This approach is easy to implement but computationally expensive. In
[2], the authors treat source terms implicitly and flux terms explicitly.
The resulting equations are solved using Newton iterations. This method
might be diffusive and may require many iterations for each time step.

In this paper, we propose a novel implicit-explicit(IMEX) scheme to
discretize (1.1) based on the following ingredients:

1. The numerical fluxes are designed by exploiting the split structure
of the flux in (1.1) and are integrated in time explicitly.

2. The source terms are treated implicitly. We observe and exploit the
special structure of the source terms in order to device an implicit
scheme that requires solving cell-wise linear system of equations.
The local mass matrices are inverted symbolically and are evalu-
ated at each time step.

3. High order spatial accuracy is obtained by non-oscillatory piecewise
linear reconstruction in each cell. High order time integration is
performed using SSP-RK methods (see [5]).

Rest of the paper is organized as follows: In Section 2, we describe the
proposed IMEX algorithm. In Section 3, we present the numerical results
for two numerical test examples.
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2 Finite Volume Methods

Consider a computational domain (0, L) (for some L > 0), discretized
uniformly(for simplicity), with mesh size ∆x in to cells [xi− 1

2
, xi+ 1

2
]. We

aim to approximate the cell averages Un
i ≈ 1

∆x

∫ x
i+ 1

2
x

i− 1
2

U(x, tn)dx at time

level tn. Denote the time-step ∆tn at time level tn, then a first order
IMEX scheme for (1.1) is written as

Un+1
i −Un

i

∆t
= − 1

∆x

(
Fn

i+ 1
2
− Fn

i− 1
2

)
+ S(Un+1

i ). (2.1)

2.1 Numerical flux function

Denote U = {Uf ,Um}, and F(U) = {Ff (U),Fm(U)} with,

Uf = {ρi, ρi#vi, Ei, ρe, ρe#ve, Ee}!

Ff = {ρiv
x
i , ρiv

x2
i + pi, ρiv

x
i vy

i , ρiv
x
i vz

i , (Ei + pi)vx
i ,

ρev
x
e , ρev

x2
e + pe, ρev

x
e vy

e , ρev
x
e vz

e , (Ee + pe)vx
e }!

Um = { #B, #E,φ, ψ}!

Fm = {κψ,−Ey, Ex, ξĉ2φ, ĉ2By,−ĉ2Bx, ξEx, κĉ2Bx}!.

We exploit the split structure of the flux in (1.1) to design a four-wave
HLL type approximate Riemann solver. Consider the Euler HLL speeds,

bf
l = min

j
min

α
(λα

j (Ui), λα
j (Ua), 0),

bf
r = max

j
max

α
(λα

j (Ui+1), λα
j (Ua), 0),

with λα
j ∈ {vx

α − cα, vx
α, vx

α + cα}, α ∈ {i, e}, cα =
√

γpα/ρα and the
Maxwell HLL speeds bm

l = −ĉ, bm
r = ĉ. Here Ua represent the simple

average of states Ui and Ui+1. Then the four wave HLL type numerical
flux for (1.1) is,

Fn,β
i+ 1

2
=

bβ
r Fβ(Un,β

i )− bβ
l Fβ(Un,β

i+1)

bβ
r − bβ

l

+
bβ
r bβ

l

bβ
r − bβ

l

(Un,β
i+1 −Un,β

i ). (2.4)

with β ∈ {f, m}.

2.2 Processing of source terms

Denote U = {V1,V2,V3} with,

V1 = {ρi, ρe, B
x, By, Bz, ψ}!
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V2 = {ρiv
x
i , ρiv

y
i , ρiv

z
i , ρev

x
e , ρev

y
e , ρev

z
e , Ex, Ey, Ez}!

V3 = {Ei, Ee, φ}!

We observe that (2.1) can be rewritten in the following 3 blocks,

Vn+1
1,i = G1(Un

i−1,U
n
i ,Un

i+1), (2.5a)

Vn+1
2,i = G2(Un

i−1,U
n
i ,Un

i+1) + A(Vn
1,i)V

n+1
2,i (2.5b)

Vn+1
3,i = G3(Un

i−1,U
n
i ,Un

i+1) + H(Vn+1
1,i ,Vn+1

2,i ). (2.5c)

Here G1,G2 and G3 are the explicit flux updates using (2.1) of vari-
ables V1,V2 and V3 respectively. The Eqns. (2.5) are then solved in
sequential manner:

I) Equation (2.5a) is updated explicitly as it involves the evaluation
of terms at the previous time level.

II) Note that A(Vn+1
1,i ) in Eqn. (2.5b) is,

2

6666666666666666664

0 Bz,n+1

r̂g
−By,n+1

r̂g
0 0 0

ρn+1
i
r̂g

0 0

−Bz,n+1

r̂g
0 Bx,n+1

r̂g
0 0 0 0

ρn+1
i
r̂g

0

By,n+1

r̂g
−Bx,n+1

r̂g
0 0 0 0 0 0

ρn+1
i
r̂g

0 0 0 0 Bz,n+1

r̂1g
−By,n+1

r̂1g

ρn+1
e
r̂1g

0 0

0 0 0 −Bz,n+1

r̂1g
0 Bx,n+1

r̂1g
0

ρn+1
e
r̂1g

0

0 0 0 By,n+1

r̂1g
−Bx,n+1

r̂1g
0 0 0

ρn+1
e
r̂1g

−ri
K 0 0 −re

K 0 0 0 0 0
0 −ri

K 0 0 −re
K 0 0 0 0

0 0 −ri
K 0 0 −re

K 0 0 0

3

7777777777777777775

(2.6)

All the quantities in the matrix are already computed in step I.
So, we can rewrite Eqn. (2.5b) as,

Vn+1
2,i =

(
I− (∆t)A(Vn+1

1,i )
)(−1) (G2(Un

i−1,U
n
i ,Un

i+1)). (2.7)

The term
(
I− (∆t)A(Vn+1

1,i )
)(−1) (G2(Un

i−1,Un
i ,Un

i+1)) is evalu-
ated symbolically. The Eqn. (2.5c) is now updated for Vn+1

3 by
evaluating H(Vn+1

1,i ,Vn+1
2,i ).

III) High-order discretization: We use standard piecewise linear second
order reconstruction using the minmod limiter (see [3]). High order
(second and third order) time integration is achieved by using SSP-
RK methods (see [5]), where each intermediate update is computed
using the IMEX algorithm described above.
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3 Numerical Results

In this section, we consider two benchmark test cases for illustrating
the efficiency of the IMEX scheme (2.1) in approximating Eqns. (1.1).
The first example is a generalization of the MHD Brio-Wu shock tube
problem (see [1],[2]). The second example is a simulation of the soliton
propagation in plasma flows (see [1]). For the comparison we use fully
explicit schemes i.e. S(Un+1

i ) is replaced by S(Un
i ) in (2.1).

3.1 Generalized shock tube Riemann problem

The initial conditions for the Riemann problem are,

Uleft =






ρi = 1.0
pi = 5 × 10−5

ρe = 1.0 me/mi

pe = 5 × 10−5

Bx = 0.75
By = 1.0
#vi = #ve = #E = 0
φ = ψ = Bz = 0

Uright =






ρi = 0.125
pi = 5 × 10−6

ρe = 0.125 me/mi

pe = 5 × 10−6

Bx = 0.75
By = −1.0
#vi = #ve = #E = 0
φ = ψ = Bz = 0

(3.1)
on a domain (0, 1) with, U = Uleft for x < 0.5 and U = Uright for
x > 0.5. The electron-ion mass ratio is taken to be mi/me = 1832.6.
The problem is nondimensionalized using p0 = 10−4. Non-dimensional
Debye length is taken to be 0.01. We compute solutions using two non-
dimensional Larmor radii of 50 and 0.005. Neumann boundary condi-
tions are used.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time=0.1

 

 

Euler

MHD

o2imp

o2exp

(a) Results with r̂g = 50.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Time=0.1

 

 

Euler

MHD

o2imp

o2exp

(b) Results with r̂g = 0.005.

Figure 3.1: Ion densities of Riemann problem (3.1) for o2exp and o2imp
schemes with 20000 cells. Euler and MHD solutions are also plotted.

Results are presented in Fig. 3.1 using second order explicit scheme
(o2exp) and second order IMEX scheme (o2imp) on a mesh with 20,000
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cells. As expected, solutions with high Larmor radius of 50 (see Fig.
3.1(a)) are close to the Euler limit. In this case source terms are not
stiff. Hence the time step is dictated by the convective CFL number,
based on the maximum wave speed. The simulation time for o2exp
is 16073.35 seconds and for o2imp it is marginally higher at 17482.41
seconds. For the lower Larmor radius of 0.005 solutions are close to the
MHD solution. Also the o2imp solution has resolved all the dispersion
effects whereas o2exp solution appears to be under resolved. In this case
the source terms are stiff, hence the time step is dictated by the source
terms. The simulation time for o2exp is 27377.6 sec and for o2imp it is
13613 sec. So the IMEX scheme is almost twice as fast compared to the
fully explicit scheme.

3.2 Soliton Propagation

Initially the plasma is assumed to be stationary with ion density,

ρi = (1.0 + exp(−25.0|x− L/3.0|)) (3.2)

and mass ratio mi/me = 25 on domain D = (0, L) with L = 12.0. Elec-
tron pressure is pe = 5.0ρi with ion-electron pressure ratio of 1/100.
Normalized Debye length is taken to be 1.0 and nomalized Larmor ra-
dius is 0.01. Periodic boundary conditions were used. Numerical results

0 2 4 6 8 10 12
1

1.5

2

2.5
Ion density at time=1,2,3,4,5 with 5000 cells

 

 

o2exp

o3exp

o4exp

o2imp

o3imp

(a) Soliton propagation results plotted at
time t = 1, 2, 3, 4, 5.

3.96 3.97 3.98 3.99 4 4.01 4.02 4.03 4.04

2.401

2.402

2.403

2.404

2.405

2.406

2.407

2.408

2.409

2.41

2.411

Ion density at time=1,2,3,4,5 with 5000 cells

 

 

o2exp

o3exp

o4exp

o2imp

o3imp

(b) Numerical solution at time t = 5.0
zoomed at middle stationary wave.

Figure 3.2: Ion densities for explicit schemes o2exp, o3exp, o4exp and
implicit schemes o2imp, o3imp using 5000 cells.

are presented in fig. 3.2 using second (o2exp), third (o3exp), fourth
(o4exp) order explicit time stepping and second (o2imp), third (o3imp)
order IMEX schemes. In figure 3.2(a) we observe that all schemes per-
form comparably. However, when we zoom in the middle wave (see
Fig. 3.2(b)), we observe that second (o2imp), third (o3imp) order IMEX
schemes are slightly more diffusive compared to explicit schemes. Table
1 presents the simulation times for different schemes. In the case of low
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resolution (No of cells less than 1000), time step is dictated by the source
terms, so the IMEX schemes are faster. However, as we compute for finer
resolutions the CFL condition dictates the time step, so simulation times
of both schems are comparable.

Cells o2exp o3exp o4exp o2imp o3imp
500 10.65 15.96 21.82 3.15 5.32
1000 21.25 31.52 44.09 12.36 18.58
2000 46.12 69.68 95.29 49.71 75.01
4000 185.05 277.53 396.77 200.46 299.41

Table 1: Simulation times for various schemes at different resolution.

4 Conclusion

We have presented finite volume based IMEX schemes for TF Eqns.
(1.1). These schemes are then benchmarked using two numerical exam-
ples. These schemes are shown to be computationally faster than the
fully explicit schemes on under resolved meshes.
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