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Abstract

Initial boundary value problems of linear second order hyperbolic partial differential equations
whose coefficients depend on countably many random parameters are reduced to a parametric family
of deterministic initial boundary value problems on an infinite dimensional parameter space. This
parametric family is approximated by Galerkin projection onto finitely supported polynomial systems
in the parameter space. We establish uniform stability with respect to the support of the resulting
coupled hyperbolic systems, and provide sufficient smoothness and compatibility conditions on the
data for the solution to exhibit analytic respectively Gevrey regularity with respect to the countably
many parameters. Sufficient conditions for the p-summability of the generalized polynomial chaos
expansion of the parametric solution in terms of the countably many input parameters are obtained
and rates of convergence of best N-term polynomial chaos type approximations of the parametric
solution are given. In addition, regularity both in space and time for the parametric family of
solutions is proved for data satisfying certain compatibility conditions. The results allow obtaining
convergence rates and stability of sparse space-time tensor product Galerkin discretizations in the
parameter space.

This report has been substantially revised from the original version.
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The original report, titled “Analytic Regularity and Generalized Polynomial Chaos Approzimation of
Parametric and Random 2nd Order Hyperbolic Partial Differential Equations”, contained a mathematical
error and is superseded by the current one.
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1 Introduction

The linear wave equation with random data arises in numerous problems in applied mathematics and
scientific computing. We mention only seismic imaging and nondestructive testing (see, e.g., the seminal
[7] and the recent papers [2, 1] and the references there). In these applications, particular interest is on
the wave equation with random coefficients. Attention in the above references has been on asymptotic
analysis techniques for the wave propagation problem in random media. This point of view has mandated,
in particular, strong assumptions on the randomness such as stationarity, homogeneity and the like.

In the present paper, we present a representation theorem and regularity results for the solution of lin-
ear wave equations with a class of random coefficients which need neither be stationary nor homogeneous
in physical space. We show that the law of the random solution can be represented as a deterministic
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function of a countable number of coordinates. For a class of equations with regular right hand side and
compatible initial conditions, we also show that this solution is, as a function of the coordinates, smooth
as a mapping from the parameter domain into suitable Sobolev spaces in which the deterministic wave
equation is well-posed. We investigate the smoothness of the parametric solution in terms of analytic
respectively Gevrey regularity.

We also show that the solution admits mean square convergent (with respect to the probability
measure of the input data) polynomial chaos expansions on the infinite dimensional parameter space.
We establish bounds on the size of the polynomial expansion coefficients of the parametric solution and
establish, in particular, sparsity of these polynomial chaos expansions of the random solution in terms of
the input data’s fluctuation decay. Our analysis also applies to input data depending on finitely many
parameters as well as to data with only few or finitely many compatibility conditions, in which case the
parametric solution exhibits only finite regularity.

1.1 Stochastic wave equation

For 0 < T < oo, we consider in I = (0,7') the following class of linear, second order hyperbolic equations
with random coefficients: let D be a bounded Lipschitz domain in R?. We define the space-time cylinder
Qr =1xD. In Qr, we consider the stochastic wave equation

0%y

9z V- (a(x,w)Vu) = g(t, ), ult=0 = g1, Ut|t=0 = ga. (1.1)

By H we denote the space L?(D) and by V a subspace of H!(D) with the appropriate boundary condition
such that Hi(D) CV C HY(D). The solution u(t,-) € V for all t € I. We assume that the coefficient
a(x,w) is a random field on a probability space (2, X, P) over L>°(D). The forcing ¢ and initial data ¢;
and gy are assumed to be deterministic.! To ensure well-posedness of (1.1), we require:

Assumption 1.1 There are constants 0 < amin < Gmax < 00 So that
VweQ: 0<amin <essinf{a(z,w): 2z € D} <| a(-,w)| D) < Gmax -
To state the weak form of the initial boundary value problem (1.1), we require
geL*(I;H), 1€V, g €H. (1.2)
Further, we introduce the Bochner spaces
X =LALV)nHYI; H)yn H*(I; V'), YV=L*(LV)xV xH. (1.3)

A weak solution of the hyperbolic initial boundary value problem (1.1) is any function u € X such that

d*u
/I<W(t, Y, v0(t, )Y grdt + /I /D a(x,w)Vu(t, z,w) - Vo (t, x)dzdt + (u(0),v1)v + (u(0),v2) g
= /I/Dg(t,z)vo(t,z)da:dt +(g1,v1)v + (92, v2) 1, Yv = (vo,v1,v2) €Y. (1.4)

Proposition 1.2 Under Assumption 1.1 and condition (1.2), for every w € Q, the problem (1.4) admits
a unique weak solution u € X. The following estimate holds

lullx < CUlgllzzm + lgillv + llg2llm), (1.5)
where the constant C' is independent of the coefficient realizations Q3 w — a(+,w).

This proposition is a special case of Theorem 29.1 of Wloka ([8]). Inspecting the proof in that reference,
it can be inferred that the constant C' in the bound (1.5) depends only on T" and on @iy and amax in
Assumption 1.1.

IWe could also assume randomness in these quantities and obtain completely analogous results without any additional
mathematical difficulties, merely at the expense of more involved notation.



With a view towards numerical analysis of approximation schemes, we impose further structural
assumptions on the coefficient @ in (1.1). Specifically, we shall assume throughout this work that the
random coefficient a in (1.1) can be characterized by a sequence of infinitely many, scalar random variables
y; : Q@ — [—1,1]: ais given in the generic form

a(w,w) = a(@) + Y y;(w)y(z), (1.6)

j=1

where 10; belong to L°°(D). The generic representation (1.6) is highly ambiguous, as y; and ; could be
rescaled. As in our previous work in corresponding elliptic and parabolic problems [5, 4, 6], we require
that the coefficient sequence {1;} satisfies the following assumption

Assumption 1.3 The functions a(z) and ; in the parametric representation (1.6) of the random coef-

ficient a(x,w) satisfy
ZHwHL“’(D) < t Gmin
! T 1+k

j>1

With Gmin = essinf,cpa(z) > 0 and some k > 0.
Assumption 1.3 implies in particular that Assumption 1.1 is satisfied by choosing

K 1

T~ 0min = 7 Omin- 1.7
1+f<;a 1+/€a (17)

Gmin ‘= OGmin —

1.2 Probability Spaces

Under the structural assumption (1.6) on the random coefficient, the law of the random solution u of
(1.1) takes the form of a parametric deterministic function of (in general countably many components
of) y € U where U = [~1, 1], The variational problem can be cast in the form of a parametric family of
deterministic problems for y. In the next sections, we study sparse tensor discretizations of a variational
problem for u as a deterministic function of all parameters (t,z,y) in I x D x U. In order to clarify
the relation of the deterministic approximations of u(t, x,y) with the random solution of (1.1), we define
probability measures on the parameter domain U. To this end, we introduce the o-algebra on U by
0 = ®;5, B'([~1,1]) where B'([~1,1]) denotes the Borel o-algebra on the interval [~1,1]. On the
measure space (U, ©), we define the product measure

pldy) = R) dy; /2.

j=1

Since 3dy; is a probability measure on (—1,1), so is dp(y) on (U, ©) and hence (U, ©, p) is a probability
space. As y; are distributed uniformly, for any set of the form S = [[;Z, S; with S; € B([-1,1]), it
holds

p(8) =[] Plw s s(w) € 5,1

For 0 < p < oo, we denote by LP(U, p) the space of measurable functions v : U — R such that |v|P is
p-integrable over U. For a generic separable Hilbert space V, we denote analogously by L?(U, p; V) the
space of p-measurable mappings v : U — V for which ||v[|}, is p-integrable. We introduce Bochner spaces
X =L*(U,p;X) and Y = L*(U, p; V) and note X ~ L*(U,p) @ X, Y ~ L*(U, p) ® ), where ® denotes
the tensor product of separable Hilbert spaces.

1.3 Parametric deterministic wave equation

Given a forcing function g¢(¢,z) and initial data gi(x) and go(x) satisfying (1.2), for each y € U we
consider the initial boundary value problem

O%u(t,z,y)

52 =V - (a(z,y)Vu(t,z,y)) = g(t,z) in Qr, ult—o = g1, Ut|t—0 = g2, (1.8)



where u(t,-) € V. The coefficient a(z,y) is defined as

a(z,y) =a(z) + > yjb;(). (1.9)
j=1
For each y € U, we define the bilinear map b: X x ) — R by
d*w
b(y7wa (’UO,’Ul,’UQ)) = <W(t7)avo(ta)>Hdt+ G/(.’L',y)vw(t,ZC)'V’Uo(t,ZC)dZCdt‘f’(U(O),Ul)v+<’u,t(0)”u2>H.
I 1JD
(1.10)
We also define the linear form on )
flv) = // g(t, x)vo(t, x)dxdt + (g1, v1)v + (g2, V2) 1.
1JD
The variational formulation of the problem (1.8) is: Find u(y) € X such that
b(y;u,v) = f(v) Yo = (vg,v1,v2) €Y. (1.11)

Proposition 1.4 Under Assumption 1.1 and conditions (1.2), for every y € U, the problem (1.11)
admits a unique weak solution u(y) € X. The weak solutions {u(y) : y € U} CX satisfy the apriori
estimate

VyeU: |ul,-y)lx < Cllgllezam + llgillv + llg2llm), (1.12)

where the constant C' is independent of y.

This is, again, a special case of Theorem 29.1 of [8].

The previous proposition establishes merely existence of solutions for every selection of the parameter
vector y € U. In order to relate these parametric, deterministic solution family to the random solutions,
we need to verify measurability of this solution family with respect to measures on the parameter domain.

Proposition 1.5 The map u: U — X is strongly measurable as a Bochner function.
Proof Choose ¢ € X arbitrary. The inner product in X" is given by
(u(y), o) x = (uly), ¢>L2(I,V) + (u(y), ¢>H1(I,H) + (u(y), ¢>H2(I;V/)-

We show that (u(y), $)x is measurable function from U to R.
Let {w, : n € N} be a basis of V. We introduce the m-term truncated expansions

m m
Gim = > Wi, Gom = Y Enwi, (1.13)
i=1 i=1
with g1, — ¢1 in V and g2, — g2 in H when m — oo. Let
m
W (t,5y) = Y Gom (b, y)wi(+)
i=1

satisfy the system

d2

E(um(t, Y)W H + /D a(z,y)Vun (t, z,y) - Vw;j(z)dz = (g(t,-), w;j)m, for 1 <j <m, (1.14)

um(oa ) = glm(')a u:n(oa ) = g?m(')-

Define A,,(y) to be the m x m matrix

A, (y) = (/D a(z,y)Vw;(x) - ij(:c)dx), 1<i,j<m.



Next, denote by B,,, = ((w;, w;)m), 1 <4,j < m the Gram matrix. By linear independence of the w;, it
has a non zero determinant. Let G,,(t) be the vector ({g(t),w;)n) and define ¢, (¢,y) to be the vector
(Cim(t,y)), 1 <1i < m. Then the vector function (,, solves the system of differential equations

Bm% + A )m(t,y) = Gm(t),
h Pnt,y) | o »
— gz T B An(y)Gn(ty) =B G (t).
Let
Cn(t,y) = W.

We then define the column vector of length 2m by (n(t,y) = (Cn(t,y), (¢ y)). We denote by T the
m x m identity matrix and O the m x m matrix whose entries are all zero, and define further

(@) = |
Let G (t) = (0,B,,' Gy (t)) where 0 is the column vector of length m with zero entries.
Then the first order differential equation for (,, reads

dfm tv Y ~ ~
Lntlel) 4 G )n(t:1) = Gon(1), (1.15)
with the initial condition (m(0,y) = &mn = (Eds -+ Ebims E2ms - - -1 E2,)- The solution (,,, can be written
as
t
Gnltog) = e ([[erenG, (ryar 16, ). (1.16)
0

We show next that for each value m and for each ¢ € X, the functional (u,,, ¢)x is measurable. We note
that for y,vy’ € U,

|<um(" "y)a ¢>X - <um(" "yl)a ¢>X| < ||Um(', 'ay) - um(" ayl)”/\’”QﬁHX

< C(m) OE?ET(”C’”@’ Y) = Gty Mlrm + 16t 9) = Gty ) lrem + G (8, y) — G )z ]l 2

< C(m)oiltlgT [Gn(t,y) = Cm(t, Y| Ir2m || 6] 2 -

For every m holds

G (£ y) = G (£, |[R2m

IN

He_tCm(y)HRZm’]RZm / ||€Tcm(y) — eTcm(y/)HRZm’]RZm||Gm(7)||R2m,dT
I

+

=10 — e~ g gan [ 678 g gon |G () gam e
, I

+ le7tCm®) — et ||pam gam ||| p2m -

We note that for every 0 <t < T < oo,

|e=tCm®) ||g2m g2m < e TIICm (W) llg2m p2m

On the other hand, for every m € N and every y € U it holds

1CmW)lrere g2 < C(m) | max |Conij(y)] < Clm) sup |a(z, y)| < C(m) .
St,jsm x,y

Further, we have that

€70 — €70 g gam < TET IO B TIC ) =Con @z () — oy o o



and
Heftcm(y) - eftCm(y’) ||]R2m pzm < TeTHCnL(y)H]RZm’]_RZm eT||Cm(y)—Cm(y')|IK2m,R2m ||Cm(y) o Cm(y/)HRZm -
From

1Cm(y) = Con(y)l|rem ram < C(m) max |Cnij (y) — Cumij (y')] < C(m) sup la(z, y) — a(,y")]

we conclude that - -
Hgm(tv y) - gm(tv y/)”R2m S C(m) sup |0,(.CC7 y) - GJ(SC, y/)|

This implies
|<um(" "y)a ¢>X - <um(" 'ay/)a¢>X| < C(m) Sgp |a(x,y) - a(m,y’)| : (1'17)

We now show that for every o € R, the set

Ya = {y : <um(a ',y)7¢>2{ > Oé}

is an element of the o-algebra defined in U.
We consider the set T; of all y € U such that § = (y1,¥2,-..,¥:, 21, 22, ...) belongs to Y, for all
zj € (—1,1),7=1,2,.... From (1.17) we deduce that for each y € Yy, if

sup |a(z,y) - a(z,y’)| <r (118)

for a sufficiently small constant r, then 3y’ € Y,. Therefore each vector y € Y, belongs to a set T; for
some i. Let R; C (—1,1)% denote the set of t = (¢1,t2,...,t;) such that (¢1,...,t;, 21, 22,...) € T; for
all z; € (=1,1) (j = 1,2,...). From (1.17) and (1.18), R; is an open set and thus can be represented
as a countable union of open cubes. Therefore T; can be represented as a countable union of cubes, say
[;51 S; where S; is an open interval in (—1,1) and S; = (—1,1) when j is sufficiently large. Thus 7} is
measurable and so is Y.

Therefore, for every ¢ and every m, the mapping U 3 y +— (um(+, -, y), ®) x is measurable as a mapping
from U to R. Next, we define

Xa = {y eU: <U(',',y),¢>;\,’ > a} :

As Uy — uin X (see the proof of [8, Theorem 29.1]), (um(-, -, y),P)x — (u(- - y),d)x as m — oo.
Therefore

(o SlNe SENe )

Xo= VU N w9 éh >a- ),

n=1m=1i=m
which is measurable. We conclude that u(-,+,y) as a map from U to X is measurable. ]
Let X = L?(U, p; X) and Y = L2(U, p; V). We define the bilinear form B(,-) : X x ) — R and the
linear form F(-): Y — R as

Buw) = [ bosnoidot). Fo) = [ )ioto)
Consider the variational problem: find
u€ X such that B(u,v) = F(v) Yo e Y. (1.19)
Proposition 1.6 Under Assumptions 1.1 and 1.3, problem (1.19) admits a unique solution u € X.

Proof The solution of (1.11) is uniformly bounded in X for all y € U. Further, u(-,-,y) is measurable as
a map from U to X, so u(+,-,-) € X. The existence part is obvious.

Now we show uniqueness. Let ¢(t,x,y) = ¥(t, z)w(y) where ¢ (t,2) € X and w(y) € L*(U,dp). We
then have from (1.19):

L ([ mvtpuds [ [ awa)vu.o) votot ) wan)

_ /U ( /1 /D (6, 2)0(t,)drdr ) w(y)do(y).



As this holds for all w(y) € L*(U, dp(y)), we find that

/ t277/)H+// (z,y)Vul(t,z,y) - VU (t,x,y)dxdt = // (t, z)(t, z)dxdt

for almost all y € U. This together with the initial condition shows that u(¢,z,y) is unique. O

2 Semidiscrete Galerkin Approximation

2.1 Polynomial spaces in U

Let (Ly)n>0 denote the univariate Legendre polynomials normalized according to

[ 2.1)

-1

Note that in this normalization, Lo(t) = 1. We shall use tensor products of Legendre polynomials of
multi-degrees taking values in the set F = {v € N} : |[v]|; < oo}, i.e. the set of all sequences v = (v;);>1
of nonnegative integers such that only a finite number of v; are non zero. For such v, we define the
tensorized Legendre polynomials

y):HLl,j(yj), veF.
i>1

The family L, forms a countable orthonormal basis of L?(U, p). Therefore, each function u € X can be
written as

w=> ulL,  u€X (2.2)
veF

and an analogous representation is valid for v € ).

2.2 Spectral semidiscretization in y

For any set A C F of finite cardinality we define the following subspaces of X and )

Xy ={up(t,z,y) = Zuytz y): u, € X} C X,
veA
and
Yy ={oalt,z,y) =Y v (t,2)Lu(y): v, €V} C .
veA
Denoting v, = (voy, V1, V2, ), We may write
’UQA t z,Y) ZUOV t x ), le z,Y) th, and ’UQA T y ngu
veA veA veA

We consider the following semidiscrete Galerkin projection of u onto X': find
up € X such that B(ua,va) = F(va) Yoa € Y, (2.3)

Theorem 2.1 Under Assumptions 1.1 and 1.3, for every subset A C F of finite cardinality there exists
a unique solution up € X, to the Galerkin equations (2.3).

Proof Let up =3, ) uLy and vy = ZueA v, Ly. Problem (2.3) can be written as a coupled system of
wave equations for the coefficient functions u, (¢, z) for every v € A C F (with implied summation over
repeated indices u,v € A)

du,

(0), 02 )

d2
/< dt2 aUOU Hdt+// AU'U‘ Vuu v’ond.’,Edt+ <’LLU(0) U1U>V +<

// g(t, x)voy (t, x)dxdtdo, + (g1, V1) v Oou + (g2, V2u) 0w veF
1Jp



where dp, = 1 if all entries of v are zero and dp, = 0 otherwise (the analysis will be more involved when
g, 91 and go are random). In (2.4), the coefficients {A¥* : u,v € A} are defined as

A () = /U a(.9) Lo (W) Luw)dpy),  vpe F. (2.5)

For each v € A, we consider a vector ¢V = (£¥)%_; € R%. Then (with implied summation over repeated
indices p,v € A) we obtain from Assumption 1.1

AP (n)er et = /U a0 5) (Lo D) L) o) > S S (E? (2.6)
1=1 veA

This shows that the matrix (Ajf") := (A"*d;;) for v, € A and i,j = 1,...,d is positive definite. For
every A C F, problem (2.3) thus has a unique solution. m]

In the argument that follows we shall use point values of u and of the first time derivatives of u; to
this end, we introduce the space

Z:=H"LV)NnH*I;H) c C°(I;V)nCYT; H) . (2.7)

Note that Z C X. The following quasi-optimality like error estimate for semidiscrete approximations of
parametric solutions in Z holds.

Proposition 2.2 Assume that u € L2(U, p; Z). Then for all v € F the coefficient u,, in (2.2) belongs to
Z. Assume further that for a subset A C F, up € L?(U, p; Z). Then holds the error bound

1/2

lu—uallzwpa) <cl Y whillwez =c| D> lwl? - (2.8)
veF\A veEF\A

Here, the constant ¢ > 0 depends only on the coefficient bounds apin and Gma, in Assumption 1.1.

Proof In (2.2), we write u = @ + s where

ﬁA:ZuyL,j, and up = Z u, L,

vEA veEF\A

From (1.19) and (2.3) we have for all vy € Y,

/ /<d2 Up —UA) U0A> dtdp(y / // a(x,y)V(ap — up) - Vogpadadtdp(y)+

(@n(0,-,) = ua(0, ), v1a)v + ((@a)e(0, - -) = (ua)e(0; -, ), v28) 1

/ / < dt? ’”0A> dtdp(y / / / a(x,y) Vi - Voopdadtdp(y)—

(@A (0, -, ), v1a)v — ((Wa)e(0, -, ), van) i

Inserting in (2.9) the test functions vop = w¢ where ¢ € L?(I) and w € L*(U, p; V), v1a = 0 and vap = 0,
we get

/I/U<W,w>h,¢(t)dp(y)dt+ /1 /U /D a(z,y)V (an — un) - Vwd(t)dedp(y)dt
/ / < dt2 ’w>H¢(f)dp(y)dt— /1 /U /D a(z,y)Viy - Vwo(t)dzdp(y)dt

(2.10)



As this holds for all ¢ € L*(I), we get for all w € L*(U, p; V) and for almost all t € T
d*(up —u
[ (BT o) o+ [ [ aten T o). Toledsdoty
U

— —/U<%(t,-,y),w(.,y)>H p(y) —/U/Da 2, y)Via(t, z,y) - Vw(z, y)dedp(y) . -
2.11

Let w = < (@p — up). Then w € L2(U, p; L*(1;V')) as both s and uy are in L2(U, p; Z) by assumption,

and we have
/ <%<t,-,y>,W<t, W) o)

/ / z,y)V(aa —up)(t, z,y) - Vd(uAd; ua) (t,z,y)dxdp(y)

—/U<C’%<t,-,y>,WQ,-@HW)

/ / x,y)Vup(t,x,y) - Vd(uAd; )(t x,y)dzdp(y)

- (G T ) )

- a(z,w%(vw, 2,9) - V(in — un)(t,2,9))dzdp(y)
UJD

/ / £ y) VR (2, ) - V(i — un) (¢, y)drdp(y).

From this we deduce using once more with the assumption u € L?(U,p; Z) and the embedding Z C
C°(I;V)NCY(I; H) that for all t € T
1d E
Hdt(uA —up)(t, )

L2(U,p;H)

+%/U/Da($7y)V(aA—uA)(t,l‘,y)'V(ﬂA_UA)(tawvy)dxdp(y)
- [ (R ) i)

- /U /D a(@, y)Via(t, ,y) - V(ia — ua)(t, z, y)dedp(y)

+/U/Da(x,y)VﬁA(0,:r,y)~V(ﬂAUA)(vavy)dedp(y)

/ / / a(z,y)V (1,2,y) - V(up — up) (7, z,y)dxdp(y)dr

2

T
L2(U,p;H)

+% /U /D a(z,y)V(apx —up)(0,z,y) - V(aa — ur)(0,z,y)dzdp(y) .



Inserting vip = ua(0, -, ) — ua(0,-,-), voo = 0 and vop = 0 into (2.9), we infer that

||1_1’A(07 Bl ) - UA(Oa K )HV < H'ELA(O, ) )HV

Inserting

AdlTr —

VoA = W(Oa'a')a VoA :07 and V1A =0

into (2.9), we find that

d(a/\ —up) dup

HT(Oaa) = W(Oa'a ) .
H H
We note that there is a constant ¢ that depends on 7" such that
- _ dua _
1A (0, -, ) 2w, pvy < cllaals, )2 w,p2), HW(Oa Sz pimy < elluals )2, pz)-

From these bounds we deduce that for each 0 < ¢ < T that

d ? _
|5 =) 18— )t e
L2(U,p;H)
NET
A L2 (rr2w,pm) dt 22w em)

+ellaalts )z | (@a = wa)(t )z pv)

+ clluall Lz, p2)llaa — uall 2@, pir2(rvy) + C||17A|\%2(U,p;z)-

Integrating both sides of this inequality from ¢ = 0 to t = T', we obtain

d _ _
HE(“A —up) +llaa — uallL2rr2w,pvy) < clluallzw,pz) -

L2(L;L2(U,p; H))
From this and (2.9), we deduce that

d? _
H < cllin ez -
L2(U,p;L2(I,V"))

TEA

Thus
[an = uallz2 o) < cllanllL2w.piz),
which implies the first part of the assertion (2.8), i.e.
lu—uallL2@w,p2) < Z Uy Ly 22v,p;2)-
veF\A

The second part follows then from the normalization (2.1) and Parseval’s equality. O
Proposition 2.2 implies, in effect, quasioptimality of the L?(U, p; X) projection uy € X, defined in
(2.3). We note, however, that in its proof, the extra regularity u € L?(U, p; Z) was required.

2.3 Regularity with respect to ¢

We now establish a regularity result for v and wp which ensures the validity of the regularity w,up €
L?(U, Z,dp) and, hence, implies the semidiscrete error bound (2.8). To this end, we define the smoothness
space W C V as the space of all solutions to the Dirichlet problem

—Au=f in D, ulop =0, (2.12)

with f € L?(D), i.e.
W={veV:AvelL*D)}. (2.13)



We define the W-(semi) norm and the W-norm by
lolw = 1Avl[2py,  Nvllw = [vllv + [o]w (2.14)

It is well-known W = H?(D) NV for convex D C R?% TFor the following result we define the function
space
W=L*;W)nHYI;V)nH*(I; H) , (2.15)

where W is defined in (2.13). Note that for Z defined in (2.7) holds W C Z.

Proposition 2.3 Under Assumptions 1.1 and 1.3, and if, in addition, a(-,-) € L>=(U,WhH>(D)), g €
HYI;H), g1 € W and go € V, then for every subset A C F of finite cardinality holds

up € LA(U, p; W) € LA(U, p; 2).

Proof We proceed in two steps:
i): The coefficients and initial condition in the hyperbolic system (2.4) satisfy the compatibility condition

du,

d
Zu,(0) eV, =X
w(0) €V, Zn

g7 (0) = g(0)dow + VA™() - Vg1 ()ou + A™()Ag1 ()00 € H, g € L*(I; H). (2.16)

A standard bootstrap argument following, for example, the proof of [8, Theorem 30.1] for regularity of
a nonparametric, scalar second order wave equation shows that u, € HY(I; V)N H?(I; H) for all v € A.
Since A is a finite set, it follows uy € L2(U, p; Z).

ii): Next, we observe that the weak equation (2.4) is equivalent to the coupled system of wave equations
in (t,z) € I x D (with implied summation over repeated indices):

d?u, (t,x)

gz~ V@ @)Vuu(t, @) = gu(t, @) (2.17)

where g, (t,z) = g(t,x)d,. Using that a(-,-) € LU, W1>(D)), we find from (2.5) that AY*(:) €

W1oo(D) for every v, € A. We next observe that from (2.17) it follows (summation over repeated

indices)
d?u, (t, )

o R AVH(2) Ay, (t, ) — VA (2) - Vu,(t,z) = g,(t,2) € CO(T; L*(D)) Vv € A.

From part i) of the proof and from the embedding in (2.7) it follows that (with summation over repeated
indices)

d?u, (t, )

A (z)Auy,(t,z) = e

— VA"M(x) - Vu,(t,x) — g, (t,z) € CY(T; L*(D)) c L*(I; H) Vv € A.

YveA: Au,(t,x) e L*(I; H)
which implies by the definition of the space W that
YweA: w(taz)e L*(I;W).

With part i) of the proof and the definition of W the assertion follows. |

Next, we establish the regularity u € L?(U, p; Z). Under some additional conditions on the coefficients
and the initial data of (1.1), we show that wu(-,-,y) is bounded uniformly in the norm of Z defined in
(2.7) for all y € U. We make the following assumption on the coefficient a(z,y).

Assumption 2.4 We assume in (1.9) that a € W1>°(D) and ¢; € W1>°(D) such that

Z ||7/}j||W1v°°(D) < 0.

J=1
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Proposition 2.5 If Assumption 2.4 holds and if moreover the compatibility condition
ge H(ILH), 1 €W, go €V (2.18)
holds, then for everyy € U it holds u(-,-,y) € Z and its Z norm is bounded uniformly for ally € U.

Proof We proceed along the lines of proof for the nonparametric problem as outlined, for example, in
[8]: we consider the parametric hyperbolic problem
d?v dg dv
= V- (a(z,y)Vu(z,y)) = e v(0) = go, yr
As g € HY(I;H) so g(0) € H. From Assumption 2.4 and from the condition that g; € W, we infer
g(0)+ V- (a(z,y)Vg1) € H. From [8, Theorem 29.1], the initial boundary value problem (2.19) admits a

unique solution v € X; and the norm ||v|| » has an upper bound that depends only on amin, Gmax, g+ and
the initial conditions. It can be shown that (see the proof of [8, Theorem 30.1]),

du

(0) = 9(0) + V- (a(,y)Vg1). (2.19)

() = . 2.20
) = (2.20)
Therefore u(-,-,y) € Z and, by the apriori estimate (1.12) (applied to v) also its norm in Z is bounded
uniformly for all y € U. m|

Proposition 2.6 With Assumption 2.4 and conditions (2.18), the mapping v : U — Z is measurable.
Proof Let ¢ € L?>(I; V)N HY(I; H). We will show that for fixed ¢ € L2(I;V) N H(I; H), the mapping
U> Y= <’U, ¢>L2(I;V) + <Ua ¢>H1(I;H)

is a measurable map from U to R; here v = du/dt is the solution of Problem (2.19). The proof proceeds
along the lines of the proof of Proposition 1.5. For (2.19) we again consider the differential equation
(1.15) with the initial condition (, (0,y) = &m = (Elny -+ s Erimny Edmny + - - E2im ) Where

Z&;mw]— — g2 in V when m — oo

j=1

and, as m — 00,
Zf?mwj — g(0) + Va(z,y) - Vg1 + a(z,y)Agr in H when m — oo;
j=1

here the coefficients £7,, depend on y. The solution (, of (1.15) (for problem (2.19)) is written by (1.16)
for this new initial condition &, which depends on y. We claim that for each m there exists ¢(m) > 0
such that for every z,y,t there holds

e O W (y) — e OV ()] < elm)(sup la(z, y) — ale,y')| + sup [Va(e,y) — Va(e,y')]) -

To prove the claim, we write

et Cm W (y)—e 7O WG (y)] < (e O e OB gam gam € (y)|+]|e 7O [[g2m gom |m () —Em (¥))]-

Choosing Z;":l S?mwj as the orthogonal projection in H of ¢(0) + Va(z,y) - Vg1 + a(z,y)Ags onto the
linear hull of {wy, ..., wy}, there is a constant c(m) which does not depend on y such that |, (y)| < ¢(m)
for all y € U. Furthermore,

1Em(y) — Em(Y')| < C(m)(sgp \Va(a(z,y) —a(z,y')| + sup la(z,y) — a(z,y")]).
Estimate (1.17) then becomes
JSup [Gm(y) = G (Y ) lrem < C(m)(sgp Ve(a(z,y) — alz,y")] + sup |a(z,y) — a(z,y")]).

With Assumption 2.4, by a similar argument, it can be shown that for the solution v, of the discrete

problem (1.14) (applied for (2.19)) and for every ¢, the mapping U > y = (v, @) £2(1;v) + (Vm, @) 1 (1:1)

is measurable from U to R. The assertion follows. m|
From Propositions 2.5 and 2.6 we deduce u € L*(U, p; Z), so u,, € Z for all v € F.

11



3 Best N term approximation

As the solution v of the problem (2.19) satisfies v € L?(U, p; X), and due to (2.20), its coefficients v, in
the expansion v = Y, v, L, belong to X. For |v] > 0, u,(0,-) = 0. By the Poincaré in H'(I), there
exists ¢ > 0 such that

duy
dt

du,
dt

WweF: |ullzayvy) <c and |luy |20y < €

L2(1;V) -

L2(I;H) .

Therefore, |Ju, ||z < ¢|lvy||x. The approximation (2.8) can be written as

1/2
o= uallzeqwpm S 0 Nunllf)

veF\A

To obtain an explicit rate of convergence for this approximation in terms of the cardinality N of A, we
need summability of ||v,||x. We establish this for the case where v as a map from U to X is infinitely
differentiable, by recursive differentiation of the partial differential equation as in [5] for elliptic problems.
We emphasize that analytic continuation and complex variables techniques as employed in [4] do not apply
here, as the usual existence and uniqueness theory for second order hyperbolic equations (as presented,
e.g., in [8]) do not apply when the elliptic spatial operator is not selfadjoint, as is the case for the operator
obtained by analytic continuation of a(z, 2).

3.1 Differentiability of v with respect to y

To show differentiability of the solution v of (2.19), with respect to parameter y;, we require additional
regularity of v with respect to x and to t as shown in the following lemma.

Lemma 3.1 Fory € U, consider the hyperbolic problem

T =V (e, )Ve) = f(2,9), w0,2,9) = Aley), w0.5y) = ey . (1)

Assume that w(-,-,y) is uniformly bounded in L*(I; W) for all y € U and is continuous as a map from
U to L2(I;W) so that
yl’liny HA(’U}(, 'ay/) - w(" "y))HLZ(I;H) = Oa (32)

f is differentiable as a map from U to L*(I; H), f1 is differentiable as a map from U to V, and fy is
differentiable as a map from U to H. Then, under Assumption 2.4, for all k € N w is differentiable with
respect to yi, and the derivative 0y, w(t,x,y) € V is the unique solution of the problems

d2

ﬁ(aykw) -V (a(z,y)VOy,w) = Vi, - Vw + Y Aw + 0y, f(y)

with the initial conditions

d
aykv(ov 7y) = aykfl(y)v and ank’l)(o, ) y) = ayka(y) .

Proof We prove the (strong) differentiability by analyzing suitable difference quotients. To this end, for
d # 0, let y' € U be such that y; differs from y; only when [ = k, and y;, — y» = 0. Assume that the
coefficients 1, satisfy Assumption 2.4 and Aw(-,-,y’) € L?(D). Then w(-,-,y) — w(-,-,y’) satisfies the
equation

d2

ﬁ(w(a Bl yl) - ’LU(-, K y)) -V (G(ZE, y)V(’LU(, ) y/) - ’LU(-, ) y))) (33)

=V ((a('r’yl) - a(x,y )Vw( "yl)) + f(y/) - f(y) )

with the initial condition

’LU(O, 'ay/) - w(oa 'ay) = fl(yl) - fl(y) and %(w(oa 'ay/) - ’LU(O, ay)) = f2(yl) - fQ(y) :



We deduce from this identity that

Jw(- ") = w(, - y)llx < ed (IVErl| Lo o) [Vw (- - ) lv + 19kl Lo 0y [ Aw (-, - y) | L2 (1))
+e(IFW) = FWlleem + 1AW) = AW)lv + 11f206") — fo()ll) -

For y,y’ as above, let
_ 1
w = g(w(a ) y/) - ’LU(-, ay))

and let 7(t,-) € V denote the solution of the problem

%77 -V (a(‘r’y)vn) =V (wkvw(a K y)) + aykf(y)’ (34)

with the initial condition

d
77(0) K y) = aykfl(y) and En(oa ay) = ayka(y)
By superposition,
d? 1

gz (@ =) =V (alx,y)V(@—n) = V- V(- y) —w ) + 5 (@) = F) =0 f(y), (3:5)

with the initial conditions

(@ —n)(0,-) = %(ﬁ(y’) = 1) = Oy fi(y), (@ —m)(0,) = < (f2(y') = f2(y)) — Oy, fo(y).

| =

From Assumption (3.2), when 6 — 0,

HA(’UJ(, '7y/) o ’U.)(', '7y))HL2(I;H) — 0.
Together with

Hf(-,~,y ) - ICoy) g fey) =0,
L2(I;H)
‘ fl('ay/)gfl(.’y) —aykfl('ay) - 0’
v
and !
’ f2(ay)(;f2(’y) _ayka(ay)H _>O’
H

when § — 0, we get
lim ||w —nllx =0, i.e n = Jy, w.
6—0

O

Remark 3.2 The spatial reqularity which we assumed in Lemma 3.1 can not be essentially weakened,
as s easily seen from the Cauchy problem of the wave equation (1.8) in D =R, with positive coefficient
a(y) that is independent of of x. Then, for each y € U, for g = go =0 in (1.8), by d’Alembert’s formula
it holds that

u(t, ) = 3l — cw)t) + o1 (o + e(y))]

where ¢(y) = v/a(y) > 0 denotes the (constant) signal propagation speed. FEuvidently, regularity of ¢1(x)
and of a(y) is necessary for smooth dependence of u(-,-,y) on y. Similar arguments show that also
smoothness of g and of g in (1.8) is necessary for smooth parameter dependence of u ony € U.

Remark 3.3 In order for (3.2) to hold, we need regularity for (3.3). This requires compatibility condi-
tions for the initial conditions.

Consider the particular case of equation (2.19), this requires further regularity of g1, and for non
constant g1 further regularity for a(x,y) than Assumption 2.4. In order to be able to differentiate further,
we need similar reqularity for 0y, v. Therefore, we restrict our consideration to a subclass of problems as
specified in the following assumption.
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Assumption 3.4 We assume that the initial conditions g1 and go are constant (g1 = g2 = 0 in the case
of Dirichlet problems) and g € C*([0,T]; H), i.e. g is infinitely differentiable as a map from I to H.
l

d
Furthermore, d—j(o, ) € V is independent of x for all | € N.

We use Assumption 3.4 to prove that 9, v exists for all v € F. To this end, we first establish the regularity
of v with respect to x and t.

dv

Lemma 3.5 For all integers |, v € H'(I;V) and Av € H'(I; H). Further o satisfies the problem

d? dv dv dtlg  dw d=1g d+1y dg
wmar Vv (a(fﬂvy)vﬁ) = W(Oa )= F(O’ ), and W(Oa )= W(Oa ). (3.6)

Proof We show this by induction. The function v satisfies the problem

d?v dg dv
— =V Vv) = — 0,-) = —(0,-) =g¢(0,-) .
di2 (a’(xvy) ’U) dt’ U( ) ) g2, dt( ) ) g( ) )
Therefore, since the initial conditions are compatible,
d? dv dv d’g dv d?v _ d_g

w%—v-(a(x,y)v%)zw, %( ;) = g(0,-), W( ;) = dt(o")'

The conclusion therefore holds for [ = 1. Assume that the conclusion holds for [. We note that the
compatibility conditions of the wave equations for d'*1v/dt'*! hold as d'g/dt(0,) is in V, and

l—lg dl+lg - dl+lg

V- (s VG 0.0) + Gt 0. = G009

is independent of z and is in H. Therefore d'v/dt! € X is the unique solution of the problem (3.6) for all
l. As d'"T2v/dt"*? € H for all [,

dv 1 dtlg  dt% dv
U PR
" alzy) \dgtt  agrr Val@,y) -V
isin H as a(x,y) > amin. The Lemma is thus proved. O

Proposition 3.6 For allv € F, 0,v exists as a derivative of the map v from U to XNL2(I;W). Further
for all integers I, the functions O;v € HY L V), Adyv € HY(I; H) and 0,v are the unique solution of the
problem

d? d d d d
2 0yv =V (a(@,y) V=2 0yv) = Zuj [wjv@ay” v+ A0 (3.7)
J
with homogeneous initial conditions.
Proof We prove this proposition by induction. First, we consider the case |v| = 1. Choose w = v in

(3.1). We have for any y,y' € U

%(U(" " y/) - U('a " y)) -V (a(x,y)V(v(-, "yl) - U('a K y)) =V ((a(xvy/) - a(m,y))Vv(-, 'ayl)) ) (38)

with homogeneous initial conditions. As v(-,-,y') € H'(I; W), the right hand side is in H'(I; H). The
compatibility conditions therefore hold. Differentiating both sides with respect to ¢, we get

0 y) = 09) = V0l y) V5 (0 ) = 0l59) = V- (e ) - al,) V0 g

14



with zero initial conditions. We therefore conclude that

E

ﬁ(’v(" "y/) - U('a ay)) c (Ha('ay/) - a("y)HL“(D) + ||va('ay/) - va(ay)HL“(D)) )

L2(I;H)

which converges to 0 when § — 0. From this and (3.8), we infer that condition (3.2) holds. Therefore we

obtain that the partial derivative d,, v exists and is the solution of the initial boundary value problem
d?0y, v
e V- (a(z,y)VOy,v) = Vi Vu + ¢ Av (3.10)

with zero initial conditions.
As the right hand side is in H'(I; H) for all [ € N, equation (3.7) for |v| = 1 is shown from (3.10) in

dl
the same manner as in the proof of Lemma 3.5. This equation can also be derived by inserting w = d—:
n (3.1). Similarly, by differentiating (3.9) with respect to ¢, we have
d3 ,
_3(’0(""9)_1)(';';?/)) — 0 as (5—>0,
dt L2(I;H)
SO ;
HA_(U(H',Z//)U(',',ZJ)) —0 as J—0.
d L2(I;H)

As the initial conditions of (3.5) are homogeneous, differentiating both sides of (3.5) with respect to ¢
(where w = v), we show that

—0 as 6 — 0.

|
L2(I;H)

@(w—n)

From this we deduce A(w —n) — 0 in L?(I; H) as § — 0. Therefore we obtain differentiability of v also
when it is regarded as a function from U to L2(I; W).

For |v| > 1, we prove the assertion by induction with respect to |v|. To this end, let e, € F denote the
multi-index with all components being zero, except the kth component which equals 1. The induction
hypothesis gives

d2
ﬁa; v =V - (a(z,y) VO, *v) = Z(z/ —en); [V VO, =0 4+ Ady =]
J
with homogeneous initial conditions. We consider this equation in the place of (3.1) where w = 9~ “v
As by assumption the right hand side is differentiable as a map from U to H*(I; H), differentiating both
sides of (3.3) with respect to ¢, we deduce that

— 0

) al/ o Bl 7y) au_ekv('v'vy))
HdtQ . L2(I;H)

when § — 0. Therefore the condition (3.2) for w = 0}~ v holds. We can thus differentiate d; ~“*v with
respect to y, and conclude as in the case |v| = 1. |

3.2 p-Summability of ||v, |

To establish ¢P(F) summability of ||v, | x, we consider smooth and compatible data g with quantitative
bounds on the smoothness as follows.

Assumption 3.7 There are constants co >0, 0 > 1 and § > 0 such that

dlg

dtt

dlg

l : —
Vi eN ‘ il

"

<0>H < L ((1 - 1)

L2([0,T];H) H
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We observe that the case § = 1 corresponds to function g which are analytic functions of ¢t whereas
Assumption 3.7 with 6 > 1 corresponds to g belonging to the so-called Gevrey class G°.
We will first establish energy bounds for the solution of the hyperbolic problem (1.1)

Proposition 3.8 Consider the equation (1.1) on a time interval I = [0,T). If u € H'(I; V), then there
s a positive contant aq such that

du||?

dt

+llullorvy < g+ T2 (lglZ iy + lgnlly + lg2lF)- (3.11)

L*(I;H)
Assume further that for 3 dg € L*(I; H) and

& du
dt2 dt

du
v_
) 7

dg

-V - (a(z, o

) =
with compatible initial conditions

d d?
d_ltb(oa ) =g2 € V' and Wg(oa ) = g(oa ) +V- (a(ay)v.gl) €H

Then there exists a constant By > 0 such that

dg
dt

1Al o < ——llgllzarsan + Boll + T >(|g||L2<I;H> H

Gmin L2(I;H)

wol,)

du

7 (0) (3.12)

lonlly + |gz|H+]

We will prove this proposition in the Appendix.
We now establish estimates for the solution v of problem (2.19). Let
a=ag(l+T?)(1+1/0+1/0%), (3.13)

and

B= + Bo(L+T?)(2+0+2/0+1/0%), (3.14)

min

where the constant 0 is as in Assumption 3.7.

Lemma 3.9 With Assumption 3.7, we have for 6 > 1

d d
£y < coad' (1N, and AZY < coBL((1+1)°.
dt' || dt || 1o (1,m)
Proof We deduce from (3.6) and (3.11) that
dl’U dl+lg dl—lg dlg
—| <ap(1+71? — (- —(-,0
Jal. = 0o (..., a0l +[weol,)

which implies

dl
‘ d_;l) < coap(1+THE + 071 +2173)(11)° = coad' (11)°.
X
We also have from (3.12)
dl’U 1 dl+lg dl+lg dl+2
A—r < — +60(1+T2)(‘ +’ +
H A || L2y~ min (| L2 1 A | oy 112 L2y
d'v d'*ty d*1y d'*%y
o], [550], g0, 25501, )
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Thus
dv
A——
2%

1
<a cod' + coBo(1+T?) (al +o 4ol ol gttt 4 al)) (1+1))°
L2(I;H) min

coBot((141)1)°.

We now establish bounds for d;/v inductively. For o and j as in (3.13), (3.14), let
by = |‘V1/}k||L°°(D)04+ H’l/)k”Loo(D)ﬂ (3.15)
We have the following result
Proposition 3.10 Under Assumption 3.7, for every v € F and everyl € N,

H—@” < coBlv (L4 v+ 1)) . (3.16)

dart Y

< coaly|N (1 4 [v))))°, and HAd -Oyu

L2(I;H)

Proof We proceed by induction. When v = 0, from Lemma 3.9, the assertion holds. For |v| > 0, using

HWZ o < conly] — D (@4 - 1)y
and
loogon]| < apt- mp-ssa iy
L2(I;H)

we have from (3.7) and (3.11), using (3.15) that

H@ayv < cap(l+T7) ZVJ‘ (|\V¢j|\L°°(D)a(|V| — 10" 4
J
sl oy B | = 1) =550 ) (L + [p]))?
< coa Y vi(IVeillLeya + 195l Lo oy B)(1v] = D1 =90! (1 + |v])!)°

= coalv['*' (I + [v])1)°
Furthermore, from (3.7) and (3.12)

d 1
A—0rv < v ||Vy; V (9” v 41, A (9” Sy
H dt! L2(13H) Gmin ; o dtl Y Tt L2(13H)
2 dl
+ﬂo(1 +T ) Zl/j Vi/}j dtl ayv eﬂv+1/)j 7 ayv Ciy
j L2(I;H)
dl+1 e, dl+1 e
+Zl/] Vy;V tmay v+ P A tl+1ay iy )
L2(I;:H)

IN

Gmin

co Y ViVl Loepya + 195l L () B) (Jv] = D=0 (1 + [v])!)°
j

+coPo(1 + T2)<Z Vi (V95| Loy + [5]1 e ) B) ([ = DB~ ((1 + |v])1)°
i

+ D v (Vs L= yer + 195l oy B) (1] = D=0 (1 + [v] + 1)!)6)
i

W72 (L + [)1)° + coBolL + T2)[w[b"d (1 +0)((L + ] + 1)1)°

= CO
min

< coBlr0l (1 + |v| + 1))°.
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When [ = 0, we get
18y vl < coa(|p]!) 00"

We now consider the Legendre expansion of v:

v="> v,L,(y)

veF
To establish p-summability of ||v,||x, we employ the following result.
Lemma 3.11 Fors; € {1,2,...,t} (j=1,...,m),
(514 .o+ 8p)! < 151252 S,

Proof We prove by induction. When m = 1: s;! < #! < t!. Assume that the assertion holds for m. We
have

(514 A 8m+1) o (514 FSmtsmer) < (Em+1) ... (tm+smer)) < 5 (mA1)5m+1 < tH(m41) 5+,
Therefore

(814 ot Spg1)! S 19252 ottt (m 4 1) S = gD R2% (4 1)

To establish p-summability for ||v, ||+, we make the following assumption.

Assumption 3.12 We assume that for a value p € (0,1)

oo

Z kp(6+1)(||1/)k”poc(p) + ||V7/’k||ILJoo(D)> < 0.
k=1

We then have the following summability result for ||v, || x.
Proposition 3.13 Under Assumptions 3.7 and 3.12, (H’UU”)() € (P(F).
veF

Proof First, we consider the case where 1/2 < p < 1. Let S = {i1,...,i,} C N. We consider the

differential operator
0 0 0 0
=(-1)™ 1—y? 1—y; :
ts= (g (A=) ) o (0= 05 )
We have

[Lsvllx <2™ > (105 .05 vlla <2cor Y (514 -+ sm)) BB

5;=1,2 s;=1,2

We then deduce from Lemma 3.11

|Lsv|lx < 2m(204+3) 0y Z 1510+ .7715'"'(‘5"'1)()?11 b

Sj:l 2
< om(2+3), aH 5+1b +32(5+1)b2)
j=1
< 2m@ ) ea [ by, +350F82).
=1
We note that
LsL,( H vi;(vi; +1) | Lu(y).
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Because Lg is selfadjoint, we have

[T v 1) | v = /U oLsLy(y)dp(y) = /U LsoLy(y)dp(y).

We therefore deduce that

2 2
m m
Z H Vij (l/ij + 1) ||'U1/H?y S 2m(25+3)coa H(,L'?-i-lbij 4 Z?((s-‘rl)bi)
veFr \j=1 j=1
From this, we deduce that:
" 1
||UVHX < 2m(26+3 H 6+1b11 + 2(5+1)b2 ) : :
i ZN 7
Therefore, for p > 1/2:
" 1
s 541 2(6+1
D e | T A I Sl
supp(v)=S j=1 supp(v)=S i1 "7 Vim

= (co)P2m P [T 0y, + 507002 )7,

j=1
where M = Y72 | k™2 < oo since p > 1/2. Thus
o0 m
Z logl% < (coa)? Z 2m(25+3)pMmH(i?+1bij +Z~?(5+1)b12j)p
VEF i peeim=1 j=1

(coar)? H (1 2B (kL k2<5+1>bz)P)

< (coa)? exp <Z 22PN (kOH 1Dy + K2OFDp2)P )

which is finite when (k°*'b;), € ¢7(N).

For p < 1/2, we get the same conclusion by applying the operator £ where r is the smallest integer
greater than 1/(2p). O

Example 3.14 Consider the forcing function g(t) = e~'/*" where q¢ > 0 which belongs to G° for all
§ > 1+41/q (see [3]). In this case, Assumption 3.12 holds, e.g., when (Y| < (p)y and |[|[Vipi| L~ (py decay
faster than k—(2+1/p+1/9)

3.3 Best N-term convergence rate

To deduce the rate of convergence for the best N terms u, in the expansion (2.2), we need the following
lemma

Lemma 3.15 (Stechkin) Let o = (ow,)yer be a sequence in ¢P(F). Let ¢ > p > 0. If AN € F is a set of
indices corresponding to a set of N largest ||, we have the estimate

( Z o, |99 < llellp(myN~7, where o =
V¢AN

D=
| =

We can now state and prove our main result.
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Theorem 3.16 If Assumptions 1.1, 1.3, 2.4, 3.4 and 3.7 hold, there exists a sequence (An) C F of
index sets with cardinality not exceeding N such that the solutions up, of the Galerkin semidiscretized
problem (2.8) satisfy

[u—unyllex <CNT7, 0=~ —

Proof As Assumptions 1.1 and 3.4 hold, from Proposition 3.13 we obtain that u € L?(U, p; Z). This
implies that the semidiscrete Galerkin projection onto X, is quasioptimal for any finite index set A C F
by Proposition 2.2. Let Ay be the subset of F corresponding to the largest NV terms u, in the expansion
(2.2) according to their Z norm. The conclusion follows from Lemma 3.15. O
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Appendix

We prove Proposition 3.8. Assuming that u € H*(I;V) and letting the test function in the variational
form be du/dt, we have

d?u du du du
Su N g Vu - Vidr = [ ¢<%
/D<dt2’dt>H er/Da(gc’y) NV /ngt’

SO
1d ||du, |> 14d du
——||==(t —— Vu(t 2de < ||g(t —(t
57|50 455 [ awnivute i < ool | o]
for all t € (0,7"). Thus
du_|I? 9 du 9 9
DN+ aminl Vu@la < 2lgllc2m || 27 + (192117 + amaxllgr v (3.17)
H L2(I;H)
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Therefore:

du|? du
1%+ ol Pl < 2Tl H— + Ty + Taal
L2(1;H) L2(I;H)
du 9 9
<Ay + 5 ||| 4 Tl + Tamaslin -
L2(I;H)

We note that

2

t T 2
du du
ol =| [ G +a| <2 [C|G0| @) vl
du du
<ot [ %) v ot < 2T\ g
0 H L2(I;H)
Thus
du
lullZeziry < 277 + 27| g1 /1%
L2(I;H)
Therefore, there is a constant ay > 0 such that
2
du + [lullZ < ag(1+1%)*(llglZ +llg2ll7 + llgalIF) (3.18)
dt L2(rv) = %o 92wy T 921 T 191llv ) :
L2(I;H)
Assuming that dg/dt € L*(I; H) and du/dt satisfies
d? du du dg
g V@ y)Vo) = -
with compatible initial conditions
du d?u
E(O ) = g2, and E(O) =9(0,-) = V- (a(-,y)Vg)

For all ¢, we have
2

d“u
—a(z,y)Au =g — — + Va- Vu.

dt?
Therefore for all ¢t € I:
dPu
aminl [ Au()|| 221,y < gl L2rm) + e} (t) +IVall Lo pyllull 2 (r;v)
L2(I;H)
dg du d*u
<loOlzaam + oo+ (|2 oS0 +| G0 )+
L2(I;H) v H

IVal| Lo (pyao(1 + TQ)(Hglleu;H) + lgillv + llgallz)-

Thus there is a positive constant Sy such that

dg
| 1+ 1) Lol + Hdt
L2(I;H)
lorllv + llgall + d“<o> (3.19)
gillv 921lH p dt2 .
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