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Abstract. The Induced Dimension Reduction (IDR) method, which has been introduced as a
transpose-free Krylov space method for solving nonsymmetric linear systems, can also be used to
determine approximate eigenvalues of a matrix or operator. The IDR residual polynomials are the
products of a residual polynomial constructed by successively appending linear smoothing factors and
the residual polynomials of a two-sided (block) Lanczos process with one right-hand side and several
left-hand sides. The Hessenberg matrix of the OrthoRes version of this Lanczos process is explicitly
obtained in terms of the scalars defining IDR by deflating the smoothing factors. The eigenvalues of
this Hessenberg matrix are approximations of eigenvalues of the given matrix or operator.

Key words. Krylov space method; iterative method; induced dimension reduction; large non-
symmetric eigenvalue problem

AMS subject classifications. 65F15 (primary); 65F10; 65F50

1. Introduction. Induced Dimension Reduction (IDR) is a general concept for
defining certain Krylov subspace methods for solving systems of linear equations.
While the rationale behind the IDR approach differs considerably from other ap-
proaches to Krylov subspace solvers, the resulting methods are mathematically not
much different from well-known Krylov methods. In particular, as we will show here,
there is also the possibility to extract eigenvalue information from the recurrence
coefficients constructed in IDR methods.

1.1. The IDR approach. The first IDR method was presented 1979 and pub-
lished 1980 by Sonneveld [47]. It is nearly mathematically equivalent to the BiCG-
Stab method introduced ten years later by van der Vorst and Sonneveld [45, 44].
Consider Ax = b, where A is a general complex N ×N matrix and b ∈ CN . As for
any standard Krylov subspace method, the approximate solutions generated by IDR
satisfy

xn ∈ x0 +Kn(A, r0) , (1.1)

where r0 := b−Ax0 is the initial residual, and

Kn := Kn(A, r0) := span {r0,Ar0, . . . ,An−1r0}

is the nth Krylov subspace generated by A from r0. Clearly, Kn ⊆ CN , and, if the
data are real, Kn ⊆ RN . Relation (1.1) implies that for the nth residual rn := b−Axn
holds

rn ∈ r0 + AKn(A, r0) ⊂ Kn+1(A, r0) . (1.2)

In the original IDR, it must additionally satisfy

rn ∈ Gj , where j :=
⌊n

2

⌋
(1.3)

and where the Sonneveld spaces Gj [37] are defined by a recurrence of the form

Gj := (I− ωjA)(Gj−1 ∩ S) . (1.4)
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†Seminar for Applied Mathematics, ETH Zurich, CH-8092 Zurich, Switzerland
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Here, S is a hyperplane of CN , and the parameters ωj are normally chosen such
that r2j is as short as possible. At the beginning, G0 = KN , but no basis of this
invariant Krylov subspace is needed. It turns out that the spaces Gj are nested:
Gj+1 ⊂ Gj , and that under mild restrictions on the hyperplane S in a finite number
of steps they reduce to the null space, so that rn = o. It can be shown that the
even indexed IDR residuals are BiCGStab residuals: r2j = r

BiCGStab

j . In particular, the
polynomial Ωj(z) := (1−ω1z) · · · (1−ωjz) is again a factor of the residual polynomial
ρ2j associated with r2j .

Recently, Sonneveld and van Gijzen [39, 40] considerably generalized and im-
proved the original IDR method. In their IDR(s) the subset S is a subspace of
codimension s, and the indices n and j in (1.3) are linked by

j :=
⌊

n

s+ 1

⌋
.

This method can be seen to be related to the ML(k)BiCGStab method with k = s
of Yeung and Chan [50] and thus to the nonsymmetric band Lanczos process with one
right-hand side starting vector and s left-hand side starting vectors [3]. In the case
s = 1, the IDR(s) prototype algorithm of [39, 40] differs slightly from the original IDR
of [47], but again r2j = r

BiCGStab

j . Hence, it is still essentially equivalent to BiCGStab.
If s > 1, there is additional freedom in the choice of the “intermediate” residuals rn
with n 6= (s+ 1)j. This has been capitalized upon in the IDRBiO variant of IDR(s)
described in [46]. Reformulations of the IDR approach have been considered in [35, 36].
Modifications of the basic recurrence (1.4) have lead to further similar methods such as
IDRStab by Sleijpen and van Gijzen [37], and GIDR(s, L) and GBi-CGSTAB(s, L)
by Tanio and Sugihara [42, 43]. Currently, Abe and Sleijpen [1, 2] work out the
details of IDR variants which adapt ideas of BiCGStab2 [18], BiCG×MR2 [27],
and GPBiCG [56] to the IDR framework, which we term IDRStab2, IDR×MR2,
and GPIDR, respectively.

The convergence behavior of IDR methods is largely not understood. A stochastic
analysis of basic IDR variants which relates the convergence behavior to the one of
GMRes has recently been published by Sonneveld [38]. A step towards understanding
the behavior also in finite precision is our investigation of the relation of IDR to two-
sided Lanczos processes.

It is straightforward how to extract partial eigenvalue information from a run of
BiCGStab, since this method explicitly determines the recurrence coefficients of a
nonsymmetric Lanczos process, and thus, of a tridiagonal “projection” of A. In this
paper we show how the same eigenvalue information can be extracted from a run of
IDR(1), and we investigate the generalization of this eigensolver to the case s > 1. We
only cover the prototype method of [39, 40], but our approach carries over to other
members of the IDR family mentioned above.

In particular, we consider here the transition from the prototype IDR(s) method
to a two-sided (block) Lanczos process with one right-hand side and s left-hand sides
in OrthoRes form (defined below in Subsection 1.3). The OrthoRes form of this
Lanczos process will be denoted for brevity by BiORes(s, 1), in analogy to the ter-
minology introduced in [5] and [17, 19]. As the IDR(s) variant in [39, 40] has simi-
larities with OrthoRes [51] and is based on a short-term recurrence we denote it by
IDR(s)ORes. The transition from IDR(s)ORes to BiORes(s, 1) is analogous to the
corresponding transition from classical IDR [47] or BiCGStab1 [44] to the BiORes
version of BiCG [17, 19]. The first similar transition from a linear equation solver to
an eigenvalue solver, namely, from the Hestenes and Stiefel variant of CG, which is
the OrthoMin-variant of CG, to the Lanczos method tailored to symmetric matrices
was given in the book of Householder [22].

1BiCGStab amounts to a reformulation of the ideas behind classical IDR.
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1.2. Motivation. There are four reasons to consider eigenvalue computations
based on IDR. The obvious reason is to showcase that IDR can be used to compute
eigenvalues, so without the need for the transpose of A and using recurrences of
length s. The second reason is that the link worked out in [53] between quantities
defined in Krylov subspace methods like IDR and interpolation at the computed Ritz
values enables us to better understand the convergence of IDR in theory, as well as
in finite precision. A third reason is the idea to enhance existing IDR algorithms in
case of slow convergence by utilizing information about the location of the eigenvalues
by, e.g., preconditioning based on deflation. This information on the spectrum of A
may especially be useful in a parallel implementation, see the remarks in [54]. Last
but not least, it deepens our understanding of the interrelations between IDR(s),
ML(k)BiCGStab, and two-sided (block) Lanczos processes with one right-hand side
and several left-hand sides.

For the second and third reason and to simplify the presentation, we only con-
sider IDR(s)ORes, the most basic variant of IDR(s). Alternatively, we could have
rewritten the recurrences to better suit eigenvalue computations, e.g., by normalizing
the residuals, which are only used as basis vectors if we do not compute approximate
solutions of linear systems. As IDR(s)ORes is of type OrthoRes, we assume that
zero is well separated from the field of values, which implies that A is not too badly
conditioned. For the sake of brevity and clarity we only show how to compute ap-
proximate eigenpairs; the convergence theory and the error analysis of IDR(s)ORes
(and the variant of IDR(s)Eig based on it) will be published separately.

1.3. Notation and preliminaries. We use standard notation. The identity
matrix of size s is denoted by I = Is, its column vectors by ej and its elements by
the Kronecker delta δij . The vector of the sums of all columns, i.e., the vector of all
ones, is denoted by e. The matrix O = Os denotes the zero matrix of size s, the zero
column vector of length n is denoted by o = on. The matrix Nk denotes the nilpotent
upshift matrix of size k with elements δi,j−1. The sizes are omitted if easily deducible
from the context. In step n > s of IDR(s)ORes, Rn−s:n denotes the matrix of the
last s+ 1 residual vectors,

Rn−s:n :=
(
rn−s, . . . , rn

)
. (1.5)

The matrix of all residual vectors up to step n has n+ 1 columns and is denoted by

Rn+1 :=
(
r0, r1, . . . , rn

)
= R0:n. (1.6)

The forward and backward difference operators ∆ and ∇ are defined by

∆rn := rn+1 − rn and ∇rn := rn − rn−1, (1.7)

respectively. These finite difference operators are applied column-wise to matrices.
Closely related to the forward and backward difference operators is Matlab’s diff
operator defined column-wise by

c =

γ1

...
γs

 ∈ Cs ⇒ diff(c) =

γ2 − γ1

...
γs − γs−1

 ∈ Cs−1. (1.8)

We denote the space of polynomials of degree at most n by Pn, and we let P◦n be
the subset of those polynomials that take at 0 the value 1.

We will repeatedly consider unreduced “extended” Hessenberg matrices that have
an extra row at the bottom with a non-zero element only at the end. Let Hn ∈ Cn×n
denote an unreduced Hessenberg matrix. Then Hn ∈ C(n+1)×n is used to denote the
corresponding unreduced extended Hessenberg matrix. Here, most of the extended
Hessenberg matrices will have the property that their column sums are zero. We
say that these Hessenberg matrices are of OrthoRes-type, since each one defines a
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Krylov subspace method of the general OrthoRes form [51]. Extended Hessenberg
matrices of OrthoRes-type are denoted by appending a superscript ◦, like Y◦n, S◦n,
or L◦n. The property that the columns sum to zero is mathematically reflected by
eTS◦n = oT

n. OrthoRes-type matrices, i.e., unreduced extended Hessenberg matrices
scaled such that eTS◦n = oT

n, have an LDMT decomposition S◦n = E◦nDnMH
n with an

extended bidiagonal unit lower triangular matrix E◦n ∈ C(n+1)×n of OrthoRes-type,
a diagonal matrix Dn ∈ Cn×n, and a Hermitian transposed unit lower triangular
matrix Mn ∈ Cn×n, where

E◦n :=


1

−1
. . .
. . . 1

−1

 ∈ Z(n+1)×n ⊂ C(n+1)×n,

Dn := −diag (s◦2,1, s
◦
3,2 . . . , s

◦
n+1,n) ∈ Cn×n.

(1.9)

This has two interesting implications: The determinants of the leading submatrices
of −S◦n are all nonsingular and given by

det (−S◦k) =
k∏
j=1

s◦j+1,j =: s◦1:k, 1 6 k 6 n, (1.10)

and the inverses of S◦k are highly structured,

eT
j (S◦k)−1ej = eT

j (S◦k)−1ei = eT
j (S◦k)−1e1, 1 6 i 6 j 6 k 6 n. (1.11)

The last equation is verified by noting that in (S◦k)−1 = (MH
k )−1(Dk)−1(E◦k)−1 the

first factor, (MH
k )−1, is upper triangular, the second, (Dk)−1, is diagonal, and (E◦k)−1

is the lower triangular matrix of ones.

Associated with the residual rn there is a residual polynomial Rn ∈ P◦n satisfying
rn = Rn(A)r0, see [41]. Whenever a Krylov space solver is of type OrthoRes,
Rn has exactly degree n and is uniquely determined as long as Kn+1 has dimension
n+ 1. Moreover, in this case there is a corresponding Hessenberg decomposition2 (of
OrthoRes-type)

ARn = Rn+1 S◦n (1.12)

with an extended unreduced Hessenberg matrix S◦n of size (n+ 1)× n. This formula
summarizes the recurrences for the residuals; it is mirrored by the formula

z
(
R0(z), . . . ,Rn(z)

)
=
(
R0(z), . . . ,Rn+1(z)

)
S◦n (1.13)

describing the recurrences for the residual polynomials. It is well known, see, e.g.,
[12, Section 7.11, p. 252, Eqn. (8)], or, the probably earliest reference [33, Erste
Abtheilung, IV. Abschnitt, § 154, Seite 361, Gleichung 560)], that Rn is up to scaling
the characteristic polynomial of the n×n Hessenberg matrix S◦n and can be expressed
as

Rn(z) = det (In − z(S◦n)−1) =
det (S◦n − zIn)

det (S◦n)
. (1.14)

This can be verified by expanding det (S◦n − zIn) along its last row. In [53] it was
shown that this representation cum grano salis carries over to the finite precision case,
i.e., modulo additional polynomial error terms.

2We name these relations in honor of Karl Hessenberg. He was to our knowledge the first who
considered relations of the type AQn = Qn+1Hn with a special unreduced extended Hessenberg
matrix Hn, see [21]. Usually the names of Lanczos [23, 24] or Arnoldi [4] are associated with such
relations.
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Often, the residuals rn of a Krylov subspace solver satisfy a Bubnov-Galërkin or
a Petrov-Galërkin condition. For example, those of the biconjugate gradient (BiCG)
method [24, 11], which is closely related to the original IDR and the IDR(1) methods,
are characterized by

rn ∈ r0 + AKn , rn ⊥ K̃n := Kn(AH, r̃0) ,

where r̃0 ∈ CN is an initial shadow residual that can be chosen nearly arbitrarily. The
shadow space K̃n := Kn(AH, r̃0) is the nth Krylov subspace generated by the adjoint
AH, i.e., the complex conjugate transpose of A, from r̃0.

In the ML(s)BiCG method3 that Yeung and Chan [50] proposed as a theoretical
tool for deriving their ML(s)BiCGStab method, this shadow space is replaced by a
block Krylov space: after sj steps,

rsj ∈ r0 + AKsj , rsj ⊥ Kj(AH, R̃0) :=
s∑
i=1

Kj(AH, r̃(i)
0 ) , (1.15)

where R̃0 := (r̃(1)
0 , . . . , r̃(s)

0 ) is now an initial shadow block residual. For the steps
with index n = sj + `, where 1 < ` < s, we have analogously

rn ∈ r0 + AKn ,

rn ⊥ Kj;`(AH, R̃0) :=
∑̀
i=1

Kj+1(AH, r̃(i)
0 ) +

s∑
i=`+1

Kj(AH, r̃(i)
0 ) .

(1.16)

ML(s)BiCG is not exactly a generalization of BiCG, since it does not construct a
pair of biorthogonal or block biorthogonal bases for Ksj and Kj;`(AH, R̃0), but the
nonsymmetric band Lanczos process [3, 13, 14, 15] or the block Lanczos process [6, 25]
can be adapted to yield such generalizations of BiCG; see Section 3.3 of Loher [25].
In particular, we could develop a generalization of the BiORes version of BiCG that
is directly based on recurrences for residuals satisfying (1.15) and (1.16) — if such
residuals exist for all j and ` up to a sufficiently large value of n = sj, that is, if the
method does not break down early. The aforementioned method BiORes(s, 1) is a
more general scheme, also based on s left starting vectors (shadow residuals) and only
one right starting vector, the initial residual r0. In BiORes(s, 1) we allow far more
flexibility as we still have (1.15), but no longer enforce (1.16).

1.4. Outline. In addition to the IDR residuals rn we will encounter in this pa-
per other sets of residuals and the corresponding residual polynomials. We will also
use the Hessenberg pencils and Hessenberg matrices associated with the recurrences
for both the residual vectors and the residual polynomials. The various quantities
will be defined later, but Table 1.1 lists the residuals that play a rôle in this paper to-
gether with the corresponding extended Hessenberg pencils and extended Hessenberg
matrices, and Table 1.2 lists the residual polynomials together with the corresponding
residuals and some relations between them. By abuse of notation the matrix Qn+1

denotes either a generic matrix of column vectors which form a basis of a (rational)
Krylov subspace or the special matrix of deflated residuals. In the last row of Ta-
ble 1.1, D denotes the deflation operator that removes every (s+1)th row and column;
see Figure 1.1 below.

In case of the purified residuals wn we will not have an unreduced Hessenberg
decomposition and we will use two different denominations of tantamount importance
for the residual polynomials. One denomination, Wn, better reflects the construction
of the basis vectors and uniformly uses the column indices, the other, ρk versus ρ̂k,
is closer to the polynomial point of view: k is the degree of the polynomial and the
‘hat’ indicates that there are two different types of polynomials in use. We remark
that the polynomials Wn := Rn/Ωbn/(s+1)c are obviously residual polynomials, i.e.,
Wn(0) = 1, since Ωbn/(s+1)c(0) = 1 and Rn(0) = 1.

3Yeung and Chan [50] call the parameter k, but we are interested in the case where k = s.
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IDR(s) residuals Hessenberg pencil Hessenberg matrix

original Rn+1 (Y◦n,YnD(n)
ω ) S◦n := Y◦n(D(n)

ω )−1Y−1
n

purified Wn+1 (Y◦n,UnD(n)
ω ) does not exist

deflated Qn+1 (D(Y◦nGn), D(UnD(n)
ω )) L◦n := D(Y◦nGn)(D(UnD(n)

ω ))−1

Table 1.1
Sets of residual matrices, extended Hessenberg pencils, and extended Hessenberg matrices.

residual vectors residual polynomials

Rn+1 =
(
r0, . . . , rn

)
Rn(z) := det (In − z (S◦n)−1)

never defined; not needed Ωj(z) :=
∏j
k=1(1− ωkz), Ω0(z) ≡ 1

Wn+1 =
(
w0, . . . ,wn

)
Wn(z) := det (In − zUnD(n)

ω (Y◦n)−1)

Qn+1 =
(
q0, . . . ,qn

)
ρn(z) := det (In − z (L◦n)−1)

=
(
w0, . . . ,ws−1,ws+1, . . .

)
residual polynomial relations (including the BiORes(s, 1)-polynomials)

Rj(s+1)+k/Ωj =Wj(s+1)+k = ρjs+k, 0 6 k < s
Rj(s+1)+s/Ωj =Wj(s+1)+s = ρ̂(j+1)s, 0 6 j < b(n+ 1)/(s+ 1)c

Table 1.2
Sets of residual matrices with residual vectors, and corresponding residual polynomials.

The transition from IDR(s)ORes to BiORes(s, 1) proceeds in two steps, a pu-
rification step and a deflation step. In the purification step some known roots of the
IDR residual polynomial are removed, in the deflation step certain infinite eigenvalues
are removed which prevent the existence of a corresponding Hessenberg matrix. In
these transitions only certain entries of the Hessenberg pencils are modified. This
is depicted in Figure 1.1, which corresponds to a small example, where s = 3 and
n = 12. The third pencil (Y◦nGn,UnD(n)

ω ) is obtained from the second one, the
purified pencil (Y◦n,UnD(n)

ω ), by a multiplication from the right by the block-Gauß
eliminator Gn. For this reason we occasionally refer to it as the eliminated pencil.
The deflated pencil consists of two block matrices with s × s blocks4. The matrix
D(UnD(n)

ω ) is block diagonal, the upper triangular diagonal blocks are defined di-
rectly in terms of (differences of) IDR(s)ORes quantities. We stress the fact that
the matrix D(Y◦nGn) is simultaneously unreduced Hessenberg and block tridiagonal.
The diagonal blocks of D(Y◦nGn) are unreduced Hessenberg matrices, and only the
first rows and last columns are altered in the process of purification and deflation.

The paper is organized as follows. In Section 2 we define a refinement of the con-
cept of Hessenberg decompositions necessary for the treatment of IDR(s), in Section 3
we consider the application of IDR(s) to eigenvalue computations for the case s = 1,
in Section 4 we generalize and extend the results for s = 1 to the general case s > 1,
and in Section 5 we show how to obtain eigenvector approximations and an estimator
on the accuracy of the approximate eigenpair. We give some numerical examples in
Section 6, and the source codes of our algorithms are listed in Section 7.

4The last block column has less columns than s, if n or n + 1 is not divisible by s + 1. This is
not reflected in this educational example.
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Original IDR(s)ORes pencil, the Sonneveld pencil (Y◦n,YnD(n)
ω ):

××××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
+××××◦ ◦ ◦ ◦ ◦ ◦ ◦
◦+××××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦+××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦+××××◦ ◦ ◦ ◦
◦ ◦ ◦ ◦+××××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦+××××◦ ◦
◦ ◦ ◦ ◦ ◦ ◦+××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×


,



××××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦××××◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦××××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦××××◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦××××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦××××◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×


Purified IDR(s)ORes pencil (Y◦n,UnD(n)

ω ):

××××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
+××××◦ ◦ ◦ ◦ ◦ ◦ ◦
◦+××××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦+××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦+××××◦ ◦ ◦ ◦
◦ ◦ ◦ ◦+××××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦+××××◦ ◦
◦ ◦ ◦ ◦ ◦ ◦+××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×


,



×××• ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦××• • ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦×• • • ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • • • • ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦×××• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦××• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦×• • • ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×××•
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××•
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×•
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •


Deflated purified IDR(s)ORes pencil, elimination step (Y◦nGn,UnD(n)

ω ):

×××××××◦ ◦ ◦ ◦ ◦
+××××××◦ ◦ ◦ ◦ ◦
◦+×××××◦ ◦ ◦ ◦ ◦
◦ ◦ •+• • • ◦ ◦ ◦ ◦ ◦
◦ ◦++×××××××◦
◦ ◦ ◦ ◦+××××××◦
◦ ◦ ◦ ◦ ◦+×××××◦
◦ ◦ ◦ ◦ ◦ ◦ •+• • • ◦
◦ ◦ ◦ ◦ ◦ ◦++××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •+


,



×××• ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦××• • ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦×• • • ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • • • • ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦×××• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦××• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦×• • • ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×××•
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××•
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×•
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •


Deflated purified IDR(s)ORes pencil, deflation step (D(Y◦nGn), D(UnD(n)

ω )):
××××××◦ ◦ ◦
+×××××◦ ◦ ◦
◦+××××◦ ◦ ◦
◦ ◦+××××××
◦ ◦ ◦+×××××
◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦+×

 ,


×××◦ ◦ ◦ ◦ ◦ ◦
◦××• ◦ ◦ ◦ ◦ ◦
◦ ◦×• • ◦ ◦ ◦ ◦
◦ ◦ ◦×××◦ ◦ ◦
◦ ◦ ◦ ◦××• ◦ ◦
◦ ◦ ◦ ◦ ◦×• • ◦
◦ ◦ ◦ ◦ ◦ ◦×××
◦ ◦ ◦ ◦ ◦ ◦ ◦××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×


Fig. 1.1. The transition from IDR(s)ORes to BiORes(s, 1), here depicted pencil-wise for s = 3.

Circles and bullets mark zeros, crosses mark entries defined in terms of IDR(s)ORes quantities, and
plusses mark non-zero values. Black elements are original elements, blue bullet zero elements are
those introduced in the purification step, red elements are those altered during deflation.
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2. Generalized Hessenberg decompositions. We define a generalized Hes-
senberg decomposition5 to denote a matrix equation of the type

AQnUn = Qn+1Hn, (2.1)

with Un upper triangular and Hn unreduced extended Hessenberg. When Un = In,
this definition collapses to the definition of a Hessenberg decomposition, e.g., like the
one given as an example in Eqn. (1.12). We remark that here Qn+1 ∈ CN×(n+1)

denotes a generic matrix of basis vectors.

The matrix equation (2.1) corresponds in the case of full rank of Qn+1 and Un

to an oblique projection6 of the pencil (A, I), since

Q̂H
n(A, I)QnUn = Q̂H

n(AQnUn,QnUn)

= Q̂H
n(Qn+1Hn,QnUn) = (IT

nHn,Un) = (Hn,Un),
(2.2)

where Q̂H
n := IT

nQ†n+1. By definition, Q̂H
nQn+1 = IT

n, i.e., Q̂H
nQn = In and Q̂H

nqn+1 =
on. If the upper triangular matrix Un is singular, we will refer to this as a singular
projection.

In case of IDR(s)ORes the matrix Qn is the previously defined Rn, the matrix of
all residual vectors. As IDR(s)ORes is a Krylov method, these can be characterized
using residual polynomials. We need another expression for the residual polynomials
solely based on the matrices Un, Hn defining the decomposition (2.1). To achieve
this, we prove that the columns of matrices Qn satisfying a generalized Hessenberg
decomposition (2.1) can be described with the aid of determinants of leading principal
submatrices of these pencils. The proof is based on a slight generalization of the proofs
of [52, Lemma 3.1]7, see also [9, 10] and [12, Section 7.11], and [53, Theorem 2.1], where
the case Un = In has been treated. We omit the index n for simplicity and consider
an unreduced Hessenberg/upper triangular pencil zH := zU − H with unreduced
Hessenberg matrix H ∈ Cn×n and upper triangular matrix U ∈ Cn×n. Similar to [52,
Eqn. (3.1), p. 595] and [53, Eqn. (1.9), p. 410] we define the scalars hi:j :=

∏j
`=i h`+1,`

and polynomial vectors ν(z) and ν̌(z): Let zHi:j denote the principal submatrix of
zH consisting of the elements indexed by rows and columns i to j and define χi:j(z)
by

χi:j(z) :=

{
det (zHi:j) , 1 6 i 6 j 6 n,

1, i− 1 = j.
(2.3)

We define ν(z) and ν̌(z) by

ν(z) :=
(
χi+1:n(z)
hi:n−1

)n
i=1

and ν̌(z) :=
(
χ1:j−1(z)
h1:j−1

)n
j=1

, (2.4)

with the usual convention that the empty product is one.

First we generalize [52, Lemma 3.1] to unreduced Hessenberg/upper triangular
pencils as already indicated in [52, Section 5, p. 605]. This proves amongst others
that if θ is an eigenvalue of the pencil zH, then the vectors ν(θ) and ν̌(θ) are right
and left eigenvectors, respectively.

Lemma 2.1. Let H ∈ Cn×n be unreduced Hessenberg and U ∈ Cn×n upper
triangular. Denote zH = zU −H, and let ν(z) and ν̌(z) be defined by Eqn. (2.4).

5These generalized Hessenberg decompositions play a dominant rôle in rational Krylov subspace
methods [28]; see the treatment in [29]. For this reason we occasionally refer to them as rational
Hessenberg decompositions.

6This is a Petrov-Galërkin approach.
7In writing [52] the second author completely missed the technical report [8], which predates

[52] by 16 years and already contains almost all the results needed in this paper. Unfortunately, the
report by Ericsson has never been published in a journal. We use here the notation of [52].
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Define χn(z) := det (zH) = det (zU−H). Then

(zH)ν(z) = e1
χn(z)
h1:n−1

, ν̌(z)T(zH) =
χn(z)
h1:n−1

eT
n. (2.5)

Proof. By definition of the adjugate Ad(z) := adj(zH), the matrix elements adij(z)
can be expressed for the lower triangular part (i > j) in terms of cofactors as follows:

adij(z) = (−1)i+j

∣∣∣∣∣∣
zH1:j−1 ?

Ni−j
zHj:i−1

O zHi+1:n

∣∣∣∣∣∣
= χ1:j−1(z)hj:i−1 χi+1:n(z)

=
(
χ1:j−1(z)
h1:j−1

)
︸ ︷︷ ︸

= ν̌j(z)

h1:n−1

(
χi+1:n(z)
hi:n−1

)
︸ ︷︷ ︸

= νi(z)

= h1:n−1eT
i

(
ν(z)ν̌(z)T

)
ej . (2.6)

This establishes equality between the triangular lower parts of the adjugate Ad(z) and
the outer product representation (2.6). We also know that the adjugate satisfies

zH Ad(z) = Ad(z) zH = χn(z) I. (2.7)

Since the first column and the last row are included in the triangular lower part, and
since ν̌1(z) ≡ νn(z) ≡ 1,

Ad(z)e1 = ν(z)ν̌(z)Te1h1:n−1 = ν(z)h1:n−1,

eT
nAd(z) = h1:n−1eT

nν(z)ν̌(z)T = h1:n−1ν̌(z)T.
(2.8)

Now, (2.5) follows upon multiplication of (2.7) with e1 and eT
n.

Next we generalize [53, Theorem 2.1] to obtain an expression for the columns of
Qn as polynomials evaluated at A times the first column q1.

Theorem 2.2. Let the columns of Qn+1 be defined by a generalized Hessenberg
decomposition (2.1) with unreduced extended Hessenberg matrix Hn. Let χn(z) be
defined as in Lemma 2.1. Then

qn+1 =
χn(A)
h1:n

q1. (2.9)

Proof. To prove (2.9), we start with the generalized Hessenberg decomposi-
tion (2.1). First we subtract both sides from the trivial equation zQnUn = zQnUn

to introduce a dependency on the variable z,

zQnUn −AQnUn = Qn(zUn −Hn)− qn+1hn+1,neT
n. (2.10)

We multiply Eqn. (2.10) with the vector

ν(z) =
n∑
k=1

ek eT
kν(z) =

n∑
k=1

ek νk(z) (2.11)

and utilize Eqn. (2.5) and νn(z) ≡ 1 to obtain

n∑
k=1

(
zQnUnek νk(z)−AQnUnek νk(z)

)
=

n∑
k=1

(
zνk(z)QnUnek −Aνk(z)QnUnek

)
=

n∑
k=1

(
zνk(z)−Aνk(z)

)
QnUnek = q1

χn(z)
h1:n−1

− qn+1hn+1,n. (2.12)
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Substituting A for z in the last line of Eqn. (2.12), which is possible as only scalar
polynomials occur, gives on on the left-hand side, since the term in parentheses is
zero for every k, k = 1, . . . , n. After reformulating the right-hand side of the last line
of Eqn. (2.12) we have proven the theorem.

Thus, whenever we have computed a generalized Hessenberg decomposition with
a matrix Qn+1 composed of residual vectors, we can immediately read off the resid-
ual polynomials. These are the characteristic polynomials of the unreduced Hes-
senberg/upper triangular pencil (Hn,Un) scaled by the product of the off-diagonal
elements of Hn, see Eqn. (1.10) and Eqn. (1.14). The new feature is that when Un

is singular, the degree of the polynomial is no longer equal to the dimension of the
space spanned thus far. We will come back to this point in Section 4. A side effect is
that the roots of the residual polynomials can be computed as the eigenvalues of the
pencil (Hn,Un).

3. The case s = 1. If s = 1, the recurrences of IDR(s) in [39, 40] are mathe-
matically equivalent to8

vn−1 := (1− γn)rn−1 + γnrn−2 , x′n−1 := (1− γn)xn−1 + γnxn−2 ,

rn := (I− ωjA) vn−1 , xn := x′n−1 + ωjvn−1 ,
(3.1)

where n > 1, j = bn/2c. Here, γn has to be chosen such that vn−1 ⊥ p, where p is
a basis vector of the one-dimensional orthogonal complement of S, so that vn−1 ∈ S.
If n is even, i.e., j = n/2, then ωj is usually chosen such that ‖rn‖ is minimal, but,
basically, any non-zero value is acceptable.

For n = 1 we may write

r1 = (I− ω0A)r0 .

Again ω0 can be chosen arbitrarily non-zero, e.g. such that ‖r1‖ is minimal.

By induction it is easily seen from (3.1) that rn = (I − ωjA)vn−1 = Ωj(A)wn,
where Ωj(z) := (1− ω1z) · · · (1− ωjz), and that wn ∈ Kn+1−j = Kn+1−j(A, r0). So,
we have

rn = Ωj(A)wn =

{
Ωj(A)ρj(A)r0 if n = 2j ,
Ωj(A)ρ̂j+1(A)r0 if n = 2j + 1 ,

vn−1 = Ωj−1(A)wn =

{
Ωj−1(A)ρj(A)r0 if n = 2j .
Ωj−1(A)ρ̂j+1(A)r0 if n = 2j + 1 .

(3.2)

Here ρj denotes the jth BiCG residual polynomial, which is the characteristic poly-
nomial of the tridiagonal matrix of the Lanczos process, and is often referred to as a
Lanczos polynomial, scaled by ρj(0) = 1, while ρ̂j+1 denotes another residual poly-
nomial, which has degree j + 1.

Inserting these formulas into vn−1 = (1−γn)rn−1 +γnrn−2 we get, after a short
calculation, for n = 2j and n = 2j + 1, respectively,

ρj(z) := (1− γ2j) ρ̂j(z) + γ2j ρj−1(z)
ρ̂j+1(z) := (1− γ2j+1) (1− ωjz) ρj(z) + γ2j+1 ρ̂j(z)

(j = 1, 2, . . . ). (3.3)

The initial settings are ρ0(z) := 1 and ρ̂1(z) := (1− ω0z).

In matrix-vector notation, due to w2j = ρj(A)r0 and w2j+1 = ρ̂j+1(A)r0, the
recurrences (3.3) can alternatively be expressed by

w2j := (1− γ2j) w2j−1 + γ2j w2j−2

w2j+1 := (1− γ2j+1) (1− ωjA) w2j + γ2j+1 w2j−1

(j = 1, 2, . . . ). (3.4)

8Compared to [40] and [20] the index of γn has been changed here by 1.
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It describes a mixture of a classical Krylov subspace method given by a three-term
recurrence and the construction of a new residual based on a weighting process. We
can incorporate the latter into the three-term recurrence and thus remove the vectors
w2j+1 with odd indices from the recurrence. In the following, this is is described using
the language of polynomials. The general case s > 1 will be treated in Section 4 using
the language of matrix recurrences.

Let us rewrite the recurrences (3.3). We let κj := γ2j and κ̂j := γ2j+1, and we
move the scalars to the right-hand side of the polynomials:

ρj(z)− ρj−1(z)κj = ρ̂j(z) (1− κj)
ρ̂j+1(z)− ρ̂j(z) κ̂j = ρj(z) (1− κ̂j)− zρj(z)ωj(1− κ̂j)

(j = 1, 2, . . . ).

Next we gather some of the coefficients in a lower and an upper bidiagonal matrix:

Bm :=


−κ1

1 −κ2

. . . . . .
1 −κm

1

 , B̂m :=


1 −κ̂1

1
. . .
. . . −κ̂m−1

1

 .

Here, Bm is underlined because it is an (m+ 1)×m matrix, i.e., it contains an extra
row at the bottom. We further need the three m×m diagonal matrices

Dω;m := diag (ω0, ω1, . . . , ωm−1) ,
Dκ;m := diag (1− κ1, 1− κ2, . . . , 1− κm) ,
Dbκ;m := diag (1, 1− κ̂1, . . . , 1− κ̂m−1)

and the row vectors

ρT
m(z) :=

(
ρ0(z) · · · ρm−1(z)

)
, ρ̂T

m(z) :=
(
ρ̂1(z) · · · ρ̂m(z)

)
.

Then the recurrences (3.3) for 0 6 j < m (including the relation ρ̂1(z) = (1 −
ω0z)ρ0(z)) can be summarized as

ρT
m+1(z) Bm = ρ̂T

m(z) Dκ;m ,

z ρT
m(z) Dω;m Dbκ;m = ρT

m(z) Dbκ;m − ρ̂T
m(z) B̂m .

(3.5)

Eliminating ρ̂T
m(z) with the help of the first equation leads to

z ρT
m(z) Dω;m Dbκ;m = ρT

m(z) Dbκ;m − ρT
m+1(z) Bm D−1

κ;m B̂m , (3.6)

or,

z ρT
m(z) Dω;m Dbκ;m = ρT

m+1(z)
((

Dbκ;m

oT
m

)
−Bm D−1

κ;m B̂m

)
. (3.7)

This is the polynomial form of a Hessenberg relation. The standard form is obtained
by multiplying from the right-hand side with the inverse of Dω;m Dbκ;m, followed by
inserting z := A and applying both sides to r0. The (m+ 1)×m matrix

Tm :=
((

Im
oT
m

)
−Bm D−1

κ;m B̂mD−1bκ;m

)
D−1
ω;m (3.8)

is tridiagonal, and its leading m × m principal submatrix Tm can be understood
as an oblique projection of A (an orthogonal one, diagonally scaled such that it is
of OrthoRes-type, if A is Hermitian). Since for n even, wn = w2j = ρj(A)r0 is
known to be a BiCG residual, Tm must be the same matrix as the one obtained by
m steps of BiORes, the ORes-variant of BiCG [19]. The fact that the recurrence
is of OrthoRes-type is clearly visible in Eqn. (3.7). Since all residual polynomials
have a constant term equal to one (see the recurrences (3.3)), setting z = 0 proves
that the columns of Tm sum to zero.
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4. The case s > 1. The relations of importance for eigenvalue computations in
IDR(s)ORes are sketched in Algorithm 1. We have omitted the rules for computing
the scalars ωj and the approximate solutions xn of the linear system Ax = b. Every
rule of computation of the vectors cn and the scalars ωj defines one particular instance
of a corresponding IDR algorithm from the family of IDR methods.

input : A, b, x0, s, P
output: Rn+1, cs+1, cs+2, . . ., ω1, ω2, . . .
r0 = b−Ax01

compute Rs+1 = R0:s =
(
r0, . . . , rs

)
using, e.g., OrthoRes2

∇R1:s =
(
∇r1, . . . ,∇rs

)
3

n← s+ 1, j ← 14

while not converged do5

cn = (PH∇Rn−s:n−1)−1PHrn−16

vn−1 = rn−1 −∇Rn−s:n−1cn7

compute ωj8

∇rn = −∇Rn−s:n−1cn − ωjAvn−19

rn = rn−1 +∇rn10

n← n+ 111

∇Rn−s:n−1 =
(
∇rn−s, . . . ,∇rn−1

)
12

for k = 1, . . . , s do13

cn = (PH∇Rn−s:n−1)−1PHrn−114

vn−1 = rn−1 −∇Rn−s:n−1cn15

∇rn = −∇Rn−s:n−1cn − ωjAvn−116

rn = rn−1 +∇rn17

n← n+ 118

∇Rn−s:n−1 =
(
∇rn−s, . . . ,∇rn−1

)
19

end20

j ← j + 121

end22

Algorithm 1: IDR(s)ORes

A few remarks are in order. The original IDR(s)ORes used in line 2 Ortho-
Res(1) to compute the residuals r1 to rs. Since we can use other Krylov subspace
methods, as long as they correspond to a Hessenberg decomposition, we advocate the
use of full OrthoRes [51] or GMRes [31]. They do not require extra memory space
compared to the later IDR steps. Note that lines 14–19 differ from lines 6–12 only
in that no new value of ωj is defined. We have shifted the index of the residuals and
residual differences by −1 compared to [39, 40]. The forward difference operator ∆
in the original algorithm has been replaced by the backward difference operator ∇,
as this appears to be more natural and makes the notation slightly easier to under-
stand. Thus, in line 4 of Algorithm 1, we initialize n to be s + 1 in place of s. It
turns out that this shifted index n determines the nth column of certain Hessenberg
and banded matrices to be introduced later on. There exist several alternative, but
mathematically equivalent ways to update the approximate solutions xn and the cor-
responding residuals rn [40]. For the numerical experiments we have implemented
the original algorithm of [39, 40], while the mathematically equivalent Algorithm 1 is
used throughout in our analysis.

We need to access the vectors vn−1, cn and the scalars ωj in the eigenvalue com-
putations. Thus, we have appended indices n− 1 and n to vn−1 and cn, respectively,
and introduced the index j of ωj not present in [39, 40]. Obviously, j is given by

j =
⌊

n

s+ 1

⌋
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and remains constant for every s+ 1 steps. The vectors cn have the elements

cn =
(
γ

(n)
1 . . . γ

(n)
s

)T

; (4.1)

additionally we define γ(n)
0 := 0, γ(n)

s+1 := 0 for all n ∈ N. We stress the fact that the
ordering of the elements in cn has changed compared to the IDR algorithm in [40,
Figure 3.1] and does also not correspond to the order of elements in the prototype
M-File implementation, ibid.

We remark that for reasons of matrix-vector multiplication economy, line 16 of
Algorithm 1 cannot be found ‘as such’ in [39, 40]. In the original IDR(s)ORes the
update was given by∇xn = −∇Xn−s:n−1cn+ωjvn−1 followed by∇rn = −A∇xn. As
we removed in our variant the recurrences for the iterates from the original IDR(s)-
ORes algorithm, we update rn in Algorithm 1 according to

∇rn = −A∇xn = A∇Xn−s:n−1cn−ωjAvn−1 = −∇Rn−s:n−1cn−ωjAvn−1 . (4.2)

The last equality sign in (4.2) is justified in exact arithmetic because in this case we
can ensure that for all n− s 6 k < n indeed

−∇rk = −rk + rk−1 = −b + Axk + b−Axk−1 = A∇xk . (4.3)

In finite precision the gap between the negative computed residual differences −∇rk
and the computed differences ∇xk of the iterates multiplied by A has to be monitored.
It indicates whether we can still trust the eigenpair approximations obtained using
IDR.

4.1. The original IDR Hessenberg recurrence. We reformulate the recur-
rences slightly by expressing everything in terms of residual vectors instead of residual
differences, which amounts to a discrete partial integration, i.e., application of Abel’s
summation formula,

∇Rn−s:n−1cn =
s−1∑
j=0

(rn−s+j − rn−s+j−1)γ(n)
j+1

=
s∑
j=0

rn−s+j−1(γ(n)
j − γ(n)

j+1) = −Rn−s−1:n−1 diff

0
cn
0

. (4.4)

Eliminating the residual differences, we observe that in all inner steps we have the
residual recurrence

rn = (I− ωjA)vn−1 = (I− ωjA)(rn−1 −∇Rn−s:n−1cn)

= (I− ωjA)

rn−1 + Rn−s−1:n−1 diff

0
cn
0


= (I− ωjA) Rn−s−1:n−1 diff

0
cn
1

 =: (I− ωjA) Rn−s−1:n−1yn,

(4.5)

as in the left set of equations in the recurrence (3.1) for the case s = 1.

Classical Krylov subspace theory would embark upon the construction of a Hes-
senberg decomposition with the residuals as a “basis”. The leading submatrices of the
constructed Hessenberg matrix are oblique “projections” of the original matrix, thus
we could use the eigenvalues of these submatrices as approximations of eigenvalues,
the so-called Ritz values, and the prolongations of the Hessenberg eigenvectors, the
so-called Ritz vectors, would serve as corresponding approximate eigenvectors. Obvi-
ously, the matrix of residuals will at some point be rank-deficient, as IDR terminates
usually when the number of steps is larger than the dimension of A. Nevertheless,
the specially structured Hessenberg decomposition related to IDR will give good ap-
proximations to eigenvalues.
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To demonstrate the general approach, we first derive the generalized Hessenberg
decomposition for the IDR residuals.

Theorem 4.1 (The original Hessenberg/upper triangular IDR(s)ORes pencil).
The generalized Hessenberg decomposition for the IDR(s)ORes residuals is given by

ARnYnD(n)
ω = Rn+1Y◦n, (4.6)

where Rn+1 =
(
r0, . . . , rn

)
is the matrix of all residual vectors up to step n. For

s < k 6 n, the kth columns of the upper triangular matrix Yn ∈ Cn×n and of the
extended unreduced Hessenberg matrix Y◦n ∈ C(n+1)×n of OrthoRes-type are defined
by

Ynek :=

ok−(s+1)

yk
on−k

 ,

Y◦nek :=


ok−(s+1)

yk
−1

on−k

 ,

where yk :=


γ

(k)
1

γ
(k)
2 − γ(k)

1
...

γ
(k)
s − γ(k)

s−1

1− γ(k)
s

 ∈ Cs+1, (4.7)

while the diagonal elements eT
kD(n)

ω ek of the diagonal matrix D(n)
ω are defined by

eT
kD(n)

ω ek := ωj , j =
⌊

k

s+ 1

⌋
. (4.8)

The leading portions of the matrices Yn, Y◦n and D(n)
ω are given by the Hessenberg

decomposition of the starting procedure chosen.

Proof. We sort terms in Eqn. (4.5) according to the occurrence of the matrix A
and obtain

ωjARn−s−1:n−1yn = Rn−s−1:n−1yn − rn = Rn−s−1:n

(
yn
−1

)
, (4.9)

which is the nth column

ωjARn

(
on−(s+1)

yn

)
= Rn+1

on−(s+1)

yn
−1

 (4.10)

of the generalized Hessenberg decomposition (4.6).

Remark 4.2. In case of a Hessenberg decomposition

ARs = Rs+1C◦s (4.11)

of a starting procedure of OrthoRes-type (eTC◦s = oT
s ) we set Ys := Is, D(s)

ω := Is,
and Y◦s := C◦s.

Remark 4.3. In the original IDR(s)ORes variant a truncated OrthoRes (i.e.,
OrthoRes(1) ≈ ORes) was used for the first s steps. In this setting, we would define
Ys := Is, D(s)

ω := diag (ω̃1, . . . , ω̃s), where ω̃k is defined by the residual minimization
in step k, and Y◦s := E◦s, where E◦s is defined in Eqn. (1.9).

Definition 4.4 (Sonneveld pencil). In honor of Peter Sonneveld, who devel-
oped with the classical IDR variant [47] in 1979 not only the first Lanczos-type prod-
uct method (LTPM), but at the same time introduced an interesting complementary
point of view on LTPMs, we name the banded Hessenberg/upper triangular pencil
(Y◦n,YnD(n)

ω ) the Sonneveld pencil.

Remark 4.5. The Hessenberg/upper triangular Sonneveld pencil is banded with
upper bandwidth s. This reflects that IDR(s)ORes is a (s + 1, s + 1)–step method
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[16]. Those elements of the upper triangular parts of Y◦n and Yn that are given by
IDR(s)ORes are identical and defined in terms of differences of the elements of the
vectors ck. The matrix D(n)

ω is uniquely defined by n, s and ωj , 1 6 j 6 bn/(s+ 1)c.
Remark 4.6. Apart from the leading (s+ 1)× s block defined by the extended

Hessenberg matrix C◦s from the starting Hessenberg decomposition, we only need to
store all vectors ck, s < k 6 n. In our implementation we use

Cn−s−1 :=
(
cs+1 · · · cn

)
∈ Cs×(n−s−1), (4.12)

and one vector containing all the ωj , 1 6 j 6 bn/(s + 1)c. The elements in the IDR
part of the bands of Y◦n and of Yn are then given by

diff


oT

Cn−s−1

eT

oT

 and diff

 oT

Cn−s−1

eT

 , respectively. (4.13)

As we are going to see next, the generalized Hessenberg decomposition (4.6) can
be turned into a Hessenberg decomposition.

Corollary 4.7. Suppose that the starting Hessenberg decomposition can be
written as ARs = Rs+1C◦s. Suppose further that ωj 6= 0, 1 6 j 6 bn/(s + 1)c, and
that γ(k)

s 6= 1, s < k 6 n. Then the Hessenberg decomposition for the IDR(s)ORes
residuals is given by

ARn = Rn+1S◦n, (4.14)

where the Sonneveld matrix

S◦n := Y◦n(D(n)
ω )−1Y−1

n (4.15)

is an unreduced extended Hessenberg matrix of OrthoRes-type.

Proof. With this assumption on the starting Hessenberg decomposition, the di-
agonal matrix D(n)

ω is invertible if and only if ωj 6= 0, 1 6 j 6 bn/(s + 1)c, and the
upper triangular matrix Yn is invertible if and only if γ(k)

s 6= 1, s+ 1 6 k 6 n.

The Hessenberg matrix S◦n can be used to compute eigenvalues and eigenvectors,
which are prolonged by the residual matrix Rn, to obtain Ritz values and Ritz vectors,
respectively. The Ritz values, i.e., the eigenvalues of the Sonneveld matrix S◦n, are
the roots of the residual polynomials Rn(z) := det (In − z(S◦n)−1). The Ritz vectors
are the prolonged eigenvectors of the Sonneveld matrices; these will be discussed sep-
arately in Section 5. The Sonneveld matrix, a typically full Hessenberg matrix, is not
formed explicitly; instead we apply the QZ algorithm to the banded Hessenberg/upper
triangular Sonneveld pencil (Y◦n,YnD(n)

ω ).

However, this direct way of computing eigenvalue approximations is not always
the method of choice in Lanczos-type product methods (LTPM). Indeed, we know
a portion of the roots of the residual polynomials, namely the roots 1/ωj . These
are among the eigenvalues of the Sonneveld matrix S◦n, as is captured by Figure 4.1,
obtained by invoking IDR(5)ORes for a real matrix A of dimension 20 for 4 sweeps.

4.2. The purified IDR Hessenberg recurrence. The division of the residual
polynomials Rk by the known linear factors, i.e., in step k by the residual polynomial
factor

Ωj(z) =
j∏
i=1

(1− ωiz), j =
⌊

k

s+ 1

⌋
, (4.16)

results in polynomial recurrences which correspond to a generalized Hessenberg de-
composition with an unreduced Hessenberg/upper triangular pencil that has only the
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Fig. 4.1. Approximation by Ritz values using the Sonneveld pencil. We used IDR(s)ORes with
s = 5 for 4 sweeps. The ωj were computed based on local minimization. The red plusses depict the
eigenvalues of A, the blue crosses depict the roots 1/ωj , j = 1, . . . , 4, and the green circles depict
the eigenvalues of the Sonneveld pencil of size 24 = 4 · (5 + 1) resulting from IDR(s)ORes.

unknown residual polynomial roots as eigenvalues, and, additionally, some infinite
eigenvalues.

To proceed, we rewrite the residual recurrence. We already have proven, see
Eqn. (4.5), that the recurrences for s > 1 and n > s are mathematically equivalent to

vn−1 := rn−1 −∇Rn−s:n−1cn = Rn−s−1:n−1yn

= (1− γ(n)
s ) rn−1 +

∑s−1
`=1(γ(n)

s−`+1 − γ
(n)
s−`) rn−`−1 + γ

(n)
1 rn−s−1 ,

rn := (I− ωjA) vn−1 ,

(4.17)

where j is given by

j =
⌊

n

s+ 1

⌋

and remains constant for every inner sweep of s+1 steps. We note that k = n−j(s+1),
which cycles between 0 and s, is the running index of the inner sweep.9

We consider a general starting procedure (e.g., GMRes, GCR ≈ OrthoRes)
that produces the s residuals r1, . . . , rs. This information uniquely defines the first s

9These indices j and k can be described by the so-called “index functions” g and r introduced by
Yeung and Boley in [49]; see [48, page 3]: in their notation j = gs+1(n+ 1) and k = rs+1(n+ 1)− 1.
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residual polynomials we are interested in. We have that

r0 is initially given by r0 = b−Ax0,
r1

...
rs

}
is constructed by the starting procedure,

rs+1 is based on the construction of ω1,
rs+2

...
r2s+1

}
is constructed using ω1,

r2(s+1) is based on the construction of ω2,
r2s+3

...
r3s+2

}
is constructed using ω2,

(4.18a)

and so forth. In summary, for all j > 1,

rj(s+1)+0 is based on the construction of ωj ,
rj(s+1)+1

...
rj(s+1)+s

}
is constructed using ωj .

(4.18b)

We define S := P⊥ as the orthogonal complement of the range P of the columns of P.
We observe that every residual rn with index n in the range j(s+ 1) + k, 0 6 k 6 s,
is obtained from previous information by a multiplication of vn−1 with the linear
mapping

(I− ωjA) : Gj−1 ∩ S → Gj , (4.19)

that defines the jth Sonneveld space Gj ; see (1.4). Recall that G0 = KN (A, r0) ⊂ CN
is the full Krylov subspace generated by A with starting vector r0. We use the fact
pointed out in [40, page 1046] that all residuals constructed are of the form

rn = Ωj(A)wn, vn−1 = Ωj−1(A)wn, j =
⌊

n

s+ 1

⌋
, (4.20)

where the vectors wn ∈ Kn−j(A, r0) can be interpreted as residuals too, since Ωj(0) =
1. We call these vectors wn the purified residuals. The residual polynomial Wn

corresponding to wn, which is of degree n− j, satisfies Wn(z) = Rn(z)/Ωj(z). Since
Ω0(z) ≡ 1, the first s+ 1 residuals rj and wj , 0 6 j 6 s, coincide; especially w0 = r0.
Utilizing these connections we now obtain recurrences for these residual polynomials
and for the vectors wn. For n = j(s+1)+k, 0 6 k 6 s, we know that for two families
of polynomials denoted by ρsj+k, 0 6 k < s, and ρ̂(j+1)s, the latter corresponding to
the missing case k = s, the following holds true:

wn =Wn(A)r0 =Wj(s+1)+k(A)r0 =:

{
ρjs+k(A)w0, 0 6 k < s,

ρ̂(j+1)s(A)w0, k = s,
(4.21)

i.e.,

rn = Ωj(A)wn =

{
Ωj(A)ρjs+k(A)w0, 0 6 k < s,

Ωj(A)ρ̂(j+1)s(A)w0, k = s,

vn−1 = Ωj−1(A)wn =

{
Ωj−1(A)ρjs+k(A)w0, 0 6 k < s,

Ωj−1(A)ρ̂(j+1)s(A)w0, k = s,

(4.22)

In the case s = 1 of Section 3, the polynomials ρsj+0 correspond to the BiCG poly-
nomials ρj and the polynomials ρ̂(j+1)s correspond to the polynomials ρ̂j+1. We
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remark that the two consecutive polynomials W(j+1)(s+1)−1 = Wj(s+1)+s = ρ̂(j+1)s

and W(j+1)(s+1) = ρ(j+1)s+0 have the same degree (j + 1)s.

We insert the polynomial expressions (4.22) into the second line of the rela-
tions (4.17), so that

vn−1 = (1− γ(n)
s ) rn−1 +

s−1∑
`=1

(γ(n)
s−`+1 − γ

(n)
s−`) rn−`−1 + γ

(n)
1 rn−s−1 , (4.23)

and divide by Ωj−1(A), which is a common factor of all polynomials involved, to
obtain for n divisible by s+ 1, i.e., n = j(s+ 1),

wn+0 =
s∑
`=0

wn−`−1 · y(n+0)
s+1−` (4.24a)

wn+1 = (I− ωjA)wn · y(n+1)
s+1 +

s∑
`=1

wn−` · y(n+1)
s+1−` (4.24b)

wn+2 = (I− ωjA)
2−1∑
`=0

wn+2−`−1 · y(n+2)
s+1−` +

s∑
`=2

wn+2−`−1 · y(n+2)
s+1−` (4.24c)

wn+k = (I− ωjA)
k−1∑
`=0

wn+k−`−1 · y(n+k)
s+1−` +

s∑
`=k

wn+k−`−1 · y(n+k)
s+1−` (4.24d)

wn+s = (I− ωjA)
s−1∑
`=0

wn+s−`−1 · y(n+s)
s+1−` + wn−1 · y(n+s)

1 . (4.24e)

Here, y(n)
1 to y(n)

s+1 denote the elements of yn ∈ Cs+1.

The index n = j(s+1) has been chosen such that all “purified” residuals wn−`−1,
0 6 ` 6 s, have no additional linear factor (I−ωjA). The purified residual polynomial
corresponding to wn = wj(s+1) is ρjs, which is in theory a ML(s)BiCG polynomial.

Let us consider again the degrees of the polynomials. In the first step (4.24a)
of a new cycle, the polynomial of interest is obtained as a linear combination of the
previously computed polynomials, which results in a polynomial of the same degree
as the last one (provided that γ(n)

s 6= 1). Every other step increases the degree of
the polynomial by one (provided that all γ(n+k)

s 6= 1, 1 6 k 6 s). This corresponds
to a slightly generalized Hessenberg decomposition, where the Hessenberg pencil is
“reduced” at every (s + 1)th column. The precise meaning of “reduced” becomes
obvious in the following theorem.

Theorem 4.8 (The purified Hessenberg/upper triangular IDR(s)ORes pencil).
The generalized Hessenberg decomposition for the purified IDR(s)ORes residuals is
given by

AWnUnD(n)
ω = Wn+1Y◦n, (4.25)

where

Wn+1 :=
(
w0, . . . ,wn

)
(4.26)

is the matrix of all purified residual vectors up to step n, Y◦n ∈ C(n+1)×n and D(n)
ω ∈

Cn×n are defined in Theorem 4.1, and the upper triangular Un ∈ Cn×n is obtained
from Yn by setting to zero all elements in the lower triangular parts of the square
submatrices (y(`−1)(s+1)+1+k,`(s+1)−1+j ; k, j = 0, . . . , s), ` = 1, 2, . . . , such that the
resulting matrix is block-diagonal with alternating s × s upper triangular blocks of
elements from Yn and 1× 1 zero blocks; see Figure 1.1 on page 7.

Proof. The general equation (4.24d) can be sorted according to terms involving
ωjA and others. For all 0 6 k 6 s we have

ωjA
k−1∑
`=0

wn+k−`−1 · y(n+k)
s+1−` = −wn+k +

s∑
`=0

wn+k−`−1 · y(n+k)
s+1−`. (4.27)
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For n = j(s + 1), the (n + k)th column of the resulting generalized Hessenberg de-
composition is

ωjAWn+k

(
on

ys+2−k:s+1
n+k

)
= Wn+k+1

on+k−s−1

yn+k

−1

 , 0 6 k 6 s. (4.28)

Together with the Hessenberg decomposition defining the starting block of residuals
scaled to be of OrthoRes-type,

ARs = Rs+1C◦s = RsC◦s − rsc◦s+1,se
T
s , (4.29)

and the observation that Ws+1 = Rs+1 we obtain Eqn. (4.25).

Remark 4.9. The generalized Hessenberg decomposition (4.25) corresponds to
a singular projection, since Un is singular. In fact, the rows and columns of index
(s+ 1)j contain only zeros.

Remark 4.10. As the columns of Y◦n sum to zero, (4.25) defines again a method
of OrthoRes-type. In the part of Y◦n that does not belong to the starting procedure,
the lower co-diagonal consists of minus ones.

Remark 4.11. The transition from the generalized Hessenberg decomposi-
tion (4.6) for Rn to the generalized Hessenberg decomposition (4.25) for Wn is com-
putationally rather simple: To obtain the only new matrix Un we just blanked certain
lower triangles in Yn and thus cut this upper triangular band matrix into s× s upper
triangular matrices alternating with zeros; compare the first two matrix pairs in Fig-
ure 1.1. In fact, the linear combination of s+ 1 terms implicit on the left-hand side of
(4.10) has been replaced by a linear combination of k terms, where 0 6 k 6 s, implicit
on the left-hand side of (4.27) and (4.28). At this stage no additional round-off errors
occur.

We have shown in Section 2 that the residual polynomials are up to the known
non-zero factors det (−Y◦k) = y◦1:k the leading subdeterminants of the regular10 Hes-
senberg pencil

zHn := zUnD(n)
ω −Y◦n =

(
In − zUnD(n)

ω (Y◦n)−1
)

(−Y◦n). (4.30)

The elements

hj+1,j(z) = −y◦j+1,j =
{

defined by starting procedure if j 6 s
1 if j > s

(4.31)

of the lower co-diagonal of zH are all non-zero and constant and thus the scaling
by products of elements from the lower co-diagonal can be neglected as we are only
interested in the roots of the residual polynomials.

The pencil zHn has exactly

j =
⌊

n

s+ 1

⌋
(4.32)

infinite eigenvalues, as every (s + 1)th diagonal element of the upper triangular ma-
trix Un is zero. The resulting determinant, the characteristic polynomial χn(z) :=
det (zHn), is of degree n− j. The degree of the polynomial remains constant in every
step where in Un a new zero is introduced in the diagonal, otherwise the degree in-
creases by one, which is in accordance with our observation for the purified residual
polynomials.

Remark 4.12. Every s+1 steps we have two consecutive purified residual poly-
nomials with the same degree n−j = js, j > 1, namelyWj(s+1)−1 =W(j−1)(s+1)+s =

10The pencil zHn is regular, as the determinant of −Y◦n is given by the product of the non-zero
subdiagonal elements of Y◦n, see Eqn. (1.10) and Eqn. (4.31).
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ρ̂js and Wj(s+1) = ρjs. This is reflected by the positions of the zeros in the diagonal
of Un.

This shows that we can compute the roots of the purified residual polynomials by
computing the eigenvalues of the pencil zHn, i.e., by application of the QZ algorithm
to the banded unreduced upper Hessenberg/upper triangular pencil (Y◦n,UnD(n)

ω ),
e.g., by invoking eig(Y◦n,UnD(n)

ω ) in Matlab; see Figure 4.2, which shows the re-
sults of the computation of the eigenvalues of the regular purified pencil obtained by
invoking four sweeps of IDR(5)ORes for the real matrix A of dimension 20 used
already for Figure 4.1. By comparing the eigenvalues of the Sonneveld pencil in Fig-
ure 4.1 and the finite eigenvalues of the purified pencil in Figure 4.2 the purification
of the residual polynomial from the known roots 1/ωj becomes clearly visible.
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Fig. 4.2. Approximation by Ritz values using the purified pencil. We used IDR(s)ORes with
s = 5 for 4 sweeps. The ωj were computed based on local minimization. The red plusses depict the
eigenvalues of A, the blue crosses depict the roots 1/ωj , j = 1, . . . , 4, and the green circles depict the
20 = 4 · 5 finite eigenvalues of the purified pencil of size 24 = 4 · (5 + 1) resulting from IDR(s)ORes.

In summary, the computation of the eigenvalues of the purified pencil including
the infinite eigenvalues is viable.

4.3. The deflated IDR Hessenberg recurrence. It turns out to be easy to
deflate the purified pencil in order to obtain a smaller pencil having only the finite
eigenvalues. This also enhances our understanding of IDR(s)ORes, as this results
in the reconstruction of the underlying BiORes(s, 1) process. The deflation of the
purified pencil is based on the Schur complement [32, pp. 216–217], i.e., block Gaussian
elimination. To be more precise, with the submatrix

zH(j−1)(s+1)+1:(j+1)(s+1)−1 =:

zH? hc L?

eT
s γ? − 1 hT

r

O e1
zH?

 ∈ C(2s+1)×(2s+1) (4.33)



21

of the purified pencil zHn = zUnD(n)
ω −Y◦n, for some matching sweep index j,

1 6 j <

⌊
n

s+ 1

⌋
, (4.34)

we let zH? := zH(j−1)(s+1)+1:j(s+1)−1 and zH? := zHj(s+1)+1:(j+1)(s+1)−1 denote the
leading and trailing Hessenberg matrix of size s × s of this submatrix, respectively.
These are the only matrices that depend on the variable z in the purified pencil;
compare with the zero structure of UnD(n)

ω in the purified pencil depicted in Fig-
ure 1.1. The element in the diagonal in position j(s+ 1) is denoted by γ? − 1, where
γ? := γ

(j(s+1))
s . The possibly non-zero elements in the j(s+ 1)th column and row of

the upper triangular part of zHn, i.e., of −Y◦n are collected in the vectors hc ∈ Cs
and hr ∈ Cs, respectively. The matrix L? ∈ Cs×s is a strictly lower triangular matrix
whose elements are independent of z.

We now use the following variant of the so-called Schur determinant formula [55,
Eqn. (0.3.2), p. 5],zH? hc L?

eT
s γ? − 1 hT

r

O e1
zH?

 I o O
−eT

s /(γ
? − 1) 1/(γ? − 1) −hT

r /(γ
? − 1)

O o I

 =

zH? − hceT
s /(γ

? − 1) hT
c /(γ

? − 1) L? − hchT
r /(γ

? − 1)
oT 1 oT

−e1eT
s /(γ

? − 1) eT
1 /(γ

? − 1) zH? − e1hT
r /(γ

? − 1)

 =

zH? hT
c /(γ

? − 1) L?

oT 1 oT

O eT
1 /(γ

? − 1) zH?

−
hceT

s /(γ
? − 1) o hchT

r /(γ
? − 1)

oT 0 oT

e1eT
s /(γ

? − 1) o e1hT
r /(γ

? − 1)

 . (4.35)

As the determinant of the block-Gauß eliminator is given by the non-zero value∣∣∣∣∣∣
I o O

−eT
s /(γ

? − 1) 1/(γ? − 1) −hT
r /(γ

? − 1)
O o I

∣∣∣∣∣∣ =
1

γ? − 1
, (4.36)

we have proven that

χ(j−1)(s+1)+1:(j+1)(s+1)−1(z)
γ? − 1

=∣∣∣∣∣∣
zH? − hceT

s /(γ
? − 1) hT

c /(γ
? − 1) L? − hchT

r /(γ
? − 1)

oT 1 oT

−e1eT
s /(γ

? − 1) eT
1 /(γ

? − 1) zH? − e1hT
r /(γ

? − 1)

∣∣∣∣∣∣
=
∣∣∣∣zH? − hceT

s /(γ
? − 1) L? − hchT

r /(γ
? − 1)

−e1eT
s /(γ

? − 1) zH? − e1hT
r /(γ

? − 1)

∣∣∣∣ . (4.37)

The multiplication of the pencil zHn by an enlarged block-Gauß eliminator G(j)
n does

not affect the roots of the residual polynomial, i.e., the eigenvalues of the pencil, as
this is a scaling by the constant (γ?− 1). The resulting rank-one update (4.35) of the
pencil only affects the elements of the submatrix given in Eqn. (4.33) without changing
the Hessenberg structure of the leading and trailing block. Looking closely we realize
that the resulting Hessenberg/upper triangular pencil is of course still regular and has
lost one infinite eigenvalue by construction, but, moreover, the Hessenberg part is of
OrthoRes-type. This follows from

eT

 hc
γ? − 1

1

 = 0 ⇒ −eT

(
hc/(γ? − 1)
1/(γ? − 1)

)
= 1, (4.38)

and the observation that only the last column of the pencil zH? is modified, where
the element 1, which is needed for column sum zero, is missing. The column sums of
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the second half of the Hessenberg part are zero, since the omitted row elements have
been dispersed across the rows by the rank one update.

The pattern of the original banded Hessenberg/upper triangular pencil is only
modified in the upper triangle of the Hessenberg matrix. The constant lower triangular
matrices L? ∈ Cs×s become full, as the rank-one update L? − hchT

r /(γ
? − 1) usually

gives a full s × s matrix. Apart from altering the lower triangular matrices L? to
full matrices by a rank-one update, the non-zero structure is only changed in the last
column before and the first row after a diagonal zero element in Un. We remark
that the change in the last column of the Hessenberg blocks is just a variation of the
correction in [30, Theorem 3.1, Corollary 3.3, pp. 286–287].

Computing the block-Gauß eliminators G(j)
n , j = 1, . . ., where a little care has to

be taken for the last eliminator which, depending on the relation of n to s + 1, may
work on a smaller trailing Hessenberg matrix, and applying them to the pencil before
computing the next eliminator is equivalent to computing all block-Gauß eliminators
at once and thus their product Gn := G(1)

n G(2)
n . . ., as the eliminators solely depend

on quantities which are not altered in previous steps. The basic eliminators G(j)
n

commute, thus the order of multiplication is not important. Due to the zero structure
of the pencil we compute in our implementation the Schur complement of the matrix
indexed by all diagonal elements equal to zero in Un to enable the use of the Blas
Level 3. The elimination, i.e., multiplication of the pencil (Y◦n,UnD(n)

ω ) by Gn from
the right results in the modified pencil (Y◦nGn,UnD(n)

ω ), as the elimination does not
change the upper triangular matrix UnD(n)

ω due to the zero structure, see the second
and third pencil in Figure 1.1. After elimination, every (s + 1)th row of the pencil
zUnD(n)

ω −Y◦nGn is independent of the variable z and has its only non-zero element
in the diagonal position, see the third pencil in Figure 1.1.

In the next step we remove every (s+1)th row and column from the pencil, which
results in the smaller, fourth pencil depicted in Figure 1.1. The infinite eigenvalues
have been deflated, and the transformed but not yet deflated pencil clearly reveals that
the corresponding eigenvectors are the standard unit vectors ej(s+1), 1 6 j 6 bn/(s+
1)c. Turning our attention to the underlying generalized Hessenberg decompositions,
we observe that the deflation removes every (s + 1)th vector from Wn. Because
we enumerate the purified residuals starting with index 0, the deflated vectors are
w(j+1)(s+1)−1 = wj(s+1)+s = ρ̂(j+1)s(A)w0, 0 6 j < bn/(s + 1)c. Denoting this
deflation operator by D, we have proven the following:

Theorem 4.13 (The deflated Hessenberg/upper triangular IDR(s)ORes pen-
cil). The generalized Hessenberg decomposition for the deflated IDR(s)ORes residu-
als is given by

AQ̃mD(UnD(n)
ω ) = Q̃m+1D(Y◦nGn), m := n−

⌊
n

s+ 1

⌋
, (4.39)

where D is a deflation operator that removes every (s + 1)th row and column up to
the nth, Q̃m := D(Wn), Q̃m+1 :=

(
Q̃m,wn

)
and Gn is the block-Gauß eliminator

defined above.

As the deflated triangular matrix D(UnD(n)
ω ) is now an invertible block-diagonal

matrix with s × s upper triangular blocks, we can construct an algebraic eigenvalue
problem by inversion. To retain the zero column sums we multiply the inverse from
the right to the Hessenberg matrix. We obtain a banded Hessenberg matrix, which
has triangles poking out of the band:

Corollary 4.14. Suppose that all ωj 6= 0 and that all γjs 6= 1. Then the
Hessenberg decomposition for the deflated IDR(s)ORes residuals is given by

AQ̃m = Q̃m+1L̃L◦m, m = n−
⌊

n

s+ 1

⌋
, (4.40)
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where

L̃L◦m := D(Y◦nGn) (D(UnD(n)
ω ))−1 ∈ C(m+1)×m. (4.41)

The last column of the matrix L̃L◦m is altered in the next step of IDR(s)ORes if and
only if n = j(s + 1) − 1 for some j > 1. This matrix is an unreduced extended
Hessenberg matrix of OrthoRes-type, and, at the same time, block-tridiagonal with
blocks of dimension s.

In the transition from step n = j(s + 1) − 1 to step n = j(s + 1) the index m

and thus the sizes of L̃L◦m and Q̃m remain unchanged, but the last columns of these
two matrices are changed in the deflation process. So, for these particular values
of m there exists two different pairs of matrices L̃L◦m, Q̃m. In the next s steps new
columns are added to L̃L◦m and Q̃m, but all other elements of the matrices from the
previous steps remain unchanged. We propose here to introduce a subset of these
two matrix sequences obtained by deleting those matrices that are generated in steps
where n = j(s+ 1)− 1 for some j. For distinction, we rename the remaining matrices
L◦m and Qm. They correspond to the leading unchanged parts of the decomposition
(4.40). Interestingly, we can interpret these leading unchanged parts as those of the
BiORes(s, 1) process underlying IDR(s)ORes.

Definition 4.15. We define for m = js+k > 1, j = bm/sc, 0 6 k < s, the mth
extended BiORes(s, 1) Lanczos matrix L◦m and the mth matrix of the BiORes(s, 1)
residuals Qm by

L◦m := D(Y◦nGn) (D(UnD(n)
ω ))−1 ∈ C(m+1)×m (4.42a)

and

Qm := D(Wn), (4.42b)

respectively, where the index n is defined by

n := j(s+ 1) + k, 0 6 k < s. (4.43)

We remark that by construction the index n omits all values of the form j(s+1)+s.

For the reader’s convenience, the block-tridiagonal unreduced upper Hessenberg
matrix L◦9 corresponding to Figure 1.1 with s = 3 for 3 sweeps is depicted in Figure 4.3.

The BiORes(3, 1) matrix L◦9 obtained with 3 full sweeps:
××××××◦ ◦ ◦
+×××××◦ ◦ ◦
•+××××◦ ◦ ◦
• •+××××××
• • •+×××××
• • • •+××××
◦ ◦ ◦ • •+×××
◦ ◦ ◦ • • •+××
◦ ◦ ◦ • • • •+×


Fig. 4.3. The BiORes(3, 1) matrix L◦9 corresponding to the pictorial example given in Figure 1.1.

For k = 0, . . . , s− 1 and j = 0, 1, . . ., the reduced residuals q js+k are defined by

Ωj(A)q js+k := rj(s+1)+k = (I− ωjA)vj(s+1)+k−1.

Every vj(s+1)+k−1 is orthogonal to P, the range of the columns of P. Thus, q js+k ⊥
Ωj−1(AH)P. Using induction [35] one can prove that q js+k ⊥ Kj(AH,P); thus, the
Hessenberg/block tridiagonal matrices L◦m can be identified as those of a two-sided
Lanczos process with s left and one right starting vectors:

Theorem 4.16 (The Hessenberg/block tridiagonal BiORes(s, 1) matrix). The
Hessenberg decomposition of the BiORes(s, 1) residuals is given by

AQm = Qm+1L◦m, (4.44)
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where, for k = 0, . . . , s− 1 and j = 0, 1, . . ., the BiORes(s, 1) residuals satisfy

q js+k ∈ q0 + AKjs+k(A,q0), q js+k ⊥ Kj(AH,P). (4.45)

This follows easily using the representations collected in the next Lemma 4.17,
which has to be compared with Theorem 4.2 in [35] and with Theorem 4.1 in [34]. In
the latter report a similar result is obtained, but the authors use a slightly different
method of proof.

Lemma 4.17 (Representations of the Sonneveld spaces). Let P denote the range
of the columns of P, and let S = P⊥. The Sonneveld spaces Gj are given by

G0 = K(A, r0), where K(A, r0) denotes the full Krylov subspace, (4.46a)

Gj =
j⋂

k=1

(I− ωjA) · · · (I− ωkA)(S) =
j−1⋂
k=0

Ωk(A)−1Ωj(A)(S) (4.46b)

=
( j−1

+
k=0

Ωj(A)−H Ωk(A) HP
)⊥

(4.46c)

=
(

Ωj(A)−HKj(AH,P)
)⊥

= Ωj(A)
(
Kj(AH,P)

)⊥
. (4.46d)

Proof. The first s + 1 residuals obviously are in G0 := K(A, r0). The first set of
equalities (4.46b)11 follows from the observations that the next s+1 residuals (or any
other vectors in G1) are in the I− ω1A image of S, the last s+ 1 residuals are in the
I − ωjA image of S, and, since they are computed as images of linear combinations
of previous information, also images of linear combinations of previously obtained
vectors in (I− ωj−1A) · · · (I− ωkA)(S). The second equality (4.46c) is based on the
two relations BP⊥ = (B−HP)⊥ and U⊥ ∩ V⊥ = (U ∪ V)⊥ = (U + V)⊥12. The first
relation follows from the observation that

BP⊥ =
{
Bv ∈ Cn | PHv = os

}
=
{
u ∈ Cn | PHB−1u = (B−HP)Hu = os

}
, (4.47)

see also [34]. The third set of equalities (4.46d) is satisfied since the polynomials
Ωk(A), 0 6 k < j, form a basis of the space of polynomials of degree less j, and by
the property proved above, respectively.

A plot of the eigenvalues of the deflated pencil (D(Y◦nGn), D(UnD(n)
ω )) and thus

of the eigenvalues of the matrix L◦m gives in case of the previous example a picture
that is indistinguishable from the picture given in Figure 4.2.

5. Ritz vectors and accuracy. Ritz vectors are obtained from a given gener-
alized or rational Hessenberg decomposition (2.1),

AQnUn = Qn+1Hn, (5.1)

by computing the eigenvalues θj and eigenvectors sj of the pencil (Hn,Un), followed
by a prolongation zj := QnUnsj of the eigenvectors to obtain the Ritz vectors zj , see
also [29, page 595]. We only consider eigenvectors, the transition to handle principal
vectors is straightforward and thus omitted. The residual of the unscaled Ritz pair
(θj , zj) is then given by

Azj − zjθj = Qn(Hnsj −Unsjθj) + qn+1hn+1,neT
nsj = qn+1hn+1,neT

nsj . (5.2)

As is the case in standard Hessenberg decompositions, the size of the last element
eT
nsj of the eigenvector sj of the pencil dominates the accuracy,

‖Azj − zjθj‖2 = ‖qn+1‖2|hn+1,neT
nsj |. (5.3)

11This has been proven in the case s = 1 by Peter Sonneveld in 1976 and was the key for the
proof of the first IDR Theorem (personal communication).

12The second author thanks Linde Yver for pointing out this basic linear algebra relation exactly
at the right time.
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In contrast to the standard case, the eigenvector sj is not only prolonged with the
matrix Qn spanning the basis, but beforehand multiplied with the upper triangular,
possibly singular Un to obtain the Ritz vector zj . This affects the 2-norm backward
error

η(θj ,zj) := min{η | ‖A− Ã‖2 6 η, Ãzj = zjθj}

=
‖Azj − zjθj‖2
‖zj‖2

=
‖qn+1‖2|hn+1,neT

nsj |
‖zj‖2

(5.4)

of the Ritz pair (θj , zj) whenever the length of zj differs significantly from unity.

Using the Sonneveld pencil (Y◦n,YnD(n)
ω ) (or, equivalently, the Sonneveld matrix

S◦n = Y◦n(D(n)
ω )−1Y−1

n ) we can easily prolong the eigenvectors sSonneveld
j , 1 6 j 6 n,

to obtain Ritz vectors zSonneveld
j := RnYnD(n)

ω sSonneveld
j , 1 6 j 6 n, as we know the

basis vectors, i.e., the residuals r0, . . . , rn−1. Of course we do not store them, but
similar to the way in Lanczos’ method we can recompute them one by one if we store
all the scalars (which saves some work). Thus, one chooses some Ritz values and
computes afterwards the Ritz vectors. This choice usually is based on an interest in
eigenvalues closest to some target or in some given region and some estimation of the
accuracy obtained, mostly a measure or guess on the backward error. This can be
done for the Sonneveld pencil or matrix representation, since we can compute the size
of the residuals of the unscaled eigenpairs. Unfortunately, in this case, this is rather
a guess of the accuracy of the eigenvalue, as the expression ‖rn‖|s◦n+1,ns

Sonneveld
nj | is

an error bound for the residual of an unnormalized approximation to an eigenpair,
where rn and s◦n+1,n are the last column of the matrix Rn+1 and the only non-trivial
element in the last row of the Sonneveld matrix S◦n in (4.14), respectively.

To make use of the purified pencil (Y◦n,UnD(n)
ω ), the deflated pencil (D(Y◦nGn),

D(UnD(n)
ω )), or even the BiORes(s, 1) matrix L◦m, we have to prolong using the

unknown vectors w` or the unknown q`, i.e., a subset of the w`. These could be
computed using the scalar recurrences (4.44). The question arises how much the
process of computing the vectors w` in finite precision deteriorates, see also [38].
Näıvely implemented, this turns out to be a bad idea in finite precision, as the errors
are amplified far beyond norm one and thus the computed vectors w` are useless.
Numerical experiments support the assumption that the computed w` are accurate
as long as the true and updated residuals in IDR(s)ORes are close, see Eqn. (4.3)
and the remark thereafter. Unfortunately, there exist examples where this no longer
holds true. A picture that compares the norms of the w`, computed using the matrix
L◦n and w0 = r0 as starting vector, the differences between the recomputed r` =
Ωb`/(s+1)c(A)w`, and the computed r` is given in Figure 5.1. Of course, only those
w` are computed, which are needed for the prolongation, that is, omitting the columns
` = j(s+ 1) with the indices `− 1.

As we usually compute the vectors w` only after we have decided which Ritz
vectors we are interested in, the question arises whether we could measure or guess
the accuracy of a Ritz pair without actually computing the w`. A related question is
whether we can transform an eigenvector of the purified pencil (Y◦n,UnD(n)

ω ) (and the
pencils and matrix beyond) to an eigenvector of the Sonneveld pencil (Y◦n,YnD(n)

ω ).
Fortunately, the answer is yes for both questions:

Theorem 5.1 (The eigenvector transformations). Let spurified
j denote an eigen-

vector to the eigenvalue θj of the purified pencil (Y◦n,UnD(n)
ω ). Then the vector

s̃Sonneveld
j defined componentwise by

s̃Sonneveld
`j :=

spurified
`j

Ωb`/(s+1)c(θj)
, 1 6 ` 6 n, (5.5)

is an eigenvector to the eigenvalue θj of the Sonneveld pencil (Y◦n,YnD(n)
ω ).

Let seliminated
j denote an eigenvector to the eigenvalue θj of the eliminated pencil

(Y◦nGn,UnD(n)
ω ) and let sdeflated

j denote an eigenvector to the eigenvalue θj of the
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Fig. 5.1. Quality of computed Wn measured by column norms. We compute the vectors
w with the aid of the computed Lanczos-BiORes(s, 1) matrix L◦. To quickly check the quality of
the obtained vectors we multiply them with the polynomials Ωj(A) and compare the norms of the
resulting recomputed residuals with the norms of the actually computed residuals r.

deflated pencil (D(Y◦nGn), D(UnD(n)
ω )). Let D† denote the prolongation operator that

inserts the value zero after every s elements of a vector. Then the vectors s̃purified
j

and s̃eliminated
j defined by

s̃purified
j := Gnseliminated

j and s̃eliminated
j := D†(sdeflated

j ) (5.6)

are eigenvectors to the eigenvalue θj of the purified pencil (Y◦n,UnD(n)
ω ) and the elim-

inated pencil (Y◦nGn,UnD(n)
ω ), respectively. Additionally, ‖s̃purified

j ‖2 > ‖seliminated
j ‖2

and ‖s̃eliminated
j ‖2 = ‖sdeflated

j ‖2.

Suppose that all ωj, 1 6 j 6 bn/(s + 1)c, are distinct and that no 1/ωj is an
eigenvalue of the BiORes(s, 1) matrix. Then unnormalized eigenvectors of the Son-
neveld pencil to the bn/(s + 1)c eigenvalues 1/ωj, 1 6 j 6 bn/(s + 1)c, are given
by

sSonneveld;ωj

j :=

oj(s+1)−1

1
νj(ωj)

 ∈ Cn, 1 6 j 6

⌊
n

s+ 1

⌋
, (5.7)

where νj(ωj) ∈ Cn−j(s+1) is the solution of the trailing linear Hessenberg system

(Y◦j(s+1)+1:n − ω
−1
j Yj(s+1)+1:nD(j(s+1)+1:n)

ω )νj(ωj) = e1 ∈ Cn−j(s+1). (5.8)

Normalized eigenvectors corresponding to the bn/(s + 1)c infinite eigenvalues of the
purified pencil (Y◦n,UnD(n)

ω ) and the eliminated pencil (Y◦nGn,UnD(n)
ω ) are given by

the standard unit vectors ej(s+1), 1 6 j 6 bn/(s+ 1)c.
Proof. The polynomial vector ν(z) defined in (2.4), evaluated at an eigenvalue of

an unreduced Hessenberg/upper triangular pencil (H,U), gives a corresponding eigen-
vector, see (2.5). In particular, the components of the polynomial vector νSonneveld of
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the Sonneveld pencil (Y◦n,YnD(n)
ω ) and of the polynomial vector νpurified of the pu-

rified pencil (Y◦n,UnD(n)
ω ), respectively, are defined with the aid of the determinants

of trailing sections of the characteristic matrices, i.e., by

νSonneveld
` (z) := (h`:n−1)−1 · det (zY`+1:nD(`+1:n)

ω −Y◦`+1:n) (5.9a)

and

νpurified
` (z) := (h`:n−1)−1 · det (zU`+1:nD(`+1:n)

ω −Y◦`+1:n), (5.9b)

respectively. The values h`:n−1 :=
∏n−1
j=` (−yj+1,j) are the non-zero products of the

subdiagonal elements (4.31) of the unreduced Hessenberg matrices −Y◦`+1:n appearing
in the definition of the `th component of both polynomial vectors. When ` > s, the
constant h`:n−1 is simply one. To proceed, we first need to consider the eigenvectors
of the Sonneveld pencil to the eigenvalues 1/ωj .

We prove that 1/ωj is an eigenvalue of the Sonneveld pencil (Y◦n,YnD(n)
ω ) and

reveal part of the zero-structure of the corresponding eigenvector. Let ` = j(s + 1)
denote the first index where the diagonal of D(n)

ω is equal to ωj and let k = (j+1)(s+
1) = `+ s+ 1. We investigate the structure of the matrix

Hn := Y◦n − ω−1
j YnD(n)

ω =



H1:`−1 o`−1

−eT
`−1 0

O`,n−`

−e1eT
`

−NT
s Ls,n−s−`

−e1eT
s Hk:n


. (5.10)

Here, by abuse of notation, e1 denotes first standard unit vectors of different length,
H1:`−1 ∈ C(`−1)×(`−1) and Hk:n ∈ C(n−k+1)×(n−k+1) denote the leading and trail-
ing portion of the Hessenberg matrix Hn, respectively, and Ls,n−s−` ∈ Cs×(n−s−`)

denotes a lower triangular rectangular matrix comprising elements of Hn. The unre-
duced Hessenberg leading `× ` block(

H1:`−1 o`−1

−eT
`−1 0

)
∈ C`×` (5.11)

of Hn has rank `−1, i.e., is singular with null-vector e`. This and the zero block in the
position (1, 2) of the 2×2 block matrix (5.10) implies singularity of Hn. Thus, we have
proven that 1/ωj is an eigenvalue of the Sonneveld pencil, 1 6 j 6 bn/(s+1)c. As the
eigenvalues of the Sonneveld pencil are the union of the 1/ωj , which are assumed to
be pairwise distinct, and the eigenvalues of the BiORes(s, 1) matrix, every eigenvalue
1/ωj is simple. Thus, zero can be no eigenvalue of the trailing block(

−NT
s Ls,n−s−`

−e1eT
s Hk:n

)
∈ C(n−`)×(n−`) (5.12)

and we can uniquely solve the Hessenberg linear system

Cn−` 3 e1 =
(
Y◦`+1:n − ω−1

j Y`+1:nD(`+1:n)
ω

)
νj(ωj)

=
(
−NT

s Ls,n−s−`
−e1eT

s Hk:n

)
νj(ωj)

(5.13)

arising in re-ordering the homogeneous system

Hn

(
e`

νj(ωj)

)
= on, e` ∈ C`, νj(ωj) ∈ Cn−` (5.14)
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for the determination of the kernel of (5.10). This gives us an eigenvector of 1/ωj .

In the preceeding part of the proof we have shown that also the Sonneveld trailing
subdeterminants appearing in (5.9a) have some of the 1/ωj as roots, regardless of the
OrthoRes-property. The Hessenberg matrix

Y◦`+1:n − ω−1
j Y`+1:nD(`+1:n)

ω (5.15)

is singular whenever ` + 1 6 j(s + 1), i.e., whenever d(` + 1)/(s + 1)e 6 j. Let a
trailing counterpart of the Sonneveld matrix be defined by the Hessenberg matrix
S×`+1:n := Y◦`+1:n(D(`+1:n)

ω )−1Y−1
`+1:n, where the notation has been altered from S◦

to S× to reflect the loss of the OrthoRes-property. Consider the trivial generalized
Hessenberg decomposition

S×`+1:nIn−`Y`+1:nD(`+1:n)
ω = In−`Y◦`+1:n, (5.16)

where the identity matrices on both sides of the equation play the rôle of the matrix
of basis vectors. This generalized Hessenberg decomposition can be interpreted as
a recurrence with the system matrix S×`+1:n and starting vector e1 ∈ Cn−`. By
Theorem 2.2 the basis vectors, i.e., the standard unit vectors ej ∈ Cn−`, 1 6 j 6 n−`,
can be interpreted as scaled polynomials in S×`+1:n times the first standard unit vector
e1. A purification of the polynomials appearing in (5.9a) from the known roots 1/ωj ,
with index j satisfying d(` + 1)/(s + 1)e = b`/(s + 1)c + 1 6 j 6 bn/(s + 1)c,
analogous to the purification in the set of equations (4.24), results in the purified
trailing subdeterminants appearing in (5.9b). Thus,

νSonneveld
` (z) =

( bn/(s+1)c∏
j=b`/(s+1)c+1

(1− ωjz)
)
νpurified
` (z), (5.17)

or, after a cosmetic division of the vector νSonneveld
` (θj) defining the eigenspace by the

constant factor Ωbn/(s+1)c(θj),

νSonneveld
` (θj)

Ωbn/(s+1)c(θj)
=

νpurified
` (θj)

Ωb`/(s+1)c(θj)
. (5.18)

As any eigenvector of the purified pencil (Y◦n,UnD(n)
ω ) is collinear to the non-zero

vector νpurified
` (θj), we have constructed a vector collinear to the non-zero vector

νSonneveld
` (θj), which is an eigenvector of the Sonneveld pencil (Y◦n,YnD(n)

ω ) to the
eigenvalue θj .

The remaining portion of the theorem is based on a few simple observations on
the structure of the deflation process. The deflation can be reversed: An eigenvector
sdeflated
j of the deflated pencil (D(Y◦nGn), D(UnD(n)

ω )) is prolonged by inserting zeros
after every multiple of s to obtain an eigenvector s̃eliminated

j = D†(sdeflated
j ) to the same

eigenvalue of the eliminated pencil (Y◦nGn,UnD(n)
ω ) = (Y◦nGn,UnD(n)

ω Gn). Espe-
cially, the norm of a vector is not altered by inserting additional zero elements. The
vectors ej(s+1), 1 6 j 6 bn/(s + 1)c, are in the null space of UnD(n)

ω = UnD(n)
ω Gn

and thus are eigenvectors to the bn/(s+ 1)c-fold semisimple eigenvalue at infinity of
both the eliminated and the purified pencil. As all finite eigenvalues are simple, any
zero elements in the eigenvectors are uniquely determined. The block-Gauß elimi-
nator Gn maps eigenvectors seliminated

j of the eliminated pencil (Y◦nGn,UnD(n)
ω ) =

(Y◦nGn,UnD(n)
ω Gn) to eigenvectors s̃purified

j of the purified pencil (Y◦n,UnD(n)
ω ), as

(Y◦n − θjUnD(n)
ω )s̃purified

j = (Y◦nGn − θjUnD(n)
ω )seliminated

j = on. (5.19)

By inspection, the multiplication by the block-Gauß eliminator only alters the bn/(s+
1)c zero elements in positions j(s + 1), 1 6 j 6 bn/(s + 1)c; thus, the norm of the
image is bounded from below by the norm of the preimage.

Utilizing the theorem, we can compute the Sonneveld eigenvectors without using
directly the Sonneveld pencil. The last component of the scaled eigenvector together
with the norm of the last residual yields an estimator of the backward error. So, error
estimation without the Sonneveld pencil is indeed possible.
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6. Numerical examples. We present several examples chosen to highlight the
behavior of IDR(s)Eig based on IDR(s)ORes in finite precision. First, we identify
numerically the “best” approach using the five different approaches, namely, the QZ or
QR algorithm, as implemented in Matlab, applied to the computed Sonneveld pencil
(Y◦n,YnD(n)

ω ) and Sonneveld matrix S◦n = Y◦n(D(n)
ω )−1Y−1

n , to the computed purified
pencil (Y◦n,UnD(n)

ω ), and to the computed deflated pencil (D(Y◦nGn), D(UnD(n)
ω ))

and BiORes(s, 1) matrix L◦m; see Figure 1.1 on page 7 and Figure 4.3 on page 23.
Next, we depict with selected examples the phenomena of “misconvergence” and of
“barriers” around the minimizers, influencing the reachable set of eigenvalues.
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Fig. 6.1. Approximation by finite precision Ritz values using 15 sweeps of IDR(5)ORes on a
matrix A of dimension 200. The red plusses depict the eigenvalues of A, the black crosses depict the
minimizers 1/ωj , the magenta circles depict the eigenvalues of the Sonneveld pencil, the magenta
squares depict the eigenvalues of the Sonneveld matrix, the green diamonds depict the eigenvalues
of the purified pencil, the blue downward triangles depict the eigenvalues of the deflated pencil, and
the blue upward triangles depict the eigenvalues of the BiORes(5, 1) matrix. The upper and lower
subplot differ only in the computation of the eigenvalues of the Sonneveld matrix, see the remarks
in the text.

For 15 sweeps of IDR(5)ORes, a comparison of all the five different eigenvalue
approximations subject to finite precision is shown in the first subplot of Figure 6.1.
The dimension of the matrix A is 200, the starting residual chosen is b = Ae. All
eigenvalue approximations give the same results except the eigenvalue approxima-
tions based on the Sonneveld matrix, which gives worse approximations. The dif-
ference between the approximation quality of the Sonneveld matrix approach and
the Sonneveld pencil are too pronounced to be random. Numerical experiments
indicate that the eigenvalue approximations obtained using the Sonneveld matrix
S◦n = Y◦n(D(n)

ω )−1Y−1
n differ sometimes considerably from the eigenvalues of the sim-

ilar matrix (D(n)
ω )−1Y−1

n Y◦n, which usually gives better eigenvalue approximations.
This seems to be related to missed data dependencies and partially to small ωj , which
result in residual polynomial roots 1/ωj outside the field of values of A, compare with
the statements in the IDR-Ritz approach by Simoncini and Szyld [34]. To minimize
data dependencies we computed in a second run the eigenvalues of the latter matrix



30

using the relation

(D(n)
ω )−1Y−1

n Y◦n = (D(n)
ω )−1(In −Y−1

n NT
n), (6.1)

based on Y◦n = Yn − NT
n. Still, the eigenvalue approximations obtained in this

manner are not of the quality obtained with the Sonneveld pencil, see the lower
subplot in Figure 6.1. For this stability reason and because the Sonneveld matrix is
a full Hessenberg matrix, which makes the computation of approximate eigenvalues
for many sweeps computationally intractable, we focus on the other approaches. The
approaches connected to Hessenberg/triangular pencils, i.e., those based on the QZ
algorithm, behave more stable. In the following examples we solely used the deflated
pencil for the computation of the eigenvalue approximations.

The Ritz values of the purified process stop to converge close to the minimizers.
The series of Figures 6.4–6.10 reminds us of the pseudospectra of polynomials, see,
e.g., Figure 6.8. The matrix A has dimension 200 and we used k sweeps of IDR(2)-
ORes for k equal to 20, 50, 100, 150, 300, 500 and 1000. We experimentally tested
our conjecture on the relation to pseudospectra and used a complex random matrix
P. This ensures that the minimizers are allowed to become complex. As can be seen
in the series of Figures 6.11–6.17, the BiORes(s, 1)-part also captures the roots of
the residual polynomials Ωj . We observe that numerically the roots due to the one-
dimensional minimizations are also found by the Lanczos process. This is due to the
fact that we work with a perturbed mapped left Krylov space and the mapping is not
“precise” enough.

It is a remarkable feature (at least in the numerical experiments carried out thus
far) that in some steps there appears an eigenvalue of the purified Hessenberg pencil
that is close to zero. The elements of the corresponding eigenvector seem to measure
the deterioration of the process with a rate approximately inverse to the convergence
rate measured by the norm of the constructed residuals. This Ritz value zero occurs
after IDR(s)ORes has attained its ultimately attainable accuracy. This can be nicely
seen in Figure 6.2 and Figure 6.3, which depict the convergence curves of the runs
of IDR(s)ORes, first with real, then with a complex matrix P. This occurrence of
a zero Ritz value seems to be related to the comment following Eqn. (4.3) on the
differences of true and updated residuals on page 13.

In [20, page 146] it was conjectured that higher values of s give a better condi-
tioned basis. We might then get faster convergence to outliers. To test this conjecture,
we used the matrix e05r0500 from the Matrix Market [26]. This matrix models a
2D fluid flow in a driven cavity with 5× 5-elements and Reynolds number 500. This
matrix is non-symmetric real and zero is in the field of values. We used the given
right-hand side e05r0500 rhs1 and the zero vector as starting solution. This linear
system is known to be a hard test case for any transpose-free short-term recurrence
Krylov subspace method, i.e., LTPM. These methods converge to a more or less ac-
curate solution after an extremely large number of steps, i.e., between 50.000 and
300.000 steps for a matrix of size 236; in [7] the authors even conjectured that these
methods fail. We used 60 steps for different s = 1, 2, 3, 4, 5, 9, chosen such that 60 is
divisible by s + 1. The resulting series of Figures 6.18–6.23 supports the conjecture
that higher values of s give faster approximations to outliers. The best approximation
is found for s = 5, see Figure 6.22. The bad approximation in case of s = 9 seems to
be related to small minimizers ωj magnifying the influence of rounding errors.
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Fig. 6.2. The size of the computed residuals for 1000 sweeps of IDR(2)ORes with a random real
matrix P ∈ Rn×s with orthonormal columns. The red circles depict the points where we computed
the eigenvalues of the underlying BiORes(2, 1) process.
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Fig. 6.3. The size of the computed residuals for 1000 sweeps of IDR(2)ORes with a random
complex matrix P ∈ Cn×s with orthonormal columns. The red circles depict the points where we
computed the eigenvalues of the underlying BiORes(2, 1) process.
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IDR(2)ORes for 20 sweeps on a matrix of size 200
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Fig. 6.4. The formation of “pseudospectra”: 0020 sweeps of IDR(2)ORes with a real orthonor-
mal P ∈ R200×2. The eigenvalues of the matrix A ∈ R200×200 are depicted with red plusses, the
minimizers 1/ωj are depicted by black crosses, and the roots of the ρ-polynomial are depicted by
green circles. This is a series of seven pictures. The first two pictures show behavior to be expected
also in exact arithmetic. From the third picture onwards we observe the formation of a circle of
finite precision Ritz values located around the real minimizers on the real line. From this point
on, we observe a finite precision Ritz value close to zero. Some of the roots of the ρ-polynomial
approximate some previously computed minimizers 1/ωj .
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IDR(2)ORes for 50 sweeps on a matrix of size 200
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Fig. 6.5. The formation of “pseudospectra”: 0050 sweeps of IDR(2)ORes with a real orthonor-
mal P ∈ R200×2. The eigenvalues of the matrix A ∈ R200×200 are depicted with red plusses, the
minimizers 1/ωj are depicted by black crosses, and the roots of the ρ-polynomial are depicted by
green circles. This is a series of seven pictures. The first two pictures show behavior to be expected
also in exact arithmetic. From the third picture onwards we observe the formation of a circle of
finite precision Ritz values located around the real minimizers on the real line. From this point
on, we observe a finite precision Ritz value close to zero. Some of the roots of the ρ-polynomial
approximate some previously computed minimizers 1/ωj .
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IDR(2)ORes for 100 sweeps on a matrix of size 200
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Fig. 6.6. The formation of “pseudospectra”: 0100 sweeps of IDR(2)ORes with a real orthonor-
mal P ∈ R200×2. The eigenvalues of the matrix A ∈ R200×200 are depicted with red plusses, the
minimizers 1/ωj are depicted by black crosses, and the roots of the ρ-polynomial are depicted by
green circles. This is a series of seven pictures. The first two pictures show behavior to be expected
also in exact arithmetic. From the third picture onwards we observe the formation of a circle of
finite precision Ritz values located around the real minimizers on the real line. From this point
on, we observe a finite precision Ritz value close to zero. Some of the roots of the ρ-polynomial
approximate some previously computed minimizers 1/ωj .
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IDR(2)ORes for 150 sweeps on a matrix of size 200
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Fig. 6.7. The formation of “pseudospectra”: 0150 sweeps of IDR(2)ORes with a real orthonor-
mal P ∈ R200×2. The eigenvalues of the matrix A ∈ R200×200 are depicted with red plusses, the
minimizers 1/ωj are depicted by black crosses, and the roots of the ρ-polynomial are depicted by
green circles. This is a series of seven pictures. The first two pictures show behavior to be expected
also in exact arithmetic. From the third picture onwards we observe the formation of a circle of
finite precision Ritz values located around the real minimizers on the real line. From this point
on, we observe a finite precision Ritz value close to zero. Some of the roots of the ρ-polynomial
approximate some previously computed minimizers 1/ωj .
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IDR(2)ORes for 300 sweeps on a matrix of size 200
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Fig. 6.8. The formation of “pseudospectra”: 0300 sweeps of IDR(2)ORes with a real orthonor-
mal P ∈ R200×2. The eigenvalues of the matrix A ∈ R200×200 are depicted with red plusses, the
minimizers 1/ωj are depicted by black crosses, and the roots of the ρ-polynomial are depicted by
green circles. This is a series of seven pictures. The first two pictures show behavior to be expected
also in exact arithmetic. From the third picture onwards we observe the formation of a circle of
finite precision Ritz values located around the real minimizers on the real line. From this point
on, we observe a finite precision Ritz value close to zero. Some of the roots of the ρ-polynomial
approximate some previously computed minimizers 1/ωj .
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IDR(2)ORes for 500 sweeps on a matrix of size 200
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Fig. 6.9. The formation of “pseudospectra”: 0500 sweeps of IDR(2)ORes with a real orthonor-
mal P ∈ R200×2. The eigenvalues of the matrix A ∈ R200×200 are depicted with red plusses, the
minimizers 1/ωj are depicted by black crosses, and the roots of the ρ-polynomial are depicted by
green circles. This is a series of seven pictures. The first two pictures show behavior to be expected
also in exact arithmetic. From the third picture onwards we observe the formation of a circle of
finite precision Ritz values located around the real minimizers on the real line. From this point
on, we observe a finite precision Ritz value close to zero. Some of the roots of the ρ-polynomial
approximate some previously computed minimizers 1/ωj .
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Fig. 6.10. The formation of “pseudospectra”: 1000 sweeps of IDR(2)ORes with a real or-
thonormal P ∈ R200×2. The eigenvalues of the matrix A ∈ R200×200 are depicted with red plusses,
the minimizers 1/ωj are depicted by black crosses, and the roots of the ρ-polynomial are depicted by
green circles. This is a series of seven pictures. The first two pictures show behavior to be expected
also in exact arithmetic. From the third picture onwards we observe the formation of a circle of
finite precision Ritz values located around the real minimizers on the real line. From this point
on, we observe a finite precision Ritz value close to zero. Some of the roots of the ρ-polynomial
approximate some previously computed minimizers 1/ωj .
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IDR(2)ORes for 20 sweeps on a matrix of size 200
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Fig. 6.11. The formation of a “barrier”: 0020 sweeps of IDR(2)ORes with a complex orthonor-
mal P ∈ C200×2. The eigenvalues of the matrix A ∈ R200×200 are depicted with red plusses, the
minimizers 1/ωj are depicted by black crosses, and the roots of the ρ-polynomial are depicted by
green circles. This is a series of seven pictures. The first two pictures show behavior to be expected
also in exact arithmetic. From the third picture onwards we observe the formation of a circle of
finite precision Ritz values located somewhere in the region where complex minimizers occur most
frequently. From this point on, we observe a finite precision Ritz value close to zero. In this complex
case one can better observe that some of the roots of the ρ-polynomial approximate some previously
computed minimizers 1/ωj .
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Fig. 6.12. The formation of a “barrier”: 0050 sweeps of IDR(2)ORes with a complex orthonor-
mal P ∈ C200×2. The eigenvalues of the matrix A ∈ R200×200 are depicted with red plusses, the
minimizers 1/ωj are depicted by black crosses, and the roots of the ρ-polynomial are depicted by
green circles. This is a series of seven pictures. The first two pictures show behavior to be expected
also in exact arithmetic. From the third picture onwards we observe the formation of a circle of
finite precision Ritz values located somewhere in the region where complex minimizers occur most
frequently. From this point on, we observe a finite precision Ritz value close to zero. In this complex
case one can better observe that some of the roots of the ρ-polynomial approximate some previously
computed minimizers 1/ωj .
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Fig. 6.13. The formation of a “barrier”: 0100 sweeps of IDR(2)ORes with a complex orthonor-
mal P ∈ C200×2. The eigenvalues of the matrix A ∈ R200×200 are depicted with red plusses, the
minimizers 1/ωj are depicted by black crosses, and the roots of the ρ-polynomial are depicted by
green circles. This is a series of seven pictures. The first two pictures show behavior to be expected
also in exact arithmetic. From the third picture onwards we observe the formation of a circle of
finite precision Ritz values located somewhere in the region where complex minimizers occur most
frequently. From this point on, we observe a finite precision Ritz value close to zero. In this complex
case one can better observe that some of the roots of the ρ-polynomial approximate some previously
computed minimizers 1/ωj .
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Fig. 6.14. The formation of a “barrier”: 0150 sweeps of IDR(2)ORes with a complex orthonor-
mal P ∈ C200×2. The eigenvalues of the matrix A ∈ R200×200 are depicted with red plusses, the
minimizers 1/ωj are depicted by black crosses, and the roots of the ρ-polynomial are depicted by
green circles. This is a series of seven pictures. The first two pictures show behavior to be expected
also in exact arithmetic. From the third picture onwards we observe the formation of a circle of
finite precision Ritz values located somewhere in the region where complex minimizers occur most
frequently. From this point on, we observe a finite precision Ritz value close to zero. In this complex
case one can better observe that some of the roots of the ρ-polynomial approximate some previously
computed minimizers 1/ωj .
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IDR(2)ORes for 300 sweeps on a matrix of size 200
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Fig. 6.15. The formation of a “barrier”: 0300 sweeps of IDR(2)ORes with a complex orthonor-
mal P ∈ C200×2. The eigenvalues of the matrix A ∈ R200×200 are depicted with red plusses, the
minimizers 1/ωj are depicted by black crosses, and the roots of the ρ-polynomial are depicted by
green circles. This is a series of seven pictures. The first two pictures show behavior to be expected
also in exact arithmetic. From the third picture onwards we observe the formation of a circle of
finite precision Ritz values located somewhere in the region where complex minimizers occur most
frequently. From this point on, we observe a finite precision Ritz value close to zero. In this complex
case one can better observe that some of the roots of the ρ-polynomial approximate some previously
computed minimizers 1/ωj .
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IDR(2)ORes for 500 sweeps on a matrix of size 200
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Fig. 6.16. The formation of a “barrier”: 0500 sweeps of IDR(2)ORes with a complex orthonor-
mal P ∈ C200×2. The eigenvalues of the matrix A ∈ R200×200 are depicted with red plusses, the
minimizers 1/ωj are depicted by black crosses, and the roots of the ρ-polynomial are depicted by
green circles. This is a series of seven pictures. The first two pictures show behavior to be expected
also in exact arithmetic. From the third picture onwards we observe the formation of a circle of
finite precision Ritz values located somewhere in the region where complex minimizers occur most
frequently. From this point on, we observe a finite precision Ritz value close to zero. In this complex
case one can better observe that some of the roots of the ρ-polynomial approximate some previously
computed minimizers 1/ωj .
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IDR(2)ORes for 1000 sweeps on a matrix of size 200
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Fig. 6.17. The formation of a “barrier”: 1000 sweeps of IDR(2)ORes with a complex orthonor-
mal P ∈ C200×2. The eigenvalues of the matrix A ∈ R200×200 are depicted with red plusses, the
minimizers 1/ωj are depicted by black crosses, and the roots of the ρ-polynomial are depicted by
green circles. This is a series of seven pictures. The first two pictures show behavior to be expected
also in exact arithmetic. From the third picture onwards we observe the formation of a circle of
finite precision Ritz values located somewhere in the region where complex minimizers occur most
frequently. From this point on, we observe a finite precision Ritz value close to zero. In this complex
case one can better observe that some of the roots of the ρ-polynomial approximate some previously
computed minimizers 1/ωj .
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IDR(1)ORes for 30 sweeps on the matrix e05r0500 of size 236
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Fig. 6.18. Approximation by Ritz values for 60 steps and s = 1.
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IDR(2)ORes for 20 sweeps on the matrix e05r0500 of size 236
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Fig. 6.19. Approximation by Ritz values for 60 steps and s = 2.
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IDR(3)ORes for 15 sweeps on the matrix e05r0500 of size 236
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Fig. 6.20. Approximation by Ritz values for 60 steps and s = 3.
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IDR(4)ORes for 12 sweeps on the matrix e05r0500 of size 236
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Fig. 6.21. Approximation by Ritz values for 60 steps and s = 4.
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IDR(5)ORes for 10 sweeps on the matrix e05r0500 of size 236
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Fig. 6.22. Approximation by Ritz values for 60 steps and s = 5.
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Fig. 6.23. Approximation by Ritz values for 60 steps and s = 9.
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7. Source code listings. Here are the listings of the programs used for our
numerical experiments.

Listing 1
matlab/IDREig driver.m

1 %IDREIG_DRIVER is an example driver for the IDREig package.

2 %

3 % The script IDREig_driver generates some matrices and

4 % vectors and calls five different functions:

5 %

6 % 1) IDRORes_academic , an academic implementation of

7 % the prototype IDR(s) [Sonneveld/van Gijzen , SISC 31, 2008].

8 % 2) IDRORes , the less academic implementation of the same

9 % prototype IDR(s), which generates only the basic output

10 % of IDRORes_academic , but saves workspace.

11 % 3) IDREig , a routine that presents how to extract

12 % eigenvalue information from a run of IDRORes(_academic)

13 % based on five different approaches outlined in the report

14 % [Gutknecht/Zemke , 2010].

15 % 4) IDRRitzPurified , a routine that shows how to cheaply

16 % estimate the accuracy of the eigenpair approximation.

17 % 5) compute_W , a routine that exemplifies how stable the

18 % computation of a certain set of basis vectors useful for

19 % the computation of certain Ritz vectors is for the chosen

20 % matrix and starting vector.

21 %

22 % See also: IDRORes , IDRORes_academic , IDREig , IDRRitzPurified.

23

24 % Coypright 2009 -2010 Jens -Peter M. Zemke.

25 % Version 1.00, Date: 2010/04/13 14:20:34 CEST.

26

27 n = 50;

28 A = randn(n)+(1+ s q r t (n))*eye(n);
29 b = A*ones(n,1);
30 x0 = randn(n,1);
31 s = 3;

32 PH = or th ( randn(n,s)+i* randn(n,s)).’;
33 maxj = 20;

34 start = 1;

35

36 [x,resvec ,uH ,UT,C,omega ,trueresvec ,R] = ...

37 IDRORes_academic(A,b,x0,s,PH,maxj ,start);

38 [x2 ,resvec2 ,uH2 ,UT2 ,C2 ,omega2] = ...

39 IDRORes(A,b,x0,s,PH,maxj ,start);

40

41 i f sum(abs ([norm(x-x2) norm(resvec -resvec2) ...

42 norm( f u l l (uH -uH2)) norm( f u l l (UT -UT2)) ...

43 norm(C-C2) norm(omega -omega2)])) ~= 0

44 e r r o r (’Something went terribly wrong.’)
45 end
46

47 c o l o r d e f black;

48

49 f i g u r e (1)

50 steps = (s+1)*maxj;

51 semi logy (0:steps ,trueresvec ,’b-’ ,...
52 0:steps ,resvec ,’r-.’);

53 axen = a x i s ;
54 a x i s ([0 steps axen (3:4)])

55 l egend (’true residual norm’ ,...
56 ’computed residual norm’)

57

58 [uSH ,SR ,uSM ,PR,uDH ,DR ,uLM] = IDREig(uH ,UT,C,omega ,s,maxj);

59

60 SH = f u l l (uSH(1: s i z e (SR ,1) ,:));
61 SM = f u l l (uSM(1: s i z e (SR ,1) ,:));
62 DH = f u l l (uDH(1: s i z e (DR ,1) ,:));
63 LM = f u l l (uLM(1: s i z e (DR ,1) ,:));
64

65 i f i s s p a r s e (A)
66 eigA = e i g s (A,min(200,n/2),’SM’);
67 e l s e

http://www.tu-harburg.de/~matjz/codes/matlab/IDREig_driver.m
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68 eigA = e i g (A);
69 end
70

71 eigSP = e i g (SH , f u l l (SR));
72 eigSM = e i g (SM);
73 eigPP = e i g (SH , f u l l (PR));
74 eigDP = e i g (DH , f u l l (DR));
75 eigLM = e i g (LM);
76

77 f i g u r e (2)

78 p l o t ( r e a l (eigA), imag(eigA),’r+’ ,...
79 r e a l (eigSP), imag(eigSP),’mo’ ,...
80 r e a l (eigSM), imag(eigSM),’ms’ ,...
81 r e a l (eigPP), imag(eigPP),’gd’ ,...
82 r e a l (eigDP), imag(eigDP),’bv’ ,...
83 r e a l (eigLM), imag(eigLM),’b^’ ,...
84 r e a l (1./ omega), imag(1./ omega),’wx’ ,...
85 r e a l (eigA), imag(eigA),’r+’);
86 l egend (’eigenvalues of A’ ,...
87 ’eigenvalues of the Sonneveld pencil ’ ,...

88 ’eigenvalues of the Sonneveld matrix ’ ,...

89 ’eigenvalues of the purified pencil ’ ,...

90 ’eigenvalues of the deflated pencil ’ ,...

91 ’eigenvalues of the deflated matrix ’ ,...

92 ’inverse local minimizers ’)

93

94 i f maxj*(s+1) < 301

95

96 lambda = max(eigA);
97 [v,theta ,acc ,estconv ,trueconv ,allconv ,backerr] = ...

98 IDRRitzPurified(A,R,uSH ,SR,PR ,omega ,resvec ,lambda ,s,maxj);

99

100 normA = s q r t (norm(A,inf)*norm(A,1));

101 f i g u r e (3)

102 semi logy (1:steps ,trueconv/normA ,’b-’ ,...
103 1:steps ,estconv/normA ,’r-’ ,...

104 1:steps ,backerr/normA ,’y-’ ,...

105 1:steps ,allconv/normA ,’g-’ ,...

106 1:steps ,trueconv/normA ,’b-’ ,...

107 1:steps ,estconv/normA ,’r-’ ,...

108 1:steps ,backerr/normA ,’y-’);

109 a x i s ([1 steps 1e-16 1e5])

110 l egend (’true distance to eigenvalue ’ ,...
111 ’estimated rate of convergence ’ ,...

112 ’backward error of the Ritz pair’ ,...

113 ’distances to other Ritz values ’)

114 t i t l e ( s p r i n t f (’convergence to the eigenvalue lambda = %g’,lambda));
115

116 end
117

118 [RW ,pnRW ,W,pnW] = compute_W(A,LM,R(:,1),omega ,resvec ,s,maxj);

119

120 f i g u r e (4)

121 semi logy (1:steps ,resvec (1: steps),’r-.’ ,...
122 1:steps ,trueresvec (1: steps),’b-’ ,...

123 1:steps ,pnW ,’w-’ ,...

124 1:steps ,pnRW ,’g-’ ,...

125 1:steps ,abs(resvec (1: steps)-pnRW ’),’r.’)
126 l egend (’updated residual norms ’ ,...
127 ’true residual norms ’ ,...

128 ’purified residual norms’ ,...

129 ’recomputed residual norms ’ ,...

130 ’differences ’)

131 top = 10^( round(max( l og10 (resvec))));
132 a x i s ([1,steps ,1e-21*top ,1e2*top]);
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Listing 2
matlab/IDRORes academic.m

1 f u n c t i o n [x,resvec ,uH ,UT,C,omega ,trueresvec ,R] ...

2 = IDRORes_academic(A,b,x0,s,PH,maxj ,start)

3

4 %IDRORes_academic approximate solutions to Ax=b using original IDR.

5 %

6 % x = IDRORes_academic(A,b) computes an approximate solution x

7 % to the linear system Ax = b using the IDR(s) prototype algorithm

8 % by [Sonneveld/van Gijzen , SISC 31, 2008].

9 %

10 % In the call

11 % [x,resvec ,uH,UT,C,omega ,trueresvec ,R] =

12 % IDRORes_academic(A,b,x0,s,PH ,maxj ,start)

13 % of IDR(s)ORes ,

14 %

15 % - x0 is the starting guess ,

16 % - s is the number of left Lanczos vectors ,

17 % - PH is the left Petrov -Galerkin matrix ,

18 % - maxj is the number of inner sweeps

19 % (comprising of s left and 1 right steps),

20 % - start is one of:

21 % 1 == OrthoRes (1) = ORes ,

22 % 2 == full OrthoRes ,

23 %

24 % and

25 %

26 % - x is the approximate solution ,

27 % - resvec is the vector of the norms of the

28 % computed residuals ,

29 % - uH is a sparse unreduced extended upper

30 % Hessenberg matrix ,

31 % - UT is a sparse upper triangular matrix ,

32 % - C is a (s x n)-matrix that contains in the

33 % columns the coefficients obtained in

34 % the orthogonalization against P,

35 % - omega contains the local minimizers , and

36 % - trueresvec is the vector of the true residuals.

37 %

38 % The extended pencil (uH ,UT) is defined by the starting

39 % procedure 1 or 2. This pencil , together with the IDR

40 % quantities contained in the matrix C and the vector

41 % omega , defines the underlying Hessenberg decomposition

42 % for the residuals that can be used to compute eigenvalue

43 % approximations.

44 %

45 % This is an academic implementation with two drawbacks:

46 % o The computation of the true residual norm is based on

47 % a second matrix -vector multiplication in every step ,

48 % o All the residuals are stored in the matrix R.

49 % For these reasons , in the non -academic variant IDRORes

50 % we do not compute true residual norms and do not store

51 % the residual vectors.

52 %

53 % See also: IDRORes , IDREig , IDREig_driver , IDRRitzPurified.

54

55 % Coypright 2009 -2010 Jens -Peter M. Zemke.

56 % Version 1.03, Date: 2010/03/10 16:12:24 CEST.

57

58 %% TODO: implement full GMRes

59

60 i f na rg i n < 1

61 e r r o r (’No system matrix was given.’);
62 end
63

64 [n,m] = s i z e (A);
65

66 i f na rg i n < 2

67 e r r o r (’No right -hand side was given.’);
68 end
69
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70 i f na rg i n < 3

71 x0 = randn(n,1);
72 end
73

74 i f na rg i n < 4

75 s = min(n,4);
76 end
77

78 i f na rg i n < 5

79 PH = or th ( randn(n,s)).’;
80 end
81

82 i f na rg i n < 6

83 maxj = min( round ((2*(n+1))/(s+1)), round (300/(s+1)));
84 end
85

86 i f na rg i n < 7

87 start = 1;

88 end
89

90 maxsteps = maxj*(s+1) +1;

91 R = ze ro s (n,maxsteps);
92 resvec = ze ro s (1,maxsteps);
93 trueresvec = ze ro s (1,maxsteps);
94

95 x = x0;

96 r = b-A*x0;

97 R(:,1) = r;

98

99 normr = norm(r);

100 resvec (1) = normr;

101 trueresvec (1) = normr;

102

103 UT = spa r s e (s);
104 uH = spa r s e (s+1,s);
105

106 nablaR = ze ro s (n,s);
107 nablaX = ze ro s (n,s);
108 PHnablaR = ze ro s (s,s);
109

110 % ORes , i.e., OrthoRes (1)

111 i f start == 1

112

113 f o r k = 1:s

114

115 Ar = A*r;

116 tomega = dot(Ar ,r)/dot(Ar ,Ar);
117 UT(k,k) = tomega;

118

119 nablaX(:,k) = tomega*r;

120 x = x + nablaX(:,k);

121

122 nablaR(:,k) = -tomega*Ar;

123 r = r - tomega*Ar;

124 R(:,k+1) = r;

125

126 PHnablaR(:,k) = PH*nablaR(:,k);

127

128 resvec(k+1) = norm(r);

129 trueresvec(k+1) = norm(b-A*x);

130

131 end
132 uH = spd i ag s (ones(s+1,1)*[-1 1],[-1 0],s+1,s);

133

134 % full OrthoRes , i.e., OrthoRes(s+1)

135 e l s e i f start == 2

136

137 X = ze ro s (n,s+1);
138 rHr = ze ro s (s+1,1);
139

140 X(:,1) = x;

141 rHr(1) = dot(r,r);
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142

143 f o r k = 1:s

144

145 Ar = A*R(:,k);

146

147 uH(1:k,k) = (R(:,1:k)’*Ar)./rHr (1:k);

148 uH(k+1,k) = -sum(uH(1:k,k));

149

150 R(:,k+1) = (Ar-R(:,1:k)*uH(1:k,k))/uH(k+1,k);

151 X(:,k+1) = -(R(:,k)+X(:,1:k)*uH(1:k,k))/uH(k+1,k);

152

153 resvec(k+1) = norm(R(:,k+1));

154 trueresvec(k+1) = norm(b-A*X(:,k+1));

155 rHr(k+1) = resvec(k+1)^2;

156

157 end
158

159 UT = speye (s);
160 r = R(:,s+1);

161 x = X(:,s+1);

162

163 nablaR = R(:,2:s+1)-R(:,1:s);

164 nablaX = X(:,2:s+1)-X(:,1:s);

165 PHnablaR = PH*nablaR;

166

167 % other methods , e.g., full explicit GMRes , i.e., GMRes(s+1)

168 e l s e
169

170 d i s p (’not implemented yet’)

171

172 end
173

174 PHr = PH*r;

175 normr = norm(r);

176

177 sp1 = s+1;

178 step = sp1+1;

179 colnum = 1;

180

181 indexR = (1:s) ’;

182 indexC = (1:s) ’;

183

184 C = ze ro s (s,(maxj -1)*(s+1));
185 omega = ze ro s (1,maxj);
186

187 f o r j = 1:maxj -1

188

189 c = (PHnablaR)\(PHr);

190 C(:,colnum) = c(indexC);

191

192 oldest = indexR == 1;

193 indexR = circshift(indexR , 1);

194 indexC = circshift(indexC ,-1);

195

196 update = -nablaR*c;

197 v = r + update;

198 Av = A*v;

199 omega(j) = dot(Av ,v)/dot(Av ,Av);
200

201 nablaX(:,oldest) = -nablaX*c + omega(j)*v;

202 x = x + nablaX(:,oldest);

203

204 nablaR(:,oldest) = update - omega(j)*Av;

205 r = r + nablaR(:,oldest);

206 R(:,step) = r;

207

208 PHnablaR(:,oldest) = PH*nablaR(:,oldest);

209 PHr = PHr + PHnablaR(:,oldest);

210

211 normr = norm(r);

212 resvec(step) = normr;

213 trueresvec(step) = norm(b-A*x);
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214

215 f o r k = 1:s

216

217 c = (PHnablaR)\(PHr);

218 C(:,colnum+k) = c(indexC);

219

220 oldest = indexR == 1;

221 indexR = circshift(indexR , 1);

222 indexC = circshift(indexC ,-1);

223

224 update = -nablaR*c;

225 v = r + update;

226

227 nablaX(:,oldest) = -nablaX*c + omega(j)*v;

228 x = x + nablaX(:,oldest);

229

230 nablaR(:,oldest) = -A*nablaX(:,oldest);

231 r = r + nablaR(:,oldest);

232 R(:,step+k) = r;

233

234 PHnablaR(:,oldest) = PH*nablaR(:,oldest);

235 PHr = PHr + PHnablaR(:,oldest);

236

237 normr = norm(r);

238 resvec(step+k) = normr;

239 trueresvec(step+k) = norm(b-A*x);

240

241 end
242

243 colnum = colnum + sp1;

244 step = step + sp1;

245

246 end
247

248 c = (PHnablaR)\(PHr);

249 C(:,colnum) = c(indexC);

250

251 oldest = indexR == 1;

252 indexC = circshift(indexC ,-1);

253

254 update = -nablaR*c;

255 v = r + update;

256 Av = A*v;

257 omega(j+1) = dot(Av ,v)/dot(Av ,Av);
258

259 nablaX(:,oldest) = -nablaX*c + omega(j+1)*v;

260 x = x + nablaX(:,oldest);

261

262 nablaR(:,oldest) = update - omega(j+1)*Av;

263 r = r + nablaR(:,oldest);

264 R(:,step) = r;

265

266 normr = norm(r);

267 resvec(step) = normr;

268 trueresvec(step) = norm(b-A*x);
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Listing 3
matlab/IDRORes.m

1 f u n c t i o n [x,resvec ,uH ,UT,C,omega] = IDRORes(A,b,x0,s,PH,maxj ,start)

2

3 %IDRORes approximate solutions to Ax=b using original IDR.

4 %

5 % x = IDRORes(A,b) computes an approximate solution x to the

6 % linear system Ax = b using the IDR(s) prototype algorithm

7 % by [Sonneveld/van Gijzen , SISC 31, 2008].

8 %

9 % In the call

10 % [x,resvec ,uH,UT,C,omega] =

11 % IDRORes(A,b,x0 ,s,PH ,maxj ,start)

12 % of IDR(s)ORes ,

13 %

14 % - x0 is the starting guess ,

15 % - s is the number of left Lanczos vectors ,

16 % - PH is the left Petrov -Galerkin matrix ,

17 % - maxj is the number of inner sweeps

18 % (comprising of s left and 1 right steps),

19 % - start is one of:

20 % 1 == OrthoRes (1) = ORes ,

21 % 2 == full OrthoRes ,

22 %

23 % and

24 %

25 % - x is the approximate solution ,

26 % - resvec is the vector of the norms of the

27 % computed residuals ,

28 % - uH is a sparse unreduced extended upper

29 % Hessenberg matrix ,

30 % - UT is a sparse upper triangular matrix ,

31 % - C is a (s x n)-matrix that contains in the

32 % columns the coefficients obtained in

33 % the orthogonalization against P,

34 % - omega contains the local minimizers.

35 %

36 % The extended pencil (uH ,UT) is defined by the starting

37 % procedure 1 or 2. This pencil , together with the IDR

38 % quantities contained in the matrix C and the vector

39 % omega , defines the underlying Hessenberg decomposition

40 % for the residuals that can be used to compute eigenvalue

41 % approximations.

42 %

43 % There is also an academic implementation with two drawbacks:

44 % o The computation of the true residual norm is based on

45 % a second matrix -vector multiplication in every step ,

46 % o All the residuals are stored in the matrix R.

47 % The academic variant is named IDRORes_academic.

48 %

49 % See also: IDRORes_academic , IDREig , IDREig_driver , IDRRitzPurified.

50

51 % Coypright 2009 -2010 Jens -Peter M. Zemke.

52 % Version 1.03, Date: 2010/03/10 16:31:43 CEST.

53

54 %% TODO: implement full GMRes

55

56 i f na rg i n < 1

57 e r r o r (’No system matrix was given.’);
58 end
59

60 [n,m] = s i z e (A);
61

62 i f na rg i n < 2

63 e r r o r (’No right -hand side was given.’);
64 end
65

66 i f na rg i n < 3

67 x0 = randn(n,1);
68 end
69
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70 i f na rg i n < 4

71 s = min(n,4);
72 end
73

74 i f na rg i n < 5

75 PH = or th ( randn(n,s)).’;
76 end
77

78 i f na rg i n < 6

79 maxj = min( round ((2*(n+1))/(s+1)), round (300/(s+1)));
80 end
81

82 i f na rg i n < 7

83 start = 1;

84 end
85

86 resvec = ze ro s (1,maxj*(s+1) +1);
87

88 x = x0;

89 r = b-A*x0;

90

91 resvec (1) = norm(r);

92

93 UT = spa r s e (s);
94 uH = spa r s e (s+1,s);
95

96 nablaR = ze ro s (n,s);
97 nablaX = ze ro s (n,s);
98 PHnablaR = ze ro s (s,s);
99

100 % ORes , i.e., OrthoRes (1)

101 i f start == 1

102

103 f o r k = 1:s

104

105 Ar = A*r;

106 tomega = dot(Ar ,r)/dot(Ar ,Ar);
107 UT(k,k) = tomega;

108

109 nablaX(:,k) = tomega*r;

110 x = x + nablaX(:,k);

111

112 nablaR(:,k) = -tomega*Ar;

113 r = r - tomega*Ar;

114

115 PHnablaR(:,k) = PH*nablaR(:,k);

116

117 resvec(k+1) = norm(r);

118

119 end
120 uH = spd i ag s (ones(s+1,1)*[-1 1],[-1 0],s+1,s);

121

122 % full OrthoRes , i.e., OrthoRes(s+1)

123 e l s e i f start == 2

124

125 R = ze ro s (n,s+1);
126 X = ze ro s (n,s+1);
127 rHr = ze ro s (s+1,1);
128

129 R(:,1) = r;

130 X(:,1) = x;

131 rHr(1) = dot(r,r);
132

133 f o r k = 1:s

134

135 Ar = A*R(:,k);

136

137 uH(1:k,k) = (R(:,1:k)’*Ar)./rHr (1:k);

138 uH(k+1,k) = -sum(uH(1:k,k));

139

140 R(:,k+1) = (Ar-R(:,1:k)*uH(1:k,k))/uH(k+1,k);

141 X(:,k+1) = -(R(:,k)+X(:,1:k)*uH(1:k,k))/uH(k+1,k);
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142

143 resvec(k+1) = norm(R(:,k+1));

144 rHr(k+1) = resvec(k+1)^2;

145

146 end
147

148 UT = speye (s);
149 r = R(:,s+1);

150 x = X(:,s+1);

151

152 nablaR = R(:,2:s+1)-R(:,1:s);

153 nablaX = X(:,2:s+1)-X(:,1:s);

154 PHnablaR = PH*nablaR;

155

156 % other methods , e.g., full explicit GMRes , i.e., GMRes(s+1)

157 e l s e
158

159 d i s p (’not implemented yet’)

160

161 end
162

163 PHr = PH*r;

164 normr = norm(r);

165

166 sp1 = s+1;

167 step = sp1+1;

168 j = 1;

169 colnum = 1;

170

171 indexR = (1:s) ’;

172 indexC = (1:s) ’;

173

174 C = ze ro s (s,(maxj -1)*(s+1));
175 omega = ze ro s (1,maxj);
176

177 f o r j = 1:maxj -1

178

179 c = (PHnablaR)\(PHr);

180 C(:,colnum) = c(indexC);

181

182 oldest = indexR == 1;

183 indexR = circshift(indexR , 1);

184 indexC = circshift(indexC ,-1);

185

186 update = -nablaR*c;

187 v = r + update;

188 Av = A*v;

189 omega(j) = dot(Av ,v)/dot(Av ,Av);
190

191 nablaX(:,oldest) = -nablaX*c + omega(j)*v;

192 x = x + nablaX(:,oldest);

193

194 nablaR(:,oldest) = update - omega(j)*Av;

195 r = r + nablaR(:,oldest);

196

197 PHnablaR(:,oldest) = PH*nablaR(:,oldest);

198 PHr = PHr + PHnablaR(:,oldest);

199

200 normr = norm(r);

201 resvec(step) = normr;

202

203 f o r k = 1:s

204

205 c = (PHnablaR)\(PHr);

206 C(:,colnum+k) = c(indexC);

207

208 oldest = indexR == 1;

209 indexR = circshift(indexR , 1);

210 indexC = circshift(indexC ,-1);

211

212 update = -nablaR*c;

213 v = r + update;
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214

215 nablaX(:,oldest) = -nablaX*c + omega(j)*v;

216 x = x + nablaX(:,oldest);

217

218 nablaR(:,oldest) = -A*nablaX(:,oldest);

219 r = r + nablaR(:,oldest);

220

221 PHnablaR(:,oldest) = PH*nablaR(:,oldest);

222 PHr = PHr + PHnablaR(:,oldest);

223

224 normr = norm(r);

225 resvec(step+k) = normr;

226

227 end
228

229 colnum = colnum + sp1;

230 step = step + sp1;

231

232 end
233

234 c = (PHnablaR)\(PHr);

235 C(:,colnum) = c(indexC);

236

237 oldest = indexR == 1;

238 indexC = circshift(indexC ,-1);

239

240 update = -nablaR*c;

241 v = r + update;

242 Av = A*v;

243 omega(j+1) = dot(Av ,v)/dot(Av ,Av);
244

245 nablaX(:,oldest) = -nablaX*c + omega(j+1)*v;

246 x = x + nablaX(:,oldest);

247

248 nablaR(:,oldest) = update - omega(j+1)*Av;

249 r = r + nablaR(:,oldest);

250

251 normr = norm(r);

252 resvec(step) = normr;
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Listing 4
matlab/IDREig.m

1 f u n c t i o n [uSH ,SR ,uSM ,PR,uDH ,DR ,uLM ,D] = IDREig(uH,UT ,C,omega ,s,maxj);

2

3 %IDREIG constructs matrices for eigenvalue computations for IDRORes.

4 %

5 % [uSH ,SR] = IDREig(uH ,UT,C,omega ,s,maxj) computes the sparse

6 % extended Sonneveld pencil from the quantities returned by a

7 % run of the IDRORes implementation of the prototype IDR(s) of

8 % [Sonneveld/van Gijzen , SISC 31, 2008].

9 %

10 % In the call

11 %

12 % [uSH ,SR,uSM ,PR ,uDH ,DR,uLM] = IDREig(uH ,UT,C,omega ,s,maxj)

13 %

14 % - uH is the leading extended Hessenberg matrix defined by

15 % the starting procedure ,

16 % - UT is the upper triangular matrix defined by the starting

17 % procedure ,

18 % - C contains the coefficients of the oblique projections

19 % onto the differences of the last residuals to make the

20 % resulting vector orthogonal to the shadow vectors in P,

21 % - omega contains the vector of all chosen omega ,

22 % - s is a non -negative integer which defines the size of

23 % the shadow space , and

24 % - maxj gives the number of sweeps.

25 %

26 % From the output ,

27 %

28 % (uSH ,SR) is the sparse extended Sonneveld pencil ,

29 % uSM is the sparse extended Sonneveld matrix ,

30 % (uSH ,PR) is the sparse extended purified pencil ,

31 % (uDH ,DR) is the sparse extended deflated pencil , and

32 % uLM is the sparse extended Lanczos -BiORes(s,1) matrix.

33 %

34 % See also: IDRORes , IDRORes_academic , IDREig_driver , IDRRitzPurified.

35

36 % Coypright 2009 -2010 Jens -Peter M. Zemke.

37 % Version 1.00, Date: 2010/04/13 14:33:02 CEST.

38

39 j = maxj -1;

40 n = (s+1)*j+1;

41

42 o = ze ro s (1,n);
43 e = ones (1,n);
44

45 band_Yo = d i f f ([o;C;e;o]);
46 band_Y = d i f f ([o;C;e]);
47

48 diag_omega = d iag ( kron ( d iag ( spa r s e ([1, omega (1:j)])), speye (s+1)));
49 D = spd i ag s ([ diag_omega (2:end);omega(end)],0,n+s,n+s);
50

51 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

52 %% %%

53 %% compute the extended Sonneveld pencil (uSH ,SR) %%

54 %% %%

55 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

56

57 uSH = [[ spa r s e (uH); spa r s e (n,s)],...
58 spd i ag s ( f l i p l r (band_Yo.’) ,[-(s+1):0],n+s+1,n)];
59 SR = [[ spa r s e (UT); spa r s e (n,s)],...
60 spd i ag s ( f l i p l r (band_Y.’), [-s:0],n+s,n)]*D;

61

62 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

63 %% %%

64 %% compute the extended Sonneveld matrix uSM %%

65 %% %%

66 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

67

68 uSM = uSH/SR;

69
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70 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

71 %% %%

72 %% compute the matrix PR of the purified pencil %%

73 %% %%

74 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

75

76 band_U = band_Y;

77 band_U( repmat( f l i p l r ( t r i u ( l o g i c a l (ones(s+1)))) ,1,j)) = 0;

78 band_U(:,n) = 0;

79 PR = [[ spa r s e (UT); spa r s e (n,s)],...
80 spd i ag s ( f l i p l r (band_U.’) ,[-s:0],n+s,n)]*D;
81

82 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

83 %% %%

84 %% compute the deflated purified pencil (uDH ,DR) %%

85 %% %%

86 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

87

88 G = speye (n+s);
89 indicesG = (1: maxj).*(s+1);

90 f o r refine = 1:2

91 G(indicesG ,:) = -uSH(indicesG ,indicesG)\uSH(indicesG ,:);

92 G(indicesG ,indicesG) = speye (maxj);
93 uSHG = uSH*G;

94 end
95 indicesD = (1:n+s) ~= (s+1)* f l o o r ((1:n+s)./(s+1));
96

97 uDH = uSHG([ indicesD l o g i c a l (1)],indicesD);
98 DR = PR(indicesD ,indicesD);

99

100 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

101 %% %%

102 %% compute the BiORes(s,1) matrix uLM %%

103 %% %%

104 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

105

106 uLM = uDH/DR;
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Listing 5
matlab/IDRRitzPurified.m

1 f u n c t i o n [v,theta ,acc ,estconv ,trueconv ,allconv ,backerr] = ...

2 IDRRitzPurified(A,R,uSH ,SR,PR,omega ,resvec ,lambda ,s,maxj)

3

4 %IDRRITZPURIFIED is a howto: estimate accuracy without long vectors.

5 %

6 % [v,theta ,acc ,estconv ,trueconv ,allconv ,backerr] = ...

7 % IDRRitzPurified(A,R,uSH ,SR ,PR,omega ,resvec ,lambda ,s,maxj)

8 %

9 % computes with given

10 %

11 % A - the square system matrix ,

12 % R - the matrix of all IDRORes residuals ,

13 % (uSH ,SR) - extended Sonneveld pencil ,

14 % (uSH ,PR) - extended purified pencil ,

15 % omega - vector of all chosen omega ,

16 % resvec - vector of norms of all IDRORes residuals ,

17 % lambda - eigenvalue of A of interest ,

18 % s - parameter ‘s’ of IDR(s)ORes , and

19 % maxj - number of sweeps of IDRORes

20 %

21 % the values

22 %

23 % v - normalized eigenvector of the purified pencil ,

24 % theta - corresponding Ritz value ,

25 % acc - final convergence estimator ,

26 % estconv - vector of convergence estimators of all steps ,

27 % trueconv - vector of smallest distances to lambda of all steps ,

28 % allconv - matrix of all distances to lambda of all steps , and

29 % backerr - vector of backward errors of best Ritz pairs of all

30 % steps.

31 %

32 % See also: IDRORes , IDRORes_academic , IDREig , IDREig_driver.

33

34 % Coypright 2009 -2010 Jens -Peter M. Zemke.

35 % Version 1.01, Date: 2010/04/13 14:57:36 CEST.

36

37 n = (s+1)*maxj;

38 omega_theta = ones(n,1);
39 allconv = ze ro s (n);
40 estconv = ze ro s (n,1);
41 trueconv = ze ro s (n,1);
42 backerr = ze ro s (n,1);
43

44 f o r i = 1:n

45

46 %%% compute the eigenpairs of the purified pencil

47 [S,Theta] = e i g ( f u l l (uSH(1:i,1:i)), f u l l (PR(1:i,1:i)));
48 dtheta = d iag (Theta).’;
49

50 %%% sort according to the distance to the given lambda

51 [allconv(i,1:i),index] = s o r t (abs(lambda -dtheta));
52 theta = dtheta(index (1));

53 trueconv(i) = min(allconv(i,1:i));
54

55 %%% compute the scaling by polynomial terms

56 f o r k = s+1:i

57 omega_theta(k) = prod (1-( omega (1: f l o o r (k/(s+1))).*theta));
58 end
59

60 %%% compute the approximate eigenvector of the Sonneveld pencil

61 v = S(:,index (1))./ omega_theta (1:i);

62

63 %%% still cheap: refine using Sonneveld upper triangular matrix

64 w = SR(1:i,1:i)*v;

65

66 %%% costly: prolongation using the matrix of residual vectors

67 w = R(:,1:i)*w;

68

69 %%% costly: computation of the backward error

http://www.tu-harburg.de/~matjz/codes/matlab/IDRRitzPurified.m
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70 w = w/norm(w);

71 backerr(i) = norm(A*w-theta*w);

72

73 %%% normalize the short vector at hand

74 v = v/norm(v);

75

76 %%% estimate cheaply the rate of convergence

77 estconv(i) = resvec(i+1)*abs(uSH(i+1,i)*v(i));
78

79 end
80

81 acc = estconv(n);
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Listing 6
matlab/compute W.m

1 f u n c t i o n [RW ,pnRW ,W,pnW] = compute_W(A,L,r,omega ,resvec ,s,maxj)

2

3 %COMPUTE_W computes the basis vectors in W for IDRORes.

4 %

5 % [RW,pnRW ,W,pnW] = compute_W(A,L,r,omega ,resvec ,s,maxj)

6 % computes the matrix W consisting column -wise of the basis

7 % vectors of the BiORes(s,1)-process underlying IDR(s)ORes.

8 % This is done using the Lanczos -BiORes(s,1) matrix computed

9 % from IDREig with the information obtained and stored by

10 % IDRORes_academic.

11 %

12 % On input ,

13 %

14 % A - denotes the quadratic system matrix ,

15 % L - denotes the Lanczos -BiORes(s,1) matrix

16 % computed by IDREig ,

17 % r - is the starting residual used for IDRORes ,

18 % omega - is the vector of all omega chosen in IDRORes ,

19 % resvec - contains the norms of the updated residuals ,

20 % s - denotes the parameter ‘s’ of IDR(s)ORes , and

21 % maxj - denotes the number of sweeps carried out.

22 %

23 % On output ,

24 %

25 % RW - contains the recomputed residuals r,

26 % pnRW - is a prolonged vector of norms of these recomputed

27 % residuals ,

28 % W - contains the computed Lanczos -BiORes(s,1) residual

29 % vectors , and

30 % pnW - is a prolonged vector of norms of these computed

31 % Lanczos -BiORes(s,1) residuals.

32 %

33 % See also: IDRORes_academic , IDREig , IDREig_driver.

34

35 % Coypright 2009 -2010 Jens -Peter M. Zemke.

36 % Version 1.00, Date: 2010/04/13 14:01:23 CEST.

37

38 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

39 %% %%

40 %% use the OrthoRes -Lanczos -matrix for the computation %%

41 %% of the residual polynomials %%

42 %% %%

43 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

44

45 m = maxj*s;

46 n = s i z e (A,1);
47 maxit = (s+1)*maxj;

48

49 W = ze ro s (n,m+1);
50

51 W(:,1) = r;

52 nW = eye(m,1)*norm(W(:,1));

53

54 f o r j = 1:m-1

55 W(:,j+1) = (A*W(:,j)-W(:,1:j)*L(1:j,j))/L(j+1,j);

56 nW(j+1) = norm(W(:,j+1));

57 end
58

59 indvec = ((1: maxit) ~= (s+1)* f l o o r ((1: maxit)./(s+1))) ~= 0;

60

61 %% prolong nW

62

63 pnW = ze ro s (maxit ,1);
64 pnW(indvec) = nW;

65

66 %%% compute R by Omega_j(A)*W by a Horner scheme

67

68 RW = W;

69 nRW = nW;
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70

71 f o r j = 1:maxj -1

72 RW(:,j*s+1:m) = RW(:,j*s+1:m)-omega(j)*A*RW(:,j*s+1:m);

73 f o r k = 1:s

74 nRW(j*s+k) = norm(RW(:,j*s+k));

75 end
76 end
77

78 pnRW = ze ro s (maxit ,1);
79 pnRW(indvec) = nRW;
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