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Asymptotics for Helmholtz and Maxwell solutions in 3-D open

waveguides

Carlos Jerez-Hanckes∗†‡ and Jean-Claude Nédélec§

Abstract

We extend Sommerfeld and Silver-Müller radiation conditions to acoustic and electromagnetic

fields propagating over three isotropic layers in R3. In the outer layers, classical conditions only

hold for waves propagating in the region |x3| > r
γ with γ ∈

`

1

4
, 1

2

´

. For |x3| < r
γ and inside the

slab, asymptotic behaviors depend on the presence of surface or guided modes given by the discrete

spectrum of the associated operator.

1 Introduction

Although layered structures in optics and acoustics have been long studied [19], [10], the persistent
interest from both engineering and scientific communities comes from the continuous improvement in
manufacturing techniques for optical integrated circuits [24]. Today, layered optical waveguides take part
in a plethora of applications ranging from basic light guidance [22], to more complex devices such as
strip-geometry semiconductor lasers [23], [2], and photonic crystal structures [21], [15].

In its simplest form, a waveguide is made by three layers of isotropic media. The middle one or core
possesses a finite thickness and a different dielectric coefficient compared to the surrounding layers, also
referred to as cladding. We thus speak of open waveguides in opposition to closed waveguides, in which
a metallic enclosure contains the radiation from propagating outside the core. Under certain conditions,
these structures are capable of guiding radiation inside the slab while outside energy decays exponentially.
These modes do not form a complete eigenfunction set in which the field from an arbitrary source can
be expanded. Thus, radiative modes linked to the continuum spectrum must be included to deliver an
entire description. However, guided and radiative parts possess different behaviors at infinity [3, 18]. This
prevents accurate descriptions by standard numerical methods and theoretically, existence and uniqueness
results have for long remained open problems. In recent works, uniqueness of solutions for the Helmholtz
equation for 2-D waveguides with small perturbations was achieved [8, 9] and a similar result is obtained
in [5] via a generalized Fourier transform when one of the outer layers is replaced by a Dirichlet condition.

In this work, we present rigourous asymptotics for outgoing acoustic and Maxwell waves in time
harmonic regime in R3 using the limiting absorption principle. This constitutes a milestone towards
a general existence result for open waveguides and uniqueness proofs in the fashion of [11]. On the
application side, these precise characterizations allows for the development of new ad hoc numerical
techniques and improvement of PMLs and similar techniques.

∗ETH Zürich, Seminar für Angewandte Mathematik, Zürich, Switzerland
†Pontificia Universidad Católica de Chile, Facultad de Ingenieŕıa, Santiago, Chile
‡Corresponding author. Email: cjerez@sam.math.ethz.ch
§Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau, France
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1.1 Problem Setting

Let h ∈ R+ be bounded and and introduce the intervals:

I1 := (h, +∞) , I2 := (0, h) , I3 := (−∞, h). (1)

We consider the following three-layer decomposition of R3:

Ω1 := {x ∈ R3 : x3 ∈ I1} , Ω2 := {x ∈ R3 : x3 ∈ I2} , Ω3 := {x ∈ R3 : x3 ∈ I3},

with interfaces Γ0 = Ω2 ∩ Ω3 and Γh = Ω2 ∩ Ω1, and define for simplicity Ω :=
⋃

i Ωi. Each domain
{Ωi}3

i=1 is characterised by different parameters according to the physics considered. In the case of
linear electromagnetism, permittivity and permeability coefficients are given by values in vacuum, ε0
and µ0, correspondingly multiplied by relative ones εi, µi ∈ L∞(Ωi) both positive. Hence, inside Ωi, the
light speed ci equals c0/

√
εiµi where c0 = 1/

√
ε0µ0. In the acoustic case, real positive and bounded

constants ci refer to sound speeds. Parameters ηi ∈ R+, representing viscosities in the acoustic case
or conductivities in the EM one, immediately guarantee the well-posedness of the system, i.e. bounded
energy. Nonetheless, we will be mostly interested in the case when they tend to zero and so, we set ηi ≡ η
in all layers.

1.1.1 Time-dependent formulation

Let U(x, t) represent either the scalar pressure field, P , or one of the three-dimensional vector fields, E

or H, describing scattered sound or EM waves, respectively. After some rearrangements, the following
common time-dependent PDEs must be satisfied:






(
−c−2

i ∂2
t − η∂t + ∆

)
U(x, t) = FUF(x, t) , (x, t) ∈ Ωi × R+, i = 1, 2, 3,

+ physics-dependent transmission conditions, (x, t) ∈ Γ0,h × R+,

+ initial conditions, (x, t) ∈ Ωi × {0}, i = 1, 2, 3,

+ outgoing behavior,

(2)

where ∆ is the Laplacian operator and F is an excitation according to the physics considered, compactly
supported in Ω2. The partial differential operator FU provides necessary modifications, e.g., in the EM
case we set F as an electric current for which it holds

FE(x, t) = µiµ0∂t + (εiε0)
−1 grad

∫ t

0
div(·)dτ and FH(x, t) = rot (3)

while for sound scattering FP equals identity.

1.1.2 TE and TM modes. Transmission conditions.

Due to rotational invariance, one decomposes the pair of EM fields (E , H) with values in R6 into transverse
electric (TE), E3 ≡ 0, and transverse magnetic (TM), H3 ≡ 0, modes which can be entirely characterized
by normal components, HTE

3 and ETM
3 , respectively. Indeed, for each polarization there are dyadic partial

differential operators:

EU : U (−→ E and HU : U (−→ H, U =
{
HTE

3 , ETM
3

}
, (4)

mapping the corresponding driving normal component into the remaining EM fields components. The
dyad form is due to the excitation by vector sources in R3. Consequently, for each polarization, there
are three different scalar sources to be considered, written F

j
UF := (FUF) · x̂j with j = 1, 2, 3. On the

2



other hand, the normal components U = {HTE
3 , ETM

3 } are solutions of the scalar form of (2) with jump
conditions:

[αU ] = 0 and [∂3U ] = 0 on Γ0,h, ∀t ∈ R+, (5)

with α being either µ or ε, respectively. In the acoustic case, transmission conditions are given by zero
Dirichlet and Neumann jumps, i.e. α ≡ 1. Thus, henceforth we focus on the scalar form of (2).

1.1.3 Time harmonic or Helmholtz formulation

By linearity, periodic excitations in time with a pulsation ω ∈ R+, allow solutions of (2) to take the form:

U(x, t) = Re
{
U(x)e±ıωt

}
(6)

with complex-valued U(x). Once a convention is chosen, and after equating exponential terms out, the
time dependence is only portrayed by the sign of the absorption term. Let us choose the minus sign in (6)
and accordingly modify (2). Define the real and complex wavenumbers k2

i := (ω/ci)2 and k2
i,η := k2

i +ıωη.

Hypothesis 1.1. We will further assume that 0 < k3 ≤ k1 < k2 < +∞.

This will ensure the existence of guided modes [14] when η vanishes. We are interested in solving the
family of time-harmonic problems for η tending to zero:

(Pη) :=






∆Uη(x) + k2
i,ηUη(x) = 0 x ∈ Ωi , i = 1, 3

∆Uη(x) + k2
2,ηUη = FU (x, ω)F (x) x ∈ Ω2

[αUη] = 0 x ∈ Γ0,h

[∂3Uη] = 0 x ∈ Γ0,h,

+ outgoing behavior,

(7)

where now the field’s dependence on η is given by the subscript and Uη ∈ H1
loc (∆, Ω), the space of

local L2-functions with locally square integrable Laplacians in Ω. Notice that F (x) is complex-valued,
compactly supported, and that FU is either the same operator as before (acoustic) or its projected action
along x̂j (EM), j = 1, 2, 3, with derivatives in t replaced by powers of ω. In general, one can explicitly
write

FU =
L,M,N,P∑

l,m,n,p=0

cU
lmnpω

p∂l
1∂

m
2 ∂n

3 (introducing indices in EM) (8)

where cU
lmn ∈ C are constants associated to the derivatives {l, m, n, p} ∈ N0 of the physics-dependent

operator with {L, M, N, P} ∈ N0 bounded.
As long as Im {ki,η} > 0, for i = 1, 2, 3, the above problems are well-defined and solutions belong

in fact to H1 (∆, Ω). The limit problem (P0) := limη↓0(Pη) shows the existence of surface modes and
requires radiation conditions to retrieve the outgoing propagation sense in time.

1.2 Main Results: Far-field Asymptotics for Helmholtz and EM solutions

Introduce the following coordinate systems: (1) upper and lower hemispherical (r, θ, φ) ones centered at
Γh for Ω1 and at Γ0 for Ω3, respectively; and, (2) cylindrical ones (ρ, ϕ, x3) with 0 < x3 < h in Ω2. Then,
for η = 0, the following propositions hold

Proposition 1.1. Assume the existence of M guided modes, with wavenumbers located at circumferences
described by |ξ| = ξm

p , with ξm
p > 0 for all m = 1, . . . M . Let γ ∈ (1

4 , 1
2 ). Moreover, let us admit for the

limit problem (P0) the decomposition:

U = Ug + Urad with Ug =
M∑

m=1

αmUm
p , αm , (9)

3



where Urad and Ug are radiative and guided parts, the latter composed of allowed modes Um
p . Then, it

holds 




∣∣∂U
∂r − ıkiU

∣∣ = O
(
r−(2γ+ 1

2 )
)

for x ∈ Ωi, i = 1, 3, |x3| > rγ ,∣∣∣∂U
∂r − ı

∑M
m=1 αmξm

p Um
p

∣∣∣ = O
(
r−( 3

2
−γ)

)
for x ∈ Ωi, i = 1, 3, |x3| < rγ ,∣∣∣∂U

∂ρ − ı
∑M

m=1 αmξm
p Um

p

∣∣∣ = O
(
ρ−

3
2

)
for x ∈ Ω2.

(10)

Proposition 1.2 (Silver-Müller-type conditions). Define the impedances:

zi,r := (µi/εi)
1/2 and z

m
i,ρ := ξm

p /(ωεi) = zi,r ξm
p /ki

If excited by an electrical current, outgoing transverse magnetic fields satisfy the following conditions:





∣∣Hi + z
−1
i,r E ∧ n

∣∣ = O
(
r−(2γ+ 1

2 )
)

for x ∈ Ωi, i = 1, 3, |x3| > rγ

∣∣∣H +
∑M

m=1 αm

(
zm
i,ρ

)−1
Em

p ∧ n
∣∣∣ = O

(
r−( 3

2
−γ)

)
for x ∈ Ωi, i = 1, 3, |x3| < rγ

∣∣∣H +
∑M

m=1 αm

(
zm
2,ρ

)−1
Em

p ∧ n
∣∣∣ = O

(
ρ−

3
2

)
for x ∈ Ω2

(11)

where Em
p are the associated electric guided modes described in Proposition 1.1, n = x/r in x ∈ Ωi,

i = 1, 3, and n = ρ/ρ in Ω2. Similar conditions for transverse electric modes hold by reversing the roles
of H and E.

2 Radiation Conditions Derivation

In order to prove the above results, we study the associated Green’s functions, gη, as one can recover fields
U for arbitrary but compactly supported F by convolution, i.e. Uη = gη ∗ (FUF ). Hence, the far-field
behavior is indeed the one given by gη, whose derivation constitutes most of this work. For this, we first
obtain explicit surface spectral forms by applying the polar Fourier transform. This yields a system of
ordinary differential equations in x3 as shown in Section 2.1.2 whose solution is given in Proposition 2.1.
With this, in Section 2.3, we carry out the asymptotic analysis of the inverse surface Fourier transform
when η goes to zero.

2.1 Surface spectral Green’s functions and dyads

Let us replace the source F (x) with a scalar (acoustic) or directional (EM) delta Dirac distribution at
x − y, with x ∈ R3 and y ∈ Ω2, to derive the associated spatial Green’s functions gη(x,y) or dyads
gη(x,y) to problem (Pη). Since layer parameters αi are piecewise constant, the functions depend on
(x,y) only through their difference [13] and, by translational invariance, we can set y1 = x1 and y2 = x2

so that the only source parameter is y3 ∈ I2.

2.1.1 Surface Fourier transform

Let x′ = (x1, x2) and ξ = (ξ1, ξ2). Let ϕ ∈ S(R2
x′ × R) where S denotes the Schwarz space, then its

surface Fourier transform, F , denoted ϕ̂ ∈ S(R2
ξ × R), is

ϕ̂(ξ, x3) = (Fϕ) (ξ, x3) =
1

2π

∫

R2

ϕ(x′, x3)e
ıξ·x′

dx′ (12)

with inverse (
F−1ϕ̂

)
(x′, x3) = ϕ(x′, x3) =

1

2π

∫

R2

ϕ̂(ξ, x3)e
−ıξ·x′

dξ. (13)

4



If u lies in S′(R2
x′ ×R), the space of tempered distributions, its partial Fourier transform, û ∈ S′(R2

ξ×R),
is obtained by duality. Now, for an open interval I ⊂ R, we can define the space of distributions partially
tempered over R2

x′ × I as follows:

S′(R2
x′ × I) :=

{
u ∈ D′(R2

x′ × I) : ∀ ψ ∈ C∞
0 (I) , ψ(x3)u ∈ S′(R2

x′ × R)
}

and all the above definitions apply [6]. The next transforms will be extensively used

Dirac delta: δ̂(ξ, x3) =
1

2π
δ(x3) ⊗ 1ξ; (14)

derivation: ̂∂m
1 ∂n

2 ∂l
3u(ξ, x3) = (−ıξ1)

m (−ıξ2)
n ∂l

3 û(ξ, x3). (15)

Lastly, it is convenient to express the surface Fourier transform in polar coordinates, defined as ξ1 =
ξ cosφ, ξ2 = ξ sinφ, describing the (ξ1, ξ2)-plane for ξ ∈ [0,∞) and φ ∈ (0, 2π). Hence, the inverse
transform can be written as

f(x) =
1

2π

∫ 2π

0

∫ ∞

0
f̂(ξ, x3)e

−ıξ t(φ)·x′

ξdξdφ (16)

where the shorthand t(φ) =

(
cosφ
sinφ

)
has been used, i.e. ξ = ξ t(φ).

2.1.2 Spectral problem formulation

Define restrictions of the Green’s function over each layer gi
η := gη|Ωi . Application of the surface Fourier

transform in polar coordinates to (7) leads to the following systems of ODEs in x3: find ĝi
η ∈ S′(R2

ξ ×
Ii × I2), for i = 1, 2, 3, such that for ξ ∈ R2 and y3 ∈ I3 it holds

(P̂η) :=






∂2
3 ĝi

η − χ2
i,η ĝi

η = 0, x3 ∈ Ii, i = 1, 3

∂2
3 ĝ2

η − χ2
2,η ĝ2

η = F̂Uδ, x3 ∈ I2,

[αĝη] = 0, x3 = 0, h,

[∂3ĝη] = 0, x3 = 0, h,

+ decay conditions |x3| −→ +∞.

(17)

where we have set χ2
i,η(ξ) := ξ2 − k2

i,η for which if η = 0, we will simply write χi. It holds

F̂Uδ(ξ, x3, y3) =
N∑

n=0

β̂U
n (ξ)δ(n)(x3 − y3) (18)

wherein

β̂U
n (ξ) :=

1

2π

L,M,P∑

l,m,p=0

cU
lmnpω

p(−ıξ)l+m tl1(φ) tm2 (φ). (19)

For the moment we only focus on (17), though we keep in mind the different sources for EM possessing
the same form of (18).

2.1.3 Solutions of homogeneous equations

Solutions of the homogeneous ordinary differential equation in (P̂η) take the form:

ĝi
η(ξ, x3, y3) = Ki

1,η(ξ, y3) e−(x3−y3)χi,η + Ki
2,η(ξ, y3) e(x3−y3)χi,η , i = 1, 3, (20)

where the distributions Ki
j,η ∈ S′(R2

ξ × I2), j = 1, 2, are obtained by imposing boundary and decay
conditions, as shown briefly. However, we must establish an interpretation of χi,η as square-roots in the
complex plane.

5



2.1.4 Square root determination

Let z ∈ C such that Re {z} = ξ and assume η > 0. We set the square root over the complex plane

χi,η : z (−→
√

z2 − k2
i,η , i = 1, 2, 3,

as the product between
√

z − ki,η and
√

z + ki,η, defined over over C minus the non-negative and
non-positive imaginary axis, respectively. That is,

arg(z − ki,η) ∈
(
−

3π

2
,
π

2

)
and arg(z + ki,η) ∈

(
−

π

2
,
3π

2

)

Remark 2.1. Set η = 0. Then, if Im {z} = 0 and Re {z} = ξ ∈ R, it holds arg(ξ − ki) ∈ {−π, 0} and
arg(ξ + ki) ∈ {0, π} and thus, χi takes either real or purely complex values. The latter occurs if |ξ| < ki

since the term ξ + ki has an argument equal to zero for all ξ > −ki and ξ − ki = (ki − ξ)e−ıπ so that√
ξ − ki = −ı

√
ki − ξ and, in fact,

√
ξ2 − k2

i = −ı
√

k2
i − ξ2.

2.1.5 Solutions for the inhomogeneous equation in Ω2

Since F̂Uδ can be written as a sum (18), by linearity, we can set

ĝ2
η =

N∑

n=0

ĝ2,n
η (21)

wherein each ĝ2,n
η ∈ S′(R2

ξ × I2 × I2) is a distributional solution of the problem:

∂2
3 ĝ2,n

η (ξ, x3, y3) − χ2
2,ηĝ2,n

η (ξ, x3, y3) = β̂U
n (ξ)δ(n)(x3 − y3) (22)

with boundary conditions at x = {0, h} as in (17). Due to the punctual support of the exciting terms, we
can introduce an artificial layer at x3 = y3 and split the interval I2 into I2+ := (y3, h) and I2− := (0, y3).
This induces a decomposition of the spatial domain Ω2 into

Ω+
2 = {x ∈ Ω2 : x3 ∈ I2+} and Ω−

2 = {x ∈ Ω2 : x3 ∈ I2−}.

Hence, in each Ω±
2 only homogeneous equations must be satisfied and, consequently, the corresponding

spectral solutions, denoted ĝ2+,n and ĝ2−,n, have the form (20) with coefficients K2±,n
j,η . For a given n,

we interrelate K2±,n
j,η by imposing jump conditions at x3 = y3 originated by the source term in (22). For

this, let us formally introduce the integral operators:

(
T ±

n u
)
(x3) :=

∫ x3

±∞
· · ·

∫ t3

±∞

∫ t2

±∞
u′(t1) dt1dt2 · · · dtn (23)

where integration is carried out n times with T ±
1 being the identity operator and T ±

0 differentiation in
x3. We define the combined operator Tn acting over g2±,n

η along x3:

(
Tng2±,n

η

)
(x3) : = K2±,n

1,η

(
T +

n e−(·−y3)χ2,η

)
(x3) + K2±,n

2,η

(
T −

n e(·−y3)χ2,η

)
(x3) (24)

and write jump conditions at x3 = y3 for all ξ ∈ R2:

[
Tng2,n

η

]
x3=y3

=
(
Tng2+,n

η − Tng2−,n
η

) ∣∣∣
x3=y3

= β̂U
n and

[
Tn+1g

2,n
η

]
x3=y3

= 0.

6



Notice that the classic Neumann condition is retrieved when n = 0. Operators T ±
n act over exponential

terms as
(
T ±

n e∓(·−y3)χ2,η

)
(x3) = (∓1)n−1χ1−n

2,η e∓(x3−y3)χ2,η (25)

so that (
Tng2±,n

η

)
(x3) = χ1−n

2,η

{
K2±,n

1,η (−1)n−1 e−(x3−y3)χ2,η + K2±,n
2,η e(x3−y3)χ2,η

}
. (26)

One can now directly compute the jumps:

[
Tng2,n

η

]
x3=y3

= (−1)n−1χ1−n
2,η

{
K2+,n

1,η − K2−,n
1,η

}
+ χ1−n

2,η

{
K2+,n

2,η − K2−,n
2,η

}
,

[
Tn+1g

2,n
η

]
x3=y3

= (−1)nχ−n
2,η

{
K2+,n

1,η − K2−,n
1,η

}
+ χ−n

2,η

{
K2+,n

2,η − K2−,n
2,η

}
,

and obtain two equations for the four unknowns K2±,n
j,η :

K2+,n
1,η − K2−,n

1,η = (−1)n−1 1

2
χn−1

2,η β̂U
n and K2+,n

2,η − K2−,n
2,η =

1

2
χn−1

2,η β̂U
n ; (28)

the missing relations coming from transmission conditions at x = {0, h}. One can regroup each individual
term K2±,n

j,η into K2±
j,η by adding in n Eqs. (28) as follows

K2+
1,η − K2−

1,η =
1

2

N∑

n=0

(−1)n−1χn−1
2,η β̂U

n =: L̂U
1,η, (29)

K2+
2,η − K2−

2,η =
1

2

N∑

n=0

χn−1
2,η β̂U

n =: L̂U
2,η, (30)

where we have defined the right-hand side source variables L̂U
j,η for convenience. Even and odd components

Υ̂U
e,η, Υ̂U

o,η can also be introduced:

Υ̂U
o,η :=

&N−1
2

'∑

p=0

χ2p
2,ηβ̂U

2p+1, and Υ̂U
e,η :=

(N−1
2

)∑

p=0

χ2p
2,ηβ̂U

2p. (31a)

Observe that the functions Υ̂U
o,e are polynomial with respect to ξ and t(φ) and their relation to L̂U

j,η is
as follows

L̂U
1,η =

1

2

(
Υ̂U

o,η − χ−1
2,ηΥ̂U

e,η

)
and L̂U

2,η =
1

2

(
Υ̂U

o,η + χ−1
2,ηΥ̂U

e,η

)
(32)

2.2 Spectral solution

Denote by Rη
ij the complex Fresnel reflection coefficient for a wave in Ωi reflected by region Ωj :

Rη
ij :=

αjχi,η − αiχj,η

αiχj,η + αjχi,η
(33)

dependent on ξ ∈ R2 and η. Observe that Rη
ji = −Rη

ij . We also define a complex transmission coefficient,
T η

ij , for the wave transmitted into the jth layer coming from the ith one, defined as

T η
ij := 1 + Rη

ij =
2αjχi,η

αiχj,η + αjχi,η
(34)
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Finally, we introduce the following complex-valued surface spectral function:

Detη := Rη
21R

η
23 exp (−2hχ2,η) − 1 (35)

which has a physical sense explained later on.

Proposition 2.1. If Detη is non-zero, the solution to the spectral problem (P̂η) is

ĝ1
η =

α2

α1

T η
21

Detη
e−(h−y3)χ2,η

{
−L̂U

1,η + Rη
23 e−2y3χ2,η L̂U

2,η

]
e−(x3−h)χ1,η x3 ∈ I1, (36a)

ĝ2+
η =

1

Detη

[
−L̂U

1,ηe
y3χ2,η + Rη

23 e−y3χ2,η L̂U
2,η

] [
e−x3χ2,η + Rη

21 e−2hχ2,η ex3χ2,η
]

x3 ∈ I2+, (36b)

ĝ2−
η =

1

Detη

[
L̂U

2,η e−y3χ2,η − Rη
21 e−(2h−y3)χ2,η L̂U

1,η

] [
Rη

23e
−x3χ2,η + ex3χ2,η

]
x3 ∈ I2−, (36c)

ĝ3
η =

α2

α3

T η
23

Detη

[
L̂U

2,η e−y3χ2,η − Rη
21 e−(2h−y3)χ2,η L̂U

1,η

]
ex3χ3,η x3 ∈ I3, (36d)

where the dependence on (ξ, y3) ∈ R2 × I2 is implied. Coefficients L̂U
1,η and L̂U

2,η are defined in (29) and
(30), respectively.

Proof. Based on Sections 2.1.3 and 2.1.5, we can write the solutions for (P̂η) as follows:

ĝ1
η = K̂1

1,η e−(x3−h)χ1,η x3 > h

ĝ2+
η = K̂2+

1,η e−(x3−y3)χ2,η + K̂2+
2,η e(x3−y3)χ2,η y3 < x3 < h

ĝ2−
η = K̂2−

1,η e−(x3−y3)χ2,η + K̂2−
2,η e(x3−y3)χ2,η 0 < x3 < y3

ĝ3
η = K̂3

2,η ex3χ3,η x3 < 0

as they decay at infinity when η > 0. The limiting case when η goes to zero and |ξ|2 < k2
i will be discussed

further below. Imposing jump conditions at x = {0, h} and by definition of reflection and transmission
coefficients, it holds

K̂2+
2,η = Rη

21 e−2(h−y3)χ2,η K̂2+
1,η and K̂2−

1,η = Rη
23 e−2y3χ2,η K̂2−

2,η

Therefore, K̂1
1,η and K̂3

2,η are given in terms of K̂2+
1,η and K̂2−

2,η, respectively, as

K̂1
1,η =

α2

α1
T η

21 e−(h−y3)χ2,ηK̂2+
1,η and K̂3

2,η =
α2

α3
T η

23 e−y3χ2,ηK̂2−
2,η

where factors αi/αj are equal to one in acoustics and thus only show up for EM normal fields –in contrast
to tangential ones studied in [7]. We relate coefficients inside the waveguide via (29) and (30) and obtain
the linear system:





Rη
21 e−2(h−y3)χ2,η −1 0 0

1 0 −1 0
0 1 0 −1
0 0 −1 Rη

23 e−2y3χ2,η









K̂2+
1,η

K̂2+
2,η

K̂2−
1,η

K̂2−
2,η




=





0

L̂U
1,η

L̂U
2,η

0





whose determinant is equal to Detη as introduced in (35). Lastly, if Detη is different from zero, Cramer’s
rule delivers the stated result.
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Remark 2.2. For the physical cases considered, the reader can easily verify that associated source terms
L̂U

j,η, for j = 1, 2, are equal in modulus, i.e. |L̂U
j,η| ≡ |L̂U

η |. Consequently, one can further simplify
(36a)-(36d) into the general form:

ĝi
η(ξ, x3, y3) = L̂U

η (ξ)
Ξi

η(ξ, y3)

Detη(ξ)
× exponential terms in x3 (38)

where ξ = |ξ|. The functions Ξi
η(ξ, y3) are built from terms Rη

ij , T
η
ij and χi,η which depend solely on the

radial spectral coordinate.

2.2.1 Spectral EM dyad transversal terms

The spectral form of the remaining elements in the EM Green’s dyads can be readily be found by applying
the surface Fourier transform over operators EU and HU [14]. We state them without terms in δ(x3 − y3)
as these do not contribute to the far-field. Let εijk the Levi-Civita tensor [17]. In the case of TM modes,
we have an electric field dyad normal component ĝE

e,3 composed of three scalars corresponding to sources
along j = 1, 2, 3:

ĝE
h,T = εT3T ′′

tT ′′(φ)

ξ
ωεĝE

e,3 (39a)

ĝE
e,T = −

1

ıωε
εT3T ′ ∂3ĝ

E
h,T ′ (39b)

where T = 1, 2 and T ′, T ′′ = 1, 2, 3. For TE modes, the normal magnetic field spectral component is ĝH
h,3:

ĝH
e,T = −εT3T ′′

ωµ

ξ
tT ′′(φ)ĝH

h,3 (40a)

ĝH
h,T =

1

ıωµ
εT3T ′ ∂3ĝ

H
e,T ′ (40b)

2.3 Asymptotic analysis for vanishing absorption

We now present asymptotics of the inverse Fourier transforms of the surface spectral Green’s functions
obtained in Section 2.1 when η goes to zero:

gi
η(x′, x3, y3) =

1

2π

∫ 2π

0

∫ ∞

0
ĝi

η(ξ, x3, y3)e
−ıξt(φ)·x′

ξdξdφ (41)

with x′ = (x1, x2) for y = (0, 0, y3) and where ĝi
η has the form (38). For this, we rewrite the integrals

(41) in the standard form:

gi
η(λ, ·, ·, y3) =

1

2π

∫ 2π

0

∫ ∞

0
Ψi

η(ξ, φ, y3)e
λΦi

η(ξ,φ,·,·)ξdξdφ (42)

where one considers λ as the large parameter. This last one depends on the choice of coordinate system.
The term Φi

η denotes the associated phase, obtained by multiplying exponential terms coming from ĝη

and the Fourier transform exponential. The remaining terms form part of the amplitude function Ψi
η.

As mentioned before, the subscripts η disappear when considering η ↓ 0. Notice that, when η = 0, the
terms χi are even in ξ, the functions Ξi also are.
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Figure 1: Complex paths for integrals in z at a fixed spectral angle φ (Initial form).

2.3.1 General procedure

Recall Hypothesis 1.1 and choose a slab height h that allows only two conjugate poles to exist, denoted
±ξp ∈ R. In order to apply the limiting absorption principle set η > 0. By doing so, the real poles |ξp|
are displaced in the imaginary axis as ξp,η := ±(ξp + ıη) [12]. Hence, the positive (negative) pole lies on
the upper (lower) half-plane of the complex plane C+ (C−). Then, letting η go to zero, asymptotics are
obtained as a sum of contributions coming from:

1. Stationary phase points ξi
s in Φi, with behaviors denoted Ii

ξi
s

and derived via the stationary phase

method [20];

2. for fixed integration angle φ, we regard

J i(λ, ·, ·, y3, φ) ∼
∫ ∞

0
Ψi

η(ξ, φ, y3)e
λΦi

η(ξ,φ,·,·)ξdξ, λ → +∞, η ↓ 0. (43)

by replacing ξ with the complex variable z and using the residue theorem [1] for the complex
contours shown in Fig. 1 for Re {z} ≥ 0. Thus, we define analytic continuations for Ψi

η, Φi
η which

contain the square-root terms χi,η as defined in Section 2.1.4. Following the steepest descent method
[4], we list all possible critical complex (real) points zc (ξc) associated to the integral in z:

• surface mode or pole contributions located at zc = ±ξp,η, given by the complex residue;

• branch points located at zc = ±ki,η for i = 1, 2, 3;

• the integration end-points at zc = 0 ± ıη.

After taking the limit η ↓ 0, these last results are finally integrated with respect to φ, and added
up to obtain

Ii = Ii
ξs +

∑

ξc

Ii
ξc

with Ii
ξc

(λ, ·, ·, y3) ∼
1

2π

∫ 2π

0
J i

ξc
(λ, ·, ·, y3, φ)dφ (44)
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2.4 Forms in Ωi for i = 1, 3

Introduce hemi-spherical coordinates with origin at (0, 0, h) for Ω1 and at (0, 0, 0) for Ω3. This is, for
r > 0, ϕ ∈ (0, 2π), and θ ∈ (0, π

2 ) in Ω1 or θ ∈ (π
2 , π) in Ω3, we have the equivalences: x1 = r sin θ cosϕ,

x2 = r sin θ sinϕ, and x3 − h = cos θ for Ω1 or x3 = cos θ for Ω3. Then, the amplitude and phase in (42)
are given by

Ψi
η(ξ, φ, y3) := L̂U

η (ξ, φ)
Ξi

η(ξ, y3)

Detη(ξ)
, (45a)

Φi
η(ξ, φ, θ, ϕ) := − |cos θ|χi,η(ξ) − ıξ sin θ cos (φ − ϕ) . (45b)

By the form of the phase it is clear that both stationary points and branch points occur.

2.4.1 Stationary point contribution

We multiply the integrand by a cut-off function ϑ ∈ D(R2) such that ϑ is equal to one on a neighborhood
of the stationary point ξi

s and zero elsewhere. This leaves only the contribution from the stationary point.
Let Bk(ξi

s) ⊂ R2 denote the ball centered at the saddle point of radius k ∈ R+. We change variables and
calculate, for η ≡ 0,

Ii
ξi

s
(r, θ, ϕ, y3) ∼

1

2π

∫

Bk(ξs)
Ψi(ξ1, ξ2, y3) eırΦ̃i(ξ1,ξ2,θ,ϕ)dξ1dξ2

wherein we have followed Remark 2.1 to modify the phase (45b) by defining

Φ̃i(ξ1, ξ2, θ, ϕ) := |cos θ|
√

k2
i − ξ2 − ξ1 sin θ cosϕ − ξ2 sin θ sinϕ.

The only stationary point is

ξi
s = (ξi

s, ξ
i
s) = (−ki sin θ cosϕ,−ki sin θ sinϕ), i = 1, 3,

which lies in the ball Bki(0) = {ξ : |ξ| ≤ ki} with Hessian matrix given by

HeΦ(ξi
s) = −

1

ki

(
1 + tan2 θ cos2 ϕ tan2 θ cosϕ sinϕ
tan2 θ cosϕ sinϕ 1 + tan2 θ sin2 ϕ

)

from where det HeΦ(ξi
s) = sec2 θ/k2

i . Moreover, the matrix has eigenvalues of opposite signs and conse-

quently signHeΦ(ξi
s) = 0, the stationary point thus being a saddle point. Application of the stationary

phase method yields

Ii
ξi

s
(r, θ, ϕ, y3) = ki |cos θ|Ψi(ξi

s, y3)
eıkir

r
+ O(r−2) i = 1, 3. (46)

Remark 2.3. If sin θ = 0, the stationary point is also a critical point for J i [see (43)], i.e. the end-point
at z = 0, and the above result is divided by two [20].

2.4.2 Surface mode or pole contribution

We now consider asymptotic contributions along a fixed angle (43). In order to do so independently
from r, we choose the complex paths so as to eliminate the integral contributions for large z and apply
Jordan’s lemma [16], i.e.

J i
ξp

= ı2π lim
η↓0

Resz=ξp,η

(
zΨi

ηerΦi
η

)
(47)
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Hence, by looking at our square root definitions (see Section 2.1.4), we write z = Reıτ with R ∈ R,
τ ∈ (−π

2 , π
2 ) and study the integrand behavior. First, we analyze the ubiquitous χi,η:

lim
|R|→+∞

χi,η = lim
|R|→+∞

√
(Reıτ )2 − k2

i,η = lim
|R|→+∞

|R|eıτ , i = 1, 2, 3, (48)

which show that all terms T η
ij , Rη

ij are bounded. Second, we observe that exponential terms of the form
exp(±sχi,η), with s > 0 and real, behave as

lim
|R|→+∞

exp(±sχi,η) = lim
|R|→+∞

exp (±s|R|eıτ) = lim
|R|→+∞

exp [±s|R| cos τ ]

which, in view of the chosen domain for τ , converge to zero only for the negative sign. Hence, from (35),

lim
|R|→+∞

Detη(Reıτ ) = 1

Since the particular expressions for Ξi
η in (38) are well-defined and bounded, Ψi

η grows at most polyno-

mially for large z due to the term L̂U
η . Finally, we look at the real part of the exponential term:

Re

{
e−r|cos θ||R| exp(ıτ)e−ı|R| exp(ıτ)r sin θ cos(φ−ϕ)

}
= e−r|R|(|cos θ| cos τ−sin τ sin θ cos(φ−ϕ))

For both Ω1 and Ω3, the elevation angle θ lies in (0, π), and therefore sin θ and |cos θ| are positive. Thus,
one can define the integration contours in relation exclusively to the sign of cos (φ − ϕ) so that integrals
over paths at a fixed distance R vanish as R goes to infinity.

Case cos (φ − ϕ) ≥ 0

Path integrals lie on the lower half-plane following the sense shown in Fig. 1. Hence, poles are not
included and the only potential contribution comes from the integral departing from z = 0:

J i
0−(r, θ, ϕ, y3, φ) ∼

∫ 0+−ı∞

0+−ı0+

Ψi
η(z, φ, y3) erΦi

η(z,φ,θ,ϕ)zdz λ → +∞, η ↓ 0, i = 1, 3,

lying on the fourth quadrant of the complex plane. The contribution is calculated in Section 2.4.9.

Case cos (φ − ϕ) ≤ 0

Integrate over C+ and encircle the pole located at ξp,η. Its residue for vanishing η is

lim
η↓0

Resz=ξp,η

(
zΨi

ηe
rΦi

η

)
= lim

η↓0
lim

z→ξp,η

(z − ξp,η)zΨi
η(z, φ, y3) erΦi(z,φ,θ,ϕ)

= ξp L̂U (ξp, φ)Ξi(ξp, y3) erΦi(ξp,θ,ϕ,φ) lim
z→ξp

z − ξp

Det(z)

(49)

wherein we have exchange limits by analyticity over the cut complex plane and functions L̂U , Ξi and Φi

[see (45a)] are well-defined at ξp. Since the determinant is null when η ≡ 0, we take the last limits using
l’Hôpital’s rule:

lim
z→ξp

z − ξp

Det(z)
= lim

z→ξp

[
Det

′(z)
]−1

.

The derivative of the determinant can be found as follows: let f(z) = Det(z) + 1 and take the natural
logarithm:

log f(z) = log
(
R21R23e

−2hχ2
)
.
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Derivation of the above yields,
f ′

f
=

(R21)
′

R21
+

(R23)
′

R23
− 2hχ′

2

At z = ξp, we have, f(ξp) = 1, and consequently,

Det
′(ξp) =

R′
21(ξp)

R21(ξp)
+

R′
23(ξp)

R23(ξp)
− 2hχ′

2(ξp).

The derivative of χ′
i = ξ/χi, and therefore,

R′
ij

Rij
=

1

Rij

(
αj

ξ
χi

− αi
ξ

χj

αiχj + αjχi
− Rij

αj
ξ
χi

+ αi
ξ

χj

αiχj + αjχi

)
=

2αjαiξ

χiχj

(
k2

i − k2
j

α2
jχ

2
i − α2

i χ
2
j

)
.

Thus,

Det
′(ξp) =

2ξp

χ2(ξp)
D̃et

′
(ξp) (50)

where we have defined

D̃et
′
(ξp) :=

α1α2

χ1

(
k2
2 − k2

1

α2
1χ

2
2 − α2

2χ
2
1

)
+

α3α2

χ3

(
k2
2 − k2

3

α2
3χ

2
2 − α2

2χ
2
3

)
− h (51)

Since the k1,3 4= k2, and h > 0, the above quantity is well-defined and we can safely conclude

J i
ξp

(r, θ, ϕ, y3, φ) = ı2πχ2(ξp)L̂
U (ξp, φ)

Ξi(ξp, y3)

2D̃et
′
(ξp)

e−r|cos θ|
√

ξ2
p−k2

i −ırξp sin θ cos(φ−ϕ)

for i = 1, 3.

2.4.3 Angular integration

The entire contribution coming from the pole is now obtained by integrating over φ. Since the residue is
zero for cos(φ−ϕ) > 0, we use the indicator function 1A(ϕ) equal to one when ϕ ∈ A and zero elsewhere
to write

Ii
ξp

(r, θ, ϕ, y3) ∼
1

2π

∫ 2π

0
1{φ : cos(φ−ϕ)<0}(φ)J i

ξp
(r, θ, ϕ, y3, φ)dφ

∼ ıχ2(ξp)
Ξi(ξp, y3)

2D̃et
′
(ξp)

e−r|cos θ|
√

ξ2
p−k2

i W i
ξp

(r sin θ, ϕ),

for i = 1, 3, where the last term equals

W i
ξp

(ρ, ϕ) :=

∫ 2π

0
1{φ : cos(φ−ϕ)<0}(φ)L̂U (ξp, φ) e−ıξpρ cos(φ−ϕ) dφ

with ρ being the projection of r over the equatorial plane, i.e. ρ = r sin θ. Application of the stationary
phase method, for the phase rewritten as w(φ) := −ξp cos (φ − ϕ), yields stationary points at sin(φ−ϕ) =
0, i.e. φs = mπ + ϕ, with m = 0, 1, 2 at most. This gives,

w(φs) = −ξp(−1)m , ∂2
φ w(φs) = ξp(−1)m.
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However, 1{φ : cos(φ−ϕ)<0} is nonzero only for m = 1. Thus, bearing in mind that both φ and ϕ belong to
the interval (0, 2π), the method yields

W i
ξp

(ρ, ϕ) = L̂U (ξp, π + ϕ)

(
2π

ρξp

)1/2

eıρξp − ıπ/4 + O
(
ρ−3/2

)
. (52)

Summarizing results for i = 1, 3 we obtain

Ii
ξp

= χ2(ξp)L̂
U (ξp, π + ϕ)

Ξi(ξp, y3)

2 D̃et
′
(ξp)

e−r|cos θ|
√

ξ2
p−k2

i

(
2π

ρξp

)1/2

eıρξp + ıπ/4 + O
(
ρ−3/2

)

where the phase −ıπ/4 is changed due to the ı factor coming from the residue theorem.

Remark 2.4. The function decreases exponentially in the vertical direction, whereas the decrease is as
ρ−1/2 as we approach the x3 = {0, h} planes. If the function Det possesses many zeros, denoted ξm

p , then
we must add the contributions coming from each residue. These represent all the possible guided modes
in the slab.

2.4.4 Branch point contributions

Relevant branch points are kj,η, j = 1, 2, 3, located on C+ (see Fig 1), thereby defining three contributions
J i

kj
, i = 1, 3, when η vanishes. At each branch cut, the original contour follows a loop-hole. First, we

show that the integrals are well-defined at these points and therefore integral paths can be as close as
desired to the branch cut.

2.4.5 Hole integrals

Indeed, at kj,η, we calculate the limits:

lim
ν↓0

∣∣∣Ψi
η(kj,η + νeıτ , φ, y3) erΦi

η(kj,η+νeıτ ,φ,θ,ϕ)
∣∣∣ , j = 1, 2, 3, i = 1, 3.

Clearly, for j 4= i, limν↓0 χi,η(kj,η + νeıτ ) =
√

k2
j,η − k2

i,η is well-defined. When i = j, we have

lim
ν↓0

√
2ki,η + νeıτ

√
νeıτ =

√
2ki,ηeıτ/2 lim

ν↓0

√
ν (53)

and, consequently, coefficients Rη
ij and T η

ij have well-defined limits. Thus, functions Ξi
η and Detη are also

well behaved at the points kj,η for all j = 1, 2, 3. Now, the source L̂U
η may contain terms of the form

χ−1
2,η–when Υ̂U

e,η is nonzero (32)– which are singular as ν−1/2 when for z → k2,η [see (53)]. Since the
Jacobian is equal to ν around kj,η, for all cases, integrals

lim
ν↓0

∫ π/2

−3π/2
Ψi

η(kj,η + νeıτ , φ, y3) erΦi
η(ki,η+νeıτ ,φ,θ,ϕ)(ki,η + νeıτ )νeıτ dτ

vanish. Hence, one is left with vertical integrals at each side of the branch cuts shown in Fig. 1.

2.4.6 Integrals parallel to the branch cut

For the moment, let us neglect angular variables and introduce zj,η := ıs+kj,η and z±j,η,ν := zj,η ± ν with
s ∈ R+ as the new integration variable. We must compute

J i
kj

= lim
η,ν↓0

(∫ 0

+∞
Ψi

η(z−j,η,ν)erΦi
η(z−

j,η,ν)z−j,η,νdz−j,η,ν +

∫ +∞

0
Ψi

η(z+
j,η,ν)erΦi

η(z+
j,η,ν)z+

j,η,νdz+
j,η,ν

)
. (54)
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For simplicity, let us also define local polar coordinates:

(
ρj
±(z)

τ j
±(z)

)
:=

(
|z ∓ kj,η|

arg(z ∓ kj,η)

)
, ρj

± ∈ R+, τ j
+ ∈

(
−

3π

2
,
π

2

)
, τ j

− ∈
(
−

π

2
,
3π

2

)
, (55)

for z ∈ C and j = 1, 2, 3. When ν goes to zero, the angle τ j
+ takes the values

τ j
+

(
z+

j,η,0

)
=

π

2
and τ j

+

(
z−j,η,0

)
= −

3π

2
, s ∈ R+

while τ j
− does not vary. Notice that coordinates (ρj

±, τ j
±) remain unchanged if defined with respect to

z±i,η,0 with i 4= j. Based on the representation

χi,η(z) =
√

ρi
+ρi

− exp

[
ı

(
τ+ + τ−

2

)]

we can state the following relations:

χi(z
+
i,η,0) =

√
ρi
+ρi

−eıπ/4eıτ i
−/2, χi(z

−
i,η,0) = −χi(z

+
i,η,0), χj(z

+
i,η,0) = χj(z

−
i,η,0) i 4= j (56)

From these, one can deduce

Rη
ij(z

−
i,η,0) =

−αjχi(z
+
i,η,0) − αiχj(z

+
i,η,0)

−αjχi(z
+
i,η,0) + αiχj(z

+
i,η,0)

=
[
Rη

ij(z
+
i,η,0)

]−1
,

T η
ij(z

−
i,η,0) =

−2αjχi(z
+
i,η,0)

−αjχi(z
+
i,η,0) + αiχj(z

+
i,η,0)

= T η
ij(z

+
i,η,0)

[
Rη

ij(z
+
i,η,0)

]−1
,

and consequently,

Det(z−i,η,0) =
[
R21(z

+
i,η,0)R23(z

+
i,η,0)e

−2hχ2(z+
i,η,0)

]−1
− 1

= −Det(z+
i,η,0)

[
R21(z

+
i,η,0)R23(z

+
i,η,0)e

−2hχ2(z+
i,η,0)

]−1
.

With the above, the reader can verify the helpful result:

Ψi
η(z−j,η,0) = Ψi

η(z+
j,η,0) = Ψi

η(zj,η) j = 1, 2, 3, i = 1, 3,

and one can write integrals (54) as

J i
kj

= lim
η↓0

lim
R→∞

∫ R

0
Ψi

η(zj,η)
[
erΦi

η(z+
j,η,0) − erΦi

η(z−
j,η,0)

]
zj,η(s)dzj,η(s) (58)

and consider solely the behavior of Φi
η. Clearly, the phase Φi

η does not change at either side of the branch
cuts located at kj,η for j 4= i [see (45b)] due to property (56). Thus, the square brackets term in (58) is
equal to zero, and

Ii
kj

(r, θ, ϕ) = 0 j 4= i, i = 1, 3.
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2.4.7 Contribution when i = j

On the other hand, Φi
η does change when crossing the branch cut located in ki,η as it passes through the

Riemann sheets of χi,η. Replacing Φi
η in (58), yields

J i
ki

= lim
η↓0

R→∞

∫ R

0
Ψi

η(zi,η)eırzi,η sin θ|cos(φ−ϕ)|
[
e−r|cos θ|χi,η(z+

i,η,0) − er|cos θ|χi,η(z+
i,η,0)

]
zi,η(s) dzi,η(s)

We now deform the original contour to that given by the steepest descent direction and take the limit in
η. For 0 ≤ θ < π/2 and cos (φ − ϕ) < 0, we regard the phase when z is close to ki,η:

Φi(z) ∼ ıki sin θ |cos (φ − ϕ)| − |cos θ|
√

2ki (z − ki)
1/2

By identifying the above with (77), we obtain a = cos θ
√

2ki, α = π and n = 1/2. From (74), the angle
Θp = 0 and therefore, it follows the real axis. Thus, we modify our original contour so that the integral
now goes along Re{z} = 0. We then regard the integral

J i
ki

=

∫

Cki

Ψi(z)eırz sin θ|cos(φ−ϕ)|e−r cos θχ(z)z dz

where Cki is the steepest descent path for which the imaginary part of the phase is kept constant, i.e.,

Im
{
Φi(z) − Φi(ki)

}
= 0 (59)

Using the coordinates defined in (55) which satisfy

ρi
+ sin τ i

+ = ρi
− sin τ i

− , ρi
+ cos τ i

+ + 2ki = ρi
− cos τ i

− if 0 ≤ τ i
− < τ i

+ ≤ π/2

we write condition (59) as

Im

{
ıρi

+eıτ i
+ sin θ|cos (φ − ϕ)| − cos θ

√
ρi
+ρi

−eı(τ++τ−)/2

}
∼ 0

ρi
+ cos τ i

+ sin θ|cos (φ − ϕ)| − cos θ
√

ρi
+ρi

− sin

(
τ+ + τ−

2

)
∼ 0

In the first quadrant, for very large |z| it holds ρ− ∼ ρ+ and τ+ ∼ τ−. Thus,

tan θ|cos (φ − ϕ)| ∼ tan τ+

Although the steepest descent path depends upon tanθ|cos (φ − ϕ)|, it is always located on the first
quadrant of the complex plane as θ ∈ (0, π/2)

0 ≤ tan θ|cos (φ − ϕ)| ≤ tan θ

If θ = 0, τ+ vanishes. This is consistent with a steepest descent path following the real axis when there
is no oscillatory term in Φi. Thus, asymptotically, the path followed is that of a line with slope tan τ+

whose main contribution is given by (80)

J i
ki

(r, θ, φ, ϕ) ∼ Ψi(ki, φ, y3)
1

r2 cos2 θ
eırki sin θ|cos(φ−ϕ)| + O(r−3) θ ∈ (0, π/2)

as L̂U (z, φ) is well-defined at ki for i 4= 2.
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2.4.8 Angular integration

We now compute the complete contribution Ii
ki

by integrating over φ. In the special case θ = π/2, the
term Ii

ki
vanishes. If θ ∈ (0, π/2), we apply the stationary phase method by using the same results

provided in Section 2.4.2, i.e.

Ii
ki

(r, θ, ϕ) =
1

2π

1

r2 cos2 θ

Ξi(ki, y3)

Det(ki)
L̂U (ki, π + ϕ)

(
2π

ρki

)1/2

eıρki − ıπ/4 + O
(
ρ−3/2

)
(60)

valid for θ ∈ (0, π/2).

2.4.9 End point contributions

Consider the integrals departing from z = 0 towards ±ı∞ shown in Fig 1:

J i
0± = lim

η,ν↓0

∫ ∞

0
Ψi

η(z±0,ν , φ, y3) erΦi
η(θ,ϕ,z±

0,ν,φ)z±0,ν(s)dz±0,ν(s)

where z±0,ν := ±ıs + ν with s, ν ∈ R+. We study the phase at s = 0 for the integral in z using the
derivative

∂zΦ
i
η = − |cos θ| zχ−1

i,η − ı sin θ cos(φ − ϕ) (61)

If θ > 0 or cos(φ − ϕ) 4= 0, the end point is neither a stationary point nor a branch point, and we
can set n = 1 and use formula (79) from the steepest descent method. Taking the limit in η, from (61),
α = ∓π/2 depending on the sign of cos(φ−ϕ), Θ1 = π −α and |∂zΦi(0)| = sin θ| cos(φ−ϕ)|. Therefore,
β = 2 in (79) and the integrals in z for both signs of the cosine are asymptotically equal to

J i
0∓(r, θ, ϕ, y3, φ) = L̂U (0, φ)

Ξi(0, y3)

Det(0)

1

(r sin θ| cos(φ − ϕ)|)2
eırki cos θ±ıπ/2 + O

(
ρ−4

)

= ±L̂U (0, φ)
Ξi(0, y3)

Det(0)

1

ρ2| cos(φ − ϕ)|2
eırk1 cos θ + ıπ/2 + O

(
ρ−4

)

the plus and minus signs coming from the phase in π/2.

2.4.10 Angular integration

Integration over φ yields,

Ii
0(r, θ, ϕ) =

1

2π

∫ 2π

0

(
1{φ:cos(φ−ϕ)<0}J

i
0+(r, φ, ϕ) + 1{φ:cos(φ−ϕ)>0}J

i
0−(r, φ, ϕ)

)
dφ = 0

since θ > 0 and cos(φ − ϕ) 4= 0, the denominators never vanish and the above integrals are bounded.
Moreover, regardless of the sign of cos(φ − ϕ) they have the same result due to the form of the term

L̂U (0, φ) – either tj or constant – and therefore the contributions of order ρ−2 cancel each other.

Remark 2.5. Now, if θ = 0 or cos(φ − ϕ) = 0, the above is no longer valid, and z = 0 turns to be a
stationary point, for which n = 2

∂2
zΦi

η = −
|cos θ|
χi,η

(
1 −

z2

χ2
i,η

)

from where, if η goes to zero, ∂2
zΦi = −ı cos θ/ki, α = −π/2, a = cos θ/ki and θ∓ = 3π/4,−π/4 and

using formula (76), we obtain

J i
0∓(r, θ, ϕ) ∼

L̂U (0, φ)

2

Ξi(0, y3)

Det(0)

[
2ki

r |cos θ|

]3/2

Γ

(
3

2

)
eırki cos θ + ı3Θ∓

and by integrating in φ the total contribution is equal to zero by the same arguments as before.
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2.5 Forms in Ω2

In this case, the normal direction x3 is bounded, and hence asymptotics are obtained along horizontal
directions. We use the cylindrical coordinates:

x1 = ρ cosϕ , x2 = ρ sinϕ , x+
3 ∈ (y3, h) , x−

3 ∈ (0, y3)

with ρ > 0 and ϕ ∈ (0, 2π), so that

g2±(ρ, ϕ, x±
3 , y3) = lim

η↓0

1

2π

∫ 2π

0

∫ +∞

0
Ψ2±

η (ξ, ϕ, y3)e
ρΦ2(ξ,φ,ϕ) ξdξdφ (62)

where now

Ψ2±
η (ξ, x±

3 , y3) = L̂U
η (ξ)

Ξ2±
η (ξ, y3)

Detη(ξ)
X2±

η (ξ, x±
3 )

Φ2(ξ, φ, ϕ) = −ıξ cos(φ − ϕ)

X2+
η (ξ, x+

3 ) = e−x+
3 χ2,η + R21 e−2hχ2,η ex+

3 χ2,η

X2−
η (ξ, x−

3 ) = R23e
−x−

3 χ2,η + ex−
3 χ2,η

where functions X2±
η , Ξ2±

η , are well-defined in ξ. Given the form of Φ2, it is clear that no saddle points
occur for the integral in ξ and the asymptotic behavior of the Green’s function G2 is given by the pole
contribution:

g2± = χ2(ξp)ψ
2±(ξp, π + ϕ)

Ξ2±(ξp, y3)

2 D̃et
′
(ξp)

X2±(ξp, x3)

(
2π

ρξp

)1/2

eıρξp + ıπ/4 + O
(
ρ−3/2

)

2.5.1 Results for scalar Helmholtz and EM normal components

Proposition 2.2. Consider the coordinate sets describing for each Ωi defined before. Assume the exis-
tence of a single surface mode ξp and let γ ∈ (1

4 , 1
2 ). Then, the far-field of the scalar or vectorial Green’s

functions gi when η vanishes is given by

• For Ωi, i = 1, 3 and r|cos θ| > rγ ,

gi(r, θ, ϕ, y3) = ΛU,i
r (θ, ϕ, y3)

eıkir

r
+ O

(
r−(2γ+ 1

2 )
)

and, for 0 < r|cos θ| < rγ :

gi(r, θ, ϕ, y3) = ΛU,i
ρ (ϕ, y3)e

−r cos θ
√

ξ2
p−k2

i
eıρξp + ıπ/4

ρ1/2
+ O

(
r−( 3

2
−γ)

)

• On the other hand, for Ω2±, we have

g2(ρ, ϕ, x3, y3) = ΛU,2±
ρ (ϕ, y3)X

2±(ξp, x3)
eıρξp + ıπ/4

ρ1/2
+ O

(
ρ−3/2

)
(64)

with according scalar or vector terms depending on the precise field U described

ΛU,i
r (θ, ϕ, y3) := ki |cos θ| L̂U (−ki sin θ, ϕ)

Ξi(ki sin θ, y3)

Det(ki sin θ)
i = 1, 3

ΛU,i
ρ (ϕ, y3) := −χ2(ξp)L̂

U (ξp, ϕ)
Ξi(ξp, y3)

2 D̃et
′
(ξp)

(
2π

ξp

)1/2

i = 1, 2±, 3

where D̃et
′
is obtained by taking the limit of Det at the guided mode wavenumber and is well defined.
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Remark 2.6. This result is consistent with [11]. In the definition of Λi
ρ, we have use the fact that

tj(π + ϕ) = −tj(ϕ) by the definition of t. For EM, we have neglected the dependence on the vectorial
sources.

Remark 2.7. In the case of scalar Helmholtz, we can already prove Proposition 1.1 by using the above
asymptotics as the far-field of the solution U = gη ∗ F with different values ξm

p .

2.6 Asymptotics for transversal EM fields components

With the above information, we can easily compute the asymptotic behavior for the transversal fields for
each polarization. Recall (39) and (40) and observe that ĝE

e,Tj and ĝH
h,Tj are deduced only by deriving

in x3 the transversal fields. Hence, they do not need to be calculated from their spectral form, and we
focus only on the field components ĝP

q,T , with (q, P ) = {(h, E), (e, H)}, T = 1, 2. These last terms have
the general form

ĝ
P,i
q,T = ±εT3T ′′

ωαi

ξ
tT ′′(φ)ĝP,i

p,3 , p 4= q (66)

where the positive and negative signs correspond to TM and TE modes, respectively. We take asymptotics
for their inverse Fourier transform on each component j = 1, 2, 3:

gi
q,Tj(x, y3) = ±εT3T ′′

ωαi

2π
lim
η↓0

∫ 2π

0

∫ ∞

0

tT ′′(φ)

ξ
Ψi

j,η(ξ, φ, x3, y3)e
rΦi

η(ξ,φ,ϕ,x3)ξdξdφ

where the dependence on j lies in Ψi
j,η. Clearly, the integral critical points do not change, and hence,

we must only carry out minor adjustments to the previous calculations. Thence, we state directly the
modifications for the stationary points, poles and branch points for each domain.

2.6.1 Asymptotics for gP
q,T

Proposition 2.3. Let γ ∈ (1
4 , 1

2 ). For the corresponding coordinates describing Ωi, it holds

• For Ωi, i = 1, 3 and r|cos θ| > rγ ,

g
P,i
q,T (x, y3) = ∓εT3T ′′ ωαi

tT ′′(ϕ)

ki sin θ
ΛU,i

r (θ, ϕ, y3)
eıkir

r
+ O

(
1

r2γ+ 1
2

)

• whereas for 0 < r|cos θ| < rγ ,

g
P,i
q,T (x, y3) = ∓εT3T ′′ ωαi

tT ′′(ϕ)

ξp
ΛU,i

ρ (ϕ, y3)e
−r cos θ

√
ξ2

p−k2
i

eıρξp + ıπ/4

ρ1/2
+ O

(
1

r
3
2
−γ

)

• For Ω2±, it holds

g
P,2±
q,T (x, y3) = ∓εT3T ′′ ωα2

tT ′′(ϕ)

ξp
ΛU,2±

ρ (ϕ, y3)X
2±(ξp, x3)

eıρξp + ıπ/4

ρ1/2
+ O

(
1

ρ3/2

)

with coefficients ΛU,i
r and ΛU,i

ρ defined as in Proposition 2.2, and where positive (negative) sign and
αi = µ (or ε) correspond to TE (TM) modes.

Hence, by combining Propositions 2.2 and 2.3, we can rewrite the above as follows:

Corollary 2.1. Asymptotically, the dyad terms g
P,i
q,T behave as the normal components g

P,i
p,3 in the fol-

lowing form

g
P,i
q,T ∼ ∓εT3T ′′ ωαi

tT ′′(ϕ)

ki‖
g

P,i
p,3 q 4= p
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where ki‖ is the projection of the wave number over the slab, i.e., the tangential wavenumber in Ωi given
by

ki‖ =






ki sin θ for x ∈ Ωi, i = 1, 3 , r|cos θ| > rγ

ξp for x ∈ Ωi, i = 1, 3 , r|cos θ| < rγ

ξp for x ∈ Ω2±

(67)

2.6.2 Asymptotics for g
P,i
p,T

From (39) and (40), we can retrieve the transversal field Green’s functions, gE
e,T and gH

h,T from the above
by using the general form

g
P,i
p,T = ±

ı

ωαi
∂3εT3T ′g

P,i
q,T ′ , q 4= p (68)

where the positive and negative signs also correspond to TM and TE polarizations. Thus,

Proposition 2.4. The asymptotic form for the dyad components g
P,i
p,T is

g
P,i
p,T ∼ ı

ki⊥

ki‖
tT (ϕ)gP,i

p,3

where ki‖ and ki⊥are the projections of the wave number over the parallel and perpendicular directions
with respect to the slab, satisfying

k2
i‖ + k2

i⊥ = k2
i

Proof. Expression (68) together with Proposition 2.1 and the following formula for the multiplication of
Levi-Civita tensors:

εT3T ′εT ′3T ′′ = −δTT ′′

yields the desired result. In detail, we see that:

• for corresponding ranges of θ associated to Ωi, with i = 1, 3, and r|cos θ| > rγ ,

g
P,i
p,T (r, θ, ϕ, y3) = ı

−ki cos θ

ki sin θ
tT (ϕ)ΛP,i

r (θ, ϕ, y3)
eıkir

r
+ O

(
1

r2γ+ 1
2

)

• and for 0 < r|cos θ| < rγ ,

g
P,i
p,T (r, θ, ϕ, y3) = ı

−
√

ξ2
p − k2

i

ξp
tT (ϕ)ΛP,i

ρ (ϕ, y3)e
−r cos θ

√
ξ2

p−k2
i

eıρξp + ıπ/4

ρ1/2
+ O

(
1

r
3
2
−γ

)

• For Ω2±, it holds

g
P,2±
p,T (ρ, ϕ, y3) = ı

tT (ϕ)

ξp
ΛP,i

r (ϕ, y3)∂3X
2±(ξp, x3)

eıρξp + ıπ/4

ρ1/2
+ O

(
1

ρ3/2

)

= ı
−ı

√
k2
2 − ξ2

p

ξp
tT (ϕ)ΛP,i

ρ (ϕ, y3)X̃
2±(ξp, x3)

eıρξp + ıπ/4

ρ1/2
+ O

(
1

ρ3/2

)

where the term X̃2± is the derivative in x3 of X2± divided by χ2(ξp).
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2.7 Radiation condition proofs sketch

Proof of Proposition 1.1. The fields U are built by convoluting FUF with the derived Green’s functions.
Since F has compact support, fields behave as gi, i = 1, 2, 3. Straightforward derivation of the asymptotic
results provided in propositions 2.2, 2.1 and 2.4, along r and ρ for each component yields the stated
conditions.

Proof of Proposition 1.2. As in the previous proof, the fields convey the asymptotic behavior revealed by
Green’s dyads by construction. These are stated in propositions 2.2, 2.1 and 2.4 which directly show the
conditions. We demonstrate the above inequalities for TM-modes assuming a single surface mode, the
case of TE polarization being reciprocal.

2.7.1 For r|cos θ| > rγ

Using n = (sin θt1(ϕ), sin θt2(ϕ), cos θ), classical Silver-Müller conditions are retrieved for large r. Indeed,
after replacing according to E and H the previous asymptotics, for each excitation along j = 1, 2, 3, we
have the component-wise results:

Hi
1 + z

−1
i,r

(
Ei

2 cos θ − sin θEi
3t2(ϕ)

)
∼
{

ωεi

ki sin θ
t2(ϕ) − z

−1
i,r

(
ki cos2 θ

ki sin θ
+ sin θ

)
t2(ϕ)

}
ΛE,i

ε,j,r

eıkir

r

Hi
2 − z

−1
i,r

(
Ei

2 cos θ − sin θEi
3t2(ϕ)

)
∼
{

−ωεi

ki sin θ
t1(ϕ) + z

−1
i,r

(
ki cos2 θ

ki sin θ
+ sin θ

)
t1(ϕ)

}
ΛE,i

ε,j,r

eıkir

r

and

z
−1
i,r sin θ

[
Ei

1t2(ϕ) − Ei
2t1(ϕ)

]
∼ z

−1
i,r

−ki cos θ

ki sin θ
[t1(ϕ)t2(ϕ) − t2(ϕ)t1(ϕ)] ΛE,i

ε,j,r

eıkir

r
(70)

after factorization and expressing the precise parameters intervening in Λ terms. By definition, zi,rωεi =

ki which only leaves terms as O
(
r−(2γ+ 1

2
)
)
.

2.7.2 For r|cos θ| < rγ

For clarity, exclude for the moment common terms

ΛE,i
ε,j,ρ(ϕ, y3)e

−r|cos θ|
√

ξ2
p−k2

i eıρξp + ı π
4 ρ−1/2

Then,

Hi
1 + z

−1
i,ρ

(
cos θEi

2 − Ei
3 sin θt2(ϕ)

)
∼ t2(ϕ)z−1

i,ρ

[
1 −

(
ı cos θ

(ξ2
p − k2

i )1/2

ξp
+ sin θ

)]

Hi
2 − z

−1
i,ρ

(
cos θEi

1 − Ei
3 sin θt1(ϕ)

)
∼ −t1(ϕ)z−1

i,ρ

[
1 −

(
ı cos θ

(ξ2
p − k2

i )1/2

ξp
+ sin θ

)]

z
−1
i,ρ sin θ

[
Ei

1t2(ϕ) − Ei
2t1(ϕ)

]
= O

(
r−( 3

2
−γ)

)

the last result obtained from (70). By hypothesis, |cos θ| < rγ−1, and consequently, the imaginary terms
are bounded as desired by taking into account the factor ρ−1/2. For the real term, the exponential factor
exp(−r |cos θ|) decreases faster than any polynomial for θ sufficiently far from π/2, and hence, the bound

is achieved. Finally, as
∣∣θ − π

2

∣∣ tends to zero, the term 1 − sin θ vanishes as
∣∣θ − π

2

∣∣2 and the statement
follows.
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2.7.3 For Ω2±

We take the normal equal to ρ = (t1(ϕ), t2(ϕ), 0) and expand

H2±
1 − z

−1
2,ρ E2±

3 t2(ϕ) ∼
[
ωε2
ξp

t2(ϕ) − z
−1
2,ρt2(ϕ)

]
ΛE,2±

ε,j,r X2±
ε

eıξpρ+ıπ/4

√
ρ

H2±
2 + z

−1
2,ρE

2±
3 t1(ϕ) ∼

[
−

ωε2
ξp

t1(ϕ) + z
−1
2,ρt1(ϕ)

]
ΛE,2±

ε,j,r X2±
ε

eıξpρ+ıπ/4

√
ρ

z
−1
2,ρ

[
E2±

1 t2(ϕ) − E2±
2 t1(ϕ)

]
∼ −ı

−ı
√

ξ2
p − k2

2

z2,ρξp
[−t1(ϕ)t2(ϕ) + t2(ϕ)t1(ϕ)] ΛE,2±

ε,j,r X2±
ε

eıξpρ+ıπ/4

√
ρ

Since z2,ρ = ξp/(ωε2), only terms decreasing as ρ−3/2 remain.

3 Conclusion and Extensions

We have extended radiation conditions for compactly supported excitations in layered isotropic media.
This allows the construction of suitable bases for both theoretical and numerical use. Furthermore,
one can extend this results via the same methodology to more layers or excitations outside the guide.
However, the requirement of modal decompositions is crucial for the conditions to hold. Numerically,
this can be implemented to enhance PML performance and constitutes a future line of work.

A Appendix

A.1 The method of steepest descents

We use the method of the steepest descents, to calculate the asymptotics for the residual terms of the
form:

I(λ) ∼
∫

C
g(z)eλΦ(z) dz (73)

Theorem A.1. Let all derivatives up to order n − 1 vanish at a point z0, i.e.,

dqΦ

dzq

∣∣∣
z = z0

= 0 q = 1, . . . , n − 1 ,
1

n!

dnΦ

dzn

∣∣∣
z = z0

= aeıα a > 0

If z − z0 = ρeıθ, then the directions of steepest descent are given by

Θp = −
α

n
+ (2p + 1)

π

n
p = 0, . . . n − 1 (74)

Proof. See the proofs in [1], [4].

Remark A.1. A generalization of the above for non-integer n is obtained by setting:

Φ(z) ∼ Φ(z0) + aeıα(z − z0)
n

in some sector of the z-plane with apex in z0. Then the directions of steepest descent at z0 are also given
by (74).
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A.2 Procedure and formulae

The method can be divided into the following steps:

1. We identify the potentially critical points in the integrand such as: integration endpoints; poles;
branch points; and saddle points.

2. We find paths of steepest descent for each point – except for poles. These must satisfy Im (Φ(z)) =
Im (Φ(z0)).

3. The original contours are deformed using Cauchy’s integral theorem onto paths of steepest descents.

4. Far-field expressions are found for each path required, and then added so as to obtain the total
integral asymptotic.

According to the following cases, we present the associated asymptotics:

◦ Saddle point at regular point of g(z):

I(λ) ∼
g(z0)

n

[
n!

λ
∣∣Φ(n)(z0)

∣∣

]1/n

Γ

(
1

n

)
eλΦ(z0) + ıΘp (75)

◦ Saddle point in Φ(z) and branch point in g(z): we write

g(z) ∼ g0(z − z0)
β−1 z → z0

yielding

I(λ) ∼
g0

n

[
n!

λ
∣∣Φ(n)(z0)

∣∣

]β/n

Γ

(
β

n

)
eλΦ(z0) + ıβΘp (76)

◦ Branch point in both Φ(z) and g(z): we write

Φ(z) ∼ Φ(z0) + aeıα(z − z0)
n (77)

and the approximation becomes, where now n ∈ R

I(λ) ∼
g0

n

1

(λa)β/n
Γ

(
β

n

)
eλΦ(z0)+ ıβΘp (78)

◦ Only a branch point in g(z) and n = 1: we write

I(λ) ∼
g0

(λ|Φ′(z0)|)β
Γ (β) eλΦ(z0)+ ıβΘ1 (79)

where Θ1 = π − α.

◦ Branch point only in Φ(z) :

I(r) ∼
g(z0)

n

1

(λa)1/n
Γ

(
1

n

)
eλΦ(z0)+ ıΘp (80)
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Numerical analysis of additive, Lévy and Feller processes with applica-
tions to option pricing

10-05 C. Schwab and R. Stevenson
Fast evaluation of nonlinear functionals of tensor product wavelet
expansions

10-04 B.N. Khoromskij and C. Schwab
Tensor-structured Galerkin approximation of parametric and stochastic
elliptic PDEs

10-03 A. Cohen, R. DeVore and C. Schwab
Analytic regularity and polynomial approximation of parametric and
stochastic elliptic PDEs

10-02 V. Gradinaru, G.A. Hagedorn, A. Joye
Tunneling dynamics and spawning with adaptive semi-classical wave-
packets

10-01 N. Hilber, S. Kehtari, C. Schwab and C. Winter
Wavelet finite element method for option pricing in highdimensional
diffusion market models

09-41 E. Kokiopoulou, D. Kressner, N. Paragios, P. Frossard
Optimal image alignment with random projections of manifolds: algo-
rithm and geometric analysis

09-40 P. Benner, P. Ezzatti, D. Kressner, E.S. Quintana-Ort́ı, A. Remón
A mixed-precision algorithm for the solution of Lyapunov equations on
hybrid CPU-GPU platforms

09-39 V. Wheatley, P. Huguenot, H. Kumar
On the role of Riemann solvers in discontinuous Galerkin methods for
magnetohydrodynamics

09-38 E. Kokiopoulou, D. Kressner, N. Paragios, P. Frossard
Globally optimal volume registration using DC programming

09-37 F.G. Fuchs, A.D. McMurray, S. Mishra, N.H. Risebrom, K. Waagan
Approximate Riemann solvers and stable high-order finite volume
schemes for multi-dimensional ideal MHD


