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Abstract

We review the design and analysis of multiresolution (wavelet) methods for the numerical solution of the

Kolmogoroff equations arising, among others, in financial engineering when Lévy and Feller or Additive

processes are used to model the dynamics of the risky assets.

In particular, the Dirichlet and free boundary problems connected to barrier and American style contracts

are specified and solution algorithms based on wavelet representations of the Feller Processes’ Dirichlet

Forms are presented. Feller Processes with generators that give rise to Sobolev spaces of variable differen-

tiation order (corresponding to a state-dependent jump intensity) are considered. A copula construction for

the systematic construction of parametric multivariate Feller-Lévy processes from univariate ones is pre-

sented and the domains of the generators of the resulting multivariate Feller-Lévy processes is identified.

New multiresolution norm equivalences in such Sobolev spaces allow for wavelet compression of the ma-

trix representations of the Dirichlet forms. Implementational aspects, in particular the regularization of the

process’ Dirichlet form and the singularity-free, fast numerical evaluation of moments of the Dirichlet form

with respect to piecewise linear, continuous biorthogonal wavelet bases are addressed. Monte Carlo path

simulation techniques for such processes by FFT and symbol localization are outlined. Numerical experi-

ments illustrate multilevel preconditioning of the moment matrices for several exotic contracts as well as

for Feller-Lévy processes with variable order jump intensities. Model sensitivity of Lévy models embedded

into Feller classes is studied numerically for several types of plain vanilla, barrier and exotic contracts.
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2 O. Reichmann and Ch. Schwab

1 Introduction

We consider a certain type of multidimensional normal Markov processes, so called Feller processes. This

class of Feller processes includes as special cases Lévy processes, many local volatility and, in particu-

lar, the so-called affine models in finance as special cases. Due to their nonstationarity Feller processes

can exhibit qualitative behaviour that is substantially different from that of Lévy processes such as state-

space dependent jump activity. The nonstationarity of Feller processes also has substantial repercussions on

their computational and analytical treatment: whereas for Lévy and the closely related affine models, Fast

Fourier Transformation (FFT) algorithms from [21] (in modern, hardware optimized implementations, e.g.

[35]) form the basis for fast and powerful option pricing algorithms, the nonstationarity of Feller processes

implies that FFT based numerical methods are, in general, not applicable in the numerical solution of their

Kolmogoroff equations (with the notable exception of, for example, affine processes proposed e.g. in [31]

and, for Feller processes, in connectionwith approaches based on “freezing” their characteristic triplet [12]).

From an analytical point of view, Feller processes are rather well understood. This is due to the fact that

generators of Feller processes are pseudodifferential operators with symbols that admit a Lévy-Khintchine

representation (e.g. [22, 47, 48] and the references there). Contrary to Lévy processes or diffusions with

local volatility, domains of the infinitesimal generators for semigroups induced by Feller processes are,

generally, variable order Sobolev spaces. Accordingly, the use of standard discretization schemes (based

on Finite Differences or Finite Elements) for numerical solution of the Kolmogoroff equations associated to

such Feller processes is not straightforward; the same applies to the numerical analysis of these discretiza-

tion schemes, i.e. the mathematical analysis of stability, consistency and convergence of these schemes.

One central theme of these notes is therefore to describe recent progress in the design and the numerical

analysis of discretization schemes which allow a unified numerical treatment of the Kolmogoroff equations

of Feller (and more general) processes. These schemes are based on variational, multiresolution schemes

which use spline-wavelet bases of the domains of the processes’ infinitesimal generators.

Feller processes arise as natural generalizations of Lévy processes [17] and are also useful for model-

ing bounded processes [7]. Feller processes appear as solutions of a large class of Lévy SDEs as shown

in the recent work [76, 78]. Therefore, the high dimensional problem of pricing basket options under a

Lévy market model can be reduced to a low dimensional problem driven by a Feller process. Besides, due

to mimicking results by [37] for continuous semimartingales and a novel result by [6] for discontinuous

semimartingales, pricing of European options under general non-Markovian processes can be reduced to a

Markovian setting with processes that have deterministic, but time and state-space dependent coefficients.

However, we will mainly focus on the case of time-independent coefficients in the following.

The theoretical literature on Feller processes is quite extensive. We refer to the monographs by N. Ja-

cob [47]-[49] and [50], as well as references therein for an overview of properties of the generators and the

corresponding semigroups. The Martingale Problem, i.e., the problem of existence of a Feller process with

a given generator, has been treated by [41, 54, 73]. Path properties have been discussed in [72, 73, 74].

On the other hand, numerical methods capable of handling general Feller processes have received little

attention until now. A technique for the approximation of sample paths of Feller processes is given in [12].

A fast calibration algorithm has been proposed for a special case in [16, 23]. Fourier methods for option

pricing can only be efficiently used for regular affine processes, i.e., Feller processes with coefficients that

depend affinely on the state variables [32, 31]. Finite Element based pricing methods for one dimensional

European pricing problems under general Feller processes are proposed by [77], while [67] considers mul-

tidimensional pricing problems of European and American type under Lévy processes using FEM.

Multidimensional Feller processes can be constructed using Lévy copulas for the construction of the jump

measures. We consider European and American type contracts, as well as the calculation of sensitivities

and discuss well-posedness of the corresponding pricing Partial Integro-Differential equations (PIDEs) and

inequalities in the multidimensional Feller setting. In addition, we discuss wavelet based discretization

schemes, that allow for efficient preconditioning. Using waveltes, the arising densely populated matrices

can be compressed leading to computational schemes with essentially Black- Scholes complexity. Efficient

numerical quadrature rules for the evaluation of the wavelet coefficients of the jumpmeasures of this survey

are presented.
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The outline is as follows. First, we give an overview of Feller processes and state sufficient conditions

on the characteristic triple for the existence of a corresponding Feller process (Section 2). Next, we define

the domains of the generators, which are Sobolev spaces of variable order, we employ pseudodifferential

operator (PDO) theory to characterize the spaces (Section 3). Then we describe parametric constructions

of multidimensional Feller processes using Lévy copulas and state sufficient conditions on the marginals

and the copula function to obtain admissible market models. We show that the class of admissible market

models contains many typical examples of Lévy market models and the extensions to Feller market models

(Section 4). We discuss European and American pricing problems, as well as the calculation of sensitivities

with respect to model parameters and solution arguments. The Gårding inequality and the sector condition

is proven for the arising bilinear forms, which yields well-posedness of the corresponding pricing problems

(Section 5). In Section 6 we introduce a tensor product wavelet basis and discuss norm equivalences on

the variable order Sobolev spaces. The discretization of the arising non-local operators using this basis is

presented. In Section 7 we address quadrature rules for the weakly singular integrals in the Galerkin dis-

cretization and briefly survey on Monte Carlo and Fourier methods in Section 8. We conclude with uni- and

bivariate numerical examples from the pricing of derivative contracts.

Throughout, we shall write C ! D to denote that C can be bounded by a constant multiple of D with a

constant that is independent of parameters whichC and D may depend on. ThenC "D is defined as D!C

andC !D is defined asC ! D and D!C.
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2 Markov processes

Semimartingales are a well-investigated class of stochastic processes that is sufficiently rich to include most

of the stochastic processes commonly employed in financialmodellingwhile still being closed under various

operations such as conditional expectations, stopping etc. Semimartingales can be well understood via their

(generally stochastic) semimartingale characteristic, we refer to the standard reference [51] for details.

Here, we restrict ourselves to a class of processes with deterministic, but generally time- and state-space

dependent characteristic triples including Lévy processes, affine processes andmany local volatility models.

The time-homogeneous case will be analyzed in the first part of this section, while time-inhomogeneity will

be briefly discussed in the second part.

2.1 Time-homogeneous processes

We consider a Markov process X and the corresponding family of operators (Ts,t) for 0 ≤ s ≤ t < ! given
by

(Ts,t( f ))(x) = E[ f (Xt )|X(s) = x],

for each f ∈ Bb(R
d), x ∈ Rd , where Bb(R

d) denotes the space of bounded Borel measurable functions
on Rd . For normal Markov processes, i.e Markov processes with Ts,t(Bb(Rd)) ⊂ Bb(Rd), we recall the
following properties:

(1) Ts,t is a linear operator on Bb(Rd) for each 0≤ s≤ t < !.
(2) Ts,s = I for each s≥ 0.
(3) Tr,sTs,t = Tr,t whenever 0≤ r ≤ s≤ t < !.
(4) f ≥ 0 implies Ts,t f ≥ 0 for all 0≤ s≤ t < !, f ∈ Bb(Rd).
(5) ‖Ts,t‖ ≤ 1 for each 0≤ s≤ t < !, i.e. Ts,t is a contraction.
(6) Ts,t(1) = 1 for all t ≥ 0.

If we restrict ourselves to time-homogeneous normal Markov processes, we obtain directly from the above

properties that the family of operators Tt := T0,t form a positivity preserving contraction semigroup. The

infinitesimal generatorA with domainD(A ) of such a process X with semigroup (Tt)t≥0 is defined by the
strong limit

A u := lim
t→0+

1

t
(Ttu−u) (2.1)

for all functions u ∈ D(A ) ⊂ Bb(Rd) for which the limit (2.1) exists w.r. to the sup-norm. We call
(A ,D(A )) generator of X . Generators of normal Markov processes admit the positive maximum prin-

ciple, i.e.,

if u ∈ D(A ) and sup
x∈Rd

u(x) = u(x0) > 0, then (A u)(x0) ≤ 0. (2.2)

Furthermore, they admit a pseudodifferential representation (e.g. [22, 47, 48]):

Theorem 2.1. Let (A ,D(A )) be an operator with C!0 (Rd) ⊂ D(A ).
ThenA |C!0 (Rd) is a pseudodifferential operator,

(A u)(x) = −a(x,D)u(x) = −(2")−1/2
∫

Rd
a(x,# )û(# )eix·# d# (2.3)

for u ∈ C!0 (Rd). With a symbol a(x,# ) : Rd ×Rd → C which is locally bounded in (x,# ), a(·,# ) is mea-
surable for every # and a(x, ·) is a negative definite function for every x, which admits the Lévy-Khintchine
representation

a(x,# ) = c(x)− i$(x)# + #*Q(x)# (2.4)

+
∫

0 +=y∈Rd

(
1− eiy# +

iy#

1+ y2

)
N(x,dy).
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Here, for y ∈ Rd, y2 = y*y and the function

Rd , x→
∫

y+=0
(1∧ y2)N(x,dy) (2.5)

is continuous and bounded.

The parameters c(x),$(x),Q(x),N(x,dy) in (2.4) are called characteristics of the Markov process X . In the
following we set c(x) = 0 for notational convenience and restrict ourselves to a certain kind of normal

Markov processes, so called Feller processes ([2, Theorem 3.1.8] states the normality of a Feller process).

These can be defined by the semigroup (Tt)t≥0 generated by the corresponding process X . A semigroup
(Tt)t≥0 is called Feller if it satisfies

(i)Tt mapsC0(Rd), the continuous functions on Rd vanishing at infinity, into itself:

Tt :C0(R
d) →C0(R

d) boundedly

(ii)Tt is strongly continuous, i.e., limt→0+ ‖u−Ttu‖L!(Rd) = 0 for all u ∈C0(Rd).

Spatially homogeneous Feller processes are Lévy-processes (e.g.[8, 69]). Their characteristics, the Lévy

characteristics, do not depend on x explicitly.

Example 2.2 A standard Brownian motion has the characteristics (0,1,0). An R-valued Lévy process has

characteristics ($,Q,N(dy)), for real numbers $ , Q≥ 0 and a jumpmeasure Nwith
∫
0 +=y∈Rmin(1,y

2)N(dy)<
!.

A recent result by Schnurr [76, 78] additionally motivates the consideration of Feller processes. He proved

that strong solutions of a large class of Lévy SDEs are in fact Feller processes, i.e.

Theorem 2.3. Let Z be an n-dimensional Lévy process and % :Rd → Rd×n be bounded and globally Lips-
chitz. Then the solution of

Xt = x+
∫ t

0
%(Xs−)dZs,

x ∈ Rd is a Feller process with C!0 (Rd) ⊂ D(A ).

Proof. The proof is given in [78] Theorem 2.46, Theorem 2.49 and Theorem 2.50.

Remark 2.4. The boundedness of % can be replaced by certain assumptions on the tail behaviour of the

process Z.

This implies that pricing of a large class of basket options in a Lévy market model can be reduced to pricing

under a low dimensional Feller processes.

It is also interesting to ask which symbols correspond to PDOs that are generators of Feller processes. This

martingale problem is discussed in the following theorem due to [75].

Theorem 2.5. Let a : Rd×Rd → C be a negative definite function, i.e., a measurable and locally bounded

function that admits a Lévy-Khinchine representation for all x ∈ Rd; note that this implies continuity of the

symbol in # for all x ∈ Rd. If

(a) supx∈Rd |a(x,# )|≤ &(1+ |# |2) for all # ∈ Rd,

(b) # .→ a(x,# ) is uniformly continuous at # = 0,

(c) x .→ a(x,# ) is continuous for all # ∈ Rd ,

then (−a(x,D),C!0 (Rd)) extends to a Feller generator.

In the Lévy case existence of a Lévy process can be proven for any Lévy symbol. This does not hold for

Feller processes. For (financial) applications it is more convenient to consider the characteristic triple instead

of the symbol. We therefore make the following assumption on the characteristic triple in the remainder.

Assumption 2.6 The characteristic triple ($(x),Q(x),N(x,dy)) of a Feller process in Rd satisfies the fol-

lowing conditions:

(I) ($(x),Q(x),N(x,dy)) is a Lévy triple for all fixed x ∈ Rd.
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(II) The mapping x .→ N(x,B) is continuous for all B ∈ B(Rd).
(III) There exists a Lévy kernel N(y) s.t.

N(x,B) ≤ N(B) ∀x ∈ Rd , B ∈ B(Rd).

(IV) The functions x .→ $(x) and x .→ Q(x) are continuous and bounded.

We would like to conclude that there exists a Feller process whose generator is a PDO for symbols that

satisfies Assumption 2.6. Therefore, it suffices to validate the prerequisites of Theorem 2.5.

Lemma 2.7. Let ($(x),Q(x),N(x,dy)) be the characteristic triple of a process X taking values in Rd that

satisfies Assumption 2.6. Then (−a(x,D),C!c ) extends to a Feller generator, where a(x,# ) is given by

a(x,# ) = −i$(x) ·# + #*Q(x)# (2.6)

+
∫

Rd\{0}

(

1− eiy·# +
iy ·#
1+ |y|2

)

N(x,dy).

Proof. Condition (I) implies that the corresponding Feller symbol is negative definite. Conditions (III) and

(IV) imply (a), Conditions (II) and (III) imply (b), and (c) follows from (IV) and (II).

Remark 2.8. Note that real price market models do not fit into our modeling framework due to Assumption

(a) in Theoren 2.5, but the numerical methods and their numerical analysis presented in the following can

in many cases be straightforwardly extended to this kind of models. As illustrative example we consider

the CEV market model (e.g. [29]) throughout this survey and explain the necessary extensions. The CEV

model is given by the following SDE:

dSt = rStdt+'S
(
t dWt , S0 = s≥ 0, (2.7)

where ( ∈ (0,1), ' > 0 and r ≥ 0. Existence of a solution of (2.7) follows from the Skorohod existence

theorem [42, Theorem IV.2.2], while pathwise uniqueness can be obtained for ( ≥ 0.5 from the Yamada

conditions (e.g. [42, Theorem IV.3.2]). Note that the case ( = 0.5 leads to equations similar to the Heston
model and CIR model.

In order to apply pseudodifferential operator theory we will need stronger assumptions on the characteristic

triples of the considered processes. We will state the assumptions needed at the end of Section 4. We will

require in particular smoothness of the characteristic triple in the state variable x. Numerical experiments

indicate that these assumptions can be weakened (Chapter 9).

2.2 Time-inhomogeneous processes

In this section we would like to drop the assumption of time-homogeneity of the processes considered

and extend the framework developed above to a time-dependent setting. Using the notation from the last

section, we consider a normalMarkov processX with the corresponding family of operatorsTs,t . The family

of generators of such a process is given by

Asu := lim
h→0+

1

h

(
Ts−h,su−u

)
(2.8)

for all functions u ∈D(As) ⊂ Bb(Rd). In analogy to Theorem 2.1 we obtain the following result:

Theorem 2.9. Let (As,D(As))s∈R+ be a family of operators with C!0 (Rd) ⊂ D(As). Then As|C!0 (Rd) is a

pseudodifferential operator for all s ∈ R+ given by

(Asu)(x) = −a(s,x,D)u(x) = −(2")−1/2
∫

Rd
a(s,x,# )û(# )eix·# d#

for u ∈C!0 (Rd). With a symbol a(s,x,# ) : R+ ×Rd×Rd → C which is locally bounded in (x,# ), a(s, ·,# )
is measurable for every # , s and a(s,x, ·) is a negative definite function for every (s,x), which admits the
Lévy-Khintchine representation
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a(s,x,# ) = c(s,x)− i$(s,x) ·# + #*Q(s,x)#

+
∫

0 +=y∈Rd

(
1− eiy·# +

iy ·#
1+ y2

)
N(s,x,dy).

The natural question arises if we can construct a Markov process with corresponding generator for a given

symbol (Martingale Problem). A general result under mild regularity assumptions on the symbol has been

given by [11].

Theorem 2.10. Let a :R+×Rd×Rd → C be a negative definite function that satisfies the following condi-

tions for a constant m ∈ R

(1) a(·,x,# ) is a continuous function for all x,# ∈ Rd,

(2) a(s,x,0) = 0 holds for all (s,x) ∈ R+×Rd,

(3)

∣∣∣D)
x D

*
#
a(s,x,# )

∣∣∣≤ c* ,) ,J(1+ |# |2)(m−|* |∧2)/2 holds for all s ∈ J ⊂ R+, x,# ∈ Rd,

(4) a is elliptic, i.e., on any compact set K it holds uniformly in s that:

there exists R ∈ R+, c> 0, such that ∀x ∈ Rd ,

|# |≥ R :+(a(s,x,# )) ≥ c(1+ |# |2)m/2.

Then a Markov process whose family of generators are pseudodifferential operators with symbol

a(s,x,# ) can be constructed.

Proof. The proof follows from [11, Theorem 4.2, Corollary 4.3].

Theorem 2.10 can be formulated in a more general setting, replacing |# |2 in Condition (3) and (4) by any
element from a certain class of negative definite functions, cf. [11, Definition 1.2].

Remark 2.11. In the following we will consider the time-homogeneous case discussed in Section 2.1, but

most results can be extended to the inhomogeneous setting.
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3 Function spaces

For our analysis we will need certain Sobolev-type spaces. Therefore we start with the definition of frac-

tional order isotropic spaces. We define for a positive non-integer s≥ 0 and u ∈ S ∗(Rd)

‖u‖2Hs(Rd) :=
∫

Rd
(1+ |# |2)s |û(# )|2 d# , (3.1)

where û is the Fourier transform of u. Similarly, we can define anisotropic Sobolev spaces Hs(Rd) with
norm

‖u‖2Hs(Rd) :=
∫

Rd

d

,
j=1

(1+ # 2j )
s j |û(# )|2 d# , (3.2)

for any multiindex s≥ 0. The consideration of certain symbol classes will be useful for the definition of the
variable order Sobolev spaces. We set 〈# 〉 := (1+ |# |2)1/2 for notational convenience.

Definition 3.1 Let 0≤ - < ( ≤ 1 and let m(x) ∈C!(Rd) be a real-valued function all of which derivatives

are bounded on Rd. The symbol a(x,# ) belongs to the class Sm(x)
( ,- of symbols of variable order m(x) if

a(x,# ) ∈C!(Rd×Rd) and m(x) = s+ m̃(x) with m̃ ∈ S (Rd) a tempered function, and if, for every *,) ∈
Nd
0 there is a constant c* ,) such that

∀x,# ∈ Rd : |D)
x D

*
# a(x,# )|≤ c* ,) 〈# 〉m(x)−( |* |+- |) |. (3.3)

The variable order pseudodifferential operators A(x,D) ∈.m(x)
( ,- correspond to symbols a(x,# ) ∈ S

m(x)
( ,- by

A(x,D)u(x) :=
1

2"

∫

Rd

∫

Rd
ei(x−y)·#a(x,# )u(y)dyd# , u ∈C!0 (Rd). (3.4)

We are now able to define an isotropic Sobolev space of variable order using the variable order Riesz

potential /m(x) with symbol a(x,# ) = 〈# 〉m(x). Clearly a(x,# ) is an element of Sm(x)
1,- for - ∈ (0,1). The

norm on Hm(x) is given as

‖u‖2
Hm(x) :=

∥∥∥/m(x)u

∥∥∥
2

L2
+‖u‖2L2 .

Note that for a(x,# ) = 1, we obtain the usual L2 norm, while for a(x,# ) = (1+ |# |s) we obtain the norm
given in (3.1). The second results follows using Plancherel’s theorem. Now we turn to the definition of

anisotropic variable order Sobolev spaces. In analogy to Definition 3.1 we start with the definition of an

appropriate symbol class.

Definition 3.2 Let m(x) = s+ m̃(x), m̃(x) : Rd → Rd with each component of m̃(x) being a tempered

function and s∈Rd
≥0, 0≤ - <( ≤ 1. We define the symbol class Sm(x)

( ,- as the set of all a(x,# )∈C!(Rd×Rd)

such that for all multiindices *,) ∈ Nd
0 there exists a constant C* ,) > 0 with

∀x,# ∈ Rd :
∣∣∣D)

x D
*
# a(x,# )

∣∣∣≤C* ,)

d

,
i=1

(1+ # 2i )(mi(x)−(*i+- |) |)/2.

We are now able to define an anisotropic Sobolev space of variable order using the variable order Riesz

potential/m(x) with symbol a(x,# ) = 〈# 〉m(x) :=,ni=1(1+# 2i )
1
2mi(x). Clearly, a(x,# ) is an element of Sm(x)

1,-

for - ∈ (0,1). The norm on Hm(x) is given by

‖u‖2
Hm(x) :=

∥∥∥/m(x)u

∥∥∥
2

L2
+‖u‖2L2 .

There is an alternative representation of the above space, when m(x) is of the following form m(x) =
(m1(x1), . . . ,md(xd)) which will be very useful for the proof of norm equivalences. This plays a crucial role
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in wavelet discretization theory. We consider the anisotropic Sobolev spacesH
mi(xi)
i of variable ordermi(xi)

in direction xi, equipped with the following norms:

‖u‖2
H
m(x)
i

:=
∥∥∥/mi(xi)

i u

∥∥∥
2

L2
+‖u‖2L2 ,

where/
mi(xi)
i is a pseudo-differential operator with symbol (1+ |#i|)mi(xi). It then follows by the elementary

inequality

C1

∣∣∣∣∣

d

,
i=1

ai

∣∣∣∣∣

2

≤
d

,
i=1

a2i ≤C2

∣∣∣∣∣

d

,
i=1

ai

∣∣∣∣∣

2

,

with ai > 0 andC1,C2 only dependent on d, that

‖u‖2
Hm(x) ∼

d

,
j=1

‖u‖2
H
mj (x j )

j

,

and therefore

Hm(x) =
d⋂

j=1

H
mj(x j)
j .

On the bounded set D= (a,b) =0d
i=1(ai,bi)⊂Rd we define for a variable orderm(x), a≤ x≤ b the space

H̃m(x)(D) :=
{
u|D
∣∣∣ u ∈ Hm(x)(Rd), u|Rd\D = 0

}
.

This space coincides with the closure of C!0 (D) (the space of smooth functions with support compactly
contained in D) with respect to the norm

‖u‖
H̃m(x)(D) := ‖ũ‖

Hm(x)(Rd), (3.5)

where ũ is the zero extension of u to all of Rd .

Remark 3.3. In the BS case we will obtain H1(Rd) as the domain of the generator and H10 (D) in the

localized case. In the Lévy case we obtain anisotropic Sobolev spaces as in (3.2) and the spaces H̃s(D) in
the localized case for Q = 0. For Q > 0 the domains are equal to those in the BS case, cf. [67, Theorem

4.8].
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4 Multivariate model setting

4.1 Copula functions

Unlike multivariate Lévy processes, not all multivariate Feller processes can be constructed in terms of

univariate Feller processes using a homogeneous copula construction as in the case of Lévy processes in

Rd , cf. [52, Theorem 3.6]. However, parametric constructions of multidimensional Feller processes from

the univariate margins of certain Feller processes and certain Lévy copulas are still possible, provided the

univariate Feller processes and the copulas meet certain restrictions. The restrictions stem from the fact that

smoothness conditions on the characteristic triple appear to be required in order to prove existence (and

uniqueness) of a corresponding Feller process, cf. [75]. Therefore it would be sufficient for the parametric

construction of d-dimensional Feller processes to prove that a symbol satisfies Assumption 2.6. We will

only consider the construction of a d-dimensional jump measure, as the Gaussian part is standard.

Theorem 4.1. Let F denote a d-dimensional Lévy copula for which the derivative 11 . . .1dF :R
d →R exists,

is continuous and satisfies the following estimate

|1 nF(u)| !C|n| |n|!min{|u1| , . . . , |ud |}
d

0
i=1

|ui|−ni ∀u ∈ Rd n ∈ Nd . (4.1)

Further let Ui(x,y), i= 1, . . . ,d denote the tail integrals of real valued Feller processes that satisfy Assump-
tion 2.6 and, additionally, the following conditions:

∣∣∣∣
ki(x,y)

Ui(x,y)

∣∣∣∣≤ (C∨
1

|y|
) ∀x,y ∈ R, (4.2)

∫

R\B(0,1)
Ui(x,y)dy<!, (4.3)

for C > 0 and i = 1, . . . ,d. Then there exists an Rd-valued Feller process X whose components have tail

integrals U1, . . . ,Ud and whose marginal tail integrals satisfy

UI ((xi)i∈I ,(yi)i∈I) = FI ((U(xi,yi))i∈I)

for any non-empty I ⊂ {1, . . . ,d}, any (yi)i∈I ∈ (R\{0})|I| and any (xi)i∈I ∈ R|I|. The jump measure is
uniquely determined by F and Ui, i= 1, . . . ,d.

Proof. The proof follows [52]. As noted there, the argument is not restricted to Lévy models but can be

extended to more general processes.

Since F is d-increasing and continuous, we can conclude that there exists a unique measure µ on

R
d\{!, . . . ,!} such that VF((a,b]) = µ((a,b]) for any a,b with a ≤ b. For the univariate tail integrals

U(x,y), we define

U−1(x,u) =

{
inf{y> 0 : u≥U(x,y)}, u≥ 0
inf{y< 0 : u≥U(x,y)}∧0, u< 0.

Let N′ = f (µ) be the image of µ under

f : (x,u1, . . . ,ud) .→ (U−1
1 (x1,u1), . . . ,U

−1
d (xd ,ud))

and let N be the restriction of N′ to Rd×Rd\{0}. We need to prove that N is a Lévy measure for all x and
that the marginal tail integralsUI

N
satisfy

UI
N
((x)i∈I ,(yi)i∈I) = FI((Ui(xi,yi))i∈I).

This will imply (I). Furthermore, we must prove continuity of the Lévy kernel in x (II) as well as bounded-

ness in the sense of (III).
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The first part follows analogously to [52]. We assume for ease of notation that yi > 0, i ∈ I. Then

UI
N
((xi)i∈I ,(yi)i∈I) = N

(
(xi)i∈I ,{# ∈ Rd\{0} : #i ∈ (yi,!), i ∈ I}

)

= µ
(
{u ∈ R

d
:U−1

i (xi,ui) ∈ (yi,!), i ∈ I}
)

= µ
(
{u ∈ R

d
: 0< ui <Ui(xi,yi), i ∈ I}

)

= µ
(
{u ∈ R

d
: 0< ui ≤Ui(xi,yi), i ∈ I}

)

= FI ((Ui(xi,yi))i∈I) .

This proves in particular that the one-dimensional marginal tail integrals of N equal U1, . . . ,Ud . Since the
margins of N(x,y) are Lévy measures on R\{0} for all x ∈ Rd we obtain for every x ∈ Rd :

∫

y∈Rd

(
|y|2∧1

)
N(x,dy) ≤

∫

y∈Rd

d

,
i=1

(
y2i ∧1

)
N(x,dy)

=
d

,
i=1

∫

yi∈R

(
y2i ∧1

)
Ni(xi,dyi) < !.

Hence, for x ∈ Rd , N(x, ·) is a Lévy measure on Rd . For the second part of the proof we use Remark 2.7 in

[67] which gives us:

k(x,y1, . . . ,yd) = 11 . . .1dF|#1=U1(x1,y1),...,#d=Ud(xd ,yd)k1(x1,y1) . . .kd(xd ,yd). (4.4)

Using the properties of F and the margins we can conclude that k(x,y1, . . . ,yd) is continuous in x for
all (y1, . . . ,yd) ∈ (R\{0})d. It remains to prove (III). Due to (4.1) we have the following estimate with
g := 11 . . .1dF :

k(x,y1, . . . ,yd) (4.5)

= g(U1(x1,y1), . . . ,Ud(xd ,yd))k1(x1,y1) . . .kd(xd ,yd)

≤ Cmin{|U1(x1,y1)| , . . . , |Ud(xd ,yd)|}
d

0
i=1

|Ui(xi,yi)|−1
d

0
i=1

ki(xi,yi)

(4.2)
≤ Cmin{

∣∣U1(y1)
∣∣ , . . . ,

∣∣Ud(yd)
∣∣}

d

0
i=1

(
C∨

1

|yi|

)
. (4.6)

Using the properties of the Ni(dy) for i= 1, . . . ,d we can conclude that (4.6) is a Lévy measure and therefore
(IV) is valid for k(x,y). Uniqueness of the jump measure follows from the fact that it is uniquely determined
by its marginal tail integrals (cf. [52, Lemma 3.5]).

We can prove the following decay property of the jump density constructed according to the above theorem.

Lemma 4.2. Let k(x,y) be constructed according to Theorem 4.1. Besides we require the following estimate

on the derivatives of ki(x,y): there exists C> 0 s.t. ∀x ∈ Rd , y ∈ Rd\{0}

|1 nx ki(x,y)| ≤ Cn+1n! |y|−mi(x)−-n−1 , (4.7)
∣∣1 ny ki(x,y)

∣∣ ≤ Cn+1n! |y|−mi(x)−n−1 , (4.8)

for some - ∈ (0,1) and maxi=1,...,d supxi∈Rmi(xi) = m< 2 as well as

mini=1,...,d infxi∈Rmi(xi) = m> 0. Then it holds

∣∣1mx 1 ny k(x,y)
∣∣≤C|n|+1 |m|! |n|!‖y‖−m!

d

0
i=1

|yi|−ni−-mi−1 , ∀yi += 0,

for multiindices n,m ∈ Nd
0

Proof. Using the formula of Faà di Bruno [68] it can be shown
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∣∣1 nxi (11 . . .1dF(U(x,y)))
∣∣

=

∣∣∣∣,
n!

m1! . . .mn!
(1mxi 11 . . .1dF)(U(x,y))

(
1xiUi(x,y)

1!

)m1
. . .

(
1 nxiUi(x,y)

n!

)mn∣∣∣∣

≤,Cn+11

n!m!

m1! . . .mn!
‖y‖−*!

d

0
j

∣∣y j
∣∣* |yi|*m |zi|−*m1−-m1 . . . |yi|−*mn−-nmn

≤Cn+12 n!‖y‖−*! |yi|−-n
d

0
j=1

∣∣y j
∣∣* ,

where we sum over all multiindices (m1, . . . ,mn), m = ,i mi with n = ,ni=1 imi. An analogous calculation

leads to

∣∣1yi (11 . . .1dF(U(x,y)))
∣∣≤Cn+12 n!‖y‖−*! |yi|−n

d

0
j=1

∣∣y j
∣∣* .

Using the Leibniz rule we obtain

∣∣1 nxik(x,y)
∣∣

=
∣∣1 nxi (11 . . .1dF(U(x,y))k1(x1,y1) . . .kd(xd ,yd))

∣∣

=

∣∣∣∣∣

n

,
j=1

n!

j!(n− j)!
1 j
xi

(11 . . .1dF(U(x,y)))1 n− j
xi

ki(xi,yi)
d

0
m=1,m+=d

km(xm,ym)

∣∣∣∣∣

≤ Cn+13 n!
n

,
j=1

‖y‖−*! |yi|− j-
d

0
j=1

∣∣y j
∣∣* |yi|−*−1+- (−n+ j)

d

0
m=1,m+=i

|ym|−*−1

≤ Cn+14 n!‖y‖−*! |yi|−n-
d

0
m=1

|ym|−1 .

It can be shown analogously for all n ∈ N, 0 += y ∈ Rd :

∣∣1 nxi k(x,y)
∣∣≤Cn+14 n!‖y‖−*! |yi|−n

d

0
m=1

|ym|−1 , (4.9)

which completes the proof.

We will need these estimates later to prove exponential convergence of the numerical quadrature rules

employed to approximate the discretized generator of the Feller process.

4.2 Sector condition

The sector condition for the symbol of the Feller process will be one of the main ingredients for proving

well posedness of the initial boundary value problems for the PIDEs arising in option pricing problems.

The sector condition reads:

∃$ > 0 s.t. ∀x,# ∈ Rd : +ea(x,# )+1≥ $〈# 〉m(x). (4.10)

Verification of the sector condition is not straightforward for a general Feller process. Here, we give suffi-

cient conditions for the sector condition to hold in terms of appropriate conditions on the marginals of the

Feller process and copula function.

Definition 4.3 The function F :R
d → R is a homogeneous Lévy copula of order 1. The functions k01, . . . ,k

0
d

are jump measures of univariate Feller processes of order−1−m1, . . . ,−1−md, i.e.,

k0j (x j,ry j) = r−1−mj(x)k0j (x j,y j), ∀r > 0 and all x j ∈ R,y j ∈ R\{0}
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for any j = 1, . . . ,d and F and k0j (x j,y j), j = 1, . . . ,d, satisfy the assumptions of Theorem 4.1. Due to

Theorem 4.1 there exists a unique Feller process with corresponding margins. We call such a d-variate

Feller processm(x)-stable, form(x) = (m1(x1), . . . ,md(xd)).

For the pure jump case we will need the following additional property in order to prove a simple equivalence

for the sector condition. We assume that the symmetric part of the jump measure ksym(x,y) = 1
2
(k(x,y)+

k(x,−y)) admits the following estimate:

ksym(x,y) " k0,sym(x,y), ∀0< ‖y‖ < 1, ∀x ∈ Rd , (4.11)

where k0 is the jump measure of an m(x)-stable Feller process. We will now prove an anisotropic homo-
geneity property of the Feller density k0.

Theorem 4.4. Let the copula F and the marginal densities be as in Definition 4.3. Then the function k0

given by (4.4) ism-homogeneous in the sense that

k0
(
x,t

− 1
m1(x1) y1, . . . ,t

− 1
md (xd ) yn

)
= t

1+ 1
m1(x1)

+···+ 1
md (xd ) k0(x,y1, . . . ,yn) ∀t > 0.

Proof. The proof follows analogously to [34, Theorem 3.2].

Theorem 4.5. Let k0(x,y1, . . . ,yd) be as in the previous theorem. Then the Feller symbol (0,0,k0(x,y1, . . . ,yn))

is a real-valued anisotropic homogeneous function of type
(

1
m1(x1)

, . . . , 1
md(xd)

)
and order 1 for all x ∈ Rd,

i.e., it satisfies

a(x,t
1

m1(x1) #1, . . . ,t
1

md (xd ) #n) = ta(x,#1, . . . ,#d) ∀t > 0,# ∈ Rd

Proof. The proof follows analogously to [34, Theorem 3.3] using Theorem 4.4.

We will need the following Lemma, which is a modification of [27, Lemma 2.2].

Lemma 4.6. Let (1(x,y) and (2(y) ≤ (2(x,y) ≤ (2(y) be two anisotropic distance functions of order 1

and type m(x) = (m1(x), . . . ,md(x)) for all x ∈ Rd, and let (
2
(y),(2(y) be continuous. Furthermore, let

2 := ∪x∈Rd21(x), where

21(x) := {z : (1(x,z) = 1},

is contained in a compact set. Then the following inequalities hold with constants C1, C2 > 0 independent

of x and y:

C1(1(x,y) ≤ (2(x,y) ≤C2(1(x,y).

Proof. Let y ∈ Rd . We set t(x) = 1
(1(x,y)

. Then

(
t(x)m1(x)y1, . . . ,t(x)

md(x)yd

)
∈ 21(x)

holds. As 2 is contained in compact set and (2(y),(2(y) are continuous, we obtain

C1 ≤ (2(x,y) ≤C2 ∀x ∈ Rd , ∀y ∈ 21.

Hence,

C1 ≤
1

(1(x,y)
(2(x,y) = t(x)(2(x,y) = (2(x,t(x)

m1(x)y1, . . . ,t(x)
md(x)yd) ≤C2.

Theorem 4.7. Let X be a Feller process taking values inRd with characteristic triple ($(x),Q(x),k(x,y)dy)
with density k(x,y) of the jump-measure constructed parametrically as in Theorem 4.1. Further assume that

either Q> 0 holds or that k(x,y) satisfies (4.11) with an m(x)-stable function k0(x,y). Then, there exists a
constant C > 0 such that for all x ∈ Rd and ‖#‖! sufficiently large
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|+a(x,# )|≥C
d

,
j=1

|# |mj(x j) , (4.12)

where mj(x j) = 2 in the case Q> 0.

Proof. The proof mainly follows the arguments of [85, Proposition 2.4.3]. First consider Q = 0. Due to

Theorem 4.5 one obtains that+a0(x,# ) is an anisotropic distance function of order
(

1
m1(x1)

, . . . , 1
md(xd)

)
for

all x ∈ Rd . Since all anisotropic distance functions of the same order are equivalent there exists someC1(x)
such that

a0(x,# ) ≥C1(x)
d

,
i=1

|#i|mi(xi) , ∀# ∈ Rd .

Hence,

|+a(x,# )| =
∫

Rn
(1− cos(# · y))ksym(x,y)dy

≥ C2

∫

B1(0)
(1− cos(# · y))k0,sym(x,y)dy

≥ C2C1(x)
d

,
i=1

|#i|mi(xi)−C3.

To complete the proof, we must prove the boundedness ofC1(x), i.e., we have to validate the conditions of

Lemma 4.6. The compactness of 21 follows from the definition of (1(x,y) =,di=1 |yi|
mi(x), and the estimates

on (2(x,y) follow from the conditions imposed on k0. Therefore, the sector condition (4.10) follows from
(4.11) for a certain set of symbols. The case Q> 0 is trivial.

Assumption (4.11) is implied by the following conditions on the marginal jump measures and the copula

function:

Assumption 4.8 Let X be a Feller process with characteristic triple

($,Q(x),k(x,y)dy) satisfying the conditions of Theorem 4.1. Let the following inequalities hold, with F0

being a 1-homogeneous Lévy copula as in Assumption 4.3 and k0i (x,y) beingm(x)-stable densities with tail
integrals U0i (x,y), i= 1, . . . ,d:

ki(x,y) " k0i (x,y), ∀0< |y| < 1,∀x ∈ Rd , i= 1, . . . ,d

11 . . .1dF(U(x,y)) " 11 . . .1dF
0(U0(x,y)) ∀0< |y| < 1.

4.3 A class of admissible market models

We now formulate the requirements for market models which will be admissible for our pricing schemes

in terms of the marginals and the copula function. These requirements will not only ensure existence and

uniqueness of a solution of the corresponding pricing problem, but also ensure that the presented FEM

based algorithms are feasible.

Definition 4.9. We call a d-dimensional Feller process with characteristic triple ($(x),Q(x),N(x,dy)) an
admissible market model if it satisfies the following properties.

1. The function x .→ $(x) ∈ Rd is smooth and bounded.

2. The function x .→Q(x) ∈ Rd×d
sym is smooth and bounded and Q(x) is positive semidefinite for all x ∈ Rd.

3. The jump measure N(x,dy) is constructed form d independent, univariate Feller-Lévy measures with a

1-homogeneous copula function F that fulfills the following estimate: there is a constant C > 0 such

that for all u ∈ (R\{0})d and all n ∈ Nd
0 holds

|1 nF(u)|≤C|n|+1 |n|!min{|u1| , . . . , |ud|}
d

0
i=1

|ui|−ni
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4. For the marginal densities Ni(xi,dyi)= ki(x,y)dy the mapping xi .→ Ni(xi,B) is smooth for all B∈B(R).
5. There exist univariate Lévy kernels ki(y), i= 1, ...,d with semiheavy tails, i.e., which satisfy

ki(y) ≤C

{
e−)

−|y|, y< −1
e−)

+y, y> 1,
(4.13)

for some constants C> 0, )− > 0 and )+ > 1. These Lévy kernels satisfy the following estimates

Ni(xi,B) ≤
∫

B
ki(y)dy ∀xi ∈ R, B ∈ B(R), i= 1, . . . ,d.

6. Besides, we require the following estimate on the derivatives of ki(x,y)

|1 nx ki(x,y)| ≤ Cn+1n! |y|−mi(x)−-n−1 ,
∣∣1 ny ki(x,y)

∣∣ ≤ Cn+1n! |y|−mi(x)−n−1 ,

for any - ∈ (0,1), for all 0 += y,x ∈ Rd and m := maxi=1,...,d supxi∈Rmi(xi) < 2 as well as m :=
mini=1,...,d infxi∈Rmi(xi) > 0.

7. Finally we require F0 to be a 1-homogeneous Lévy copula and k0i (xi,yi) to be mi(xi)-stable densities
with tail integrals U0i (xi,yi), i= 1, . . . ,d:

ki(x,y) " k0i (x,y), ∀0< |y| < 1,∀x ∈ R, i= 1, . . . ,d

11 . . .1nF(U(x,y)) " 11 . . .1nF
0(U0(x,y)) ∀0< |y| < 1.

Remark 4.10. An admissible market model satisfies the requirements of Theorem 4.1 due to conditions (3),

(5) and (6).

Lemma 4.11. The symbol a(x,# ) of an admissible market model X with triple (0,Q(x),k(x,y)dy) is con-

tained in the symbol class S
m(x)
1,- for any - ∈ (0,1), where m(x) = 2 if Q(x) ≥ Q0 > 0.

Prior to the proof of the preceding lemma we remark that the removal of the drift will be discussed in the

next chapter. The proof follows analogously to [67, Proposition 3.5]. Let us illustrate the preceding, abstract

developments with an example related to the so-called tempered-stable class of Lévy processes which were

advocated in recent years in the context of financial modelling.

Example 4.12 (Feller-CGMY).We consider a d-dimensional Feller process with Clayton Lévy copula

F(u1, . . . ,ud) = 22−d

(
d

,
i=1

|ui|3
)− 1

3 (
( {u1,...,ud≥0}− (1−() {u1,...,ud≤0}

)
,

where 3 > 0, ( ∈ [0,1] together with CGMY-type densities

ki(x,y) =C(x)

(
e−)

−
i (x)|y|

|y|1+mi(x)
{y<0} +

e−)
+
i (x)|y|

|y|1+mi(x)
{y>0}

)

,

with smooth and bounded functions C(x) > 0, )−
i (x) > 0, )+

i (x) > 1, 0 < mi < mi(x) ≤ mi < 2, for i =
1, . . . ,d. We assume the Gaussian component Q(x) to be positive semidefinite, smooth and bounded. The
drift $(x) is assumed to be smooth and bounded. It is easy to see that this market model satisfies Properties
(1), (2), (4)-(6) of the above definition. (3) and (7) follow analogously to the proof of [85, Proposition 2.3.7].
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5 Variational PIDE formulations

A key observation at the heart of differential equation approaches to deterministic computational pricing

of derivative contracts in finance is the observation (going back at least to R. Feynman and M. Kac) that

conditional expectations over all sample paths of a multivariate diffusion process satisfy deterministic,

parabolic partial differential equations (PDEs). The most well known representative of these PDEs in fi-

nancial modelling is the classical Black-Scholes equation. This Feynman Kac correspondence holds in a

much more general context, the deterministic equation being in general nonlinear, and the solution being in

general understood as viscosity solution. Here, we will follow on linear differential equations for which the

(unique) solutions will be variational solutions of suitable weak formulations of the deterministic evolution

equations. As these formulations will form the basis of variational discretizations to be discussed below,

we shall present their ingredients (Sobolev and Besov spaces, Dirichlet Forms, Evolution triplets and the

abstract theory of parabolic evolution equations) in some detail here. Throughout, our perspective is the

pricing of derivative contracts in financial models based on the Feller-Lévy processes introduced above.

5.1 European options

We consider a European option with maturity T < ! and payoff g(ST ) which is assumed to be Lipschitz,

where Sit = Si0e
rt+Xit and where X is a semimartingale unless specified otherwise. By the general theory of

asset pricing (as, e.g., in [28]), an arbitrage free valueV (t,s) of this option is given by

V (t,s) = E
(
e−r(T−t)g(ST )|St = s

)
,

where the expectation is taken under the measureQ which is equivalent to the real world measure and under

which ST is a sigma-martingale, cf.[28]. If X is an admissible market model, we can derive a PDO and PIDE

representation and prove well-posedness of the weak formulation of the problem on a bounded domain. If

X is a (multidimensional) continuous semimartingale, satisfying certain non-degeneracy conditions, we

can use a mimicking result due to [37] and derive a state-space and time inhomogeneous PDE. Existence

and uniqueness on bounded and unbounded domains are well-known under certain smoothness and growth

conditions on the coefficients. If X is a (multidimensional) discontinuous semimartingale satisfying certain

non-degeneracy conditions, we can use a novel mimicking result due to [6] and derive a state-space and

time dependent PDO and PIDE. Existence and uniqueness results are not yet available in this case. In the

following we will concentrate on the time homogeneous Feller case.

Due to no arbitrage considerations we will require the considered processes to be martingales under a

pricing measureQ. This requirement can be expressed in terms of the characteristic triple:

Lemma 5.1. Let X be constructed according to Theorem 4.1 with characteristic triple ($(x),Q(x),N(x,dy)).
Then eXj is a Q-martingale with respect to the canonical filtration of X if and only if

Q j j(x)2

2
+ $ j(x)+

∫

0 +=y∈R
(eyj −1− y j)N j(x, dy) = 0 ∀x ∈ R. (5.1)

Proof. For the proof of this lemma we cannot use standard arguments as e.g. in [67, Lemma 2.1], since

independence of the increments is required in that proof. We consider the characteristic function of the

random variable Xt − x as in [46], i.e.,

4t(x,# ) = Ex(ei(Xt−x)·# ).

The martingale condition implies

0= 4t(x,−ie j)−40(x,−ie j) ∀x ∈ Rd and t ∈ R+.

The right-hand side can be written as
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4t(x,−ie j)−40(x,−ie j) = t

∫ 1

0

d

ds
4s(x,−ie j)|s=5t d5

= t

∫ 1

0

d

ds

(
e−x j Ts(e

(·))(x · e j)|s=5t
)
d5

= −t
∫ 1

0
e−x j Tt5 (e(·)a(·,−ie j))(x)d5 ,

where we have used (d/ds)Tsu= TsA u and A (ei(·,# )) = −eix#a(x,# ). This implies a(x,−ie j) = 0 and the

claimed result can be obtained using the analogon to [69, Proposition 11.10] for Feller processes. The

reverse implication follows analogously.

We are now able to derive a PDO and PIDE for option prices. Let the stochastic process X be an admissible

markovian market model and let be g∈ V :=D(AX). Then we obtain due to semigroup theory for u(t,x) =
Tt(g) = E[g(Xt)|X0 = x], where we have set t0 = 0 and r = 0 for notational convenience by differentiation

in t:

1t u−AXu = 0 in (0,T )×Rd (5.2)

u0 = g in {0}×Rd. (5.3)

Testing with a function v ∈ V , we end up with the following parabolic evolution problem: Find u ∈
L2 ((0,T );V )∩H1 ((0,T );V ∗) s.t. for all v ∈ V and a.e. t ∈ [0,T ] holds

(1t u,v)−a(u,v) = 0, u0 = g, (5.4)

where the bilinear form a(u,v) = (AXu,v) corresponds to the Dirichlet form of the stochastic process

X . Although in option pricing, only the homogeneous parabolic problem (5.4) arises, the inhomogeneous

equation (5.5) is useful in many applications. We mention only the computation of the time-value of an

option, or the computation of quadratic hedging strategies and the corresponding hedging error. Thus, we

will in general consider the nonhomogeneuos analogon of the above equation. The general problem reads:

Find u ∈ L2 ((0,T );V )∩H1 ((0,T );V ∗) s.t.

(1t u,v)−a(u,v) = ( f ,v)V ∗×V in (0,T ), ∀v ∈ V (5.5)

u0 = g

for some f ∈ L2((0,T );V ∗). Now we consider the localization of the unbounded problem to a bounded

domain D. To be able to control the error introduced by localization we need to require the following

growth condition on the payoff function: There exists some q≥ 1 such that

g(s) !

(
d

,
i=1

si+1

)q
, ∀s ∈ Rd

≥0. (5.6)

For any function u with support in a bounded domain D⊂ Rd we denote by ũ the zero extension to Rd and

define AD(u) = A (ũ) with domain VD. The variational formulation of the pricing equation on a bounded

domain D ⊂ Rd reads: Find u ∈ L2 ((0,T );VD)∩H1 ((0,T );(VD)∗) s.t. for all v ∈ VD and a.e. t ∈ [0,T ]
holds:

(1t u,v)−aD(u,v) = ( f ,v)V ∗
D×VD

(5.7)

u0 = g|D, (5.8)

where aD(u,v) := a(ũ, ṽ) and ũ, ṽ denote the zero extensions of u and v to Dc = Rd\D. Note that the spaces
VD =: {v ∈ L2(D) : ṽ ∈ V } consist of functions which vanish in a weak sense on 1D. Under condition (5.6)
pointwise convergence of the solution of the localized problem to the solution of the original problem can

be shown for Lévy processes using [69, Theorem 25.18] and the semiheavy tail property. We refer to [67,

Theorem 4.14] for details. A comparable result for general Feller processes does not appear to be available

yet.

Remark 5.2. This formulation naturally arises for payoffs with finite support such as digital or (double)

barrier options. The truncation to a bounded domain can thus be interpreted economically as the approxi-
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mation of a standard derivative contract by a corresponding barrier option on the same market model. Note

also that the variational framework (5.7)-(5.8) naturally allows for more general initial conditions, in partic-

ular g ∈ H = L2(Rd). Therefore, discontinuous g are admissible in the variational framework (5.7)-(5.8).
This is essential for the pricing of exotic contracts such as digital options, for example.

Existence and uniqueness of weak solutions of (5.7)-(5.8) follows analogously to [77, Section 6.2], so we

obtain the following theorem:

Theorem 5.3. Let the generatorA (x,D) ∈.2m(x)
( ,- with

m(x) = (m1(x1), . . . ,md(xd)) be a pseudo-differential operator of variable order 2m(x), 0 < mi(xi) < 1,

i= 1, . . . ,d with symbol a(x,# ) ∈ S
2m(x)
( ,- for some 0< - < ( ≤ 1 for which there exists $ > 0 with

∀x,# ∈ Rn : +ea(x,# )+1≥ $〈# 〉2m(x). (5.9)

Then A (x,D) ∈. 2m(x)
( ,- satisfies a Gårding inequality in the variable order space H̃m(x)(D): There are

constants $ > 0 and C ≥ 0 such that

∀u ∈ H̃m(x)(D) : +a(u,u) ≥ $‖u‖2
H̃m(x)(D)

−C‖u‖2
L2(D), (5.10)

and

∃4 > 0 such thatA (x,D)+4 I : H̃m(x)(D) →H−m(x)(D) (5.11)

is boundedly invertible.

As noted above, we obtain H̃1(D) = H10 (D) as the domain of the operator if Q(x) ≥ Q0 > 0, i.e. if the

diffusion matrix Q(x) is uniformly positive definite.

Theorem 5.4. The problem (5.7)-(5.8) for an admissible market model X with initial condition gD ∈ H

has a unique solution.

Proof. Using the Gårding inequality (5.10) and the continuity of the operator the result follows from stan-

dard theory of parabolic evolution equations.

Remark 5.5.We obtain for finite variation pure jump models, i.e., m(x) < 0.5, for all x ∈ D, an advection

dominated equation. Therefore we have to remove the drift for standard algorithms to be feasible. This is

easy in the Lévy case as the drift coefficients in the equation are constant, cf. [67, Corollary 4.3], but more

involved in the Feller case, cf. [39].

Theorem 5.6. For f ∈C1,2(J×R), with 1x f (t,x) += 0, consider the change of variable v(t,x) := u(t, f (t,x)),
where u(t,x) is the solution of the following PDE

1t u−2(x)1xxu+b(x)1xu+ c(x)u = 0 in J×R.

Let f solve the (nonlinear) PDE

1t f −2( f (t,x))
1xx f

1 2x f
−b( f (t,x)) = 0. (5.12)

Then v satisfies the PDE

1t v−
2( f (t,x))

1 2x f
1xxv+ c( f (t,x))v = 0 in J×R.

Solving the PDE (5.12) is non trivial in general.

Remark 5.7.We come back to the CEV model introduced in Remark 2.8. The generatorA CEV is given as

A CEVu(x) =
1

2
'2x2(1xxu(x)+ rx1xu(x)

and the corresponding bilinear form aCEV on a bounded domain G reads:
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aCEV(u,v) =
1

2
'2
∫

G
x2(1xu1xvdx+

∫

G
(('2− rx)1xuvdx+

∫

G
uvdx.

The domain of the generator is the weighted Sobolev space H( , defined as the H( :=C!0 (G)‖·‖( , where

‖u‖2( =
∫

G

(
x2( |1xu|2+ |u|2

)
dx.

A Gårding inequality and continuity of the bilinear form aCEV can be shown on H( .

5.2 American options

For the study of optimal stopping problems which arise e.g. from American contracts we require variational

formulations of parabolic variational inequalities. To this end, let /0 += K ⊂ V be a closed, non-empty and

convex subset of V with indicator function

6(v) := IK (v) =

{
0, if v ∈ K ,

+!, else.
(5.13)

This is a proper, convex lower semicontinuous (l.s.c.) function 6 : V → R with domain D(6) = {v ∈
V : 6(v) < !}. We denote by K

‖◦‖H the closure of D(6) in H and consider the following variational

problem: Given f ∈ L2(0,T ;V ∗), u0 ∈ K
‖◦‖H ⊂ H ,

find u ∈ L2(0,T ;V )∩H1(0,T ;V ∗) such that u ∈ D(6) a.e. in (0,T ) and

〈1t u+A u− f ,u− v〉V ∗×V +6(u)−6(v)≥ 0 ∀v ∈ D(6),a.e. in (0,T ), (5.14)

u(0) = u0 in H . (5.15)

Existence and uniqueness results for solutions u ∈ L2(0,T ;V ) of (5.14)–(5.15) can be obtained from e.g.
[36, Theorem 6.2.1] under rather strict conditions on the data f . To derive the well-posedness of (5.14)–

(5.15) under minimal regularity conditions on f , u0 and 6 , the problem needs to be replaced by a weak

variational formulation. To state it, we introduce the integral functional% on L2(0,T ;V )

%(v) =






∫ T

0
6(v(t))e−24 tdt, if 6(v) ∈ L1(0,T ),

+!, else,
(5.16)

with 4 ≥ 0 as in (5.10).
Note that %(·) is proper convex and l.s.c. with domain

D(%) = {v ∈ L2(0,T ;V ) : 6(v) ∈ L1(0,T )}. (5.17)

Herewith, the weak variational formulation of (5.14)–(5.15) reads (cf. [3, 70]): Given u0 ∈ K
‖◦‖H ⊂ H

and f ∈ L2(0,T ;V ∗),

find u ∈ L!(0,T ;H )∩D(%) such that u(0) = u0 inH and
∫ T

0
〈1t v(t)+ (A +4 )u(t)− ( f +4v),u(t)− v(t)〉 · e−24 tdt+%(u)−%(v) (5.18)

≤
1

2
‖u0− v(0)‖2H ,

for all v ∈ D(%) with 1t v ∈ L2(0,T ;V ∗).

The well-posedness of (5.18) is ensured by [70, Theorem 3]:

Theorem 5.8. Assume that the infitesimal generator AX is coercive and continuous. Then problem (5.18)

admits a unique solution
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u ∈ L2(0,T ;V )∩L!(0,T ;H ) such that t .→ 6(u(t, ·)) ∈ L1(0,T ).

Remark 5.9. As for the parabolic equality problem, also for (5.18) the initial condition is only required to

hold inH . In addition, however, in (5.18) the data u0 must belong to the closureK
‖◦‖H ofK inH .

Remark 5.10. Convergence rates of backward Euler time discretizations of (5.18) for American style con-

tracts under minimal regularity are given in [3, 59, 70].

Using the notation of the previous sections, we now consider an American option with maturity T < !
and Lipschitz continuous payoff g(S). Its price VA(t,S) is given by the optimal stopping problem

VA(t,S) = sup
7∈Tt,T

E
(
e−r(T−7)g(S7)|St = S

)
, (5.19)

where Tt,T denotes the set of all stopping times between t and T .

In [60, 61] it is shown how the price VA(t,S) for Sit = Si0e
rt+Xit , X being a Lévy process, can be charac-

terized as the viscosity solution of a corresponding Bellman equation (for details on viscosity solutions we

refer to e.g. [24] and the original sources [25, 71, 82]):

Theorem 5.11. The price VA(t,S) of an American option defined in (5.19) is a viscosity solution of

min






− 1tVA(t,S)− rVA(t,S)−
1

2

d

,
i, j=1

SiS jQi j1
2
SiS j

VA− r
d

,
i=1

Si1SiVA(t,S)

−
∫

Rd

(

VA(t,Sez)−VA(t,S)−
d

,
i=1

Si (e
zi −1)1SiVA(t,S)

)

N(dz)

︸ ︷︷ ︸
AJVA

,

VA(t,S)−g(S)






= 0. (5.20)

If VA(t,S) is uniformly continuous and there holds

sup
[0,T ]×Rd

>0

VA(t,S)

1+S
< !, (5.21)

this solution is unique.

Proof. Existence of the viscosity solution follows from [61, Theorems 3.1] and its uniqueness is ensured

by [61, Theorems 4.1] and [71].

Remark 5.12. Note that Theorem 5.11 holds only in the Lévy case. The solvability of the Bellman equation

for more general jump measures is investigated in [1, 15].

The Bellman equation (5.20) can equivalently be restated as the following linear complementarity problem:

17uA(7,x)+ABS[uA](7,x)+AJ[uA](7,x) = l(7,x) ≤ 0,
uA(7,x)− er7g7(x) ≥ 0,
l(7,x)

(
uA(7,x)− er7g7(7,x)

)
= 0,

(5.22)

on [0,T ]×Rd with ABS and AJ as above. The initial condition is given by uA,0 = g(ex), i.e. uA,0 = u0.

The function g7 is the transformed payoff function, where we applied a transformation as in Theorem

5.6. The system (5.22) can also be considered for Feller generators and on bounded domains. An analogous

localization argument to the European case can be used for Lévy marketmodels. Furthermore, if the solution

uA of (5.22) satisfies uA ∈ L2((0,T );VD)∩H1((0,T );D(AD)∗) it can be identified with the solution of the
following realization of the abstract variational inequality (5.14)–(5.15):

Find uA ∈ L2((0,T );VD)∩H1((0,T );V ∗
D ) such that uA ∈ D(67) a.e. in (0,T ) and

〈17uA,v−uA〉V ∗
D ,VD +(ADuA,v−uA)−67(u)+67(v) ≥ 0 , (5.23)

for all v ∈ D(67 ), a.e. in (0,T ), and uA(0) = u0 ,
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with 67 := IK7 as in (5.13) and convex sets

K7 := {v ∈ VD : v≥ er7g7}⊂ VD, 7 ∈ (0,T ),

where g7 : R
d → R as above.

As illustrated above, in weak form the variational problem (5.23) reads:

Find uA ∈ L!((0,T );VD)∩H1((0,T );V ∗
D ) such that uA ∈ D(%) a.e. in (0,T ) and

∫ T

0
〈17v(7)+ (AD+4 )uA(7)−4v(7),uA(7)− v(7)〉 · e−247d7+%(uA)−%(v)

≤
1

2
‖u0− v(0)‖2H ,

for all v ∈ D(%) with 17v ∈ L2(0,T ;V ∗). (5.24)

Here % and D(%) are depending on 67 as defined in the last section. The well-posedness of (5.24) is
ensured by

Theorem 5.13. Let X be a Feller process which is an admissible market model with state space Rd, char-

acteristic triplet ($,Q,N) and infinitesimal generator A. Then the weak variational inequality (5.24) with
u0 ∈ L2(D) admits a unique solution in VD.

Proof. The proof follows from Theorem 5.8 using the Gårding inequality (5.10) and continuity of the

corresponding Dirichlet bilinear form on VD in conjunction with, e.g., [14, Remarque 3] (to account for the

smooth time dependence of the convex setK7 ).

Remark 5.14. ForQ(x)≥Q0 > 0 inDwe obtainH10 (D) as the domain of the generator. For Lévy processes
an analogous result holds, cf. [67, Theorem 4.8].

A different approach to prove existence and uniqueness for the pricing problem is by discretization in time,

i.e. to approximate the parabolic variational inequalities by a sequence of nonlinear elliptic equations and

prove well-posedness for the solution of each equation in the sequence and apriori estimates for all ele-

ments of the sequence. Convergence of the sequence of solutions in an appropriate sense can be proven.

This procedure also gives a feasible numerical scheme for the approximation of the pricing problem, for

more details we refer to [43, 44] and references therein.

To approximate the solution of (5.22) and (5.23) we consider the following one-parameter family of regu-

larized problems: for a regularization parameter c> 0, consider

Find ucA ∈ L2((0,T );VD)∩H1((0,T );V ∗
D ) such that

〈17ucA,v−ucA〉V ∗
D ,VD +(ADu

c
A,v−ucA)

+
(
min
(
0, l(7,x)+ c(ucA− er7g7)

)
,v−ucA

)
≥ 0 , (5.25)

for all v ∈ V , c> 0, a.e. in (0,T ), and ucA(0) = u0 .

Different choices for the function l are possible, if l ∈ L2((0,T );L2(D)) we obtain existence of a unique
solution of (5.25) for Feller models, cf. [44, Theorem 1].

Under additional assumptions on the bilinear form and the function l(7,x) convergence of the sequence
of solutions (ucA)c>0 to uA with order O(1/c) in the L!((0,T )×D) norm can be established, cf. [44, Theo-
rem 4.2]. After discretization in time a semi-smooth Newton method can be employed to solve the arising

nonlinear systems in each time step iteratively, cf. [43].

5.3 Greeks

A key task in financial engineering is the fast and accurate calculation of sensitivities of market models

with respect to model parameters. This becomes necessary for example in model calibration, but also in

quantification of model uncertainty for risk analysis and in the pricing and hedging of certain derivative

contracts. Classical examples are variations of option prices with respect to the spot price or with respect to

time-to-maturity, the so-called “Greeks” of the model. For classical, diffusion type models and plain vanilla
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type contracts, the Greeks can be obtained analytically. With the trends to more general market models of

jump-diffusion type and to more complicated contracts, closed form solutions are generally not available

for pricing and calibration. Thus, prices and model sensitivities have to be approximated numerically.

We will consider the sensitivity of the solution u to variation of a model parameter, like the Greek Vega

(1'u) and the sensitivity of the solution u to a variation of state spaces such as the Greek Delta (1xu).

Definition 5.15. We call a process X a parametric Feller market model with admissible parameter set S5 ,

if the mappingS5 , 5 → {$,Q,N} is infinitely differentiable.

For a parametric Markovian market model X in the sense of Definition 5.15 we distinguish two classes of

sensitivities. In the followingwe assume thatX(50) is an admissible market model i.e.AD(50) is continuous
and satisfies the Gårding inequality for all 50 ∈ S5 . Note that the domain VD of the operator AD might

depend on 50. For the numerical computation of sensitivities as well as for quadratic hedging it will be
crucial to admit a non-trivial right hand side. Accordingly, we consider the parabolic problem

1tu−AD(50)u= f in J×D, u(0,x) = u0 in D, (5.26)

with u0 = g. For f ∈ L2(J;V ∗
D ) and u0 ∈ H the weak formulation of the problem (5.26) is given by:

Find u ∈ L2(J;VD)∩H1(J;H ) such that

(1t u,v)−a
(
50;u,v

)
= 〈 f ,v〉V ∗

D ,VD , ∀v ∈ VD , (5.27)

u(0, ·) = u0 .

Under the assumption that continuity and the Gårding inequality hold for every model parameter 50 ∈ S5 ,

the problem (5.27) admits a unique solution. We will distinguish two classes of sensitivities:

1. The sensitivity of the solution u to a variationS5 , 5s := 50+ s-5 , s> 0, of a model parameter 50 ∈
S5 . Typical examples are the Greeks Vega (1'u), Rho (1ru) and Vomma (1''u). Other sensitivities
which are not so commonly used in the financial community are the sensitivity of the price with respect

to the jump intensity or the order of the process that models the underlying.

2. The sensitivity of the solution u to a variation of arguments t,x. Typical examples are the Greeks Theta
(1tu), Delta (1xu) and Gamma (1xxu).

We note that Gamma 1xxu and Vomma 1''u are second derivatives of u. The most straightforward approach
to their numerical computation is to first obtain a numerical approximation ũ of u and then to differentiate

ũ with respect to the respective parameters. In variational discretizations such as the ones we will introduce

below, ũ will be a continuous, piecewise linear function of x. Therefore, direct computation of the Gamma

1xxu by differentiation of ũ is meaningless (it will yield a finite combination of Dirac distributions) and a
more sophisticated approach, based on postprocessing the approximate variational solution ũ by averaging

is required. Likewise, the stable numerical computation of sensitivities with respect to a model parameter is

based on the observation that the sensitivity of interest satisfies (5.5) with a suitable f .

5.3.1 Sensitivity with respect to the model parameter

Let C be a Banach space over a domainD⊂Rd . C is the space of parameters or coefficients in the operator

A andS5 ⊆ C is the set of admissible coefficients. We denote by u(50) the unique solution to (5.27) and
introduce the derivative of u(50) with respect to 50 ∈ S5 as the mapping D50u(50) : C → VD

ũ(-5) := D50u(50)(-5) := lim
s→0+

1

s

(
u(50+ s-5)−u(50)

)
, -5 ∈ C .

We also introduce the derivative ofAD(50) with respect to 50 ∈ S5

ÃD(-5)8 := D50A (50)(-5)8 := lim
s→0+

1

s

(
AD(50+ s-5)8−AD(50)8

)
,

where 8 ∈ VD, -5 ∈C . We assume that ÃD(-5) ∈L (ṼD, ṼD
∗
)with ṼD a real and separable Hilbert space

satisfying
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ṼD ⊆ VD ⊂ H ∼= H ∗ ⊂ V ∗
D ⊆ Ṽ ∗

D .

We further assume that there exists a real and separable Hilbert space VD ⊆ ṼD such that ÃDv ∈ V ∗
D ,

∀v ∈ VD. We have the following relation between D50u(50)(-5) and u.

Lemma 5.16. Let ÃD(-5) ∈ L (ṼD, ṼD
∗
), ∀-5 ∈ C and u(50) : J → VD, 50 ∈ S5 be the unique solution

to

1t u(50)−AD(50)u(50) = 0 in J×D, u(50)(0, ·) = g(x) in D. (5.28)

Then, ũ(-5) solves

1t ũ(-5)−AD(50)ũ(-5) = ÃD(-5)u(50) in J×D, ũ(-5)(0, ·) = 0 in D. (5.29)

Proof. Since u(50)(0) = g does not depend on 50 its derivative with respect to 5 is 0. Now let 5s :=
50+ s-5 , s> 0, -5 ∈ C . Subtract from the equation 1t u(5s)(t)−AD(5s)u(5s)(t) = 0 equation (5.28) and

divide by s to obtain

1t
1

s

(
u(5s)(t)−u(50)(t)

)
−
1

s

(
AD(5s)−AD(50)

)
u(5s)(t)

−
1

s
AD(50)

(
u(5s)(t)−u(50)(t)

)
= 0.

Taking lims→0+ gives equation (5.29).

We associate to the operator ÃD(-5) the Dirichlet form ã(-5 ; ·, ·) : ṼD× ṼD → R which is given by

ã(-5 ;u,v) = 〈ÃD(-5)u,v〉
ṼD

∗
,ṼD

.

The variational formulation to (5.29) reads:

Find ũ(-5) ∈ L2(J;VD)∩H1(J;H ) such that

(1t ũ(-5),v)H −a
(
50; ũ(-5),v

)
= +ã

(
-5 ;u(50),v

)
, ∀v ∈ VD , (5.30)

ũ(-5)(0) = 0 .

Note that (5.30) has a unique solution ũ(-5)∈ VD due to the assumptions on a(50; ·, ·), ÃD and u(50)∈ VD.

The numerical solution of (5.30) will be discussed in the next chapters.

5.3.2 Sensitivity with respect to solution arguments

We discuss the computation ofDnu= 1 n1x1 · · ·1
nd
xd u for arbitrary multi-index n ∈ Nd

0, where n= (n1, . . . ,nd).
For µ ∈ Zd and h > 0 we define the translation operator T

µ
h 8(x) = 8(x+ µh) and the forward difference

quotient 1h, j8(x) = h−1(T
ej
h 8(x)−8(x)), where e j, j = 1, . . . ,d, denotes the j-th standard basis vector in

Rd . For n ∈ Nd
0 we denote by 1

n
h 8 = 1 n1h,1 · · ·1

nd
h,d8 and by Dn

h the difference operator of order n≥ 0

D
n
h 8 := ,

$,|n|=n
C$,nT

$
h 1

n
h 8 .

Definition 5.17. The difference operatorDn
h of order |n| = n and mesh width h is called an approximation

to the derivative Dn of order s ∈ N0 if for any G0 ⊂ G there holds

‖Dn8−Dn
h8‖H̃r(G0)

≤Chs‖8‖
H̃s+r+n(G),∀8 ∈ H̃s+r+n(G). (5.31)

Using finite elements for the discretization with basis b1, . . . ,bN of VN , the action of Dn
h to vN ∈ VN can be

realized as matrix-vector multiplication vN .→DnhvN , where

Dnh =
(
Dn
h b1, · · · ,Dn

h bN
)
∈ RN×N ,

and vN is the coefficient vector of vN with respect to the basis of VN .
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Example 5.18. Let VN be, the space of piecewise linear continuous functions on [0,1] vanishing at the end
points 0, 1. For *,) ,$ ∈ R and µ ∈ N0 we denote by diagµ(*,) ,$) the matrices

diagµ(*,) ,$) =




· · · 0 * ) $ 0 · · ·

· · · 0 * ) $ 0 · · ·
. . .
. . .
. . .
. . .
. . .





where the entries ) are on the µ-th lower diagonal. Then, the matricesQh of the forward difference quotient

1h and Tµ of the translation operator T
µ
h respectively are given by

Qh = h−1diag0(0,−1,1), Tµ = diagµ(0,1,0).

Hence, for example, we have for the centered finite difference quotient

D2
h8(x) = h−2(8(x+h)−28(x)+8(x−h)),

of order 2 in one dimensionD2h = T−1Q
2
h = h−2diag0(1,−2,1). In the multidimensional case the matrixDnh

is given by

Dnh = ,
$,|n|=n

C$,nT$1 ⊗ · · ·⊗T$dQ
n1
h ⊗ · · ·⊗Qnd

h .
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6 Wavelets

For the numerical solution, we discretize the parabolic equation (5.7)-(5.8) in (0,T )×D in the spatial

variable with spline wavelet bases for V = H̃m(x)(D) an in the time parameter by the 9 -scheme or the
more sophisticated discontinuous Galerkin timestepping which allows to expoit the time-analycity of the

processes’ semigroups. To present the spatial discretizations, we briefly recapitulate basic definitions and

results on wavelets from, e.g., [20] and the references there. For specific spline wavelet constructions on

a bounded interval I, we refer to e.g. [30], [63] and [83]. Since for all infinitesimal generators arising

in connection with Markov processes the Sobolev order 2m(x) of the generator satisfies 0 ≤ m(x) ≤ 1,

the full machinery of multiresolution analyses in Sobolev spaces of arbitrary order is not required; we

confine ourselves therefore to continuous, piecewise polynomial multiresolution systems in R1. For wavelet

discretizations of Kolmogoroff equations for multivariate models, we shall employ tensor products of these

univariate, piecewise polynomials multiresolution systems.

Our use of compactly supported, piecewise polynomial multiresolution systems (rather than the more

commonly employed B-spline Finite Element spaces) for the Galerkin discretization of Kolmogoroff equa-

tions is motivated by the following key properties of these spline wavelet systems: a) the approximation

properties of the multiresolution sytems equal those of the B-spline systems, b) the spline wavelet systems

form Riesz bases of the domains of the infinitesimal generators of the Markov processes, thereby allowing

for simple and efficient preconditioning of the matrices arising in wavelet representations of the processes’

Dirichlet forms, c) the spline wavelet systems can be designed to have a large number of vanishing moments,

thereby allowing for a compression of the wavelet matrix for the jump measure.

6.1 Spline wavelets on an interval

Our Galerkin discretizations of Kolmogoroff equations for Feller processes are based on biorthogonal

wavelet bases on a bounded interval I ⊂ R.

We recapitulate the basic definitions from, e.g., [20, 83] to which we also refer for further references and

additional details, such as the construction of higher order wavelets.

Our wavelet systems are two-parameter systems {:l,k}l=−1,...,!,k∈;l of compactly supported functions
:l,k. Here the first index, l, denotes “level” of refinement resp. resolution: wavelet functions :l,k with large
values of the level index are well-localized in the sense that diam(supp:l,k) = O(2−l). The second index,
k ∈ ;l , measures the localization of wavelet :l,k within the interval I at scale l and ranges in the index
set ;l . In order to achieve maximal flexibility in the construction of wavelet systems (which can be used
to satisfy other requirements, such as minimizing their support size or to minimize the size of constants

in norm equivalences), we will consider wavelet systems which are biorthogonal in L2(I), consisting of
a primal wavelet system {:l,k}l=−1,...,!,k∈;l which is a Riesz basis of L

2(I) (and which will enter ex-
plicitly in the Galerkin discretizations of the Markov processes) and a corresponding dual wavelet system

{:̃l,k}l=−1,...,!,k∈;l (which will never be used explicitly in our algorithms). Notice that construction of fully

L2(I) orthonormal wavelet systems is feasible, but results in function systems which are either nonpolyno-
mial or have larger supports or fewer vanishing moments.

The primal wavelet bases :l,k span finite dimensional spaces

W l := span {:l,k : k ∈ ;l} , V L :=
L−1⊕

l=−1
W l l = −1,0,1 . . . ,

and the dual spaces are defined analogously in terms of the dual wavelets :̃l,k by

W̃ l := span {:̃l,k : k ∈ ;l} , Ṽ L :=
L−1⊕

l=−1
W̃ l l = −1,0,1 . . . ,

In the sequel we require the following properties of the wavelet functions to be used on our Galerkin

discretization schemes, we assume wlog I = (0,1).

1. Biorthogonality: the basis functions :l,k, :̃l,k satisfy
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〈:l,k, :̃l′,k′ 〉 = -l,l′-k,k′ . (6.1)

2. Local support: the diameter of the support is proportional to the meshsize 2−l,

diam supp :l,k ∼ 2−l , diam supp :̃l,k ∼ 2−l. (6.2)

3. Conformity: the basis functions should be sufficiently regular, i.e.

W l ⊂ H̃1(I) , W̃ l ⊂ H- (I) for some - > 0 , l ≥−1. (6.3)

Furthermore
⊕!

l=−1W
l ,
⊕!

l=−1 W̃
l are supposed to be dense in L2(I)

4. Vanishing moments: The primal basis functions :l,k are assumed to satisfy vanishing moment condi-
tions up to order p∗ +1≥ p

〈:l,k,x* 〉 = 0 , * = 0, . . . ,d = p∗ +1, l ≥ 0, (6.4)

and for all dual wavelets, except the ones at each end point, one has

〈:̃l,k,x*〉 = 0 , * = 0, . . . ,d = p+1, l ≥ 0. (6.5)

At the end points the dual wavelets satisfy only

〈:̃l,k,x*〉 = 0 , * = 1, . . . ,d = p+1, l ≥ 0. (6.6)

We remark that the third condition implies that the wavelets satisfy the zero Dirichlet condition, namely

:l,k(0) = :l,k(1) = 0; the representation of this boundary condition by the subspace is important in the

pricing of barrier contracts. To satisfy the homogeneous Dirichlet condition by the wavelet basis, we sacri-

fice the vanishing moment property of those wavelets whose supports include the endpoints of I, i.e. x= 0

or x = 1. For example, :l,0, l = 0, . . ., at the end point x = 0 (assuming that the localization index k ∈ ;l
enumerates the wavelets in the direction of increasing values of x).

A systematic and general construction for arbitrary order biorthogonal spline wavelets is presented

in [26]. Sufficiently far apart from the end points of (0,1), biorthogonal wavelet (e.g. [20] and the
references there) bases are used in this approach. In the recent paper [38] a wavelet bases was con-

structed with slightly smaller support at the end points. Using biorthogonal wavelets in the case p = 1,

piecewise linear spline wavelets vanishing outside I = (0,1) are obtained by simple scaling. The inte-
rior wavelets have two vanishing moments and are obtained from the mother wavelet :(x) which takes
the values (0,− 1

6
,− 1

3
, 2
3
,− 1

3
,− 1

6
,0,0,0) at the points (0, 1

8
, 1
4
, 3
8
, 1
2
, 5
8
, 3
4
, 7
8
,1) by scaling and translations:

:l,k(x) := 2l/2:(2l−3x−k+2) for 2≤ k≤ 2l−3 and l ≥ 3. At the left boundary k= 1, we use the piecewise
linear function :le f t defined by the nodal values (0, 58 ,

−3
4 , −14 , 14 ,

1
8 ,0,0,0) and :right(x) = :le f t (1− x). For

additional details we refer to [38].

The following particular system of biorthogonal spline wavelet basis functions are Riesz bases for all

constant or variable order Sobolev spaces of order s ∈ [0,1] (and only these spaces arise as domains of
the infinitesimal generators of Feller-Lévy processes) and have proved efficient for our present applications

[57]. They are a biorthogonal system of piecewise linear, continuos polynomial spline wavelets which

were optimized for having small support. Their dual wavelets do not permit compact support, but they are

nevertheless exponentially decaying, i.e.,

∣∣∣.̃e(x)
∣∣∣≤Cexp(−& |x|), & > 0,x ∈ R. (6.7)

Note that the dual wavelets never enter the Galerkin discretization schemes explicitly. The biorthogonal

wavelets in the case p= 1 are continuous, piecewise linear spline wavelets vanishing outside I = (0,1) (for
general intervals I = (a,b), they are obtained by simple scalings). The interior wavelets have two vanishing
moments and are obtained from one piecewise linear, continuous mother wavelet function :(x) taking
values (0,− 1

2
,1,− 1

2
,0) at (0, 1

4
, 1
2
, 3
4
,1) by scaling and translation: :l,k(x) := 2l/2:(2l−1x− (2k− 1)2−2)

for 1≤ k ≤ 2l−2 and l ≥ 2.
The boundarywavelets are likewise constructed from the continuous, piecewise linear functions:∗, with

values (0,1,− 1
2
,0) at (0, 1

4
, 1
2
, 3
4
), and :∗, taking values (0,− 1

2
,1,0) at ( 1

4
, 1
2
, 3
4
,1): : l

0 = :∗(2l−1x) and
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:l,2l−1 = 2l/2:∗(2l−1x− 2l−1 + 1). The following results are known for wavelets satisfying the above
requirements (e.g., [20]).

Any function v ∈ H̃s(I), 0 ≤ s ≤ p+ 1, and, due to the embeddings H̃m(I) ⊂ H̃m(x)(I) ⊂ H̃m(I), in
particular any function v ∈ H̃m(x)(I) can be represented in the wavelet series

v=
!

,
l=0

Ml

,
k=1

vl,k:l,k = ,
4∈I

v4:4 , v4 =
∫

I
v:̃4dx. (6.8)

Here, we used the symbol 4 = (l,k) to denote a generic index in the index set

I := {4 = (l,k) : l = 0,1,2 . . . , k = 1, . . .Ml}.

Approximations vh of functions v ∈ H̃m(x)(I) can be obtained by truncating the wavelet expansion (6.8).
In this way, a “quasi-interpolating” approximation operatorQh : H̃

m(x)(I)→Vh, can be defined by truncating

the wavelet expansion, i.e. by

Qhv=
L−1

,
l=0

Ml

,
k=1

vl,k:l,k. (6.9)

For all vh = ,L−1l=0 ,
Ml

k=1 vl,k:l,k ∈Vh = V L, h∼ 2−L, there holds the norm equivalence

‖vh‖2H̃s(I)
∼

L−1

,
l=0

Ml

,
k=1

|vl,k|222ls, (6.10)

for all 0≤ s< 3
2
. This result is sharp in the sense that the norm equivalence fails in the upper limit s= 3/2;

spline-wavelet systems consisting of higher order, piecewise polynomials with higher regularity across

interval boundaries are known, but are not required in the present context, as the arguments in Dirichlet

forms of Feller processes must belong locally to H1(Rd), at best.
Validity of (6.10) in the variable order spaces H̃m(x)(I) was shown in [77, Theorem 3]. There, it was in

particular shown that for u ∈ H̃m(x) it holds

‖u‖2
H̃m(x)(I)

∼
!

,
l=0

Ml

,
k=1

∣∣ul,k
∣∣2 22m4 l , (6.11)

where we recall the notation 4 = (l,k) ∈ I and m4 which is defined as

m4 := inf{m(x) : x ∈<4} and m4 := sup{m(x) : x ∈<4} (6.12)

for the extended support<4 of a wavelet basis function :4 defined by

<4 :=<l,k =
⋃

4 ′∈I :l′≥l
{supp:4 ′ : supp:4 ∩ supp:4 ′ += /0}. (6.13)

For 0≤ s< 3
2 ≤ t ≤ p+1, we have the approximation property (e.g. [20])

‖v−Qhv‖H̃s(I) ≤Cht−s ‖v‖Ht (I) . (6.14)

Remark 6.1. The pricing equations can also be considered in real price variables and not in log-price vari-

ables as described above, this leads to pseudodifferential operators, whose domains are weighted Sobolev

spaces with possibly degenerated weights. An example for such kind of equations is given by the CEV

model, cf. Remark 2.8 and 5.7. Norm equivalences and efficient preconditioning for this kind of equations

has been considered by [10]. The corresponding norm equivalence for a weighted space L2w(0,1) with norm
‖u‖2L2w =

∫ 1
0 w(x)2u(x)2 dx reads:

‖v‖2
L2w(0,1) ∼

!

,
l=0

Ml

,
k=1

|vl,k|2w2(2−lk), (6.15)
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VL

W0

W1

W2

W3

:0,1

:1,1

:2,2

:3,6

Fig. 1 Single-scale space VL and its decomposition into multiscale wavelet spacesW! for L= 3 and p= 1.

for v ∈ L2w and w being a possibly singular weight function fulfilling weak smoothness assumptions, cf.

[10, Assumption 3.1]. Note that we obtain a variable weight in the exponent in (6.11) for the variable order

Sobolev space, while we obtain a variable weight in the case of the weighted space (6.15). It is also possible

to combine the variable order Sobolev spaces and the weighted Sobolev spaces, leading to weighted variable

order spaces with analogous norm equivalences to (6.11) and (6.15).

6.2 Tensor product spaces

On D = [0,1]d , d > 1, we define the subspace VL of H̃
m(x)(D) as the full tensor product of d univariate

approximation spaces, i.e. VL :=
⊗
1≤i≤d V li , which can be written as

VL =
{
:l,k : 0≤ li ≤ L−1,ki ∈;li , i= 1, . . . ,d

}
,

with basis functions:l,k = :l1,k1 · · ·:ld ,kd , 0≤ li ≤ L−1, ki ∈;li , i= 1, . . . ,d. We can writeVL in terms of
increment spaces

VL =
⊕

0≤li≤L−1
W l1 ⊗ . . .⊗W ld .

Therefore, we have for any function u ∈ L2(D) the series representation

u =
!

,
li=0

,
ki∈;li

ul,k:l,k.

Using the one dimensional norm equivalences and the intersection structure we obtain

‖u‖2
Hm(x) ∼,

4

(
2
2m1

41
l1 + . . .+2

2md
4d
ld

)
|u4 |2 . (6.16)

Corollary 6.2. Let u ∈ Hs(D)∩ H̃1(D) for some 1≤ s≤ p+1. Then for the quasi-interpolant uh = Qhu=

,L−1li=0,
Mli

k=1 ul,k:l,k there holds for 0< m< 1≤ s≤ p+1 the Jackson estimate

‖u−uh‖2H̃m(x)(D)
!
∫

I

(
22L(m1(x1)−s) + . . .+22L(md(xd)−s)

)
(|Dsu(x)|2+ |u(x)|2)dx

! 22L(m−s)‖u‖2Hs(D),

where m=maxi=1,...,d mi.

Proof. For multi-indices 4 = (l,k),µ = (L,k′) ∈ I , we introduce the notation 4 < µ if li ≥ Li and

supp:4i ∩ supp:µi += /0 for all i = 1, . . . ,d. For s ≥ 3
2
we choose s′ < s with 1 ≤ s′ < 3

2
, otherwise we
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set s′ = s. We observe that m4i
− s′ ≤ mµi − s′ < 0 holds for all 4i < µi . Therefore we conclude from the

norm equivalence (6.16)

‖u−uh‖2H̃m(x)(D)
∼ ,

li≥L

Mli

,
ki=1

(
2
2l1m

1
41 + . . .+2

2ldm
d
4d

)
|u4 |2

= ,
li≥L

Mli

,
ki=1

(
2
2l1(m

1
41
−s′)
22l1s

′
+ . . .+2

2ld(m
d
4d

−s′)
22lds

′
)
|u4 |2

! ,
µ∈;L

(
2
2L(m1µ1−s

′) + . . .+22L(m
d
µd

−s′)
)

× ,
4<µ

(
22s

′l1 + . . .+22s
′ld
)
|u4 |2,

where ;L = {µ = (L,k′) : k′i = 1, . . . ,ML , i= 1, . . . ,d}.
Let µ = (L,k′), L = |µ | and !µ := = d

i=1[2
−Lk′i,2

−L(k′i +1)]. Then, by the norm equivalence (6.16) and
the approximation property (6.14), we have

,
µ∈;L

,
4<µ

(
22s

′l1 + . . .+22s
′ld
)
|u4 |2 ! ,

µ∈;L
22L(s

′−s)‖u‖2Hs(!µ ) .

Recalling that 2Lm
i
µ ∼ 2Lmi(xi) ∼ 2Lm

i
µ holds for all x ∈ !µ , we obtain the final result

‖u−uh‖2H̃m(x)(D)
!
∫

I

(
22L(m1(x1)−s) + . . .+22L(md(xd)−s)

)
(|Dsu(x)|2+ |u(x)|2)dx

! 22L(m−s) ‖u‖2Hs(D) .

6.3 Space discretization

For computational reasons it is convenient to consider the PIDE formulation of the Feller generator AX

with symbol a(x,# ). For u ∈ S(Rd) we can write as in (2.6):

AXu(x) =
1

(2")d

∫

Rd
a(x,# )û(# )d#

= −$(x) ·;u(x)+
d

,
k,l

Qkl(x)1klu

+
1

(2")d

∫

Rd
ei# ·x
∫

Rd

(

1− eiy·# +
iy ·#
1+ |y|2

)

N(x,dy)û(# )d#

= −$(x) ·;u(x)+
d

,
k,l

Qkl1klu

+
1

(2")d

∫

Rd

∫

Rd
ei# ·x

(

1− eiy·# +
iy ·#
1+ |y|2

)

û(# )d# N(x,dy)

= −$(x) ·;u(x)+
d

,
k,l

Qkl1klu

+
∫

Rd

(

u(x)−u(x+ y)+
y ·;xu(x)
1+ |y|2

)

N(x,dy)

︸ ︷︷ ︸
A C
J u

.
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If we assume X to be an admissible market model, we can drop the damping factor 1

1+|y|2
and replace

the measure N by the corresponding jump kernel k in the above calculation, due to (4.13). We convert the

canonical jump operator A C
J into the integrated jump operator AJ , due to an analogous argument to [85,

Lemma 2.2.7],

AJu(x) =
d

,
i=1

∫

R
(u(x+ yiei)−u(x)− yi1iu(x))ki(xi,yi)dyi

+
d

,
j=2

,
|I|= j

I1<...<Ij

∫

R j

1 ju

1yI
(x+ yI)FI((Uk(xk,yk))k∈I)dy

I ,

where F is the Lévy copula of X and Uk are the corresponding tail integrals. The corresponding bilinear

form reads

EJ(·, ·) =
d

,
i=1

∫

R

∫

Rd
(u(x+ yiei)−u(x)− yi1iu(x))v(x)ki(xi,yi)dxdyi

︸ ︷︷ ︸
(I)

+
d

,
j=2

,
|I|= j

I1<...<Ij

∫

R j

∫

Rd

1 ju

1yI
(x+ yI)v(x)FI ((Uk(xk,yk))k∈I) dxdy

I.

Remark 6.3. The marginal jump kernels ki(x,y) can have a singularity at yi = 0 of order 1+*i < 3, so

a numerical evaluation of the discretized bilinear form for nonsmooth arguments (such as the continuous,

piecewise linears) is not straightforward, since the condition (2.5) on the jump measure N(x,dy) implies
that possibly nonintegrable singularities could arise in the densities ki(xi,yi) in the representation of Aju(x),
unless u is locally in C1,1 in that representation. This is not the case, however, for the piecewise linear,

continuous wavelet functions. Therefore, in our implementations, we use antiderivatives of ki to remove

nonintegrable singularities that are easier to handle. Specifically, we use the following equality for (I) for

smooth u and v:
∫

R

∫

Rd
(u(x+ yiei)−u(x)− yi1iu(x))v(x)ki(xi,yi)dxdyi

=
∫

R

∫

Rd
1 2i u(x+ yiei)v(x)k

(−2)
i (xi,yi)dxdyi

= −
∫

R

∫

Rd
1iu(x+ yiei)1iv(x)k

(−2)
i (xi,yi)dxdyi (6.17)

−
∫

R

∫

Rd
1iu(x+ yiei)v(x)1ik

(−2)
i (xi,yi)dxdyi.

Therefore, the jump part of the bilinear form can be written as

EJ(u,v) = −
d

,
i=1

∫

R

∫

Rd
1iu(x+ yiei)1iv(x)k

(−2)
i (xi,yi)dxdyi

+
∫

R

∫

Rd
1iu(x+ yiei)v(x)1ik

(−2)
i (xi,yi)dxdyi

+
d

,
j=2

,
|I|= j

I1<...<Ij

∫

R j

∫

Rd

1 ju

1yI
(x+ yI)v(x)FI ((Uk(xk,yk))k∈I)dxdy

I.

This representation is well-defined also for compactly supported functions u, v which have only local inte-

grable, weak first derivatives, such as the spline wavelet functions introduced above.

Remark 6.4. The major differences to the Lévy case reside in the second term of (6.17) and the x-

dependence of the integration kernels. In order for the described procedure to be feasible, the second an-

tiderivatives of the jump kernel need to be available. This is the case for many processes such as CGMY-type

or Variance Gamma-type Feller processes, for instance.
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Using the wavelet basis described above, we have to compute the stiffness matrix of the diffusion part and of

the jump part of the bilinear form. The computation of the stiffness matrix for the diffusion part is standard

(e.g. [85]). In what follows, we therefore focus on the jump part

AJ(l′,k′),(l,k) = −
d

,
i=1

∫

R

∫

DR

1i:l,k(x+ yiei)1i:l′,k′(x)k
(−2)
i (xi,yi)dxdyi

+
∫

R

∫

DR

1i:l,k(x+ yiei):l′ ,k′(x)1ik
(−2)
i (xi,yi)dxdyi

+
d

,
j=2

,
|I|= j

I1<...<Ij

∫

R j

∫

DR

1 j:l,k
1yI

(x+ yI):l′ ,k′(x)F
I((Uk(xk,yk))k∈I)dxdy

I.

We define the one-dimensional matricesMi:

Mi
(l′,k′),(l,k) :=

∫ R

−R
:l,k:l′,k′dx.

Additionally, we define

Ai(l′,k′),(l,k) := −
∫

R

∫ R

−R
: ′
l,k(x+ z): ′

l′,k′(x)k
(−2)
i (x,z)dxdz

−
∫

R

∫ R

−R
: ′
l,k(x+ z):l′,k′(x)1xk

(−2)
i (x,z)dxdz

and

AI(l′I ,k
′
I ),(lI ,kI)

:=
∫

R|I|

∫

[−R,R]|I|
1 I:lI,kI(x+ z):l′I,k′I(x)

×FI((Uk(xk,yk))k∈I)dxdz.

We can now write the jump stiffness matrix as

AJ(l′,k′),(l,k) =
d

,
i=1

,
|I|= j

I1<...<Ij

AI(lI′,k′I),(lI,kI)0
i∈Ic

Mi
(l′i ,k

′
i),(li,ki)

.

The matrix AJ is densely populated due to the non-local character of the operator AJ .

6.4 Wavelet compression

Compression schemes of the matrix AJ aim at reducing of the complexity of the computation to essentially

the complexity of discretizations for generators of diffusion processes (as the appear, e.g., in the Black-

Scholes model). This can be achieved by defining an appropriate approximation matrix ÃJ corresponding

to a bilinear form ã(u,v). The analysis of compression schemes for high-dimensional anisotropic Lévy
type operators was done by [64, 65, 66]. Processes with state spaces in R1 whose generators are Sobolev

spaces of variable order were treated by [77]. The analysis in [77] can be extended to processes with state

spaces in R1 whose generators are Sobolev spaces of variable order. The extension of norm equivalences

for generators of processes in Rd with domains that are Sobolev spaces of anisotropic, variable orders is in

progress.
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7 Computational scheme

7.1 Time discretization

In order to obtain a fully discrete approximation (in space and time) to the parabolic problem (5.7), we

have to discretize the semi-discrete formulation in time. This can be done for example via discontinuous

Galerkin time stepping as in [79] or by the 9 -scheme. We will present the preconditioning for the 9 -scheme
in more detail. Multilevel preconditioning in the implementation of dG-time stepping is analogous to [77,

Section 6.3.2].

At each time step, we need to solve a linear system

(M+9> tA)um+1
L = (M− (1−9 )> tA)umL ,

at each time step m= 0, . . . ,M−1, with u0L = uL,0, where u
m
L denotes the coefficient vector of uL(tm, ·),M

the mass matrix and A the stiffness matrix in the corresponding basis. For the iterative solution of these

systems we use multilevel preconditioning obtained through the wavelet norm equivalences. We obtain for

u ∈VL+1 with coefficient vector u

|u|2 ! (u,Mu) ! |u|2 ,

due to (6.16). We denote by DA the diagonal matrix with entries 2
2m1

41
l1 + . . .+ 2

2md
4d
ld
. Then we obtain,

from (6.16) and the well-posedness:

(u,DAu) ! (u,Au) ! (u,DAu).

Thus, we have

(u,Du) ! (u,Bu) ! (u,Du),

with D= I+9> tDA and B=M+9> tA. Finally we obtain for û= D1/2u:

|û|2 !
(
û,D−1/2BD−1/2û

)
! |û|2 .

Therefore, we can iteratively solve the linear system B̂û = b̂ with GMRES in a number of steps that is

independent of the level index L, where B̂ = D−1/2BD−1/2 and b̂ = D−1/2b̂. The discretization of (5.22)
can be performed in a similar fashion with 9 = 1, i.e., an implicit Euler scheme, and leads to the following

system to be solved at every timestep:

(M+9> tA)um+1
L ≥ (M− (1−9 )> tA)umL , (7.1)

(um+1
L − g̃

L
)*
(
M(um+1

L −umL )+ (> tA)(9um+1
L − (1−9 )umL )

)
= 0 (7.2)

with u0L = uL,0 and u
m+1
L ∈ Km+1, Km+1 := {u ∈ RNL |u ≥ g̃m+1}, where g̃m denotes the coefficient vector

of g̃tm in the corresponding basis. The system (7.1)-(7.2) can be solved using the projected successive over-

relaxation (PSOR) method, for example. The use of PSOR for a hierarchical discretization is not optimal

as the sign of the coefficient vector entries is crucial. The discretization of (5.25) can be carried out anal-

ogously. Using this method we do not have to rely on the PSOR method and can exploit the hierarchical

structure of the basis.

Remark 7.1. An analogous discretization scheme can be applied for time-inhomo- geneous problems, cf.

Section 2.2. Using an implicit Euler scheme convergence of the solution of the discretized problem to the

weak solution (in an appropriate sense) can be shown under weak smoothness assumptions on the time-

dependence of the coefficients.
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7.2 Numerical quadratures

As seen in the previous section we have to compute matrix entries of the form:

A(l′,k′),(l,k) =
∫

Rd

∫

DR

11 . . .1d:l,k(x+ y):l′,k′(x)&(x,y)dxdy (7.3)

We consider the following class of function. The kernels we consider fall into this class due to Theorem 4.1

and Lemma 4.2.

Assumption 7.2 Let f ∈ L1([0,1]d× [0,1]d). There exist 0< * < d, * +∈ N, C> 0, - ∈ (0,1), such that for
k,m ∈ N0, i= 1, . . . ,d

∣∣∣1 k#i1
m
xj
f (x,# )

∣∣∣! k!m!Ck+m ‖#‖−*! #−k
i #−-

j , ∀# ,x ∈ (0,1)d. (7.4)

We are now able to prove the exponential convergence in the number of quadrature points of a quadrature

rule for the matrix entries A(l′,k′),(l,k). Therefore we denote the Gauss-Legendre integration rule on [0,1]

by Q
[0,1]
g f = ,

g
j=1?g, j f (#g, j) and obtain the following error estimate for f ∈ C2g([0,1]) using Stirling’s

formula:

∣∣∣E [0,1]
g f

∣∣∣ :=
∣∣∣I[0,1] f −Q

[0,1]
g f

∣∣∣!
2−4g

(2g)!
max
#∈[0,1]

∣∣∣ f (2g)(# )
∣∣∣ .

In the multidimensional case we obtain a similar error estimate for f ∈C2g([0,1]d) using [85, Lemma 5.1.1.]

∣∣∣E [0,1]d
g f

∣∣∣!
2−4g

(2g)!

d

,
i=1

max
#∈[0,1]d

∣∣∣1 (2g)
i f (# )

∣∣∣ . (7.5)

We are now able to define a composite quadrature rule as in [81]. Let a geometric partition on [0,1] be given
by 0< 'n < 'n−1 < .. . < ' < 1, for n∈ N, ' ∈ (0,1). We denote the subdomains by/ j := ['n+1− j,'n− j],
with j = 1, . . . ,n and/0 = [0,'n]. Given a linear degree vector q ∈ Nd and q j = =µ j> with slope µ > 0, we

use on each subdomain/ j, j = 1, . . . ,n a Gauss quadrature with degree q j and no quadrature points in /0.
The composite Gauss quadrature rule is defined by

Q
n,q
' f =

n

,
j=1

Q
/ j
q j f

and exponential convergence can be proven.

Theorem 7.3. Let f satisfy (7.4). consider

' ∈ (0,1) such that w=
C(1−')

4'
< 1, (7.6)

and linear degree vectors (q1, . . . ,qd), q j = (q j1, . . . ,q
j
n),

qij = =µ ij>, with slopes µ i >
(1− *

d
) ln'

2lnw
. (7.7)

Then we obtain for any fixed x ∈ [0,1]d

∣∣∣I[0,1]
d

f −Q
n,(q1,...,qd)
' f

∣∣∣! e−$
2d√
N . (7.8)

Proof. The proof can be found in [85, Theorem 5.2.3].

We will use composite Gauss quadrature rules in the y-variable and standard Gauss quadratures in the

x-variable.

Theorem 7.4. We consider the following quadrature rule for an f with Property 7.2:
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Q=Q
n,(q1,...,qd)
' ⊗Qg

and prove the following estimate for the error defined as

E[ f ] =
∣∣∣I[0,1]

d
f −Qf

∣∣∣! e
2d√
N ,

for g= 8d
√
N.

Proof.

E[ f ] = I
[0,1]d

1 ⊗
(
I
[0,1]d

2 −Qg

)
f +
(
I
[0,1]d

1 −Q
n,(q1,...,qd)
'

)
⊗Qg f (7.9)

!
∫

[0,1]d

2−4g

(2g)!
max
x∈[0,1]d

∣∣∣∣∣
1 (2g) f

1x
(x,# )

∣∣∣∣∣ d# + e−$n
d

,
k=1

g

,
j=1

?g, j,k (7.10)

! e−4g
2
+ e−$n. (7.11)

The number of quadrature points N can be bounded by N ! n2d . Therefore we obtain exponential conver-

gence in the number of quadrature points choosing g= 8d
√
N.

Remark 7.5.We can obtain exponentially converging integration schemes under weaker assumptions on

the integration kernel using [19].
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8 Alternative pricing approaches

In the following we briefly survey on two different approaches to pricing under Feller processes.

8.1 Monte Carlo simulation

In [12] a very general framework for the simulation of paths for Feller processes is presented. For an analysis

of path properties of Feller processes we refer to [72, 74, 73]. Under minimal assumptions on coefficients,

they provide a method for path simulation. Their algorithm is based on an approximation of a Feller process

by a Markov chain with Lévy increments. In each time step the corresponding transition operator is a PDO

with constant symbol. This method presents to our knowledge the only approach to the simulation of a

general Feller process. Unfortunately it is not feasible for pricing as approximation rates cannot be obtained

as convergence is observed in the Skorohod topology without a rate. The algorithm consists of the following

steps:

(1) Freeze the Feller symbol at Xti = xi.

(2) Simulate a Lévy increment with characteristic function a(xi,# ).
(3) Obtain an approximation at Xti+1 and go back to (1).

We illustrate the algorithm with two examples. First we consider a NIG type model that was proposed by

[5].

Example 8.1. The symbol of the NIG-type Feller process is given by

a(x,# ) = −i$(x)# + - (x)
[
(*(x)2− () (x)+ i# )2)1/2− (*(x)2−) (x)2)1/2

]
,

where we obtain the characteristic function of an NIG process omitting the dependence on x. The parameters

of the NIG process have a nice interpretation. The parameter ) describes the asymmetry, while * −) and
*+) describe the rate of exponential decay at the right and left tail, - is a scaling parameter and $ describes
the drift. For details on the NIG distribution we refer to [4]. A variable function ) (x) is chosen in order to
model mean-reverting behaviour, i.e.,

) (x) = −2
@

"
arctan(Ax).

The other parameters are chosen to be constant. Due to properties of the NIG distribution we have to set @
s.t. |@ |< * holds. NIG random numbers can be generated by sampling a standard Brownian motion and an
IG process, we refer to [80] for details. Figure 2 shows 10 sample paths of this Feller NIG-type process.

Now we consider a CGMY-type model as described in Example 4.12. The simulation of CGMY distributed

random numbers is not straightforward. We therefore use Fourier techniques, i.e., we apply the discrete

Fourier transform to the characteristic function of the corresponding random variable and obtain an approx-

imation of the probability distribution function. Figure 3 shows sample paths generated by this method.

8.2 Fourier pricing

A large amount of literature has been devoted to regular affine processes, we refer to the fundamental mono-

graph [31] for a theoretical introduction. These are multidimensional jump diffusions with coefficients that

depend affinely on the state variables. Due to [31, Theorem 2.7] regular affine processes are Feller processes

with C!0 (Rd) contained in the domain of the generator. The characteristic function y→ E[exp(i〈y,Xt〉)] is
for each y available as the solution of a (multidimensional) Riccati equation. Therefore, Fourier pricing

methods can be employed to price a variety of contracts. We refer to [18, 9, 33] for details and briefly

describe the approach discussed in [33] for the one dimensional case, the multidimensional extension is

straightforward with a more involved notation.
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Fig. 2 Sample paths in of a Feller NIG model as in Example 8.1 with * = 2, @ = 1.5, - = 1 and $ = 0.

Consider an option with payoff g(XT ) = g̃(XT + s), where X is the underlying regular affine process and
s = logS0. For sake of notational simplicity suppose t = 0. Since the payoff g(k) may tend to a positive
constant or infinity as k → ±!, the Fourier transformation of g(k) does not exist, in general. Therefore,
instead of g(k) one has to consider the damped payoff h(k) = e*kg(k) with an appropriately chosen damp-

ing constant * ∈ R, such that h ∈ L1bc(R), ĥ ∈ L1(R) and E[exp(*XT )] < ! holds, where L1bc(R) denotes
the space of all bounded continuous functions in L1(R). The option price u(t,x) is then given by, cf. [33,
Theorem 2.2]

u(0,s) =
e*s

2"

∫

R
e−izs8XT (−z− i*)ĝ(z+ i*)dz

= e*sF−1[F [g(y)](z)8XT (−z)](s), (8.1)

where 8XT is the extended characteristic function of the random variable XT , F denotes the Fourier trans-

form andF−1 denotes the generalized inverse Fourier transformation shifted by i* .

Remark 8.2. The assumptions on the payoff function g can be relaxed such as to include discontinuous

payoffs like barrier options, cf. [33, Remark 2.3]. Theoretically, the pricing problem could be considered

for much more general market models, i.e., in a general semimartingale setting, leading to analogous pric-

ing formulas to (8.1). But the characteristic function will not be easily available in this case, making the

pricing approach non feasible. Pricing formulas for options on the supremum or infimum of the underlying

process, such as lookback or one-touch options, can be derived in an analogous way, considering them as

plain vanilla options on the supremum or infimum process. The (extended) characteristic function for the

supremum and infimum process can be derived in the Lévy case, cf [33, Section 5].

In most cases the Fourier transformation of g(y) has to be evaluated numerically and one hence has to cal-
culate both F and F−1 in (8.1) numerically. In dimension d = 1 however the Fourier transformation of

most payoffs can be obtained analytically, cf. [13, 33, 56] and only one Fourier transformation, i.e.,F−1 in
(8.1), has to be evaluated numerically.

We now briefly describe the discretization of the arising multidimensional Fourier integrals. The multi-
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Fig. 3 Sample paths in of a Feller CGMYmodel as in Example 4.12 withm(x) = exp(−x2)+0.2, )− = 9, )+ = 7 andC = 1.

dimensional discrete Fourier transform of a given series of data points f j is given by the collection

f̂k =
N−1

,
j1=0

· · ·
N−1

,
jd=0

e2" i〈k, j〉/N f j , kn = 0, . . . ,N−1, n= 1, . . . ,d . (8.2)

To compute f̂k, kn = 0, . . . ,N−1, n= 1, . . . ,d one a-priori needs O(N2d) operations. Utilizing the so-called
fast Fourier transform [21, 62, 84] this computational cost can be reduced to O(Nd logN), we refer to
[35] for details on the implementation. For instance, suppose we want to approximate the inverse Fourier

transform of a function f (z) with a discrete Fourier transform (to solve (8.1) one may choose f (z) =
F [g(y)](z+ i*)8XT (−z− i*)). Then, the integral can be truncated and discretized using the trapezoidal
rule:

F
−1[ f (z)](x) =

∫

Rd
e−i〈x,z〉 f (z)dz ≈

∫

[−R,R]d
e−i〈x,z〉 f (z)dz

≈
N−1

,
j1=0

· · ·
N−1

,
jd=0

? j f (z j)e
−i〈x,z j〉 ,

with discretization step >z = 2R
N−1 , z

n
jn

= −R+ jn>z in Fourier space and suitable weights wj , see e.g.

[45]. Herewith, in order to obtain an approximate value of u(t,x) in (8.1) for any x ∈ Rd , we also have to

discretize the spot price or x-domainRd . For this, we define an additional grid by setting xnjn = −R2+kn>x

with step size >x= 2R2
N−1 and given R2 > 0. With the relation

>z ·>x=
2"

N
(8.3)

we then find
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F−1[ f (z)](xk) ≈ eiR〈xk,1〉
N−1

,
j1=0

· · ·
N−1

,
jd=0

e−i2"〈k, j〉/N? j f (z j)e
iR2> z〈1, j〉 = eiR〈xk,1〉 f̂k .

This expression can now be evaluated very efficiently using the fast Fourier transform as mentioned above.

Also note that by (8.3) the discretization of the Fourier space and the spot price space are related and cannot

be chosen independently. No time stepping is required and for d = 1 dimension only O(N logN) work is
needed to obtain the price at N spot prices. For convergence rates and error analysis see [55].

The main advantage of Fourier based pricing in comparison with FEM based algorithms is the compu-

tation speed in certain cases. For plain vanilla contracts in market models where the characteristic function

is available in closed form Fourier methods are significantly more efficient. Note that Fourier techniques

can also be employed for a wide range of stochastic volatility models, cf. [58, 33]. Although many of these

models fall into the class of Feller processes, we cannot directly employ the FEMmethods developed above,

as the symbols of these processes do not fulfill property (a) of Theorem 2.5. FEM techniques for stochastic

volatility models have been considered, e.g., by [39].

Shortcomings of the Fourier approach are that the solution of the Riccati equations can be computationally

expensive, if the characteristic function cannot be computed analytically, besides the pricing of exotic and

early exercise contracts is not trivial in many cases. Finally, Fourier techniques are to our knowledge not

feasible for general Feller processes. For details on regular affine processes we refer to [31, 32, 53].
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9 Numerical examples

We conclude our presentation with several computational examples to illustrate the performance of our

solution algorithms. All applications are taken from the pricing of derivative contracts on Lévy and Feller-

Lévy market models. Our emphasis of the examples given below is to demonstrate that a) the methods

handle Lévy as well as Feller-Lévy and Sato processes in a unified approach, with comparable efficiency

(i.e. numerical accuracy versus computational work) and b) to present examples where the capability of our

methods is applied to quantify model risk. Specifically, to assess the impact of pricing under Lévy models

versus more general, Feller-Lévy models.

9.1 Univariate case

In this section we describe the implementation numerical solution methods for the Kolmogoroff equations

for Feller processes taking values in R1 using the techniques described above. We assume the risk-neutral

dynamics of the underlying asset to be given by

St = S0e
rt+Xt ,

where X is a Feller process with characteristic triple ($(x),'(x),k(x,y)dy) under a risk neutral measure Q

such that eX is a martingale with respect to the canonical filtration of X . In the following we set r = 0 for

notational convenience. We will only consider Feller processes X that are admissible market models. In
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Fig. 4 Stiffness matrices for the pure jump case with CGMY-type Lévy kernel
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Fig. 5 Stiffness and Mass matrices for the Black-Scholes model with ' = 0.3 and r = 0.
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Fig. 6 Number of non-zero entries of the compressed/uncompressed stiffness matrix versus number of degrees of freedom

corresponding to the Lévy kernel in Example 9.1 and k = 1.25.

the following we will consider a special family of Feller processes to confirm the theoretical results of the

previous chapters.

Example 9.1.We consider a CGMY-type Feller process with jump kernel

k(x,y) = C

{
e−)

+yy−1−m(x), y> 0

e−)
−|y| |y|−1−m(x) , y< 0,

m(x) = ke−x
2
+0.5.

This process has no Gaussian component and the drift $(x) is chosen according to (5.1).

We will also consider the following family of processes that do not satisfy the conditions of the theory

developed above, since the variable order is assumed to be Lipschitz continuous only.

Example 9.2.We consider again a CGMY-type Feller process with jump kernel

k(x,y) = C

{
e−)

+yy−1−m(x), y> 0

e−)
−|y| |y|−1−m(x) , y< 0,

m(x) = 0.5+ k






0.4x, 0.25> x> 0

0.8x−0.1, 0.5> x≥ 0.25
−0.4x+0.5, 0.75> x≥ 0.5
−0.8x+0.8, 1> x≥ 0.75
0.5, else

.

This process has no Gaussian component and the drift $(x) is chosen according to (5.1).

In Figure 4 the stiffness matrix for the process in Example 9.1 is depicted. Note that the uncompressed

stiffness matrix is densely populated, but structurally very similar to the matrix in the Black-Scholes model.

In a next step we study the number of non-zero entries of the uncompressed and compressed stiffness

matrix. Due to Section 6.4 we expect essentially linear growth of the number of non-zero elements for the

compressed matrix (Figure 6).

The condition numbers of the preconditioned stiffness matrices have to be uniformly bounded in the number

of levels due to Section 7.1. A parameter study for various choices of k in Example 9.1 and Example 9.2 is

shown in Figure 7. The condition numbers are uniformly bounded and of order 101 in most cases, although

the norm equivalences (6.16) only apply to Example 9.1. For variable orders with 1.95 ≤ m we obtain

condition numbers of order 102. Note that the condition numbers are not only influenced by the order of the

singularity of the jump kernel at z= 0, but also by the rates of exponential decay )+ and )−. Fast decaying
tails, i.e., large )+ and )− may lead to larger constants.
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Fig. 7 Condition numbers for different levels and choices of k.

Figure 8 shows the price of a European put option for several Lévy processes and one Feller process.

In the Feller case we choose m(x) = 0.8e−x
2
+ 0.1 in Example 9.1 and for the Lévy models we set m ∈

{0.1,0.5,0.7,0.8,0.9}. In all cases we set C = 1, )+ = )− = 10 and use truncation parameters a = −3,
b = 3 in log-moneyness coordinates. The prices in the Feller model are significantly different from the

prices in the different Lévy models. This can be explained by the ability of the Feller model to account

for different tail behaviour for different states of the process, which is not possible using Lévy processes.

Figure 9 shows the prices of American put option for a Feller process and a several Lévy models. We use a
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Fig. 8 Option prices for several models for a European put option with T = 1 and K = 100.

Lagrangian multiplier approach as described in Section 5.2 and refer to [43, 44] for more details, analogous

results were obtained using the PSOR algorithm. The parameters were chosen as above.

We now consider model sensitivities. For the computation of sensitivities w.r. to model parameters we

consider a special case of Example 9.1, i.e. k = 0 and therefore Y = 0.5 and calculate the sensitivity of
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Fig. 9 Option prices for several models for an American put option with T = 1 and K = 100.

the price w.r. to the jump intensity parameter m, where we let 0< m < 2, the rest of the parameters being

chosen as above. Then we haveS5 = (0,2) with 5 = m and

Ã (-m)8 = −-m
∫

R

{
8(x+ z)−8(x)− z1x8(x)

}
k̃(z)dz ∈ L (Ṽ ,Ṽ ∗)

where the kernel k̃ is given by

k̃(z) := − ln |z|k(z).

It is easy to check that it holds
∫
|z|≤1 z

2k̃(z)dz< !,
∫
|z|>1 k̃(z)dz < ! due to m< 2. In this setting, Ṽ =V =

H̃1(D), if ' > 0, and Ṽ = H̃m/2+A(D) ⊂ H̃m/2(D) =V , ∀A > 0, if ' = 0. We refer to [40] for more details.

Figure 10 shows the sensitivity in this model w.r. to the parameter 5 = m . As expected from Figure 8, we

observe a positive sensitivity which is significantly larger at the money, than deep out or in the money.

9.2 Multidimensional case

We consider a special case of the model presented in Example 4.12 with constant model parameters and no

diffusion, i.e., a multidimensional pure jump Lévy model. We are interested in option prices as well as the

sensitivity with respect to the copula parameter 3 . We haveS5 = (0,!) with 5 = 3 and

Ã (-3) = -3
∫

R2

1 2u

1y11y2
(x+ y)F3(U1(y1),U2(y2))dy, (9.1)

where F3 is given by:

F3 (u) =
1

3 2
F(u)

(

ln

(
d

,
i=1

|ui|−3
)

+
3 ,di=1 |ui|

−3
ln |ui|

,di=1 |ui|
−3

)

.
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Fig. 10 Computed sensitivity of a European put w.r. to the jump intensity parameter m in the CGMY model.

The following parameters were chosenC= 1, )− = [10,9], )+ = [15,16],m= [0.5,0.7], 3 = 0.5, ( = 0.5.
The option price is depicted in Figure 11 and the sensitivity is depicted in Figure 12.
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Fig. 11 European put basket price with payoff g(S1,S2) = (K − 0.5S1 − 0.5S2) in a multidimensional CGMY model with
Clayton copula with K = 100 and T = 1.
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Numerical Analysis of Feller Processes 45

Acknowledgements Partial Support by SNF under grant No. 144414 and by ERC under grant No. 247277 is gratefully

acknowledged.

References

1. AMADORI, A. (2007). Obstacle problem for nonlinear integrodifferential equations arising in option pricing. Ricerche di

matematica 56, 1–17.
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Numerical analysis of additive, Lévy and Feller processes with applica-
tions to option pricing

10-05 C. Schwab and R. Stevenson
Fast evaluation of nonlinear functionals of tensor product wavelet
expansions

10-04 B.N. Khoromskij and C. Schwab
Tensor-structured Galerkin approximation of parametric and stochastic
elliptic PDEs

10-03 A. Cohen, R. DeVore and C. Schwab
Analytic regularity and polynomial approximation of parametric and
stochastic elliptic PDEs

10-02 V. Gradinaru, G.A. Hagedorn, A. Joye
Tunneling dynamics and spawning with adaptive semi-classical wave-
packets

10-01 N. Hilber, S. Kehtari, C. Schwab and C. Winter
Wavelet finite element method for option pricing in highdimensional
diffusion market models

09-41 E. Kokiopoulou, D. Kressner, N. Paragios, P. Frossard
Optimal image alignment with random projections of manifolds: algo-
rithm and geometric analysis

09-40 P. Benner, P. Ezzatti, D. Kressner, E.S. Quintana-Ort́ı, A. Remón
A mixed-precision algorithm for the solution of Lyapunov equations on
hybrid CPU-GPU platforms

09-39 V. Wheatley, P. Huguenot, H. Kumar
On the role of Riemann solvers in discontinuous Galerkin methods for
magnetohydrodynamics

09-38 E. Kokiopoulou, D. Kressner, N. Paragios, P. Frossard
Globally optimal volume registration using DC programming

09-37 F.G. Fuchs, A.D. McMurray, S. Mishra, N.H. Risebrom, K. Waagan
Approximate Riemann solvers and stable high-order finite volume
schemes for multi-dimensional ideal MHD

09-36 Ph. LeFloch, S. Mishra
Kinetic functions in magnetohydrodynamics with resistivity and hall ef-
fects


