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FAST EVALUATION OF NONLINEAR FUNCTIONALS OF
TENSOR PRODUCT WAVELET EXPANSIONS

CHRISTOPH SCHWAB AND ROB STEVENSON

Abstract. For a nonlinear functional f , and a function u from the span of a
set of tensor product interpolets, it is shown how to compute the interpolant
of f(u) from the span of this set of tensor product interpolets in linear com-
plexity, assuming that the index set has a certain multiple tree structure. Ap-
plications are found in the field of (adaptive) tensor product solution methods
for semilinear operator equations by collocation methods, or after transforma-
tions between the interpolet and (bi-) orthogonal wavelet bases, by Galerkin
methods.

1. Introduction

1.1. Background. Functions from Sobolev spaces on n-fold product domains can
be approximated very efficiently by best N -term approximation from a tensor prod-
uct wavelet basis ([Nit06, SU09]). With this type of non-linear approximation the
advantages of the linear hyperbolic cross or sparse-grid approximation are extended
to a much larger class of functions. For large classes of functions, the approximation
rates can be shown to be (nearly) independent of n.

Adaptive wavelet schemes for solving operator equations were shown to converge
with the best possible convergence rate, in linear complexity ([CDD01, CDD02,
GHS07, CDD03]). For tensor product wavelet bases, in [SS08, DSS09, SS09] such
schemes were applied to linear operator equations, with which the optimal, (nearly)
n-independent approximation rates could be realized.

When these schemes are applied to semilinear equations, the problem arises how
to evaluate the nonlinear term without loosing the linear complexity. To describe
this problem, we need to introduce some notation. Let Ψ := {ψλ : λ ∈ ∇},
Ψ̃ := {ψ̃λ : λ ∈ ∇} denote biorthogonal wavelet bases. The resulting biorthogonal
n-fold tensor product wavelet bases are then given by Ψ := {ψλ := ⊗n

i=ψλi : λ ∈
∇ := ∇n} and Ψ̃ := {ψ̃λ := ⊗n

i=ψ̃λi : λ ∈ ∇}.
Given a nonlinear function f , a subset Λ̄ ⊂ ∇, and a current approximation

u ∈ span {ψλ : λ ∈ Λ̄}, main tasks inside an adaptive wavelet scheme are
• to predict a Λ̄ ⊂ Λ ⊂ ∇ such that the distance between f(u) and the

biorthogonal projection
∑

λ∈Λ ψλ(f(u))ψ̃λ is less than some prescribed
tolerance ε in the dual norm, and subsequently

• to compute this biorthogonal projection in O(#Λ) operations, possibly up
to a quadrature error of order ε.

Date: December 15, 2009.
2000 Mathematics Subject Classification. 05C05, 15A69, 41A05, 41A63, 42C40, 65Y20,

68Q25.
Key words and phrases. Interpolets, wavelets, tensor product approximation, tree approxima-

tion, linear complexity, semilinear equations.
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2 CHRISTOPH SCHWAB AND ROB STEVENSON

In this paper, we assume that Λ is determined, i.e., we postpone the design of a
prediction step to future work, and focus on the second task being the evaluation
of the biorthogonal projection in linear complexity. By possibly enlarging Λ̄, i.e.,
by adding zero coefficients to the expansion for u, without loss of generality we can
take Λ̄ = Λ.

The obvious approach to evaluate
∑

λ∈Λ ψλ(f(u))ψ̃λ is to approximate each
term ψλ(f(u)) using quadrature. For each λ, this requires the evaluation of f(u)
in some quadrature points. Due to the multilevel structure of a wavelet basis, the
number of wavelets in the expansion u =

∑
λ∈Λ ψ̃λ(u)ψλ that do not vanish in

each of these points is not of order 1 uniformly in Λ ⊂ ∇, and, as a result, the
overall complexity of this naive implementation is not of order #Λ.

In [DSX00, BDS07], for the non-tensor product case, the following alternative
approach was developed: Restricting to Λ ⊂ ∇ that have a tree structure, and using
the local supports of the primal wavelets, in a bottom-to-top sweep the function
u =

∑
λ∈Λ ψ̃λ(u)ψλ is re-expressed in O(#Λ) operations as u =

∑
λ∈Λ̂ cλφλ, where

{φλ : λ ∈ Λ̂} is a collection of scaling functions with span{φλ : λ ∈ Λ̂} ⊃ span{ψλ :
λ ∈ Λ} and #Λ̂ = O(#Λ). Using the local supports of the dual wavelets, in a
top-to-bottom sweep the required coefficients {ψλ(f(u)) : λ ∈ Λ} can be computed
in O(#Λ) operations from a set of scaling function coefficients {φλ(f(u)) : λ ∈ Λ̆}
for some Λ̆ with span{φ̃λ : λ ∈ Λ̆} ⊃ span{ψ̃λ : λ ∈ Λ} and #Λ̆ = O(#Λ). Since
the representation u =

∑
λ∈Λ̂ cλφλ is locally finite, these scaling coefficients can

be computed at high accuracy with standard quadrature from the locally finite
representation u =

∑
λ∈Λ̂ cλφλ such that the overall complexity is O(#Λ).

The restriction to index sets that are trees which is needed for the above scheme
to work is rather harmless. Indeed, in [CDDD01] it has been shown that the
corresponding approximation classes are only slightly smaller than with fully un-
constrained best N -term approximation.

1.2. The approximation of the nonlinear term in the tensor product case
using interpolets. The above approach does not apply to tensor product wavelets,
the reason being that generally

∑
λ∈Λ ψ̃λ(u)ψλ has no locally finite scaling function

representation with a number of terms that is of the order of #Λ. Actually, for “full-
grid” collections Λ = {λ ∈ ∇ : ‖|λ|‖∞ ≤ J} such a scaling function representation
does exist, but for sparse-grid collections Λ = {λ ∈ ∇ : ‖|λ|‖1 ≤ J} it does not.

As in the non-tensor product case, we will impose some structural condition
on the sets Λ. Yet in order to retain the advantages of tensor product approx-
imation, most prominently being the n-independent rates, this condition should
allow for sparse-grid index sets, as well as for generalizations of that involving local
refinements.

To circumvent the problem that a transformation to a locally finite scaling func-
tion representation is prohibitive, our approach to compute a biorthogonal projec-
tion of f(u) – with u being given as a linear combination of tensor product wavelets
– will be based on the use of interpolets, or on tensor products of those. Note that
the duals of interpolets are finite linear combinations of Dirac functionals. Fur-
thermore, instead of

∑
λ∈Λ ψλ(f(u))ψ̃λ, we will evaluate

∑
λ∈Λ ψ̃λ(f(u))ψλ, i.e.,

we will compute a biorthogonal projection onto a span of primal tensor product
wavelets. In addition, we will assume that f is such that (f(u))(x) depends only
on u(x). Note that in this setting there is no quadrature issue.
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Considering first the non-tensor product case, the key property of interpolets is
that

∑
|λ′|>|λ| ψ̃λ′(u)ψλ′ , and so f(u)−f(

∑
|λ′|≤|λ| ψ̃λ′(u)ψλ′), vanishes on supp ψ̃λ.

Based on this property, to evaluate {ψ̃λ(f(u)) : λ ∈ Λ}, we will develop a one way,
bottom-to-top scheme with a recurrent increment of the coarsest scale by an appli-
cation of the refinement equation to ensure that the evaluation of each ψ̃λ(f(u)), i.e.,
of f(

∑
|λ′|≤|λ| ψ̃λ′(u)ψλ′), takes O(1) operations. Scaling functions in the expan-

sion for u – that arise in the process by the recurrent applications of the refinement
equation – will be dropped whenever their supports have empty intersection with
supp ψ̃λ for all λ ∈ Λ for which ψ̃λ(f(u)) still has to be evaluated. Assuming that
Λ is a tree, the overall scheme will be shown to take O(#Λ) operations.

The above bottom-to-top scheme will be the basis of our scheme to evaluate
{ψ̃λ(f(u)) : λ ∈ Λ} in the n-fold tensor product case. Assuming that Λ is a
multiple tree, this scheme will be shown to take O(#Λ) operations. Here, with
Λ being a multiple tree, here we mean that for any m ∈ Λ and 1 ≤ i ≤ n,
{k : (m1, . . . ,mi−1, k,mi+1, . . . ,mn) ∈ Λ} is a tree.

The use of interpolets to evaluate nonlinear terms was already advocated in
[GK00], mainly because of the absence of quadrature errors. The scheme used in
[GK00] in the non-tensor product case is essentially equal to that from [DSX00],
which we discussed before. The suggestion that was made that this scheme can be
the basis of a scheme in the n-fold tensor product case is however unclear to us, at
least when one aims at linear computational complexity.

1.3. Extension to tensor products of “true” biorthogonal wavelets. In or-
der to compute in the tensor product wavelet setting a biorthogonal projection of
f(u) in linear complexity, we made some compromises. First of all, we used inter-
polets which do not form stable bases in both L2 and, in more than one dimension,
in H1. Secondly, we interchanged the role of primal and dual side. For certain
types of “true” wavelets, this can be remedied as we discuss next.

To distinguish them from “true” biorthogonal wavelets, let us here denote with
ψ(I)

λ and ψ̃(I)
λ an interpolet and its dual, and let ψ(I)

λ = ⊗n
i=1ψ

(I)
λi

and similarly ψ̃(I)
λ .

Let V (I)
0 ⊂ V (I)

1 ⊂ · · · denote the multiresolution analysis corresponding to the
interpolets, and let V0 ⊂ V1 ⊂ · · · and Ṽ0 ⊂ Ṽ1 ⊂ · · · denote the primal and dual
biorthogonal multiresolution analyses corresponding some “true” locally supported
biorthogonal primal and dual wavelet systems Ψ and Ψ̃.

Let us consider the situation that the interpolets and biorthogonal wavelets are
such that for some constants L and L̃, it holds that

(1.1) Vj ⊂ V (I)
j+L, V (I)

j ⊂ Ṽj+L̃ (j ∈ N0).

Then for u =
∑

λ∈Λ̂ ψ̃λ(u)ψλ, with Λ̂ being a multiple tree and ψλ = ⊗n
i=1ψλi

and similarly ψ̃λ, f(u) can be approximated in the dual basis by the following 3
steps:

• Re-express u in terms of the interpolets, i.e., as u =
∑

λ∈Λ̄ cλψ(I)
λ . As we

will show, such a representation exists with Λ̄ being a multiple tree with
#Λ̄ = O(#Λ̂), and it can be computed in linear complexity.

• Approximate f(u) by
∑

λ∈Λ ψ̃(I)
λ (f(u))ψ(I)

λ where Λ ⊃ Λ̄ is a multiple tree
that is sufficiently large to meet a prescribed tolerance. The fact that the
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computation of this approximation requires only O(#Λ) operations is the
main topic of this work, and was discussed before.

• Re-express the obtained approximation for f(u) in terms of the dual wavelets,
i.e., in the form

∑
λ∈Λ̂ dλψ̃λ. Analogous arguments that are used in the

first step show that such a representation exists with Λ̂ being a multiple
tree with #Λ̂ = O(#Λ), and that it can be computed in linear complexity.

Note that the first and last steps are exact and so do not introduce additional
errors.

As an example of a setting in which (1.1) holds , for d ∈ {2, 3, . . .}, we consider
V (I)

j =
∑2j−1

k=0 Pd−1(k2−j , (k + 1)2−j) ∩ C(0, 1), possibly intersected with H1
0 (0, 1).

Clearly these spaces can be equipped with interpolating basis functions, and so
the corresponding multiresolution analysis with interpolets. As shown in [DGH99],
there exists a multiresolution analysis V0 ⊂ V1 ⊂ · · · that satisfies (1.1) with
Ṽj = Vj , and for which Vj+1 ∩ V

⊥L2(0,1)
j can be equipped with locally supported

orthogonal bases.
Apart from their application to semilinear equations discussed here, these piece-

wise polynomial orthogonal wavelets are very well suited for application in tensor
product wavelet algorithms. Firstly, with respect to a range of Sobolev norms, in-
cluding L2, thanks to their orthogonality, the condition numbers of the n-fold ten-
sor product basis are bounded uniformly in n. Secondly, thanks to their piecewise
smoothness, the representation of differential operators that have smooth coeeffi-
cients with respect to the tensor product basis can be very well approximated by
sparse matrices.

The condition (1.1) can also be satisfied by biorthogonal, i.e., non-orthogonal
wavelets. In a forthcoming work, we will construct such wavelets that have their
application in the solution of time-dependent problems.

Finally, we note that the whole setting of this paper can be generalized to the
use of two systems of interpolets, one for the representation of u and the other
for the representation of the approximation for f(u). In this case, condition (1.1)
should read as Vj ⊂ V (I1)

j+L and V (I2)
j ⊂ Ṽj+L̃, where (V (I1)

j )j and (V (I2)
j )j are the

multiresolution analyses corresponding to both systems of interpolets. In order
that the computation of the biorthogonal projection can be performed in linear
complexity, the interpolation points, however, should be the same for both systems.

For the case that (f(u))(x) does not only depend on u(x) but also on first
order partial derivatives of u in x, a promising option is to take the first system of
interpolets as being based on Hermite interpolation.

1.4. Organization and notation. This paper is organized as follows: In Sect. 2,
we introduce interpolets, and define parent-child relations on the index set of these
functions. Given a nonlinear functional f , and a u from the span of a set of
interpolets, where the index set forms a tree, we give an algorithm to compute the
interpolant of f(u) from the span of this set of interpolets in linear complexity. In
Sect. 3, we extent this algorithm to tensor products of interpolets, with index sets
that forms multiple trees. Finally, in Sect. 4, we show that for certain types of (bi)-
orthogonal wavelet bases, basis transformations in linear complexity can be made
between (primal) wavelets and interpolets, and interpolets and (dual) wavelets,
with which the application of the algorithm for evaluating the nonlinear functional
is extended to “true” wavelet systems.
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In this paper, with C ! D we will mean that C can be bounded by a multiple of
D, independently of parameters on which C and D may depend, possibly with the
exception n being the number of factors in a tensor product. Obviously, C " D is
defined as D ! C, and C ! D as C ! D and C " D.

2. Evaluation of a nonlinear functional in the non-tensor product
case

2.1. Interpolating scaling functions and wavelets. Let

V0 ⊂ V1 ⊂ · · ·
be a nested sequence of finite dimensional spaces of real-valued functions on some
domain Ω, where we have in mind a sequence constructed using dyadic refinements.
For simplicity, we will assume that Ω is convex, but the results we are going to derive
can be extended straightforwardly to non-convex Ω by re-defining the distance
between points in Ω as the length of the shortest path in Ω connecting them.

We assume to have bases

Φj = {φj,k : k ∈ Ij}
for Vj available, where the φj,k are known as scaling functions, such that

(2.1) diam suppφj,k ! 2−j (localness),

such that any subset of Ω with diameter 2−j has non-empty intersection with the
supports of a uniformly bounded number of φj,k (the bases are locally finite), and
such that the scaling functions are interpolating with respect to a nested sequence
of points in Ω. That is, identifying Ij with a set of points in Ω, we assume that
Ij ⊂ Ij+1 and

φj,k(m) = δk,m (m ∈ Ij).
Setting

Jj+1 := Ij+1 \ Ij ,

a further natural assumption is that there exists a constant c1 > 0 such that for
j ≥ 1 and all x ∈ Ω,

(2.2) B(x; c12−j) ∩ Jj += ∅.
Because of the nestedness of the Vj and since Φj+1 is interpolating, each φj,k

can be expressed as

(2.3) φj,k =
∑

m∈Ij+1

φj,k(m)φj+1,m = φj+1,k +
∑

m∈Jj+1

φj,k(m)φj+1,m,

where the second equality is a consequence of Ij ⊂ Ij+1 and the fact that Φj is
interpolating. The localness and locally finiteness of the scaling functions shows
that the numbers of non-zero coefficients φj,k(m) in these expansions are bounded,
uniformly in j and k.

From (2.3), one infers that

Φj ∪ {φj+1,m : m ∈ Jj+1}
is a basis for Vj+1. The functions φj+1,m for m ∈ Jj+1 are also known as the
interpolatory wavelets or interpolets on level j + 1, and we will denote them as
ψj+1,m. A repetition of the argument shows that for any N0 . & ≤ j + 1,

Φ" ∪ {ψ"+1,m : m ∈ J"} ∪ · · · ∪ {ψj+1,m : m ∈ Jj+1}
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is a basis for Vj+1. Throughout this work, the integer & will indicate the (current)
“coarsest level”. For convenience, we set ψ0,m := φ0,m for m ∈ J0 := I0.

Proposition 2.1. With δm ∈ C(Ω)′ being defined by δm(f) = f(m), and I−1 := ∅,
the collections

∞⋃

j=0

{ψj,m : m ∈ Jj}

and
∞⋃

j=0

{
ψ̃j,m := δm −

∑

k∈Ij−1

φj−1,k(m)δk : m ∈ Jj

}

are biorthogonal.

Proof. For j < j′ and m ∈ Jj , m′ ∈ Jj′ , it holds that ψ̃j,m(ψj′,m′) = 0.
For m,m′ ∈ Jj , we have ψ̃j,m(ψj,m′) = δm,m′ .
For m ∈ Jj and m′ ∈ Ij−1, using the refinement equation (2.3) we obtain that

ψ̃j,m(φj−1,m′) = (δm −
∑

k∈Ij−1

φj−1,k(m)δk)(φj,m′ +
∑

q∈Jj

φj−1,m′(q)φj,q)

= φj−1,m′(m)− φj−1,m′(m) = 0,

and so ψ̃j,m(ψj′,m′) = 0 for any j′ < j and m′ ∈ Jj′ . #
2.2. Graded trees. The localness assumption (2.1) implies that there exists a
constant c2 > 0 such that

(2.4) supp ψ̃j+1,m ⊂ B(m, c22−j).

Definition 2.2. Let c3 ≥ 0 be some constant such that c1 ≤ c2 + c3, where c1

is from (2.2), and let & ∈ N0. Then for j ≥ & and m ∈ Jj+1, all points k in

B(m; (c2 + c3)2−j) ∩
{

I" when j = &
Jj when j > &

}
are called &-parents of m, and m is called

an &-child of any of these parents k. This will be denoted as k ≺" m.
A point k is called an &-ancestor of m, and m an &-descendant of k, denoted as

k ≺≺" m, when m is an &-child of either k or of an &-descendant of k.
A set Λ ⊂ I := ∪j∈N0Ij is called a graded &-tree if whenever for some j ≥ &,

m ∈ Λ ∩ Jj+1, then so are all its &-parents.

Note that the actual grading of an &-graded tree is determined by the value of
the constant c2 + c3.

Remark 2.3. In above definition, generally a parent has more than one child and
a child has more than one parent. Actually, the condition c2 + c3 ≥ c1 guarantees
that for j ≥ & any m ∈ Jj+1 has an &-parent. In an implementation of the algorithm
that we are going to present it might be more convenient to use a datastructure
where each node in a tree has at most one parent. The graded &-tree condition on
a collection Λ can then be enforced by requiring that if m ∈ Jj+1 is in Λ, then so
is its parent as well as all elements in I" or Jj in a sufficiently large neighbourhood
this parent.

Since the sets J0, J1, J2, . . . are disjoint, for any m ∈ I there exists a unique
j = j(m) such that m ∈ Jj . We set

ψ̃m := ψ̃j(m),m.
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At the primal side, besides Φ0 +
⋃∞

j=1{ψj,m : m ∈ Jj}, for varying & ∈ N0 we
also will consider the collections Φ" +

⋃∞
j="+1{ψj,m : m ∈ Jj} which have the same

spans. For & ∈ N0 and m ∈ I, we set

ψ(")
m :=

{
ψj(m),m when j(m) > &,
φ",m otherwise.

With this definition, we have

Φ" +
∞⋃

j="+1

{ψj,m : m ∈ Jj} = {ψ(")
m : m ∈ I}.

Remark 2.4. The most important concepts in Definition 2.2 are that of graded
&-trees, &-children, parents or descendants for & = 0. For & > 0, these concepts
become relevant only after the coarsest scale has been changed from 0 into & by a
repeated application of the refinement equation (2.3).

Obviously, any Ij is a graded 0-tree. For constructing efficient approximations
of (locally) non-smooth functions, it is relevant to consider the spans of collections
{φ(0)

m : m ∈ Λ} for general Λ ⊂ I, i.e., not necessarily equal to some Ij . It has
been shown, cf. [CDDD01], that the class of functions that can be approximated
with a certain rate from the spans of a sequence of such collections becomes only
slightly smaller when instead fully general sets only index sets are considered that
are graded 0-trees.

Proposition 2.5. Let Λ ⊂ I be a graded 0-tree. Then for all m ∈ Λ, supp ψ̃m ⊂ Λ.

Proof. In view of c3 ≥ 0 and the definition of c2 in (2.4), it suffices to show that
for j ∈ N0 and m ∈ Λ ∩ Jj+1, B(m; (c2 + c3)2−j) ∩ Ij ⊂ Λ which we will do using
induction.

For j = 0, this property follows from the definition of a graded 0-tree. Suppose
the property is valid for some j − 1 ∈ N0. Let m ∈ Λ ∩ Jj+1 and p ∈ B(m; (c2 +
c3)2−j)∩ Ij . If p ∈ Jj , then p ∈ Λ follows from the definition of a graded 0-tree. If
p ∈ Ij−1, then by (2.2) there exists a q ∈ Jj with |q −m| ≤ c12−j ≤ (c2 + c3)2−j ,
so that q ∈ Λ by definition of a graded 0-tree. Since |p− q| ≤ (c2 + c3)2−(j−1), we
conclude that p ∈ Λ by the induction hypothesis. #

Remark 2.6. The above proof shows that a graded 0-tree is a graded &-tree for any
& ∈ N0. Similarly, a graded &-tree is a graded &′-tree for any N0 . &′ ≥ &.

Proposition 2.7. Let Λ ⊂ I be a graded 0-tree and g ∈ C(Ω). Then the biorthog-
onal projection IΛg :=

∑
k∈Λ ψ̃k(g)ψ(0)

k is the unique function from span{ψ(0)
k : k ∈

Λ} that is equal to g in all points of Λ, i.e., IΛg is the interpolant.

Proof. For m ∈ Λ ∩ I0, g(m) = (IΛg)(m) follows from ψ̃k(g) = g(k) when k ∈ I0

and the fact that the primal functions are interpolating with respect to nested
sequences of points. Suppose that g(m) = (IΛg)(m) for all m ∈ Λ∩ Ij−1. Then for
m ∈ Λ ∩ Jj , from Proposition 2.5, Proposition 2.1, the induction hypothesis, and
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again Proposition 2.5, we have

δm(
∑

k∈Λ

ψ̃k(g)φ(0)
k ) = ψ̃m(

∑

k∈Λ

ψ̃k(g)ψ(0)
k ) +

∑

p∈Ij−1∩Λ

φj−1,p(m)δp(
∑

k∈Λ

ψ̃k(g)φ(0)
k )

= ψ̃m(g) +
∑

p∈Ij−1∩Λ

φj−1,p(m)δp(
∑

k∈Λ

ψ̃k(g)φ(0)
k )

= ψ̃m(g) +
∑

p∈Ij−1∩Λ

φj−1,p(m)δp(g) = δm(g).

The uniqueness of IΛg follows easily from the basis functions being interpolating.
#

Proposition 2.8. Let the constant c3 in Definition 2.2 be such that

(2.5) suppφj,k′ ⊂ B(k′; c32−j) (k′ ∈ Ij) and c1 ≤ c2 + 1
2c3.

Then for k += m ∈ I, suppψ(")
k ∩ supp ψ̃m = ∅ whenever k +≺≺" m.

Proof. For j > ′ and k ∈ Ij , m ∈ I′ , or j = ′ and k += m ∈ Ij , suppφj,k ∩
supp ψ̃′,m = ∅. So in view of (2.4) and our first assumption on c3, it suffices
to prove that for k, m ∈ I with ′ := j(m) > max(j(k), &) := j and k +≺≺" m,
|k −m| > c32−j + c22−(′−1).

By definition of an &-child, this statement is valid when ′ = j + 1. Assuming
that it is valid when ′ = j + n, we consider the case that ′ = j + n + 1. Because
of (2.2), there exists a p ∈ J′−1 in a ball with radius c12−(′−1) around the point
on the line connecting m and k on distance 1

2c32−(′−1) to m, see Figure 1. By the

1
2c32−(′−1)

k

m

p

c12−(′−1)

Figure 1. Illustration with the proof of Proposition 2.8.

triangle inequality and 1
2c3 + c1 ≤ c2 + c3 by the second assumption on c3, we have

|m− p| ≤ (c2 + c3)2−(′−1) and so p ≺" m.
Necessarily k +≺≺" p, and so |k − p| > c32−j + c22−(′−2) by the induction hy-

pothesis. From |k − p| ≤ (|k −m|− 1
2c32−(′−1)) + c12−(′−1) and 1

2c3 − c1 ≥ −c2 ,
it follows that |k −m| > c32−j + c22−(′−1). #

In the following, silently we will always assume that the constant c3 satisfies the
conditions formulated in (2.5).
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2.3. The evaluation algorithm. Let f : C(Ω) → C(Ω) be a function of type

(f(u))(x) = f̄(u(x)),

where f̄ ∈ C(R), i.e., the value of f(u) in x depends only on that of u in x.
Given a graded 0-tree Λ ⊂ I and u =

∑
k∈Λ c(0)

k ψ(0)
k , our goal is to compute

IΛ(f(u)) in O(#Λ) operations, where we assume that each f̄ evaluation takes O(1)
operations. In view of Proposition 2.7, computing IΛ(f(u)) amounts to computing
{ψ̃m(f(u)) : m ∈ Λ}.

The advantage of using interpolets instead of general biorthogonal wavelets is
that in view of Proposition 2.8 only for k = m or k ≺≺0 m a term c(0)

k ψ(0)
k might

contribute to ψ̃m(f(u)). Despite of this, since for m ∈ Λ ∩ J" the number of such
terms is of order &, a direct evaluation of all ψ̃m(f(u)) cannot be performed in linear
complexity.

The idea behind the algorithm presented below is that for m ∈ Λ∩J0, ψ̃m(f(u))
can be evaluated in O(1) operations, and that for & = 1, 2, . . ., after u is re-expressed
in terms of {ψ(")

k : k ∈ I}, the same holds true for m ∈ Λ ∩ J". These recurrent
re-expressions of u will be performed by applying the refinement equation (2.3). To
ensure that the total cost of all applications of (2.3) is O(#Λ), it is needed that at
the &th stage of this process, the number of terms in the expansion with respect to
{ψ(")

k : k ∈ I} corresponding to k ∈ I" is O(#(Λ ∩ I")). This will be realized by
dropping all terms corresponding to k ∈ I" for which ψ(")

k has no &-children in Λ.
In view of Proposition 2.8, this is allowed since it will not change u on the supports
of ψ̃m for m ∈ Λ \ I".

Algorithm 2.9.
eval(Λ, (c(0)

k )k∈Λ)
% Λ has to be a graded 0-tree.

Λ(0) := Λ, u :=
∑

k∈Λ c(0)
k ψ(0)

k .
for & = 0, 1, . . . do

% the current u is of the form
P

k∈Λ(!) c(!)
k ψ(!)

k with Λ ∩ J! ⊂ Λ(!) ∩ J!.
forall m ∈ Λ ∩ J" do compute δm(f(u)) = f̄(u(m)) = f̄(c(")

m ) and
ψ̃m(f(u)) = δm(f(u))−

∑
p∈I!−1

φ"−1,p(m)δp(f(u))
% all δp(f(u)) with p ∈ I!−1 that are used here have been computed previously.

enddo
forall k ∈ Λ(") ∩ I" that have no &-child in Λ do

remove k from Λ("), and with that c(")
k ψ(")

k from the expansion for u
enddo
if Λ(") = ∅ then goto return-statement endif

forall m ∈ (Λ(") ∩ I")\(Λ ∩ J") do compute δm(f(u)) = f̄(u(m)) = f̄(c(")
m )

enddo

by applying (2.3), write the current u in the form
∑

k∈Λ(!+1) c("+1)
k ψ("+1)

k .
enddo
return {ψ̃m(f(u)) : m ∈ Λ}

Theorem 2.10. Algorithm 2.9 produces {ψ̃m(f(u)) : m ∈ Λ} in O(#Λ) operations.

Proof. Let & > 0 be given. Assume that in the previous iterations all elements of
{ψ̃m(f(u)) : m ∈ Λ ∩ I"−1} have been computed, as well as all those δp(f(u)) with
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p ∈ I"−1 that are needed for the computation of {ψ̃m(f(u)) : m ∈ Λ ∩ J"}, and
that the current u, being of the form

∑
k∈Λ(!) c(")

k ψ(")
k , is equal to the original u on

supp ψ̃m for m ∈ Λ \ I"−1. The arguments that will be given below show that these
three assumptions, in particular the last one, are valid for & = 1.

Then what is left to compute is {δm(f(u)) : m ∈ Λ ∩ J"} – which together with
previously computed δp(f(u)) with p ∈ I"−1 yields {ψ̃m(f(u)) : m ∈ Λ ∩ J"} –, as
well as {ψ̃m(f(u)) : m ∈ Λ\I"}.

In the current iteration, after performing the first task, it is allowed to drop all
terms c(")

k ψ(")
k for those k ∈ Λ(")∩ I" that have no &-childs in Λ. Indeed, since Λ is a

graded 0-tree, such k have no &-descendants in Λ, and so ψ(")
k vanishes on supp ψ̃m

for any m ∈ Λ\I" by Proposition 2.8.
Since, besides those that were already computed earlier in this iteration, in the

remainder of this iteration the δp(f(u)) for all remaining p ∈ Λ(")∩I" are computed,
and the current u is expressed in the form

∑
k∈Λ(!+1) c("+1)

k ψ("+1)
k , an induction

argument shows that the algorithm produces {ψ̃m(f(u)) : m ∈ Λ}.
The statement about the cost is a consequence of the fact that by the dropping of

indices from Λ(") before the application of (2.3), #(Λ("+1)∩I"+1) ! #(Λ∩J"+1). #

3. Evaluation of a nonlinear functional in the tensor product case

3.1. Tensor product bases and multiple trees. Let n ∈ N. For m ∈ I := In

and # ∈ Nn
0 , we set

ψ̃m := ψ̃m1 ⊗ · · ·⊗ ψ̃mn , ψ(")
m := ψ("1)

m1
⊗ · · ·⊗ ψ("n)

mn
.

Remark 3.1. For ease of presentation, we assume that the collections of primal and
(thus) dual functions are the same in all n coordinate directions. The general case
that the collections in the various coordinate directions are possibly different causes
no additional difficulties, apart from a more complicated notation.

Clearly, the collections {ψ(0)
m : m ∈ I} (0 := (0, . . . , 0)) and {ψ̃m : m ∈ I} are

biorthogonal.
Our substitute for the concept of graded &-trees in the non-tensor product case

is given by the following.

Definition 3.2. For # ∈ Nn
0 , we call Λ ⊂ I a graded #-tree when for all 1 ≤ i ≤ n

and all m ∈ Λ, the collection of all k ∈ I with (m1, . . . ,mi−1, k,mi+1, . . . ,mn) ∈ Λ
is a graded &i-tree.

If Λ is a graded #-tree, then Λ1 := {m1 : (m1, . . . ,mn) ∈ Λ} is a graded &1-tree.
For k ∈ Λ1, the collection of p ∈ In−1 with (k,p) ∈ Λ is a graded (&2, . . . , &n)-tree,
that will be denoted as Λ(k). Obviously, Λ = ∪k∈Λ1{k}×Λ(k).

Remark 3.3. Conversely, if Λ is a graded &1-tree, and for each k ∈ Λ, Λ̄(k) is some
graded #̄ := (&2, . . . , &n)-tree, then ∪k∈Λ{k} × Λ̄(k) is not necessarily a graded #-
tree. Indeed, if k ≺"1 ǩ ∈ Λ, and p ∈ Λ̄(ǩ), then not necessarily p ∈ Λ̄(k). So, in
other words, a graded &1-tree of graded #̄-trees is not necessarily a graded #-tree.

As we will see, by a combination of Proposition 3.8 and Corollary 3.10, if Λ
is a graded #-tree, and k = (k1, k̄) ∈ I"1 × In−1 such that k1 has no &1-child p

with (p, k̄) ∈ Λ, then suppψ(")
k ∩ supp ψ̃m = ∅ for all m ∈ Λ with m1 ∈ I\I"1 .

This property will turn out to be essential, and cannot be guaranteed when Λ is
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only a graded &1-tree of graded #̄-trees. The application of this property will be in
the evaluation of ψ̃m(f(u)) for an f such that f(u)(x) depends only on u(x). If
suppψ(")

k ∩ supp ψ̃m = ∅ for all m for which ψ̃m(f(u)) still has to be evaluated,
then obviously any multiple of ψ(")

k can be removed from an expansion for u. The
key is that the verification whether (k1, k̄) ∈ I"1 × In−1 is such that k1 has no
&1-child p with (p, k̄) ∈ Λ requires only local information from the graded #-tree Λ
that, in all but the first coordinate, is “frozen” at k̄.

Remark 3.4. The question which class of functions can be approximated with a
certain rate from the spans of {ψ(0)

m } with m running over some graded 0-trees is
outside the scope of this paper. Yet to indicate that this is a relevant class we note
the following: For 1 ≤ i ≤ n, let Λ(i)

0 ⊂ Λ(i)
1 ⊂ · · · ⊂ I be a nested sequence of

graded 0-trees. Then with ∆(i)
j := Λ(i)

j \ Λ(i)
j−1 (Λ(i)

−1 := ∅), and S ⊂ Nn
0 such that

if k ∈ S and ki > 0, then k − ei ∈ S, the set ∪k∈S∆(1)
k1
× · · · × ∆(n)

k1
is a graded

0-tree. Sparse grid index sets are of this type, as well as certain generalizations
that involve local refinements, cf. [DS09].

Remark 3.5. In the discussion in the introduction, the coarsest scale # was always
0, and the issue of gradedness was ignored. Apart from the latter, what was called
a multiple tree there corresponds to a graded 0-tree here.

Proposition 3.6. Let Λ ⊂ I be a graded 0-tree. Then for all m ∈ Λ, supp ψ̃m ⊂
Λ.

Proof. For n = 1, the statement is that from Proposition 2.5. Suppose that the
statement is valid for n − 1 ≥ 1. Let m ∈ Λ. Proposition 2.5 gives that for all
k ∈ supp ψ̃m1 , (k, m2, . . . ,mn) ∈ Λ. From the induction hypothesis we conclude
that for each of these k, {k}×supp ψ̃m2× · · ·×supp ψ̃mn ⊂ Λ or supp ψ̃m ⊂ Λ. #

Proposition 3.7. Let Λ ⊂ I be a graded 0-tree and g ∈ C(Ωn). Then the biorthog-
onal projection IΛg :=

∑
k∈Λ ψ̃k(g)ψ(0)

k is the unique function from span{ψ(0)
k :

k ∈ Λ} that is equal to g in all points of Λ, known as the interpolant.

Proof. For n = 1, the statement is that from Proposition 2.7. As a first induction
hypothesis, let us assume that the statement is valid for n − 1 ≥ 1. Let m ∈ Λ ⊂
I = In. If (j(m1), . . . , j(mn)) = 0, then g(m) = (IΛg)(m). As a second induction
hypothesis, let us assume that for some 1 ≤ i ≤ n and all m′ ∈ Λ with j(m′

k) =
j(mk) when k += i and j(m′

i) = j(mi) − 1 ≥ 0 it holds that g(m′) = (IΛg)(m′).
We show that this implies that g(m) = (IΛg)(m). Without loss of generality we
can take i = 1 and n = 2.

We write

δm1 ⊗ δm2 = ψ̃m1 ⊗ δm2 +
∑

p∈Ij(m1)−1

φj(m1)−1,p(m1) δp ⊗ δm2 .

Since Λ is a graded 0-tree, Proposition 2.5 shows that for all p ∈ Ij(m1)−1 for which
φj(m1)−1,p(m1) += 0, we have (p, m2) ∈ Λ, and so the second induction hypothesis
shows that for these p, (δp ⊗ δm2)(IΛg) = (δp ⊗ δm2)(g).
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With ḡ(y) := ψ̃m1(x 2→ g(x, y)), Proposition 2.1 and the first induction hypoth-
esis show that

(ψ̃m1 ⊗ δm2)(IΛg) = (ψ̃m1 ⊗ δm2)(
∑

k∈Λ

(ψ̃k1 ⊗ ψ̃k2)(g) ψ(0)
k1
⊗ ψ(0)

k2
)

=
∑

k2∈Λ(m1)

(ψ̃m1 ⊗ ψ̃k2)(g)δm2(ψ
(0)
k2

) = δm2(
∑

k2∈Λ(m1)

ψ̃k2(ḡ)ψ(0)
k2

)

= δm2(ḡ) = (ψ̃m1 ⊗ δm2)(g).

By a combination of both results, we conclude g(m) = (IΛg)(m).
The uniqueness follows from the basis functions being interpolating. #

Proposition 3.8. Let Λ ⊂ I be a graded #-tree. Let Λ̄ be constructed from Λ by
removing all k = (k1, k̄) ∈ Λ with k1 ∈ I"1 such that k1 has no &1-child p with
(p, k̄) ∈ Λ. Then also Λ̄ is a graded #-tree.

Proof. Suppose the statement is false. Then there exists a k that is removed and
an i ∈ {2, . . . , n} and a q ∈ I such that ki ≺"i q and (k1, . . . , q, . . . , kn) ∈ Λ̄.
But that means that there exists a p 3"1 k1 with (p, . . . , q, . . . , kn) ∈ Λ (otherwise
(k1, . . . , q, . . . , kn) would have been removed). But then also (p, . . . , ki, . . . , kn) ∈ Λ
but this contradicts the removement of k from Λ. #

A direct consequence of Proposition 2.8 is the following result:

Proposition 3.9. Let # ∈ Nn
0 and k,m ∈ I. If for some 1 ≤ i ≤ n, ki += mi and

ki +≺≺"i mi, then suppψ(")
k ∩ supp ψ̃m = ∅.

Corollary 3.10. Let Λ ⊂ I be a graded #-tree. Then for m ∈ Λ and k ∈ I\Λ,
suppψ(")

k ∩ supp ψ̃m = ∅.

Proof. If, for some m ∈ Λ and k ∈ I, suppψ(")
k ∩ supp ψ̃m += ∅, then for all

1 ≤ i ≤ n, either ki = mi or ki ≺≺"i mi, but then k ∈ Λ. #
3.2. The evaluation algorithm. Let f : C(Ωn) → C(Ωn) be given of the form
(f(u))(x) = f̄(u(x)) where f̄ ∈ C(R), i.e, the value of f(u) in x depends only on
that of u in x.

Remark 3.11. Conversely, such an f̄ defines an f : C(Ωn) → C(Ωn) for any n. In
the following, we write “f” for any of these functions.

Given Λ ⊂ I and u =
∑

k∈Λ c(0)
k ψ(0)

k , our goal is to compute IΛ(f(u)). Assum-
ing that Λ is a graded 0-tree, this amounts to computing {ψ̃m(f(u)) : m ∈ Λ}.
Since the number of k with ki ≺≺0 mi or ki = mi (1 ≤ i ≤ m) is of order∏n

i=1 j(mi), and for all these k, c(0)
k ψ(0)

k might contribute to IΛ(f(u)), a direct
evaluation of {ψ̃m(f(u)) : m ∈ Λ} is prohibitive. Instead we apply the following
recursive algorithm.

Algorithm 3.12.
tensoreval(n,Λ, (c(0)

k )k∈Λ)
% Λ has to be a graded 0-tree.

if n = 1 then eval(Λ, (c(0)
k )k∈Λ) else

Λ(0) := Λ, u :=
∑

k∈Λ(0) c(0)
k ψ(0)

k .
for & = 0, 1, . . . do
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% the current u is of the form
P

k∈Λ(!) c(!)
k ψ(!,0,...,0)

k with

% Λ ∩ (J! × In−1) ⊂ Λ(!) ∩ (J! × In−1).

forall m ∈ Λ1 ∩ J" do call tensoreval(n− 1,Λ(m), (c(")
(m,p))p∈Λ(m)),

% this yields {(δm ⊗ ψ̃p)(f(u)) : p ∈ Λ(m)}
forall p ∈ Λ(m) do compute

(ψ̃m ⊗ ψ̃p)(f(u)) = (δm ⊗ ψ̃p)(f(u))−
∑

q∈I!−1

φ"−1,q(m)(δq ⊗ ψ̃p)(f(u))

% all (δq ⊗ ψ̃p)(f(u)) with q ∈ I!−1 that are used here have been computed

% previously.

enddo
enddo
forall k = (k1, k̄) ∈ Λ(") with k1 ∈ I" and such that k1 has no &-child p

with (p, k̄) ∈ Λ do remove k from Λ("), and with that the
term c(")

k ψ(",0,...,0)
k from the expansion for u

enddo
if Λ(") = ∅ then goto return-statement endif

forall m ∈ (Λ(")
1 ∩ I")\(Λ1 ∩ J")

do call tensoreval(n− 1,Λ(")(m), (c(")
(m,p))p∈Λ(!)(m))

% this yields {(δm ⊗ ψ̃p)(f(u)) : p ∈ Λ(!)(m)}
enddo
by applying (2.3) in the first coordinate direction, write the current u in the
form

∑
k∈Λ(!+1) c("+1)

k ψ("+1,0,...,0)
k .

enddo
endif
return {ψ̃m(f(u)) : m ∈ Λ}

Theorem 3.13. Algorithm 3.12 produces {ψ̃m(f(u)) : m ∈ Λ} in O(#Λ) opera-
tions.

Proof. Let & > 0 be given. Assume that in the previous iterations all elements of
{ψ̃m(f(u)) : m ∈ Λ ∩ (I"−1 × In−1)} have been computed, as well as all those
(δq ⊗ ψ̃p)(f(u)) with (q,p) ∈ I"−1 × In−1 that are needed for the computation of
{ψ̃m(f(u)) : m ∈ Λ ∩ (J" × In−1)}; and that the current u – being of the form∑

k∈Λ(!) c(")
k ψ(",0,...,0)

k for some graded (&, 0, . . . , 0)-tree Λ(") with Λ(")\(I"×In−1) =
Λ \ (I" × In−1) – is equal to the original u on supp ψ̃m for m ∈ Λ \ (I"−1 × In−1).
The arguments that will be given below show that these assumptions are valid for
& = 1.

Then what is left to compute is {(δm ⊗ ψ̃p)(f(u)) : m ∈ Λ1 ∩ J",p ∈ Λ(m)} –
which together with previously computed (δq⊗ ψ̃p)(f(u)) with (q,p) ∈ I"−1×In−1

yields {ψ̃m(f(u)) : m ∈ Λ ∩ (J" × In−1)} –, as well as {ψ̃m(f(u)) : m ∈ Λ \ (I" ×
In−1)}.

Concerning the first task, recalling that u =
∑

k∈Λ(!) c(")
k ψ(",0,...,0)

k , given m ∈
Λ1 ∩ J" let us denote v(m) =

∑
p∈Λ(!)(m) c(")

m,pψ(0)
p1 ⊗ · · · ⊗ ψ(0)

pn−1 . Then for any y,
we have (f(u))(m, y) = f̄(u(m, y)) = f̄(v(m)(y)) = (f(v(m)))(y), where we used the



14 CHRISTOPH SCHWAB AND ROB STEVENSON

convention introduced in Remark 3.11, and so in particular,

(δm ⊗ ψ̃p)(f(u)) = ψ̃p(f(v(m))).

Since Λ(")(m) is a graded 0-tree, where 0 ∈ Nn−1
0 , using induction to the number of

factors n and Theorem 2.10, we conclude that the first task is performed by means
of the recursive call of tensoreval. After the subsequent loop over p, {ψ̃m(f(u)) :
m ∈ Λ ∩ (J" × In−1)} has been evaluated.

Next we come to the part in the algorithm in which elements are dropped. Since
Λ(")\(I" × In−1) = Λ\(I" × In−1), the condition whether k1 ∈ I" has an &-child
p with (p, k̄) ∈ Λ is the same as whether it has such a child with (p, k̄) ∈ Λ(").
As a consequence, Proposition 3.8 shows that the resulting Λ(") after the dropping
of terms is again a graded (&, 0, . . . , 0)-tree. Corollary 3.10 shows that for any k
outside this tree, so in particular for those that have been dropped, and for any m
inside this tree, suppψ(")

k ∩ supp ψ̃m = ∅. Since the tree contains Λ\(I"×In−1), we
conclude that the terms that have been dropped are irrelevant for the forthcoming
computation of {ψ̃m(f(u)) : m ∈ Λ \ (I" × In−1)}.

Besides those that were already computed earlier in this iteration, in the next
loop, the {(δm ⊗ ψ̃p)(f(u)) : p ∈ Λ(")(m)} for all remaining m ∈ Λ(")

1 ∩ I" are
computed, again using a recursive call of tensoreval.

The application of (2.3) in the first coordinate direction means that for any
k ∈ Λ(")

1 \ J"+1 and p ∈ Λ(")(k), c("+1)
k,p = c(")

k,p, and that for k ∈ J"+1 and p ∈ In−1,

c("+1)
k,p = c(")

k,p +
∑

q∈I!∩Λ(!)
1

φ",q(k)c(")
q,p,

and so
Λ("+1) = Λ(") +

⋃

k∈J!+1

⋃

{q∈I!∩Λ(!)
1 :φ!,q(k) (=0}

{k}×Λ(")(q).

Since Λ(") is a graded (&, 0, . . . , 0)-tree, it is a graded (& + 1, 0, . . . , 0)-tree (cf. Re-
mark 3.11). Since furthermore, for any k ∈ I"+1 and a graded 0-tree Λ̄, where
0 ∈ Nn−1

0 , {k} × Λ̄ is a graded (& + 1, 0, . . . , 0)-tree, and the union of graded
(& + 1, 0, . . . , 0)-trees is a graded (& + 1, 0, . . . , 0)-tree, we conclude that Λ("+1) is a
graded (& + 1, 0, . . . , 0)-tree.

By combining above statements, we conclude that Algorithm 3.12 produces
{ψ̃m(f(u)) : m ∈ Λ}.

The statement about the cost is a consequence of the fact that, by the dropping
of indices from Λ("), before the application of (2.3),

#(Λ("+1) ∩ (I"+1 × In−1)) ! #(Λ ∩ (J"+1 × In−1)),

whereas an induction argument shows that the work for each value of the counter
& is O(#(Λ(") ∩ (I" × In−1)). #

4. Transformation from one wavelet basis to another

4.1. The non-tensor product case. Let V0 ⊂ V1 ⊂ · · · be a multiresolution
analysis on some domain Ω with Vj spanned by both Φj := {φλ : λ ∈ ∆j} and,
for j > 0, by the two-level collection Ψj := {ψλ : λ ∈ ∇j} ∪ Φj−1; and let Φ̃j and,
for j > 0, Ψ̃j be dual collections, i.e., Φ̃j(Φj) = I, Ψ̃j(Ψj) = I and Ψ̃j(Φj−1) = 0.
For convenience, we set ∇0 := ∆0 and Ψ0 := Φ0. W.l.o.g. assuming that both
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the ∆j ’s and ∇j ’s are mutually disjoint, we set ∆ := ∪j≥0∆j , ∇ := ∪j≥0∇j ,
Ψ := ∪j≥0Ψj = {ψλ : λ ∈ ∇}, and |λ| := j when λ ∈ ∆ is in ∆j or when λ ∈ ∇ is
in ∇j .

Besides (Vj)j , we consider another multiresolution analysis V̆0 ⊂ V̆1 ⊂ · · · on
Ω, and corresponding wavelet collection Ψ̆ = ∪j≥0Ψ̆j = ∪j≥0{ψ̆λ : λ ∈ ∇̆j},
i.e., Vj = span ∪j

p=0 Ψ̆p. Assuming that the ∇̆j ’s are mutually disjoint, we set
∇̆ := ∪j≥0∇̆j , and |λ| := j when λ ∈ ∇̆ is in ∇̆j .

We assume that all above collections are both locally finite – i.e., any subset of
Ω with diameter 2−j has non-empty intersection with the supports of a uniformly
bounded number of functions of Φj , Φ̃j , Ψj , Ψ̃j or Ψ̆j – and local, i.e.,

dΦ := sup
λ∈∆

2|λ|diam suppφλ, dΦ̃ := sup
λ∈∆

2|λ|diam supp φ̃λ,

dΨ := sup
λ∈∇

2|λ|diam suppψλ, dΨ̃ := sup
λ∈∇

2|λ|diam supp ψ̃λ,

dΨ̆ := sup
λ∈∇̆

2|λ|diam supp ψ̆λ

are all finite. Finally, we assume that for any j ∈ N0

(4.1) ∪λ∈∇̆j
supp ψ̆λ = Ω.

Definition 4.1. Fixing some constant t ≥ 0, we call µ ∈ ∇ (∇̆) a parent of λ ∈ ∇
(∇̆) or, equivalently, λ a child of µ, when |λ| = |µ| + 1 and

dist(suppψλ, suppψµ) ≤ t2−|µ|.

(dist(supp ψ̆λ, supp ψ̆µ) ≤ t2−|µ|). A subset Λ ⊂ ∇ (∇̆) is now called a graded tree
or, to make the dependance on t explicit, a t-graded tree, if whenever λ ∈ ∇ (∇̆)
with |λ| > 0 is in Λ, then so are all its parents.

Remark 4.2. For the special case that Ψ (or Ψ̆) is a collection of interpolets, in the
preceding sections we gave already a different definition of a graded tree. Whereas
in Definition 4.1, distances between indices in ∇ (∇̆) are measured in terms of the
distances between the supports of the corresponding wavelets, in Definition 2.2, ∇
is a collection of interpolation points, so that the distance between indices could be
simply defined as the distance between these points. Condition (4.1) can be viewed
as a substitute for condition (2.2) in the interpolet case. Since an interpolation
point is inside the support of the corresponding interpolet, and the interpolets were
always assumed to be local, actually both definitions of graded trees are equivalent.
More precisely, with ∇ being a collection of interpolation points, given a gradedness
parameter c2+c3 as in Definition 2.2, a set Λ ⊂ ∇ that, for t being sufficiently large,
is a t-graded tree, is also a graded 0-tree according to Definition 2.2. Conversely,
given a t, a set Λ ⊂ ∇ that, for c2 + c3 being sufficiently large, is a graded 0-tree,
is also a t-graded tree.

Assuming that for some constant L,

(4.2) V̆j ⊂ Vj+L (j ∈ N0),

in this subsection we will show that an expansion u =
∑

λ∈Λ̆ c̆λψ̆λ where Λ̆ ⊂ ∇̆ is
a graded tree, can be rewritten in O(#Λ̆) operations as u =

∑
λ∈Λ cλψλ for some

graded tree Λ ⊂ ∇ with #Λ ! #Λ̆. Subsequently, in the next subsection, we prove
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a corresponding statement for multiple graded trees. By applying this result with
either Vj = V (I)

j or V̆j = V (I)
j , we have proven the claims made in §1.3 about the

possibility to make transformations in linear complexity between representations
with respect to tensor products of interpolets and tensor products of certain types
of “true” biorthogonal wavelet bases.

For notational convenience only, we will assume that (4.2) is valid with

L = 0.

In the following proposition, it is shown that we may always assume that trees
are sufficiently “fat” or strongly graded.

Proposition 4.3. Let Λ̆ ⊂ ∇̆ be a t̆-graded tree. Then for t̄ > t̆, Λ̆ can be enlarged
to a t̄-graded tree Λ̄ ⊂ ∇̆ with #Λ̄ ! #Λ̆, only dependent on t̆, t̄, and the local
finiteness and localness of Ψ̆.

Proof. Enlarge Λ̆ to Λ̄ by adding to it any λ ∈ ∇̆ for which there exists a λ′ ∈ Λ̆
with |λ′| = |λ| and dist(supp ψ̆λ, supp ψ̆λ′) ≤ (2(t̄− t̆)+dΨ̆)2−|λ|. One easily verifies
the claim about #Λ̄.

To show that Λ̄ is a t̄-graded tree, let λ ∈ Λ̄ with |λ| > 0, and let µ ∈ ∇̆ with
|λ| = |µ|+1 and dist(supp ψ̆λ, supp ψ̆µ) ≤ t̄2−|µ|. Let λ′ ∈ Λ̆ be such that |λ′| = |λ|
and dist(supp ψ̆λ, supp ψ̆λ′) ≤ (2(t̄− t̆)+dΨ̆)2−|λ|, so that dist(supp ψ̆λ′ , supp ψ̆µ) ≤
t̄2−|µ| + dΨ̆2−(|µ|+1) + (2(t̄− t̆) + dΨ̆)2−(|µ|+1).

Let us assume that dist(supp ψ̆λ′ , supp ψ̆µ) > t̆2−|µ| since otherwise we already
know that µ ∈ Λ̆ ⊂ Λ̄. Let x on the shortest path between supp ψ̆λ′ and supp ψ̆µ

with dist(x, supp ψ̆λ′) = t̆2−|µ|. Thanks to (4.1), x ∈ supp ψ̆µ′ for some µ′ ∈ ∇̆
with |µ′| = |µ|, and so µ′ ∈ Λ̆. We infer that

dist(supp ψ̆µ′ , supp ψ̆µ) ≤ t̄2−|µ| + dΨ̆2−(|µ|+1) + (2(t̄− t̆) + dΨ̆)2−(|µ|+1) − t̆2−|µ|

= (2(t̄− t̆) + dΨ̆)2−|µ|,

and so µ ∈ Λ̄ which completes the proof. #
Although the proof of the next lemma is very similar to that of Proposition 4.3,

since it is short we include it for convenience.

Lemma 4.4. Let Λ̆ ⊂ ∇̆ be a t̆-graded tree. For some constant d ≥ 0 such that
t := 1

2d + t̆− 1
2cΨ ≥ 0, let Λ be the set of λ ∈ ∇ for which there exists a λ̆ ∈ Λ̆ with

|λ̆| = |λ| and dist(supp ψ̆λ̆, suppψλ) ≤ d2−|λ|. Then Λ ⊂ ∇ is a t-graded tree with
#Λ ! #Λ̆ dependent only on t̆, t, the localness of Ψ̆ and the local finiteness and
localness of Ψ.

Proof. The statement about #Λ is obvious.
Let λ ∈ Λ, |λ| > 0, µ ∈ ∇, with |µ| = |λ|+1 and dist(suppψλ, suppψµ) ≤ t2−|µ|.

Let λ̆ ∈ Λ̆ be such that |λ̆| = |λ| and dist(supp ψ̆λ̆, suppψλ) ≤ d2−|λ|, so that
dist(supp ψ̆λ̆, suppψµ) ≤ d2−|λ| + cΨ2−|λ| + t2−|µ|. Let x on the shortest path
between supp ψ̆λ̆ and suppψµ with dist(x, supp ψ̆λ̆) = t̆2−|µ|. Thanks to (4.1),
x ∈ supp ψ̆µ̆ for some µ̆ ∈ ∇̆ with |µ̆| = |µ|, and so µ̆ ∈ Λ̆. We infer that

dist(supp ψ̆µ̆, supp ψ̆µ) ≤ d2−|λ| + cΨ2−|λ| + t2−|µ| − t̆2−|µ| = d2−|µ|,

and so µ ∈ Λ which completes the proof. #
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Algorithm 4.5.
transform(Λ̆, (c̆λ̆)λ̆∈Λ̆)
% Let Λ̆ ⊂ ∇̆ be a t̆-graded tree with t̆ ≥ cΦ + cΦ̃. Let V̆j ⊂ Vj (j ∈ N0).
For a constant d ≥ max(cΨ̃, cΨ − 2t̆), let Λ be the set of λ ∈ ∇ for which
there exists a λ̆ ∈ Λ̆ with |λ̆| = |λ| and dist(supp ψ̆λ̆, suppψλ) ≤ d2−|λ|.
J := maxλ̆∈∇̆ |λ̆|, wJ+1 := 0
for j = J, J − 1, . . . , 1 do

v̆j :=
∑

λ̆∈Λ̆∩∇̆j
c̆λ̆ψ̆λ̆

for λ ∈ Λ ∩∇j do cλ := ψ̃λ(wj+1 + v̆j) enddo
wj :=

∑
λ∈∆j−1

φ̃λ(wj+1 + v̆j)φλ

enddo
for λ ∈ Λ ∩∇0 do cλ := ψ̃λ(w1 + v̆0) enddo
return (Λ, (cλ)λ∈Λ)

Theorem 4.6. Algorithm 4.5 produces (cλ)λ∈Λ with
∑

λ∈Λ cλψλ =
∑

λ̆∈Λ̆ c̆λ̆ψ̆λ̆ in
O(#Λ̆) operations. Furthermore, with t := 1

2d + t̆− 1
2cΨ, Λ ⊂ ∇ is a t-graded tree

with #Λ ! #Λ̆.

Proof. By the condition d ≥ cΨ − 2t̆, the last statement is shown in Lemma 4.4.
For j = J, J − 1, . . . , 0, we have

(4.3) wj+1 + v̆j ∈ Vj

by V̆j ⊂ Vj , as well as

(4.4) supp (wj+1 + v̆j) ⊂ ∪λ̆∈Λ̆∩∇̆j
supp ψ̆λ̆.

Indeed, the last statement is valid for j = J , let us assume that it valid for j+1. Now
it suffices to show that suppwj+1 ⊂ ∪λ̆∈Λ̆∩∇̆j

supp ψ̆λ̆. For any x ∈ suppwj+1, there
exists a λ ∈ ∆j and a λ̆ ∈ Λ̆∩∇̆j+1 such that x ∈ suppφλ and supp φ̃λ∩supp ψ̆λ̆ += ∅,
and so dist(x, supp ψ̆λ̆) ≤ (cΦ + cΦ̃)2−j ≤ t̆2−j . But then there exists a µ̆ ∈ Λ̆∩ ∇̆j

with x ∈ supp ψ̆µ̆.
From (4.4) and the localness and local finiteness assumptions, it follows that the

number of non-zero terms in the expansion for wj is O(#(Λ̆ ∩ ∇̆j)), and also that
the total number of operations needed for the algorithm is O(#∇̆j). Furthermore,
thanks to d ≥ cΨ̃, (4.4) also implies that

(4.5) ψ̃λ(wj+1 + v̆j) = 0 (λ ∈ ∇j \ Λ).

With, for j ∈ N0, uj :=
∑

{λ∈Λ,|λ|≥j} cλψλ, and w0 := 0, we have

(4.6)
∑

λ̆∈Λ̆

c̆λ̆ψ̆λ̆ = uj + wj +
j−1∑

p=0

v̆p (j = J + 1, J, . . . , 0).

Indeed (4.6) is valid for j = J + 1. Now let it be valid for j + 1. Then (4.6) is
equivalent to uj + wj +

∑j−1
p=0 v̆p = uj+1 + wj+1 +

∑j
p=0 v̆p or

∑

λ∈Λ∩∇j

cλψλ + wj = wj+1 + v̆j .
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This equality is a consequence of (4.3), (4.5), and the fact that Ψj∪Φj−1 (Φ−1 := ∅)
is a basis for Vj . The equality (4.6) for j = 0 is the last statement that was to be
shown. #
4.2. The tensor product case. Let n ∈ N. For λ ∈ ∇ := ∇n and λ̆ ∈ ∇̆ := ∇̆n,
we set

ψλ := ψλ1 ⊗ · · ·⊗ ψλn , ψ̆λ̆ := ψ̆λ̆1
⊗ · · ·⊗ ψ̆λ̆n

.

In view of Remark 4.2 and Definition 3.2, an appropriate definition of a multiple
graded tree is given by the following.

Definition 4.7. Given t ∈ Rn
≥0, Λ ⊂ ∇ (∇̆) is called a t-graded tree when for all

1 ≤ i ≤ n and λ ∈ Λ, the set of µ ∈ ∇ (∇̆) with (λ1, . . . ,λi−1, µ,λi+1, . . . ,λn) ∈ Λ
is a ti-graded tree.

Given a (t̆, . . . , t̆)-graded tree Λ̆ ⊂ ∇̆ and u =
∑

λ̆∈Λ̆ c̆λ̆ψ̆λ̆, our remaining task
is to represent u, in O(#Λ̆) operations, as u =

∑
λ∈Λ cλψλ, where Λ is a (t, . . . , t)-

graded tree with #Λ ! #Λ̆. As we will see, this task can be performed simply by
applying Algorithm 4.5 in all coordinate directions.

We set P : λ 2→ (λ1, · · · ,λn−1). Then

Λ̆ = ∪µ∈P (Λ̆)P
−1({µ}) = ∪µ∈P (Λ̆)(µ, P−1({µ}) · en),

whereas Definition 4.7 shows us that for any of these µ, Λ̆(µ) := P−1({µ}) · en is
a t̆-graded tree. Now for any fixed µ ∈ P (Λ̆), if necessary we enlarge Λ̆(µ) to a
max(t̆, cΦ + cΦ̃)-graded tree (cf. Proposition 4.3), and then apply

(Λ(µ), (cµ,λ)λ∈Λ(µ)) := transform(Λ̆(µ), (c̆µ,λ̆)λ̆∈Λ̆(µ)),

giving ∑

µ∈P (Λ̆)

∑

λ∈Λ(µ)

cµ,λψ̆µ1 ⊗ · · ·⊗ ψ̆µn−1 ⊗ ψλ =
∑

λ̆∈Λ̆

cλ̆ψ̆λ̆.

As follows from Theorem 4.6, the total number of operations required by all these
calls is O(#Λ̆), and ∪µ∈P (Λ̆)(µ,Λ(µ)) is a (t̆, . . . , t̆, t)-graded tree, where t =
1
2d + max(t̆, cΦ + cΦ̃) − 1

2cΨ. Indeed, for any µ ∈ P (Λ̆), Λ(µ) is a t-graded tree.
To show the analogous statement when ∪µ∈P (Λ̆)(µ,Λ(µ)) is frozen in any other
set of n − 1 coordinates, it is sufficient to consider the case that n = 2. Let
(µ,λ) ∈ ∪µ∈P (Λ̆)(µ,Λ(µ)) and let γ be a parent of µ. By construction of Λ(µ) in
Algorithm 4.5, there exists a λ̆ ∈ Λ̆(µ) with |λ̆| = |λ| and dist(supp ψ̆λ̆, suppψλ) ≤
d2−|λ|. Since Λ̆ is a (t̆, t̆)-graded tree, it holds that (γ, λ̆) ∈ Λ̆, but then also
(γ, λ) ∈ ∪µ∈P (Λ̆)(µ,Λ(µ)) as required.

By repeating the application of transform in each of the other n−1 coordinate
directions, we have proven our claim about the transformation of u =

∑
λ̆∈Λ̆ c̆λ̆ψ̆λ̆

into u =
∑

λ∈Λ cλψλ in linear complexity.
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