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N. Hilber∗, S. Kehtari∗, C. Schwab∗, C. Winter∗

January 14, 2010

Abstract

We consider the numerical solution of high-dimensional partial differen-
tial equations arising in option pricing problems in computational finance.
To reduce the complexity in the number of degrees of freedom, sparse tensor
product spaces are applied for Galerkin discretization in log-price space. Using
this technique we are able to price multi-asset options with up to eight under-
lying assets for the Black-Scholes framework and stochastic volatility models.
Dimensionality reduction by principal component analysis and asymptotic ex-
pansion is investigated in order to price options on indices by considering the
whole vector process of all of their constituents.

Keywords: Multi-asset options, stochastic volatility, sparse tensor finite elements, wavelets

1 Introduction

Consider a basket of d ≥ 1 risky assets whose log returns Xt = (X1
t , . . . ,Xd

t )" ∈ Rd

at time t > 0 are modeled by a diffusion process X = {Xt : t ≥ 0} with state space
Rd. Arbitrage free prices u of European contingent claims with payoffs g(·) and
maturity T are given by the conditional expectation

u(t, x) = E
[
e−γ(T−t)g(eXT ) | Xt = x

]
, (1.1)

with γ denoting throughout the risk-free interest rate. Here, the expectation is
taken with respect to an a-priori chosen martingale measure equivalent to the
historical measure. Sufficiently smooth value functions u in (1.1) can be obtained
as solutions of a partial differential equation (PDE)

∂tu + Au − γu = 0 , (1.2)

∗Seminar for Applied Mathematics, ETH Zurich, 8092 Zurich, Switzerland
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where A is the infinitesimal generator of the process X. To allow low smoothness
assumption on the payoff g, we opt for variational solutions which are the basis
for variational discretization methods such as finite element discretizations. To
convert (1.2) into variational form, we formally integrate against a test function v
and obtain (assuming γ = 0 for convenience)

(∂tu, v) + a(u, v) = 0, (1.3)

where the bilinear form is given by a(u, v) = 〈Au, v〉. Note that A = A(x) is admis-
sible. For solving problem (1.2) or (1.3) numerically, straightforward application
of standard schemes fails due to the so-called ‘curse of dimension’: the number
of degrees of freedom on a mesh of width h in dimension d grows like O(h−d)
as h → 0. To avoid this problem, several authors (see [5, 8] and the references
therein) use finite differences on sparse grids. In this paper we follow [9] and con-
sider sparse tensor product spaces for the discretization to reduce the complexity
in the number of degrees of freedom from O(h−d) to O(h−1 |log h|d−1). In partic-
ular, choosing wavelet bases we additionally obtain an efficient preconditioner for
the resulting linear equations.

The outline of the paper is as follows. We first introduce diffusion market models
where we focus on the multivariate Black-Scholes and stochastic volatility models.
In Section 3 we give the abstract variational formulation of the option pricing
problem. The discretization is discussed in Section 4 and sensitivities in Section 5.
We give numerical examples in Section 6 and formalize an extension to higher
dimensions in Section 7.

2 Diffusion market models

Let (Ω,F , (Ft)t≥0, P) be a filtered probability space that satisfies the usual hy-
potheses, i.e., F0 contains all the P-null sets of F and Ft+ := ∩h>0Ft+h = Ft,
t ≥ 0. Let W = {Wt : t ≥ 0} be a Rd-valued standard Brownian motion. We as-
sume that the filtration is generated by W and furthermore that W is independent
of F0.

We consider a process Z to model the dynamics of the underlying stock prices and
of the background volatility drivers in case of stochastic volatility models. Let g
be the payoff in real price, T > 0 the maturity, γ ≥ 0 the (time-constant) interest
rate and Q an equivalent martingale measure (EMM) to P, i.e., Q ∼ P such that
the discounted process is a Q-martingale. If Z is Markovian, the fair price of a
European style contingent claim with underlying Z is given by

u(t, z) = EQ
[
e−γ(T−t)g(ZT ) | Zt = z

]
. (2.1)

We model the market Z by the stochastic differential equation (SDE)

dZt = µ(Zt)dt + Σ(Zt)dWt, Z0 = z. (2.2)

2



Herewith, for G ⊆ Rd, the coefficients µ : G → Rd, Σ : G → Rd×d are assumed
to be globally Lipschitz continuous. Thus, for a given random vector z which is
F0-measurable, the SDE (2.2) admits a unique (Ft)-adapted solution Z = (Zt)t≥0

such that Z0 = z a.s.. We consider next two kinds of market dynamics, namely
the Black-Scholes model and stochastic volatility models.

2.1 Aggregated Black-Scholes models

2.1.1 Full-rank Black-Scholes

Consider d assets S = (S1, . . . , Sd) with spot price dynamics Zi = Si given by

dSi
t = µiS

i
t dt +

d∑

j=1

ΣijS
i
t dW j

t , i = 1, . . . , d, (2.3)

where W = {Wt : t ≥ 0} is a standard Brownian motion in Rd and

µ :=
(
µi

)
1≤i≤d

∈ Rd, (2.4)

Σ :=
(
Σij

)
1≤i,j≤d

∈ Rd×d, (2.5)

are the constant drift vector and volatility matrix, respectively, with assumption
that rank Σ = d. The state space domain is given by G = Rd. Under the unique
EMM, the log-price dynamics Xi := log Si are given by

dXi
t = ηidt +

d∑

j=1

Σij dW j
t , i = 1, . . . , d, (2.6)

where ηi :=
(
γ − 1/2Qii

)
, i = 1, . . . , d and Q := ΣΣ" ∈ Rd×d

sym. denotes the
volatility covariance matrix. Since Q is symmetric positive definite, there exists
an orthogonal matrix U ∈ Rd×d such that UQU" = D with diagonal matrix D :=
diag(s2

1, . . . , s
2
d), s1 ≥ . . . ≥ sd > 0. Without loss of generality, we rescale time

in (2.3) such that t → t∗ = s2
1t yielding D∗ := diag(s∗21 , . . . , s∗2d ) with normalized

s∗1 = 1, s∗i = si/s1, i = 2, . . . , d. In the remainder, we drop the ∗ and define a
process Y := {UXt : t ≥ 0} with dynamics

dY i
t = λidt + sidW i

t , i = 1, . . . , d, (2.7)

where λ := Uη. The components Y 1, . . . , Y d now satisfy the system of d decoupled
SDEs (2.7).

2.1.2 Low-rank Black-Scholes

Let 1 ≤ r < d be a parameter and define D̂ := diag(ŝ2
1, . . . , ŝ

2
d) ∈ Rd×d with

ŝi =

{
si 1 ≤ i ≤ r,
0 r + 1 ≤ i ≤ d,

(2.8)
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and Σ̂ := U"D̂
1
2 with U and si, i = 1, . . . , d, as in Section 2.1.1. Consider the

log-price process X̂ := {X̂t : t ≥ 0} with dynamics

dX̂i
t = η̂idt +

r∑

j=1

Σ̂ij dW j
t , i = 1, . . . , d, (2.9)

where η̂i :=
(
γ−1/2Q̂ii

)
, i = 1, . . . , d and Q̂ = Σ̂Σ̂" ∈ Rd×d

sym. and W j
t , j = 1, . . . , r,

as in (2.3). We designate the process X̂ as rank-reduced from d to r since, under
the change of basis induced by U, the process Ŷ := {UX̂t : t ≥ 0} has dynamics

dŶ i
t = λ̂idt + ŝidW i

t

= λ̂idt + 1{1≤ i ≤r}sidW i
t , i = 1, . . . , d, (2.10)

where λ̂ := Uη̂. The components Ŷ r+1, . . . , Ŷ d are therefore deterministic. Under
such market dynamics, the price of a European contingent claim (2.1) becomes

u(t, x̂) = v(t, ŷ)

= v̂(t, ŷ1, . . . , ŷr; ŷr+1, . . . , ŷd)

= E
[
e−γ(T−t)f̂(e

bY 1
T , . . . , e

bY r
T ; eŷr+1 , . . . , eŷd) |(Ŷ 1

t , . . . , Ŷ r
t ) = (ŷ1, . . . , ŷr)

]
,

with ŷ := Ux̂ and

f̂(eŷ) = f̂(eŷ1 , . . . , eŷr ; eŷr+1 , . . . , eŷd)

= f(eŷ1 , . . . , eŷr , eŷr+1+bλr+1(T−t), . . . , eŷd+bλd(T−t)), (2.11)

herewith f(ey) := g(ex). The price u(t, x̂) = v̂(t, ŷ1, . . . , ŷr; ŷr+1, . . . , ŷd) becomes a
solution of an r-dimensional PDE with initial condition depending on parameters
ŷr+1, . . . , ŷd.

2.1.3 ε-Aggregation

Suppose a time rescaled d-dimensional Black-Scholes market model with log-price
process X as in (2.3) has a volatility covariance matrix Q of full rank. Given
0 ≤ ε + 1, assume that a principal component analysis of Q, i.e., UQU" = D =
diag(s2

1, . . . , s
2
d) with s1 = 1 ≥ . . . ≥ sd > 0 yields

s2
i ≤ ε, i = r + 1, . . . , d,

for some r = r(ε). This suggests the d-dimensional dynamics to be mainly driven
by r < d ε-aggregated price processes (see, e.g., [8]). We denote X̂ε the ε-aggregated
rank-r process of X with ŝr+1 = · · · = ŝd = 0 as defined in Section 2.1.2 and define
the ε-residual market process, i.e., the aggregation remainder, Rε := X−X̂ε. From
(2.6) and (2.9), we have that

dRε,i
t = d(X − X̂ε)it = (ηi − η̂i)dt +

d∑

j=1

(Σij − Σ̂ij)dW j
t (2.12)
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Under the change of basis induced by U, the process T ε := {URε
t : t ≥ 0}, i.e.,

the fluctuation of X about the ε-aggregate X̂ε, has therefore dynamics

dT ε,i
t = (U(η − η̂))idt +

d∑

j=1

(D − D̂)ij dW j
t

=

{
(λi − λ̂i)dt 1 ≤ i ≤ r(ε),

(λi − λ̂i)dt + sidW t
i r(ε) + 1 ≤ i ≤ d.

(2.13)

Lemma 2.1. Given r = r(ε), there holds

|λi − λ̂i| ≤
d

2

d∑

j=r+1

s2
j , i = 1, . . . , d.

Proof. From the definitions of η and λ, we have that

|λi − λ̂i| =

∣∣∣∣∣

d∑

k=1

Uik(ηk − η̂k)

∣∣∣∣∣ ≤
d∑

k=1

|ηk − η̂k| =
1

2

d∑

k=1

|Qkk − Q̂kk|

=
1

2

d∑

k=1

∣∣∣∣∣∣

d∑

j=1

U2
jk(Djj − D̂jj)

∣∣∣∣∣∣
≤

1

2

d∑

k=1

d∑

j=r+1

s2
j

=
d

2

d∑

j=r+1

s2
j , i = 1, . . . , d.

Remark 2.2. From (2.13) and Lemma (2.1), we conclude that the fluctuation
components T ε,i, i = 1, . . . , r(ε), are pure drifts of order ε. Furthermore note that,
upon setting

d → d̂ = d − r(ε), t → t̂ = s2
r(ε)+1t,

the fluctuation components T ε,i, i = r(ε) + 1, . . . , d, again define a d̂-dimensional
full-rank market of type (2.3)–(2.5) with timescale t̂, allowing, in principle, for
recursive ε-rank aggregation. This will be elaborated elsewhere.

2.1.4 ε-Aggregation error bound

We again consider the d-dimensional Black-Scholes market model with log-price
process X and its ε-aggregate rank r process X̂ε of the previous section, and we
estimate the error of approximating u(t, x) by û(t, x̂ε) in (2.1).
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Theorem 2.3. Assume that the payoff g is Lipschitz. Then, there exists a constant
C(x) independent of ε such that

|u(t, x) − û(t, x̂ε)| ≤ C(x)
d∑

i=r(ε)+1

s2
i ,

Proof. We introduce the artificial process Ỹ ε with dynamics

dỸ ε,i
t = λidt + 1{1≤ i ≤r(ε)}sidW i

t , i = 1, . . . , d.

Under the change of basis induced by U, we have

|u(t, x) − û(t, x̂ε)| = |v(t, y) − v̂(t, ŷε)|
≤ |v(t, y) − v̂(t, ỹ)| + |v̂(t, ỹ) − v̂(t, ŷε)| . (2.14)

The two terms in (2.14) are estimated separately. Since g is globally Lipschitz, we
have for the first term, where f(ey) = g(ex) and constants may change between
lines,

|v(t, y)−v̂(t, ỹ)| =
∣∣∣E

[
f(ey+YT−t)−f(ey+eY ε

T−t)
]∣∣∣ ≤ C

d∑

i=1

E
[ ∣∣∣eyi+Y i

T−t−eyi+eY ε,i
T−t

∣∣∣
]

= C
d∑

i=r(ε)+1

eyi+λi(T−t) E
[ ∣∣∣esiW i

T−t − 1
∣∣∣
]

= C
d∑

i=r(ε)+1

eyi+λi(T−t)
∫

R

|ez − 1| e−z2/(2s2
i )dz

≤ C
d∑

i=r(ε)+1

eyis2
i ≤ C(y)

d∑

i=r(ε)+1

s2
i .

Similarly, using Lemma (2.1), we have for the second term

|v̂(t, ỹ)−v̂(t, ŷε)| =
∣∣∣E

[
f(ey+eY ε

T−t)−f(ey+bY ε
T−t)

]∣∣∣ ≤ C
d∑

i=1

E
[ ∣∣∣eyi+eY ε,i

T−t−eyi+bY ε,i
T−t

∣∣∣
]

= C
d∑

i=1

eyiE
[
e
1{1≤ i≤r(ε)}siW i

T−t

] ∣∣∣eλi(T−t) − e
bλi(T−t)

∣∣∣

≤ C(y)
d∑

i=1

eyi+
1
2 s2

i (T−t)|λi − λ̂i| ≤ C(y)
d∑

i=1

eyi(1 + s2
i )

d∑

j=r(ε)+1

s2
j

≤ C(y)
d∑

j=r(ε)+1

s2
j .

Since y = Ux, C(y) = C ′(x) which completes the proof.
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2.2 Stochastic volatility models

Similarly to the one-dimensional case, multivariate stochastic volatility models
replace the constant volatilities Σij in the Black-Scholes model (2.3) by stochastic
processes Σij = fij(Y ), where fij are non-negative functions and Y is an additional
source of randomness, which is modeled by an Itô diffusion in Rd.

We consider the stochastic volatility extension of the Black-Scholes model as de-
scribed in [1, Chapter 10.6]. We set Z := (X,Y ), where X describes again the
log-price dynamics of n > 1 assets and Y is an Rn-valued Itô diffusion describ-
ing the stochastic volatility Σij = fij(Y ). In particular, we assume that each Y i

evolves according to the SDE

dY i
t = ci(Y

i
t )dt + bi(Y

i
t )dW̃ i

t , Y i
0 = yi, i = 1, . . . , n.

We pose the following assumptions: the state space domain of Y is GY ⊆ Rn,
and the coefficients ck, bk : GY → R are globally Lipschitz continuous and at most
linearly growing. Furthermore, the Rn-valued standard Brownian motion (W̃t)t≥0

is correlated to the Rn-valued standard Brownian motion (Wt)t≥0 that drives the

process X by W̃ k =
∑n

j=1 ρjkW j + ρ∗Ŵ k, where (W,Ŵ ) is a standard Brownian

motion in Rd with d = 2n, and ρ∗k := (1 −
∑n

j=1 ρ2
jk)

1/2.

Denoting by z := (x, y) = (x1, . . . , xn, y1, . . . , yn), the coefficients µ,Σ in (2.2)
under a non-unique EMM are given by

µ(z) :=
(
γ − 1/2f2

11(y), . . . , γ − 1/2f2
nn(y), c1(y1), . . . , cn(yn)

)" ∈ Rd, (2.15)

Σ(z) :=

(
ΣX(z) 0
ΣY (z) D(z)

)
∈ Rd×d, (2.16)

where the matrices ΣX ,ΣY ,D ∈ Rn×n are

ΣX(z) :=
(
fij(y)

)
1≤i,j≤n

, ΣY (z) :=
(
ρjibi(yi)

)
1≤i,j≤n

,

D(z) := diag
(
ρ∗1b1(y1), . . . , ρ

∗
nbn(yn)

)
.

The smooth functions fij : GY → R+ are assumed to be bounded from below and
above. The state space domain of the pair process Z = (X,Y ) is G = Rn × GY .

Example 2.4 (Volatility processes). In [1, Chapter 10.6], it is assumed that each
volatility component Y k follows a mean-reverting Ornstein-Uhlenbeck process, i.e.,
ck(yk) = αk(mk − yk), bk(yk) = βk, 1 ≤ k ≤ n. Here, αk > 0 is called the rate of
mean reversion and mk ≥ 0 is the long-run mean level of Y k. Under an EMM,
the drift term ck becomes ck(y) = αk(mk − yk) − βkΛk(y), for some volatility risk
premium Λ(y) = (Λ1(y), · · · ,Λn(y))". See [1, Chapter 2.5] for a representation of
Λ in the one dimensional case n = 1.
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3 Option pricing

We change to time-to-maturity t → T − t and let J := (0, T ]. Assume that the
pricing function u(t, z) in (2.1) satisfies u ∈ C1,2(J×G). Then, from the Feynman-
Kac Theorem, u solves the parabolic partial differential equation

∂tu + Au + γu = 0 in J × G,
u(0, z) = g(z) in G,

(3.1)

where the infinitesimal generator A of the semigroup generated by the process
Z (2.2) is given by

A := −
1

2
tr
[
Q(z)D2

]
− 〈µ(z),D〉, (3.2)

with Q = ΣΣ", and the differential operators D2,D given by D2 = (∂xixj)1≤i,j≤d,
D = (∂x1 , . . . , ∂xd)

". Furthermore, tr : Rd×d → R denotes the trace operator, i.e.,

trB =
∑d

i=1 Bii, B ∈ Rd×d, and 〈·, ·〉 denotes the usual Euclidian scalar product
in Rd.

3.1 Localization

For numerical implementation we truncate the parabolic PDE (3.1) to a bounded
domain GR and impose boundary conditions on ∂GR. Typically, GR is a mul-
tidimensional hypercube, i.e., GR =

∏d
j=1(aj , bj) for some aj , bj ∈ R, bj > aj ,

j = 1, . . . , d. Therefore, we consider the truncated problem

∂tuR + AuR + γuR = 0 in J × GR,
uR(t, ·) = 0 on J × ∂GR,

uR(0, z) = g(z)|GR in GR.
(3.3)

The truncation to a bounded domain GR amounts to approximating the solution
u of (3.1) by the function uR pricing a barrier option. The function uR is given by

uR(t, z) = EQ
[
e−γ(T−t)g(ZT )1{T<τGR

} | Zt = z
]
,

where τGR = inf{s ≥ 0 | Zs ∈ Gc
R} is the first hitting time of the complement

Gc
R = G \ GR by the process Z. For R := max1≤j≤d |bj − aj| we assume that

uR converges exponentially fast in R to u on a subset of G0 ⊂ GR. This holds
for general multidimensional Lévy models as shown in [7, Theorem 4.14] and for
certain stochastic volatility models as in [3, Theorem 3.6]. Hence, we neglect the
truncation error.

3.2 Variational formulation

The finite element method (FEM) is based on the weak or variational formulation
of the pricing equation (3.3). Its functional setting can be described as follows.
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Let

V
d

↪→ H ∼= H∗ d
↪→ V ∗,

be a Gelfand triplet. We denote by ‖ · ‖, ‖ · ‖V the norms in H,V , by (·, ·) the
inner product in H and by 〈·, ·〉V ∗×V the duality pairing between V and its dual
V ∗. To the infinitesimal generator A in (3.2) we associate the Dirichlet form
a(·, ·) : V × V → R via

a(u, v) := 〈Au, v〉V ∗×V + γ(u, v), u, v ∈ V, (3.4)

and assume: ∃α1,α2 > 0, α3 ≥ 0 such that ∀u, v ∈ V

|a(u, v)| ≤ α1‖u‖V ‖v‖V , a(v, v) ≥ α2‖v‖2
V − α3‖v‖2. (3.5)

In the Black-Scholes setting property (3.5) holds with the spaces V = H1
0 (GR)

and H = L2(GR) as shown in [7, Theorem 4.8]. For stochastic volatility models
we obtain (3.5) in weighted Sobolev spaces [2, 3]. The weak formulation of (3.3)
reads: Given g ∈ H, find uR ∈ L2(J ;V ) ∩ H1(J ;V ∗) such that

(∂tuR(t, ·), v) + a(uR(t, ·), v) = 0, ∀v ∈ V. (3.6)

Note that the homogeneous Dirichlet boundary conditions (3.3) are imposed on the
space V . If (3.5) holds, then A+ α3I ∈ L(V, V ∗) is an isomorphism and the weak
formulation (3.6) admits a unique (weak) solution uR ∈ L2(J ;V ) ∩ H1(J ;V ∗).
By integration by parts and by the homogeneous essential boundary conditions, it
follows that the Dirichlet form a(·, ·) in (3.4) associated to the operator A in (3.2)
is given by

a(ϕ,φ) =
1

2

∫

GR

∇ϕ"Q(x)∇φdx +

∫

GR

〈
1

2
∇Q(x) + µ(x),∇ϕ〉φdx

+

∫

GR

γϕφdx,
(3.7)

where for a matrix B ∈ [H1(GR)]d×d, we denote by ∇B (with a slight abuse of
notation) the vector

∇B := (∇Bj)
d
j=1, Bj := (B1j , . . . , Bdj)

" ∈ [H1(GR)]d.

4 Discretization

Straightforward application of standard finite element schemes for discretizing
(3.6) fails due to the “curse of dimension”: the number of degrees of freedom
on a tensor product finite element mesh of uniform width h in dimension d grows
like O(h−d) as h → 0. Spline wavelets can overcome the problem while still being
easy to compute. Choosing wavelet bases has twofold advantages. Firstly, we can
break the curse of dimension using sparse tensor products to obtain essentially
dimension independent complexity. Secondly, wavelets provide norm equivalences
which lead to efficient preconditioning of the resulting linear system.
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4.1 Space and time discretization

The abstract finite element semi-discretization in (log) price space of (3.6) reads:
given a finite dimensional subspace Vh ⊂ V with dimVh = N < ∞, find uh ∈
L2(J ;Vh) ∩ H1(J ;V ∗

h ) such that uh(0, ·) = u0
h and such that

(∂tuh(t, ·), v) + a(uh(t, ·), v) = 0, ∀v ∈ Vh, ∀t ∈ J, (4.1)

where u0
h is the H-projection of the payoff g onto Vh, i.e.,

(u0
h, v) = (g, v), ∀v ∈ Vh. (4.2)

Choosing a basis B := {Φj}N
j=1 of Vh, (4.1) is equivalent to: Given u0

h ∈ RN , find

uh(t) ∈ RN such that
Mu̇h(t) + Auh(t) = 0, (4.3)

where uh(t) denotes the coefficient vector of uh(t, ·) with respect to the basis B of
Vh. In (4.3), the matrices M,A ∈ RN×N are the so-called mass and moment or
stiffness matrix, respectively, which are given by

M :=
(
(Φi′ ,Φi)

)
1≤i,i′≤N

, A :=
(
a(Φi′ ,Φi)

)
1≤i,i′≤N

. (4.4)

In order to discretize in time, we use the θ-scheme. For M ∈ N, define the time
step k := TM−1 and the time grid points tm := km, m = 0, . . . ,M . The fully
discrete scheme to (3.6) reads: Given u0

h ∈ Vh, for m = 0, . . . ,M−1 find um+1
h ∈ Vh

such that (
k−1(um+1

h − um
h ), v

)
+ a(um+θ

h , v) = 0, ∀v ∈ Vh. (4.5)

Here, um+θ
h := θum+1

h + (1 − θ)um
h , θ ∈ [0, 1]. In matrix form, (4.5) reads: Given

u0
h ∈ RN , find um+1

h ∈ RN such that

(
M + θkA

)
um+1

h =
(
M + (1 − θ)kA

)
um

h , m = 0, 1, . . . ,M − 1, (4.6)

Remark 4.1. It is well known that the convergence of the θ-scheme is of first order
if θ ∈ [0, 1] \ {1/2}, and of second order if θ = 1/2. For the more involved hp-dG
time stepping scheme, which converges exponentially under sufficient smoothness
conditions, see [9] and the references therein.

Remark 4.2. Two issues arise in the choice of the finite element space Vh. First,
for classical tensor product Lagrange finite element spaces, the dimension N grows
exponentially in the dimension d of the basket, i.e., N = O(h−d) as the mesh
width h → 0. Second, the condition number κ of the stiffness matrix A behaves like
κ ∼ h−2d. Clearly, A is ill-conditioned, which makes preconditioning necessary. To
overcome “the curse of dimension”, we shall use the aforementioned sparse tensor
product spaces and to get efficient and easily implementable preconditioners, these
spaces are spanned by spline wavelets which are used as B.
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4.2 Spline wavelets

We describe wavelet finite elements in the interval G = (0, 1). Define the mesh T&

given by the nodes j2−&, j = 0, . . . , 2&, with mesh-width h& = 2−&. Let V& be the
space of continuous piecewise linear polynomials1 on the mesh T& which vanish on
∂G. We write N& := dimV&, N−1 := 0 and M& := N& − N&−1. We use a wavelet
basis ψ&,k, k = 1, . . . ,M&, 0 = 0, 1, 2, . . . of V& with the properties,

VL = span{ψ&,k | 0 ≤ 0 ≤ L; 1 ≤ k ≤ M&}, diam (supp ψ&,k) ≤ C2−&. (4.7)

Any function v ∈ VL has the representation

v =
L∑

&=0

M"∑

k=0

v&,kψ&,k, (4.8)

with the coefficients v&,k = (v, ψ̃&,k), where the ψ̃&,k are the dual wavelets. For
v ∈ L2(G), one obtains the series

v =
∞∑

&=0

M"∑

k=0

v&,kψ&,k, (4.9)

which converges in L2(G) and in H1
0 (G). Moreover, for v ∈ H̃s(G) where H̃s(G) :=

[L2(G),H1
0 (G)]s,2 there holds the norm equivalence

c1‖v‖2
eHs(G)

≤
∞∑

&=0

M"∑

k=0

22&s|v&,k|2 ≤ c2‖v‖2
eHs(G)

, 0 ≤ s ≤ 1. (4.10)

For v ∈ L2(G) we define a bi-orthogonal projection PL : L2(G) → VL by truncating
(4.9):

PLv :=
L∑

&=0

M"∑

k=0

v&,kψ&,k, P−1 := 0. (4.11)

This projection satisfies the approximation property

‖u − PLu‖ eHs(G) ≤ c2−(t−s)L‖u‖Ht(G), 0 ≤ s ≤ 1, s ≤ t ≤ p + 1. (4.12)

The increment or detail spaces W& are defined by

W& := span{ψ&,k | 1 ≤ k ≤ M&}, 0 = 1, 2, 3, . . . , W0 := V0. (4.13)

Then

V& = V&−1 ⊕ W& for 0 ≥ 1, and V& =
&⊕

j=0

Wj, 0 ≥ 0, (4.14)

and Q& := P& − P&−1 is a projection from L2(G) onto W&.

1Higher order polynomials of degree p > 1 are also possible.
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Example 4.3. For 0 ≥ 0 let T & be mesh T & = {0 = x&
0 < . . . < x&

2"+1 = 1} with

mesh points x&
j = j2−&−1, j = 0, . . . , 2&+1. Note that N & = 2&+1 − 1 and M& = 2&.

On the coarsest level 0 = 0, let ψ0,1(x) = γ0 max(0, 1− 2|x− 1/2|). On finer levels
0 ≥ 1 the left boundary wavelet ψ&,1 has values ψ&,1(x&

1) = 2γ&, ψ&,1(x&
2) = −γ&

and zero at all other mesh points. The right boundary wavelet ψ&,M"
has values

ψ&,M"
(x&

N") = 2γ&, ψ&,M"
(x&

N"−1) = −γ& and zero at all other mesh points. The

interior wavelet ψ&,k, 1 < k < M& has values ψ&,k(x&
2k−2) = ψ&,k(x&

2k) = −γ& and

ψ&,k(x&
2k−1) = 2γ&. We choose the constant γ& such that ‖ψ&,k‖L2(G) = 1. Thus,

γ0 =
√

3 and γ& =
√

3/2 2&/2, 0 ≥ 1.

4.3 Sparse tensor product spaces

For d > 1, let G = (0, 1)d and define the full tensor product space VL as the d-fold
tensor product of the spaces VL as VL := VL ⊗ · · ·⊗ VL which can be written as

VL = span {ψ!,k : 0 ≤ 0i ≤ L, 1 ≤ ki ≤ M&i , i = 1, . . . , d} ,

with basis functions ψ!,k = ψ&1,k1 ⊗ · · ·⊗ ψ&d,kd
and multi-indices ! = (01, . . . 0d) ∈

Nd
0, k = (k1, . . . , kd) ∈ Nd. We define the norms |!|∞ := max{0j : 1 ≤ j ≤ d} and

|!|1 := 01 + · · · + 0d. Using (4.14), the space VL can be written as

VL =
⊕

|!|∞≤L

W&1 ⊗ · · ·⊗ W&d
, (4.15)

and the sparse tensor product space V̂L at level L ≥ 0 as

V̂L :=
⊕

|!|1≤L

W&1 ⊗ · · ·⊗ W&d
, (4.16)

where the increment spaces W&i , 1 ≤ i ≤ d, are as in (4.13).

As L → ∞, we have NL := dim(VL) = O(2dL), and N̂L := dim(V̂L) = O(2LLd−1),
i.e., the spaces V̂L have considerably smaller dimensions than VL. However, both
spaces have similar approximation properties, provided the function to approxi-
mate is sufficiently smooth. To characterize the extra smoothness requirements,
we introduce the spaces Hs(G), s ∈ N0, of all measurable functions u : G → R

such that the norm

‖u‖2
Hs :=

∑

0≤αi≤s
i=1,...,d

‖∂α1
x1

· · · ∂αd
xd

u‖2
L2(G), (4.17)

is finite. That is, Hs([0, 1]d) = ⊗d
j=1H

s([0, 1]). For s ≥ 0 the space Hs is defined
by interpolation. Due to the underlying tensor product structure, one infers from
(4.10) that for

v =
∞∑

"i=0
i=1,...,d

∑

1≤ki≤M"i

v!,kψ!,k,

12



Figure 1: Schematic of full tensor product space VL (left) and sparse tensor product
space V̂L (right) for L = 3. For both spaces the spline wavelets of Example 4.3 are
displayed.

there holds the norm equivalence

c1‖v‖2
Hs ≤

∞∑

"i=0
i=1,...,d

∑

1≤ki≤M"i

22s|&|1|v!,k|2 ≤ c2‖v‖2
Hs , 0 ≤ s ≤ 1.

We now derive a representation of the matrices M,A given by (4.4) in the space
Vh := V̂L. To this end, for some function w : R → R, define the matrices Mw, Sw

and Cw with respect to the i-th coordinate direction

Mw(xi) :=
( ∫ bi

ai

ψ&i,ki(xi)ψ&′i,k
′
i
(xi)w(xi)dxi

)
0≤"′i,"i≤L

1≤k′i≤M
"′i

,1≤ki≤M"i

(4.18)

Sw(xi) :=
( ∫ bi

ai

ψ′
&i,ki

(xi)ψ
′
&′i,k

′
i
(xi)w(xi)dxi

)
0≤"′i,"i≤L

1≤k′i≤M
"′i

,1≤ki≤M"i

(4.19)

Cw(xi) :=
( ∫ bi

ai

ψ′
&i,ki

(xi)ψ&′i,k
′
i
(xi)w(xi)dxi

)
0≤"′i,"i≤L

1≤k′i≤M
"′i

,1≤ki≤M"i

(4.20)

Let Xi be any matrix given by (4.18)–(4.20). We view the matrix Xi as a collection
of block matrices, i.e.,

Xi = (Xi
&′,&)0≤&′,&≤L, where Xi

&′,& := (Xi
(&′,k′),(&,k))1≤k′≤M"′ ,1≤k≤M"

,

and define a sparse tensor product X1 ⊗̂X2 ⊗̂ · · · ⊗̂ Xd by tensor products of
block matrices

X1 ⊗̂ · · · ⊗̂ Xd :=
(
X1

&′1,&1
⊗ · · ·⊗ Xd

&′d,&d

)

0≤|!′|1,|!|1≤L

for multiindices ! = (01, . . . , 0d), !
′ = (0′1, . . . , 0

′
d).
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Definition 4.4. For an arbitrary permutation σ,

σ : {1, . . . , d} → {1, . . . , d}, {1, . . . , d} 6→ {σ(1), . . . ,σ(d)},

and matrices Xw(xi), 1 ≤ i ≤ d, X ∈ {S,C,M}, we denote by

s(Xw(xσ(1)) ⊗̂ · · · ⊗̂Xw(xσ(d))),

the sorted sparse tensor product with factors sorted by increasing indices, i.e.,

s
(
Xw(xσ(1)) ⊗̂ · · · ⊗̂Xw(xσ(d))

)
:= Xw(x1) ⊗̂ · · · ⊗̂Xw(xd).

Lemma 4.5. Assume that the coefficients Q(x) and µ(x) of the operator A in
(3.2) are given by

Q(x) =
(
Qij(x)

)
1≤i,j≤d

=

(
d∏

&=1

qij
& (x&)

)

1≤i,j≤d

,

µ(x) =
(
µi(x)

)
1≤i≤d

=

(
d∏

&=1

µi
&(x&)

)

1≤i≤d

,

for univariate functions qij
& , µi

& → R, 1 ≤ i, j, 0 ≤ d. Then, the stiffness matrix A

in (4.4) of the bilinear form a(·, ·) in (3.7) with respect to the sparse tensor product
space V̂L is given by

A =
1

2

d∑

j=1

s

(
Sqjj

j (xj) ⊗̂
⊗̂

1≤i≤d
i&=j

Mqjj
i (xi)

)

−
1

2

d∑

j,k=1
j &=k

s

(
Cqjk

j (xj) ⊗̂
(
Cqjk

k (xk) + M
d

dxk
qjk
k (xk)

)
⊗̂

⊗̂

1≤i≤d
i/∈{j,k}

Mqjk
i (xi)

)

+
1

2

d∑

j=1

s

(
C

d
dxj

qjj
j (xj) ⊗̂

⊗̂

1≤i≤d
i&=j

Mqjj
i (xi)

)

+
1

2

d∑

j,k=1
j &=k

s

(
Cqjj

k (xk) ⊗̂
⊗̂

1≤i≤d
i&=k

Meqjk
i (xi)

)

+
d∑

j=1

s

(
Cµj

j(xj) ⊗̂
⊗̂

1≤i≤d
i&=j

Mµj
i (xi)

)
+ γ

⊗̂

1≤i≤d

M

with weights

q̃ jk
i (xi) :=

{
q jk
i (xi) if i 7= j
d

dxi
q jk
i (xi) if i = j

.

Proof. This follows by elementary, however lengthy, calculations.
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4.4 Matrix-vector multiplication

Computing the matrix A explicitly for d 8 1 requires too much memory. But for
solving the ordinary differential equation (4.3) using a time-stepping scheme and
an iterative solver, we only need to compute matrix-vector multiplications v = Au.
Using the (sparse) tensor product structure this can be done without computing
the matrix A explicitly.

Let A := X1 ⊗̂ · · · ⊗̂ Xd ∈ R
bNL× bNL and uL ∈ V̂L. We again view the coefficient

vector uL ∈ R
bNL of uL as a collection of block coefficient vectors,

uL =
(
u!

)
0≤|!|1≤L

, where u! =
(
u!,k

)
1≤ki≤M"i

.

The matrix-vector multiplication

vL = AuL =
(
X1

&′1,&1
⊗̂ · · · ⊗̂Xd

&′d,&d

)
0≤|&′|1,|&|1≤L

(
u!

)
0≤|&|1≤L

is defined by

v!
′,k′ =

∑

|!|1<L

∑

1≤ki≤M"i

X1
(&′1,k′

1),(&1,k1)
· · ·Xd

(&′d,k′
d),(&d,kd)u!,k.

This multiplication may be computed iteratively as proposed in Algorithm 1.

Algorithm 1 Sparse grid matrix-vector multiplication
1: Set v = u
2: For j = 0, 1, . . . , d
3: For

∣∣!′
∣∣
1

= 0, 1, . . . , L

4: Compute v!
′,k′ =

∑
&j ,kj

Xj
(&′j ,k′

j),(&j ,kj)
v!,k, ∀k′,

5: with 0i = 0′i, ki = k′
i, ∀i 7= j.

6: Next !
′

7: Next j

4.5 Initial condition

Recall that u0
h is the H-projection of the payoff g onto Vh (4.2). Thus, u0

h is the
unique solution of the system Mu0

h = g, with right hand side g := ((g,Φj))Nj=1.
The realization of g is non-trivial. Let Vh be given by the sparse tensor product

space V̂L in (4.16). Then, an arbitrary entry g(!,k) of g is given by

g(!,k) =

∫

GR

g(x1, . . . , xd)ψ&1,k1(x1) · · ·ψ&d,kd
(xd)dx1 · · · dxd.
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If g factorizes, i.e., g(x1, . . . , xd) =
∏d

j=1 gj(xj) for some univariate gj : R → R,
j = 1, . . . , d, then

g(&,k) =
d∏

j=1

∫ bj

aj

gj(xj)ψ&j ,kj(xj)dxj .

However, for most payoffs in option pricing (e.g., basket options), the factorizing
property does not hold. While numerical quadrature is applicable, we rather use
integration by parts to find, in the sense of distributions,

g(!,k) =

∫

GR

g(−2)(x1, . . . , xd)ψ
′′
&1,k1

(x1) · · ·ψ′′
&d,kd

(xd)dx1 · · · dxd, (4.21)

where

g(−k)(x) :=

∫

[x0,x]
g(−k+1)(y)dy, x ∈ Rd, k ≥ 1,

for a suitable x0 ∈ R ∪ {−∞}. Let ψ&i,ki ∈ V̂L be a continuous, piecewise linear
spline inner wavelet and denote its singular support by

singsupp ψ&i,ki =: {x1
&i,ki

, . . . , xni
&i,ki

}.

Then, the integral in (4.21) becomes

g(!,k) =
∑

1≤ji≤ni
1≤i≤d

g(−2)
(
xj1

&1,k1
, . . . , xjd

&d,kd

)
ωj1

&1,k1
· · ·ωjd

&d,kd
,

where the weights ω1
&i,ki

, . . . ,ωni
&i,ki

∈ R depend only on the wavelet ψ&i,ki . As an

example, consider the L2-normalized wavelets ψ&i,ki : (ai, bi) → R defined on a
interval (ai, bi) as described in Example 4.3. Then

(ω1
&i,ki

,ω2
&i,ki

,ω3
&i,ki

,ω4
&i,ki

,ω5
&i,ki

) =
√

3(bi − ai)
− 3

2 2
3
2 &i(−1, 4,−6, 4,−1),

if 0i ≥ 1 and ψ&i,ki is an interior wavelet, and

(ω1
&i,1,ω

2
&i,1,ω

3
&i,1,ω

4
&i,1) =

√
3(bi − ai)

− 3
2 2

3
2 &i(2,−5, 4,−1),

(ω1
&i,M"i

,ω2
&i,M"i

,ω3
&i,M"i

,ω4
&i,M"i

) =
√

3(bi − ai)
− 3

2 2
3
2 &i(−1, 4,−5, 2),

if 0i ≥ 1 and ψ&i,1,ψ&i,M"i is a left or a right boundary wavelet, respectively.

4.6 Multilevel preconditioning

As shown in (4.6), we have to solve M linear systems Bum+1
h = fm

h
, with B :=

M+ kθA, fm
h

:= (M+ k(1− θ)A)um
h . Due to the norm equivalence (4.10) we can

build a simple preconditioner for the ill-conditioned matrix B using the wavelet
basis. For simplicity, we restrict the discussion to the Black-Scholes model.
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The norm equivalence (4.10) with s = 0 implies for every u ∈ V̂L with coefficient

vector u ∈ R
bNL

C1‖u‖2 ≤ 〈u,Mu〉 ≤ C2‖u‖2,

with constants C1, C2 independent of L. Denote by DA the diagonal matrix with
entries 22&1 + · · ·+ 22&d for an index corresponding to level (01, . . . , 0d). Then (3.5)
and (4.10) with s = 1 imply that

C1〈u,DAu〉 ≤ 〈u,Au〉 ≤ C2〈u,DAu〉.

Thus, we have C1〈u,Du〉 ≤ 〈u,Bu〉 ≤ C2〈u,Du〉, with the diagonal matrix D :=
I + kθDA where I denotes the indentity matrix. Written in terms of û := D1/2u,
we finally obtain

C1‖û‖2 ≤ 〈û,D−1/2BD−1/2û〉 ≤ C2‖û‖2.

The linear system B̂û = f̂ with preconditionend matrix B̂ := D−1/2BD−1/2 and

right hand side f̂ = D−1/2f can be solved with GMRES in a number of iteration
steps which is independent of level index L and thus independent of the size of the
linear system.

5 Price sensitivities

Calculating price sensitivities is a central modeling and computational task for risk
management and hedging. We distinguish between two classes of sensitivities: the
sensitivity of the solution u to variation of a model parameter, like the Greek Vega
(∂σu) and the sensitivity of the solution u to a variation of state spaces such as
the Greek Delta (∂xu). It is shown in [4] that an approximation for the first class
can be obtained as a solution of the pricing PDE with a right hand side depending
on u. For the second class, a finite difference like differentiation procedure is
presented which allows to obtain the sensitivities from the finite element forward
price without additional forward solver.

5.1 Sensitivity with respect to model parameters

Suppose the market model, and hence the operator A in (3.2), depend on some
model parameter ϑ. We want to calculate the sensitivity of the solution u of (3.1)
with respect to ϑ. To this end, we write u(ϑ0) for a fixed realization ϑ0 of ϑ in
order to emphasize the dependence of u on ϑ0.

Let C be a Banach space over a domain G ⊂ Rd. C is the space of parameters or
coefficients in the operator A and Sϑ ⊆ C is the set of admissible coefficients. We
denote by u(ϑ0) the unique solution to (3.1) and introduce the derivative of u(ϑ0)
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with respect to ϑ0 ∈ Sϑ as the mapping Dϑ0u(ϑ0) : C → V ,

ũ(δϑ) := Dϑ0u(ϑ0)(δϑ) := lim
s→0+

1

s

(
u(ϑ0 + sδϑ) − u(ϑ0)

)
, δϑ ∈ C.

We also introduce the derivative of A(ϑ0) with respect to ϑ0 ∈ Sϑ

Ã(δϑ)ϕ := Dϑ0A(ϑ0)(δϑ)ϕ := lim
s→0+

1

s

(
A(ϑ0+sδϑ)ϕ−A(ϑ0)ϕ

)
, ϕ ∈ V, δϑ ∈ C.

We assume that Ã(δϑ) ∈ L(Ṽ , Ṽ ∗) with Ṽ being a real and separable Hilbert space
satisfying

Ṽ ⊆ V
d

↪→ H ∼= H∗ d
↪→ V ∗ ⊆ Ṽ ∗.

We further assume that there exists a real and separable Hilbert space V ⊆ Ṽ such
that Ãv ∈ V ∗, ∀v ∈ V . We have the following relation between Dϑ0u(ϑ0)(δϑ) and
u.

Lemma 5.1. Let Ã(δϑ) ∈ L(Ṽ , Ṽ ∗), ∀δϑ ∈ C and u(ϑ0) : (0, T ] → V , ϑ0 ∈ Sϑ be
the unique solution to

∂tu(ϑ0) + A(ϑ0)u(ϑ0) = 0 in (0, T ) × Rd, (5.1)

u(ϑ0)(0, ·) = g(x) in Rd. (5.2)

Then ũ(δϑ) solves

∂tũ(δϑ) + A(ϑ0)ũ(δϑ) = −Ã(δϑ)u(ϑ0) in (0, T ) × Rd, (5.3)

ũ(δϑ)(0, ·) = 0 in Rd. (5.4)

Proof. Since u(ϑ0)(0) = g does not depend on ϑ0 its derivative with respect to
ϑ is 0. Now let ϑs := ϑ0 + sδϑ, s > 0, δϑ ∈ C. Subtract from the equation
∂tu(ϑs)(t) + A(ϑs)u(ϑs)(t) = 0 equation (5.1) and divide by s to obtain

∂t
u(ϑs)(t)−u(ϑ0)(t)

s
+

(
A(ϑs)−A(ϑ0)

)
u(ϑs)(t)

s
+
A(ϑ0)

(
u(ϑs)(t)−u(ϑ0)(t)

)

s
= 0.

Taking lims→0+ gives equation (5.3).

The PDE for the sensitivity ũ(δϑ) can again be discretized as in Section 4.

5.2 Sensitivity with respect to solution arguments

We also want to calculate the sensitivity of the solution u with respect to a variation
of arguments t, x. Let u be the solution of the variational problem (3.1). We discuss

the computation of Dnu = ∂|n|

∂
n1
x1 ···∂

nd
xd

u for arbitrary multiindex n ∈ Nd
0. For µ ∈ Zd

and h ∈ R+ we define the translation operator T µ
h ϕ(x) = ϕ(x+µh) and the forward
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difference quotient ∂h,jϕ(x) = h−1(T
ej

h ϕ(x)−ϕ(x)), where ej , j = 1, . . . , d, denotes
the j-th standard basis vector in Rd. For n ∈ Nd

0 we denote by ∂n
h ϕ = ∂n1

h,1 · · · ∂
nd
h,dϕ

and by Dn
h the difference operator of order n ≥ 0

Dn
hϕ :=

∑

µ,|n|=n

Cµ,nT γ
h ∂n

h ϕ.

Given a basis B = {Φj}N
j=1 of Vh, the action of Dn

h to vh ∈ Vh can be realized as
matrix-vector multiplication vh 6→ Dn

hvh, where

Dn
h =

(
Dn

hΦ1, · · · ,Dn
hΦN

)
∈ RN×N ,

and vh is the coefficient vector of vh with respect to basis B, respectively. For more
details and numerical examples we refer to [4].

6 Numerical examples

We give numerical examples using the wavelet finite element discretization as de-
scribed in Example 4.3. We consider a geometric call option for the Black-Scholes
model written on up to 8 underlyings and analyze a dimensionally reduced problem
from 30 to 5 computational dimensions. We also study a model problem for the
stochastic volatility model. All computations are written in FORTRAN and are
performed on a 16 × Quad-Core AMD Opteron(tm) Processor 8356 with 64GB
RAM.

6.1 Full-rank d-dimensional Black-Scholes model

We consider the geometric call option with payoff

g(x) = max(0, e
Pd

i=1 αixi − K), x ∈ Rd, (6.1)

with K = 1. The antiderivative of glog for αi > 0, i = 1, . . . , d is given by

g(−2)(x) =
d∏

i=1

α−2
i

(
e

Pd
i=1 αixi −

2d∑

k=0

1

k!

( d∑

i=1

αixi − log K

)k)
1{

Pd
i=1 αixi≥log K}.

We first set d = 2 and solve problem (4.6) for various mesh widths h = 2−L.
Using interest rate γ = 0.01, covariance Q = (σiσjρij)1≤i,j≤2, σ1 = 0.4, σ2 = 0.1,
ρ12 = 0.2 and weights αi = 0.5, i = 1, 2, we plot the convergence rate of the
L2-error

‖eL‖ := ‖u(T, ·) − uL(T, ·)‖L2(G0), G0 = (K/2, 3/2K)2 ,

at maturity T = 1 in Figure 2.
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Figure 2: Convergence rates of the 2-dimensional wavelet discretization in terms
of the mesh width h (left) and in terms of degrees of freedom (right).

To compare the rates we also solved the problem on full grid. In the left picture the
convergence rate of the error on sparse grid can be seen to have (up to a constant)
the same rate as on full grid. The superiority of sparse grid can be seen on the
right, where the convergence rate is plotted terms of degrees of freedom. From [9],
the error in terms of degrees of freedom on the sparse grid behaves like

‖eL‖ = O
(
N̂−2

L (log N̂L)c(d)
)
, (6.2)

with c(d) a constant, while on the full grid like

‖eL‖ = O
(
N

− 2
d

L ). (6.3)

On the sparse grid we have N̂L = O(L 2L) and on the full grid NL = O(22L).
The convergence rate on full grid shows the “curse of dimension”, whereas for the
sparse grid, we still obtain the optimal second order rate essentially.

For 2 ≤ d ≤ 8, we set σi = 0.3, i = 1, . . . , d and ρi,j = 0, i 7= j, i = 1, . . . , d,
j = i, . . . , d and weights α1 = 1, αi = 0, i = 2, . . . , d. The resulting payoff contract
hence reduces to a plain vanilla call in the underlying x1. Accordingly, we plot the
convergence rates of the relative L2-error

‖eL‖ :=
‖u(T, ·) − uL(T, ·)‖L2(G1)

‖u(T, ·)‖L2(G1)
, G1 = (K/2, 3/2K) × {K}× . . . × {K},

at maturity T = 1 for d ∈ {2, 3, 4, 6, 8} in terms of N̂L in Figure 3.
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Figure 3: Convergence rates of the Black-Scholes model in different dimensions d.

For low dimensions d ∈ {2, 3, 4}, the second order convergence rate on sparse
grid can be well observed over all levels. For higher dimensions d ∈ {6, 8}, the
log terms prevail at low levels, hence the flattened behavior of the convergence
curves which then exhibit the expected second order rates at finer discretizations.
Despite the smoothness of the solution, we report a steeply increasing constant in
the rates as d is raised, which forces us to already set L = 11 for d = 8 in order
to have a relative L2-error on the order of 10−2 which currently prevents us from
reasonably increasing d beyond 8. The size of the constant can be traced back to
the initial condition u0

h, the H-projection of the payoff g onto Vh (Section 4.5),
showing similar relative L2-errors. An attempt in order to lower this constant
and therefore to alleviate the need for high discretization levels would consist in
reformulating problem (3.3) in excess-to-payoff 2 vR by letting

vR(t, z) := uR(t, z) − g(z), (t, z) ∈ J × GR

thus resulting in the following parabolic PDE with homogeneous initial condition

∂tvR + AvR + γvR = −Ag − γg in J × GR,
vR(t, ·) = 0 on J × ∂GR,

vR(0, z) = 0 in GR,
(6.4)

which is numerically solved along the same lines. This alternative formulation
however trades a non-smooth payoff for a non-smooth solution, consequently ques-
tioning the improvement of the operation. Under the same settings, we compare

2commonly referred to as premium in the financial literature.
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the convergence rates of the previously defined relative L2-error for the standard
and excess-to-payoff formulations for d ∈ {2, 4, 6} at maturity T = 1 in Figure 4.
Except for d = 2, the error is reduced at lower levels, as expected from the homo-
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Figure 4: Convergence rates of the Black-Scholes model for d ∈ {2, 4, 6} in standard
(problem (3.3), solid line) and excess-to-payoff formulations (problem (6.4), dashed
line).

geneous initial condition, but the optimal convergence rate (6.2) is only reached
between higher levels than in the standard formulation case, therefore showing
that a non-smooth initial condition is overall preferable. From a computational
perspective, the excess-to-payoff formulation moreover gives rise to a right-hand
side in (6.4) which requires additional memory requirements on the order of the
degrees of freedom. Payoff smoothing thus appears a next sensible step in order
to lower the constant resulting from the H-projection of the payoff g onto the
approximation space Vh.

6.2 Low-rank r-dimensional Black-Scholes

We consider the geometric call option (6.1) of Section 6.1 written on d underlyings
under the Black-Scholes model and we are now interested in the case of larger
dimensions, i.e., d > 8. This occurs when pricing contingent claims on stock indices
considering all d price processes in comparison to handling the index as one single
process. Straightforward computations in such high dimensions would currently
require too high discretization levels as previously noted. Instead, we rely on the
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dimensionality reduction by ε-aggregation introduced in Section 2.1.3 to identify
a rank r ε-aggregated process driving a d-dimensional market. In particular, we
focus on the Dow Jones industrial index where d = 30. We compute the principal
components of the volatility covariance matrix3 Q := U"DU ∈ Rd×d of their
realized daily log-returns over 252 periods resulting in the spectrum (s2

1, . . . , s
2
d),

normalized by s2
1 as in Section 2.1 and shown in Figure 5 (left)4. We define the

recovery ratio

ηr :=

(
r∑

i=1

s2
i

)(
d∑

i=1

s2
i

)−1

, r = 1, . . . , d,

shown in Figure 5 (right), whose values for r = 1, . . . , 5 are reported in Table 1.
The eigenvalues are observed to decay exponentially and by virtue of Theorem 2.3,
we may therefore expect sufficiently accurate results for r ≤ 5.
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Figure 5: Eigenvalue spectrum (normalized by s2
1) of the realized volatility covari-

ance matrix of the constituents of the Dow Jones index over a period of 252 days
(left) and recovery ratio ηr, r = 1, . . . , d (right).

r sr s2
r

ηr

1 0.2052 0.0421 0.5307
2 0.0990 0.0098 0.6542
3 0.0940 0.0088 0.7655
4 0.0791 0.0062 0.8443
5 0.0459 0.0021 0.8708

Table 1: First eigenvalues s2
r, r = 1, . . . , 5, of the Dow Jones realized volatility

covariance matrix Q and recovery ratio ηr.

As in Section 2.1.2, let D̂ := diag(ŝ2
1, . . . , ŝ

2
d) ∈ Rd×d with ŝ as in (2.8) for some

3Q was computed from the historical time series adjusted for dividends and interest rates of
the daily log-returns of the 30 constituents of the Dow Jones industrial average index.

4Similar eigenvalue decompositions for the DAX index are presented in [8].
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2 ≤ r ≤ 5 which defines the rank-reduced processes X̂ and Ŷ defined by (2.9)
and (2.10) respectively. We approximate the exact solution u(t, x) = v(t, y) of
the d-dimensional problem (3.3) by a parametrized r-dimensional option price
v̂(t, ŷ) = v̂(t, ŷ1, . . . , ŷr; ŷr+1, . . . , ŷd) for ŷ = (ŷ1, . . . , ŷd) ∈ G := (−R,R)d. We
therefore consider the option prices v̂R(t, ŷ1, . . . , ŷr; ŷr+1, . . . , ŷd) satisfying

∂tv̂R + Âv̂R + γv̂R = 0 in J × Ĝr
R,

v̂R(t, ·) = 0 on J × ∂Ĝr
R,

v̂R(0, ŷ) = f̂(eŷ)| bGr
R

in Ĝr
R,

(6.5)

where Ĝr
R := (−R,R)r. The rank-r operator Â is now given by

Â := −
1

2
tr
[
D̂D̂2

]
− 〈λ̂, D̂〉,

with λ̂ as in (2.10), rank-r differential operators D̂, and D̂2

D̂ := (∂ŷ1 , . . . , ∂ŷr , 0, . . . , 0)
", D̂2 :=

(
(∂2

ŷiŷj
)1≤i,j≤r 0

0 0

)
,

respectively, and

f̂(eŷ) = f(eŷ1 , . . . , eŷr , eŷr+1+bλr+1T , . . . , eŷd+bλdT )

= max(0, e
Pr

i=1 αiŷi+
Pd

i=r+1 ŷi+bλiT − K).

We numerically solve (6.5) for r = 2, . . . , 5 and various mesh widths h = 2−L with
the Dow Jones realized volatility covariance matrix Q whose principal components
are plotted in Figure 5 (left), weights αi = 0.3, i = 1, . . . , d, maturity T = 1, strike
K = 1 and interest rate γ = 0.045, and plot the convergence rate of the relative
L2-error

‖eL‖ :=
‖v(T, ·) − v̂L(T, ·)‖L2(G1)

‖v(T, ·)‖L2(G1)
, G1 = (3/4K, 5/4K) × {K}× . . . × {K},

at maturity T = 1 in Figure 6. The flattening behavior of the convergence rates is
explained by further expanding the error into (a) an ε-aggregation error made by
artificially setting volatilities to zero (Theorem 2.3) and (b) a discretization error
[9] as

‖v(t, y) − v̂L(t, ŷ)‖ = ‖v(t, y) − v̂(t, ŷ) + v̂(t, ŷ) − v̂L(t, ŷ)‖

≤ ‖v(t, y) − v̂(t, ŷ)‖︸ ︷︷ ︸
(a)

+ ‖v̂(t, ŷ) − v̂L(t, ŷ)‖︸ ︷︷ ︸
(b)

.

It follows that the lower bounds observed in Figure 6 therefore stem from the
ε-aggregation error which diminishes as r is increased.
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Figure 6: Convergence rates of the approximation of a 30 dimensional option price
on the Dow Jones by r = 2, . . . , 5 dimensional options in the Black-Scholes model.

6.3 Stochastic volatility models

Since there are no analytically tractable solutions available for the price of a bas-
ket with stochastic volatility, we introduce a model problem for which the exact
solution is known in closed form. For z = (x, y) ∈ G := [0, 1]n × [0, 2]n, consider

∂tu + Au + γu = f(t, z) in J × G
u(t, ·) = 0 on J × ∂G

u(0, z) = g(z) in G
,

where the operator A is as in (3.2), with µ,Σ as in (2.15)–(2.16). We let

fij(y) =

{
|yi| + |y(i+1) mod n|, if i = j
0, else

, 1 ≤ i, j ≤ n,

and consider functions ci(yi) = αi(mi − yi), bi(yi) = βi, Λi = 0, 1 ≤ i ≤ n, which
define the volatility processes as in Example 2.4. Furthermore, we let ρji = 0 if
i 7= j. In this setting, the operator A simplifies to

A = −
1

2

n∑

i=1

[
f2

ii(y)∂xixi +β2
i ∂yiyi +2βiρiifii(y)∂xiyi +

(
2γ−f2

ii(y)
)
∂xi +2ci(yi)∂yi ].

25



We set the solution to u(t, z) = u(t, x, y) := e−t
∏n

i=1 sin(πxi)(yi − 4−1y3
i ) and use

for i = 1, . . . , n, the values

αi =
1

10
(1 + 4

i

n
), βi =

1

2
(1 +

i

n
), mi =

1

20
(2 −

i

n
), ρii = −

1

10
(1 + 8

i

n
),

and interest rate γ = 0.05. We plot the error ‖eL‖ := ‖u(T, z) − uL(T, z)‖L2(G) at

T = 0.5 against N̂L in Figure 7 to obtain the rate of convergence

‖eL‖ = O
(
N̂−2

L (log N̂L)c(n)
)
,

with a constant c(n) depending linearly on the dimension of the problem.

Figure 7: Convergence rates for the stochastic volatility model in different dimen-
sions d = 2n.

7 Outlook: Rank-k dimensional corrections

We consider the price u of an option in a full-rank d-dimensional time rescaled
Black-Scholes market with principal components s2

1 = 1 ≥ . . . ≥ s2
d, i = 1, . . . , d, of

its volatility covariance matrix Q = ΣΣ", Σ = U"D
1
2 with D = diag(s2

1, . . . , s
2
d)

and U as introduced in Section 2.1.1. Without loss of generality, the option value
u in (2.1) is also a function of Σ such that we can write

u = u(t, x, s) = u(t, x, s1, . . . , sd).
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For some 1 ≤ r ≤ d, we denote ŝ := (s1, . . . , sr, 0, . . . , 0) ∈ Rd as defined in (2.8),
and we expand u(t, x, s) in a Taylor series of order k about the low-rank option
price u(t, x, ŝ)

u(t, x, s) = u(t, x, ŝ) +
d∑

i=r+1

si
∂u

∂si
(t, x, ŝ) +

1

2!

d∑

i,j=r+1

sisj
∂2u

∂si∂sj
(t, x, ŝ)

+
1

3!

d∑

i,j,l=r+1

sisjsl
∂3u

∂si∂sj∂sl
(t, x, ŝ) + . . . + O(‖s − ŝ‖k+1) (7.1)

The main premise of expansion (7.1) is that the partial derivatives need not be
calculated exactly but only up to order k+1 which may be achieved with high
order finite difference schemes [6]. In particular the case r=1, k =1 is treated in
[8]. We illustrate hereafter the case k = 2 for any r ≤ d, but extension to arbitrary
order k is straightforward. Specifically, (7.1) becomes

u(t, x, s) = u(t, x, ŝ) +
d∑

i=r+1

si
∂u

∂si
(t, x, ŝ) +

1

2

d∑

i=r+1

s2
i
∂2u

∂2si
(t, x, ŝ)

+
1

2

d∑

i=r+1

d∑

j=r+1
j *=i

sisj
∂2u

∂si∂sj
(t, x, ŝ) + O(‖s − ŝ‖3), (7.2)

For i, j = r+1, . . . , d, we introduce the rank r+1 and r+2 vectors ŝ(i)
(p), ŝ(i,j)

(p,q) ∈ Rd

respectively, defined by

(
ŝ(i)
(p)

)

m
:=






sm 1 ≤ m ≤ r,
1
2(p − 1)si m = i,
0 else,

(
ŝ(i,j)
(p,q)

)

m
:=






sm 1 ≤ m ≤ r,
1
2 (p − 1)si m = i,
1
2 (q − 1)sj m = j,
0 else,

With weights5 α = (−3, 4,−1)", β = (4,−8, 4)", the partial derivatives in (7.2)
are approximated by the second order finite differences

si∂siu(t, x, ŝ) =
3∑

p=1

αpu(t, x, ŝ(i)
(p)) + O(s3

i ), (7.3)

s2
i ∂

2
si

u(t, x, ŝ) =
3∑

p=1

βpu(t, x, ŝ(i)
(p)) + O(s3

i ), (7.4)

sisj∂
2
sisj

u(t, x, ŝ) =
3∑

p,q=1

αpαqu(t, x, ŝ(i,j)
(p,q)) + O(s3

i +s3
j), (7.5)

5Other choices of weights are possible implying other definitions for vectors ŝ
(i)
(p), ŝ

(i,j)
(p,q).
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where u(t, x, ŝ(i)
(p)) and u(t, x, ŝ(i,j)

(p,q)) are independent solutions of r+1 and r+2

dimensional PDEs respectively as shown in Section 2.1.2. Inserting (7.3)–(7.5)
into (7.2) and truncating the expansion yields the rank -2 corrected rank -r option
price u(r,2)(t, x, s) approximation of u(t, x, s)

u(r,2)(t, x, s) := u(t, x, ŝ)

+
d∑

i=r+1

3∑

p=1

(
αp +

βp

2

)
u(t, x, ŝ(i)

(p))

+
1

2

d∑

i=r+1

d∑

j=r+1
j *=i

3∑

p,q=1

αpαqu(t, x, ŝ(i,j)
(p,q)). (7.6)

Remark 7.1. (7.6) is a linear combination of one r-dimensional, 2(d − r) r+1
dimensional and 4(d − r)(d − r + 1) r+2 dimensional independent PDEs which
can be solved independently in parallel using the numerical approach described in
Section 4.
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