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VORTICITY PRESERVING FINITE VOLUME SCHEMES
FOR THE SHALLOW WATER EQUATIONS.

U. S. FJORDHOLM AND S. MISHRA

Abstract. We consider the shallow water equations and propose a numerical algorithm that approximates
the transport of vorticity accurately. The algorithm is based on a predictor-corrector type projection method.
Any consistent finite volume scheme predicts the approximate solution. An elliptic equation is solved and the
momentum field is corrected to obtain the correct evolution of vorticity. We describe this projection algorithm
for the wave equation and the shallow water equations. The crucial role played by the pseudo-vorticity transport
is highlighted. Numerical experiments demonstrating a considerable gain in computational efficiency with the
vorticity projection algorithm are presented.

1. Introduction

In many interesting flows like those in rivers, in the near shore ocean and irrigation channels, the vertical
scale (depth) of the flow is much smaller than the horizontal scales. This scale separation can be employed [23]
to simplify the incompressible Euler equations and obtain the so-called shallow water equations:

(1.1)

ht + (hu)x + (hv)y = 0,

(hu)t +
(

hu2 +
1
2
gh2

)

x

+ (huv)y = 0,

(hv)t + (huv)x +
(

hv2 +
1
2
gh2

)

y

= 0,

where h is the height of the fluid column and (u, v) is the velocity field. The constant g is the acceleration due
to gravity.

The shallow water equations are an example of a system of conservation laws:

(1.2) Ut + f(U)x + g(U)y = 0,

where U = [h, hu, hv]! is the vector of unknowns and f = [hu, hu2+ 1
2gh2, huv]! and g = [hv, huv, hv2+ 1

2gh2]!
are the flux vectors. A straightforward calculation yields that the eigenvalues of the Jacobians f ′(U) and g′(U),
respectively, are

λ1 = u−
√

gh, λ2 = u, λ3 = u +
√

gh,

µ1 = v −
√

gh, µ2 = v, µ3 = v +
√

gh.

Hence, the shallow water system is a strictly hyperbolic system. Eigenvectors can be similarly calculated [15].
Hyperbolic conservation laws (1.2) are characterized by the formation of finite time discontinuities, even for

smooth initial data. These discontinuities or shock waves are a very important object of study. The presence
of shock waves implies that solutions of (1.2) are sought in the weak sense [6]. It is also well known that weak
solutions are not necessarily unique. Additional admissibility criteria or entropy conditions need to be imposed
in order to recover uniqueness. For the shallow water system (1.1), the total energy,

E =
1
2

(
hu2 + hv2 + gh2

)

Date: October 14, 2009.
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2 ULRIK S. FJORDHOLM AND SIDDHARTHA MISHRA

serves as the entropy function, with corresponding entropy flux functions

H(U) =
1
2

(
hu3 + huv2

)
+ gh2u and K(U) =

1
2

(
hu2v + hv3

)
+ gh2v.

Thus, the entropy condition imposed on weak solutions (in the sense of distributions) is

(1.3) E(U)t + H(U)x + K(U)y ≤ 0.

The energy inequality leads to bounds on the solutions of the shallow water system. In addition to the total
energy, another object of interest is the vorticity,

(1.4) ω = vx − uy.

This quantity measures the rotation of the flow and is very important in practical applications. A detailed
account of the role played by vorticity in meteorological models is available in [1, 2] and other references
therein. By a simple calculation, one finds that smooth solutions of the shallow water equations satisfy the
vorticity transport equation:

(1.5) ωt + (uω)x + (vω)y = 0.

Thus, vorticity is advected with the flow. In particular, the total circulation

C∗(t) =
∫

R2
ω(x, y, t)dxdy

is conserved in time. However, this conservation is only valid for smooth solutions, and for discontinuous
solutions, vorticity may be generated over shocks [12].

A related object of interest is the potential vorticity,

ζ =
ω2

h
.

Smooth solutions of (1.1) also satisfy the potential vorticity transport,

(1.6) ζt + (uζ)x + (vζ)y = 0.

Integrating (1.6) in time and utilizing the positivity of height, we obtain bounds on the vorticity in L2.
A similar situation is encountered with the Euler equations of gas dynamics [15]. The physical entropy satisfies

an inequality of the form (1.3) and the vorticity of the flow is transported as in (1.5). Preserving quantities of
interest like the energy (entropy) and vorticity in numerical approximations of hyperbolic conservation laws is
a computational major challenge[18].

In the absence of explicit formulas for the solution of (1.1), numerical methods are the main tools for studying
the shallow water equations. Among the most popular methods are the so-called finite volume methods [15]. For
simplicity, we consider a uniform Cartesian mesh {(xi, yj)} in R2 with mesh sizes ∆x and ∆y. The domain is
partitioned into rectangular cells Ii,j = [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2]. A standard cell-centered finite volume
method consists of updating the cell averages

Ui,j(t) =
1

∆x∆y

∫

Ii,j

U(x, y, t)dxdy,

at each time level. For simplicity, we drop the time dependence of every quantity and write a standard finite
volume scheme for (1.2) in the semi-discrete form as

(1.7)
d

dt
Ui,j = L(Ui,j) = − 1

∆x

(
Fi+1/2,j − Fi−1/2,j

)
− 1

∆y

(
Gi,j+1/2 −Gi,j−1/2

)
,

where F and G are numerical fluxes at the cell-edges that are consistent with the fluxes f and g, respectively.
The numerical fluxes are computed by using either exact or approximate solutions of Riemann problems across
the cell-edges in the normal directions and take the form,

(1.8) Fi+1/2,j = F (Ui,j , Ui+1,j), Gi,j+1/2 = G(Ui,j , Ui,j+1),

where F,G are determined in terms of either exact or approximate Riemann solvers.
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The scheme (1.7), based on two point numerical fluxes (1.8) are first-order accurate and can be extended to
higher order accuracy by employing numerical fluxes based on wider, 2p-point stencils, Ii+1/2 := {i′

∣∣ |i′ − i −
1/2| < p} along the x-axis and Jj+1/2 := {j′

∣∣ |j′ − j − 1/2| < p} along the y-axis,

(1.9) Fi+1/2,j = F
(
{Ui′,j}i′∈Ii+1/2

)
, Gi,j+1/2 = G

(
{Ui,j′}j′∈Jj+1/2

)
.

The building blocks for such extensions are still the 2-point numerical fluxes, F (·, ·) and G(·, ·). As a prototype
example, we recall the class of second-order schemes based on piecewise bilinear MUSCL reconstruction [14],

(1.10a) pi,j(x, y) := Ui,j +
U ′

i,j

∆x
(x− xi) +

U !
i,j

∆y
(y − yj);

Here, U ′ and U ! denote the numerical derivatives.

(1.10b)
U ′

i,j = minmod(Ui+1,j − Ui,j ,
1
2
(Ui+1,j − Ui−1,j), Ui,j − Ui−1,j),

U !
i,j = minmod(Ui,j+1 − Ui,j ,

1
2
(Ui,j+1 − Ui,j−1), Ui,j − Ui,j−1),

which utilize the minmod limiter

(1.10c) minmod(a, b, c) =

{
sgn(a) min{|a|, |b|, |c|}, if sgn(a) = sgn(b) = sgn(c),
0, otherwise.

In this manner, one can reconstruct in each cell Ii,j , the point values

(1.11a) UE
i,j := pi,j(xi+ 1

2
, yj), UW

i,j := pi,j(xi− 1
2
, yj), UN

i,j := pi,j(xi, yj+ 1
2
), US

i,j := pi,j(xi, yj− 1
2
),

from the given neighboring cell averages Ui,j , Ui±1,j and Ui,j , Ui,j±1. The resulting second-order fluxes are then
given by

(1.11b) Fi+ 1
2 ,j = F (UE

i,j , U
W
i+1,j), Gi,j+ 1

2
= G(UN

i,j , U
S
i,j+1).

The use of minmod limiter ensures the non-oscillatory behavior of the second-order schemes (1.7),(1.10). Similar
reconstructions together with upwind or central averaging yield a large class of high-resolution finite-volume
semi-discrete schemes, e.g., [10, 20, 13],

For time integration, we use a standard forward Euler method for first order schemes, and for second order
schemes the strong stability preserving (SSP) Runge-Kutta method of [9]. Given a solution Un

i,j at time step
tn, the solution Un+1

i,j is computed by

(1.12)

U∗
i,j = Un

i,j + ∆tnL(Un
i,j)

U∗∗
i,j = U∗

i,j + ∆tnL(U∗
i,j)

Un+1
i,j =

1
2
(Un

i,j + U∗∗
i,j ),

where L is defined in (1.7). The time step ∆tn is determined by a standard CFL condition. In all simulations
we use a CFL number of 0.45.

A wide variety of numerical fluxes (1.8) are available for the shallow water equations [15] and finite volume
schemes of the form (1.7) are quite successful in approximating (1.1). However, standard numerical methods may
not faithfully discretize objects of interest like energy and vorticity. In particular, the numerical approximations
may not respect the energy inequality (1.3) or the vorticity transport (1.5). Energy errors are highly problematic
for long time integration of the shallow water system [2]. Recent papers, [7, 8], present energy preserving and
energy stable schemes for the shallow water system and demonstrate a major gain in accuracy as well as stability
when the energy preserving numerical schemes are used.

Standard finite volume schemes may produce large errors in the vorticity transport [18, 12], which may result
in incorrect qualitative behavior of, for instance, meteorological flows [2]. Similar issues arise in the simulation
of the Euler equations of gas dynamics. It is well known [11] that standard finite volume schemes produce large
vorticity errors, which results in incorrect approximations for strongly vortical flows.
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Our goal is to design vorticity preserving schemes – numerical schemes that transport vorticity accurately –
for the shallow water equations (1.1). Recent papers like [12, 18] have proposed a simple model problem, the
wave equation

(1.13)




!

m1

m2





t

+




0 c 0
c 0 0
0 0 0








!

m1

m2





x

+




0 0 c
0 0 0
c 0 0








!

m1

m2





y

= 0,

to act as a testbed for the design of such schemes. The wave equation may be viewed as a linearization of (1.1)
around a stationary background state h = h0, u = v = 0. Letting c =

√
gh0 and ! = ch and ignoring terms of

order two or more in (1.1), we get precisely (1.13). The eigenvalues of the flux matrices in (1.13) are −c, 0 and
c, and so the wave equation is strictly hyperbolic.

The relevant measure of vorticity for the wave equation is the curl of the momentum field,

(1.14) Γ = (m2)x − (m1)y.

It is easily seen that this quantity is constant in time:
Γt = −((c!y)x − (c!x)y)

= 0.
(1.15)

Recent papers like [12, 17, 18] have proposed finite volume schemes for (1.13) that preserve a discrete version of
the vorticity. These schemes are based on rewriting the standard finite volume scheme (1.7) on staggered meshes
[18], in terms of flux distributions [12], or in a genuinely multi-dimensional manner [17]. The task of extending
some of these vorticity preserving schemes for the linear wave equation system (1.13) to obtain schemes that
transport vorticity correctly (discrete version of (1.5)) for the shallow water equations is quite complicated.
Non-linearity plays a leading role in (1.1) and it is not clear how the vorticity preserving schemes for (1.13) can
be modified for this problem.

Another approach for designing schemes with correct vorticity transport was proposed recently by Ismail
and Roe [11] in the context of the Euler equations of gas dynamics. Their algorithm is based on a modified
projection method. The projection method relies upon the Hodge decomposition of any vector field into a
divergence free part and a curl free part, and was first used for incompressible flow calculations by Chorin in
[5]. Extensions of the projection method for incompressible flow were proposed in [3]. Another application of
the projection method was in numerical methods for the magnetohydrodynamics (MHD) equations [22]. The
MHD equations are a non-linear system of conservation laws, equipped with the constraint that the magnetic
field remain divergence free during the evolution. Standard numerical schemes like the finite volume scheme
(1.7) may not respect this constraint and may lead to oscillations and other instabilities [22]. In [4], the authors
apply the projection method to clean divergence. This approach is quite popular in MHD codes.

The projection method leads to an elliptic equation at every time step. This equation can be solved by
standard fast elliptic solvers and the resulting solution satisfies a constraint. The elliptic equation can be quite
expensive to solve. The projection method of [5, 3, 4] cannot be directly used to design a scheme that transports
vorticity correctly for the shallow water system (1.1). Instead as in [11], an estimate of the vorticity is provided
by the pseudo-vorticity,

(1.16) Ω = (m2)x − (m1)y,

for momenta (m1, m2) = (hu, hv). Note that the pseudo-vorticity is the curl of the momentum and the momenta
are the conserved variables in (1.1). Smooth solutions of the shallow water system (1.1) satisfy the pseudo-
vorticity transport:

(1.17)

Ωt + (uΩ)x + (vΩ)y + (m2(ux + vy))x − (m1(ux + vy))y

+
(

u2 + v2

2
hy

)

x

−
(

u2 + v2

2
hx

)

y

= 0.

The pseudo-vorticity transport is more complicated than the vorticity transport (1.5) as second derivative terms
appear explicitly in the equation. Furthermore, the pseudo-vorticity transport (1.17) accounts for compressibil-
ity. Note that if the flow is incompressible, i.e, the velocity field is divergence free, and the height h is constant
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in space, then (1.17) reduces to the vorticity transport equation (1.5). The non-zero divergence of the velocity
and height variations contribute to the error terms in (1.17). The approach of [11] relied on controlling the
pseudo-vorticity for the Euler equations. However, the corresponding pseudo-vorticity transport equation of
[11] (eqn. 30) appears to be incorrect, particularly when the height (density for the Euler equations) varies in
space. The projection method of [11] is based on a relaxation type elliptic solver.

In this paper we propose a projection method for the shallow water equations. Our predictor-corrector method
involves a prediction step in which the solution is evolved by any consistent finite volume method (1.7). In
particular, high-order accurate finite volume schemes (1.10) can be used in this step. The essential step involves
controlling pseudo-vorticity by a suitable discretization of the transport equation (1.17). The correction step is
based on a Hodge decomposition and results in an elliptic equation that needs to be solved at every time step.
We utilize fast solvers to solve the elliptic equation: a direct method for Neumann boundary conditions and a
suitable conjugate gradient method for periodic boundary conditions. Some stability estimates are derived for
the projection method for the system wave equation. Numerical experiments are presented to demonstrate the
robustness and computational efficiency of this modified projection method for both the linear wave equation
(1.13) and the shallow water system (1.1).

The rest of the paper is organized as follows: We present the projection method for the system wave equation
in Section 2 and for the shallow water equations in Section 3. Conclusions are drawn in Section 4.

2. Vorticity projection for the system wave equation

In this section we design a projection method for approximating the system wave equation (1.13) that
preserves a discrete version of the vorticity (1.14). The wave equation system is a linearized form of the shallow
water equations (1.1) and the vorticity is constant in time. We seek to modify the finite volume scheme (1.7)
such that a discrete version of the vorticity remains constant in time. We do so by the following discrete
projection algorithm.
Step 1: Prediction. Compute a candidate solution Ũn+1

i,j for (1.13) at time tn+1 for all mesh points xi, yj with
any consistent and conservative finite volume scheme (1.7). Let Γ̃n+1

i,j be the discrete vorticity of Ũn+1
i,j ,

computed as

(2.1) Γ̃n+1
i,j = Dx(m̃2)n+1

i,j −Dy(m̃1)n+1
i,j ,

where Dx and Dy are the central differences

(2.2) DxUi,j =
Ui+1,j − Ui−1,j

2∆x
and DyUi,j =

Ui,j+1 − Ui,j−1

2∆y
.

Step 2: Elliptic Solve. Find the solution ψ = (ψi,j) of the discrete Poisson problem:

(2.3)

{
−

(
D2

x + D2
y

)
ψi,j = Γ̃n+1

i,j − Γi,j in the interior,
ψi,j = 0 at the boundary.

Here, Γi,j = Γ0
i,j denotes the initial vorticity.

Step 3: Projection. Define the solution at the next time step Un+1
i,j =

[
!n+1

i,j , (m1)n+1
i,j , (m2)n+1

i,j

]! as

(2.4) !n+1
i,j = !̃n+1

i,j , (m1)n+1
i,j = (m̃1)n+1

i,j −Dyψi,j , (m2)n+1
i,j = (m̃2)n+1

i,j + Dxψi,j .

Note that any finite volume scheme can be used in Step 1 of the above algorithm. Similarly, any linear system
solver can be used to solve the discrete Poisson equation in Step 2. Hence, the above algorithm is very general.
The key feature of the projection method is stated in the following lemma.

Lemma 2.1. The solution Un = (!n, mn
1 , mn

2 ) computed by the projection method at any time step level tn

satisfies
Γn

i,j := Dx(m2)n
i,j −Dy(m1)n

i,j = Γi,j ,

with Γi,j = Γ0
i,j being the initial vorticity. Hence, the discrete vorticity remains constant in time.
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Proof. Simply inserting the definition of mn
1 and mn

2 gives

Dx(m2)n
i,j −Dy(m1)n

i,j = Dx(m̃2)n
i,j −Dy(m̃1)n

i,j +
(
D2

x + D2
y

)
ψn

i,j

= Γi,j .

!

In addition to vorticity preservation, another desirable feature of the projection algorithm is its stability.
The system wave equation (1.13) is equipped the energy

(2.5) E =
1
2

(
!2 + m2

1 + m2
2

)
.

A straightforward calculation shows that the energy satisfies the identity

(2.6) Et + (c!m1)x + (c!m2)y = 0.

Hence, the total energy is conserved in time. Many standard finite volume schemes like the Rusanov scheme
and the Roe scheme (detailed descriptions are provided later in this section) are energy stable (the total energy
dissipates in time). Hence, by using such a scheme in Step 1 of the discrete projection algorithm results in a
decrease in energy. We show that Steps 2 and 3 of the projection algorithm are also energy stable in the lemma
below. We have dropped the time dependence of all quantities for notational convenience.

Lemma 2.2. Let E be the energy of a solution computed by the projection method, and let Ẽ = 1
2

(
!̃2+m̃2

1+m̃2
2

)

be the energy of the solution obtained in the prediction step. We have
∑

i,j

Ei,j ≤
∑

i,j

Ẽi,j − 2
∑

i,j

Γi,jψi,j .

In particular, if the initial vorticity is zero, then
∑

i,j

Ei,j ≤
∑

i,j

Ẽi,j .

Proof. We use summation by parts extensively. As ψ = 0 at the boundary, all boundary terms will drop out.
Then

∑

i,j

Ei,j =
∑

i,j

(
!2

i,j + (m̃1,i,j −Dyψi,j)2 + (m̃2,i,j + Dxψi,j)2
)

=
∑

i,j

Ẽi,j − 2
∑

i,j

(m̃1,i,jDyψi,j − m̃2,i,jDxψi,j) +
∑

i,j

(
(Dxψi,j)2 + (Dyψi,j)2

)
.

The second term is

−2
∑

i,j

(m̃1,i,jDyψi,j − m̃2,i,jDxψi,j) = 2
∑

i,j

ψi,j(Dym̃1,i,j −Dxm̃2,i,j)

=− 2
∑

i,j

ψi,j

(
Γi,j − (D2

x + D2
y)ψi,j

)

=− 2
∑

i,j

Γi,jψi,j − 2
∑

i,j

(
(Dxψi,j)2 + (Dyψi,j)2

)
.

Hence,
∑

i,j

E =
∑

i,j

Ẽi,j − 2
∑

i,j

Γi,jψi,j −
∑

i,j

(
(Dxψi,j)2 + (Dyψi,j)2

)

≤
∑

i,j

Ẽi,j − 2
∑

i,j

Γi,jψi,j .

If Γi,j ≡ 0, then the last term drops out leading to energy dissipation. !
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2.1. Prediction Step. In order to complete the description of the discrete projection algorithm, we need to
specify the numerical fluxes for the prediction step (step 1 of the algorithm). As stated earlier, any consistent
numerical flux can be used in the finite volume scheme (1.7). In particular, we choose the Rusanov flux, that
takes the form:

(2.7)
FRus

i+1/2,j =
1
2
(
f(Ui,j) + f(Ui+1,j)

)
− c

2
(Ui+1,j − Ui,j),

GRus
i,j+1/2 =

1
2
(
g(Ui,j) + g(Ui,j+1)

)
− c

2
(Ui,j+1 − Ui,j),

where f and g are fluxes for the system wave equation (1.13) in the x- and y- directions respectively. The
Rusanov flux is very simple to implement and requires minimal characteristic information. However, it can be
dissipative, particularly at discontinuities. A more accurate numerical flux is the Roe flux:

(2.8)
FRoe

i+1/2,j =
1
2
(
f(Ui,j) + f(Ui+1,j)

)
− 1

2
Rx|Λx|Rx,−1(Ui+1,j − Ui,j),

GRoe
i,j+1/2 =

1
2
(
g(Ui,j) + g(Ui,j+1)

)
− 1

2
Ry|Λy|Ry,−1(Ui,j+1 − Ui,j),

where Λx,Λy are the diagonal matrices of eigenvalues and Rx, Ry the matrices of eigenvectors for the Jacobians
of the wave equation system (1.13).

2.2. Elliptic Solver. The discrete Poisson equation (2.3) must be solved at every time step, so a fast and
efficient solver is essential to the computational efficiency of the scheme. The subject of efficient linear solvers
for the Poisson equation is treated in many text books. We describe the methods used in our computations
very briefly. For simplicity, we compute on an N ×M uniform Cartesian grid. If we write Ci,j = Γ̃n+1

i,j − Γi,j ,
then the matrix equation (2.3) can be rewritten as

(2.9)
1

4∆x2
TNΨ +

1
4∆y2

ΨTM = C,

where Ψ = (ψi,j) and TN is the N ×N symmetric, positive definite matrix

(2.10) TN =





2 0 −1
0 2 0 −1
−1 0 2 0 −1

. . . . . . . . .
−1 0 2 0 −1

−1 0 2 0
−1 0 2





.

We solve this equation with a direct method from [16]. Let RN be the matrix of eigenvectors and DN =
diag(λ1

N , . . . ,λN
N ) the matrix of eigenvalues of TN . RN may be chosen such that R2

N = IN , the identity matrix
in RN×N . Multiplying (2.9) by RN on the left and RM on the right, we find that

1
4∆x2

DNX +
1

4∆y2
XDM = RNCRM ,

where X = RNΨRM . The (i, j) entry of the left-hand side of this equation is

λi
N

4∆x2
Xi,j +

λj
M

4∆y2
Xi,j .

Hence, X = (RNCRM )./S, where

Si,j =
λi

N

4∆x2
+

λj
M

4∆y2

and ./ denotes component-wise division. The solution of (2.9) is therefore

Ψ = RNXRM .
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2.2.1. Periodic boundary conditions. The above discussion did not rely on the specifics of the boundary condition
on U . In the special case of periodic boundary conditions:

U0,j = UN,j , U−1,j = UN−1,j ,

and similar conditions in the y-direction, we can improve the method by applying the same condition on ψ in
(2.3). This will result in the matrix equation:

(2.11)
1

4∆x2
PNΨ +

1
4∆y2

ΨPM = C,

with

(2.12) PN =





2 0 −1 0 . . . −1 0
0 2 0 −1 . . . 0 −1

−1 0
. . .

...
...

0 −1
. . . −1 0

...
...

. . . 0 −1
−1 0 . . . −1 0 2 0
0 −1 . . . 0 −1 0 2





.

The direct method of the previous section is unsuitable for this case. Hence, we will employ the conjugate
gradient method [16]. The conjugate gradient method searches for the solution of a matrix equation Az = b
along orthogonal search paths sk ∈ RNM , and it finds the exact solution after at most NM iterations. As this
number grows large quadratically, we will use the method as an iterative method, halting the process when
||sk||!2 is less than some ε > 0. Given a right-hand side b, we set ε = α||b||!2 for an α > 0, so that the allowed
error in the solution is proportional to b. We chose α = 10−8 in this paper.

The matrix-matrix equation (2.11) can be rewritten as a matrix-vector equation Az = b, with

z = vec(Ψ), b = vec(C) and A =
1

4∆x2
PN ⊗ IM +

1
4∆y2

IN ⊗ PM ,

⊗ denoting the Kroenecker product and vec(Ψ) the column-first vectorized version of Ψ [16]. Contrary to TN ,
the matrix PN is only positive semidefinite; its kernel is spanned by the vectors

r1
N =





1
0
1
0
...




, r2

N =





0
1
0
1
...




∈ RN

if N is even, and by

r1
N =





1
1
1
...




∈ RN

if N is odd. Hence, the matrix A will be positive semidefinite with a kernel spanned by the vector(s)

rk
N ⊗ rl

M .

As a consequence, the equation Az = b does not have a solution whenever b has a nonzero component in kerA.
However, the equation Az = b̂, where

b̂ = proj(ker A)⊥(b) (= projImA(b)) ,

does have a unique solution in (kerA)⊥. The conjugate gradient method is well-defined and converges for this
modified equation. Therefore, we propose using the solution Ψ of this modified equation. Note that the above
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discussion provides a sort of preconditioner for the problem: We have modified the ill-conditioned problem
Az = b by multiplying on both sides by the projection matrix of (kerA)⊥, thus obtaining Az = b̂.

Remark 2.3. The linear solvers presented above are not necessarily optimal. We can employ more efficient
scalable iterative solvers like variants of the preconditioned conjugate gradient and other Krylov space methods
for solving the linear system (2.3) and increase the efficiency of our algorithm. However, we choose to keep the
description of the projection algorithm simple and present the simplest linear solvers.

Remark 2.4. The projection method described in this section is based on a simple Cartesian mesh. In real
life applications, one has to deal with unstructured meshes. It is relatively simple to extend the projection
algorithm to unstructured meshes. Finite volume schemes on unstructured meshes are readily available. A
suitable discrete form of vorticity can be easily defined ([18]). Solving the resulting discrete Poisson equation
on an unstructured mesh is standard numerical linear algebra. All these ingredients need to combined to yield a
vorticity projection algorithm on unstructured meshes. We will describe this method in detail in a forthcoming
paper.

2.3. Numerical experiments. We test the vorticity preserving schemes presented in the last section on a
couple of numerical experiments for the wave equation (1.13). The following schemes are tested:

Rus First-order standard finite volume scheme (1.7) with Rusanov flux (2.7).
Roe First-order standard finite volume scheme (1.7) with Roe flux (2.8).
VPRus Vorticity preserving scheme with Rusanov flux (2.7) in the prediction step.
VPRoe Vorticity preserving scheme with first-order Roe flux (2.8) in the prediction step.

Numerical experiment: Periodic waves. The first experiment features a periodic boundary and a nonzero initial
vorticity. The initial conditions are given by

! ≡ 0, m1(x, y) = m2(x, y) = cos(π(x + y))− cos(π(x− y)).

It is readily checked that

!(x, y, t) =
√

2 sin(π(x + y)) sin(
√

2πt),

m1(x, y, t) = m2(x, y, t) = cos(π(x + y)) cos(
√

2πt)− cos(π(x− y))

is the solution of this initial value problem. The corresponding vorticity is

Γ(x, y, t) = (m2)x − (m1)y = 2π sin(π(x− y)).

As expected, the expression for Γ is constant in time.
We compute for (x, y) ∈ [−2, 2]× [−2, 2] up to time t = 2. The solution at the final time step computed with

the Rusanov, VPRus, Roe and VPRoe schemes are plotted in Figure 1, along with the exact solution. While
! is left untouched by the VP schemes, the vorticity field is resolved much more sharply than in the predictor
schemes. This is verified in Table 1 and 2, where we show relative errors

‖Γ− Γexact‖L2

‖Γexact‖L2

for Γ and ! on a sequence of meshes. The VP schemes preserve vorticity up to machine precision, while the
Rus and Roe schemes have errors in vorticity of the order of discretization error.

Momentum is shown in the third column of Figure 1. Clearly, the projection methods have a positive effect
on the accuracy, preventing too much diffusion in m. Indeed, as shown in Table 3, the error in momentum is
about 20− 40 per cent lower than in the prediction solvers.

The conjugate gradient method used in the elliptic solver converges rapidly, with only 5 to 10 iterations
needed to get below the error threshold. Thus, the overhead is low, and the VP schemes take only about 1.5 to
three times more time to run than the standard schemes. The run time for the VP schemes can be improved
by employing a more efficient iterative solver for (2.3).
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(a) Exact solution

(b) Rus

(c) VPRus

(d) Roe

(e) VPRoe

Figure 1. Solutions at t = 2 computed by the four schemes on a mesh of 160× 160 grid points.
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Rusanov VPRus Roe VPRoe
40 8.65× 10−1 9.07× 10−12 6.28× 10−1 6.02× 10−11

80 6.29× 10−1 6.27× 10−11 3.90× 10−1 4.40× 10−11

160 3.90× 10−1 1.70× 10−11 2.19× 10−1 1.04× 10−11

320 2.19× 10−1 3.28× 10−12 1.16× 10−1 1.73× 10−12

Table 1. Relative error in Γ.

Rusanov VPRus Roe VPRoe
40 7.39× 10−1 7.39× 10−1 4.66× 10−1 4.66× 10−1

80 4.51× 10−1 4.51× 10−1 2.62× 10−1 2.62× 10−1

160 2.48× 10−1 2.48× 10−1 1.39× 10−1 1.39× 10−1

320 1.30× 10−1 1.30× 10−1 7.18× 10−2 7.18× 10−2

Table 2. Relative error in !.

Rusanov VPRus Roe VPRoe
40 7.77× 10−1 4.16× 10−1 5.64× 10−1 3.02× 10−1

80 5.46× 10−1 2.66× 10−1 3.43× 10−1 1.74× 10−1

160 3.33× 10−1 1.52× 10−1 1.91× 10−1 9.41× 10−2

320 1.85× 10−1 8.20× 10−2 1.01× 10−1 4.89× 10−2

Table 3. Relative error in m, the momentum.

Numerical experiment: Expanding wave. This experiment features a smooth solution with an open (Neumann)
type boundary condition. The initial data is given by

(2.13) !(x, y) = c exp
(
−15(x2 + y2)

)
, m1 = m2 = 0.

As the initial vorticity is zero, it should stay zero at all later times.
We solve for (x, y) ∈ [−2, 2] × [−2, 2] up to time t = 2. The spatial domain was discretized with N = M =

50, 100, 150 and 200 grid points in each direction. Vorticity at the final time step is shown in Figure 2. The
Rus scheme preserves the initial vorticity exactly in the middle of the domain, but there is a large amount of
vorticity production near the boundaries. This vorticity propagates into the domain at a speed of one grid cell
per time step. As the ratio ∆t

∆x is kept constant, this speed is invariant with respect to grid size. This is clear
in Table 4, where we show vorticity errors for the four schemes. The error for the Rusanov scheme is about
3 · 10−2, irrespective of grid size. The VPRus scheme clears out these errors, and only noise of the order of
machine precision is left (note the scaling of the figures).

The vorticity of the Roe scheme is shown in Figure 2(c). The figure shows that the initial constant vorticity
is not preserved. Again, the projection method clears out these errors completely.

The projection method gives no gain in accuracy for the conserved variables in this experiment. As the run
time of the method lies between 2 and 4 times that of the predictor solver, there is little incentive for using
the vorticity projection when the main interest is in an accurate solution of conserved variables. However, the
success of the method in clearing out vorticity errors motivates its use in computing vortex dominated flows.

Rusanov VPRus Roe VPRoe
50 2.43 · 10−2 3.64 · 10−16 8.10 · 10−2 2.61 · 10−16

100 2.83 · 10−2 7.96 · 10−16 5.83 · 10−2 6.71 · 10−16

150 2.88 · 10−2 1.54 · 10−15 4.68 · 10−2 1.18 · 10−15

200 2.84 · 10−2 1.75 · 10−15 3.94 · 10−2 1.54 · 10−15

Table 4. ‖Γ‖L1 in the expanding wave problem.
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(a) Rusanov (b) VPRus

(c) Roe (d) VPRoe

Figure 2. Vorticity at t = 2 for the four schemes, computed on a mesh of 150 × 150 grid
points. Note the scaling of each figure.

3. Vorticity Projection for the Shallow water system.

The vorticity projection algorithm for the shallow water equations (1.1) is a modification of the vorticity
projection algorithm for the system of wave equation. The prediction step is exactly the same: The solution at
the next time step is estimated using any finite volume method. We use the Rusanov and Roe schemes, although
any consistent numerical flux is applicable. Note that the scaling constant c in (2.7) should be replaced with
estimates on the local wave speeds [15]. Furthermore, we can use high resolution schemes (1.10).

As stated earlier, we use pseudo-vorticity as a measure of vorticity. Unlike the wave equation, where pseudo-
vorticity is constant in time, the pseudo-vorticity of the shallow water system exhibits the more complicated
evolution equation (1.17). Hence, we must approximate the exact pseudo-vorticity Ωn+1 at the next time step
as dictated by this equation. For this purpose we use the second-order central Nessyahu-Tadmor (NT) scheme
[19]. As this is a central scheme, we avoid having to deal with the complicated wave structure of the evolution
equation (1.17).
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For completeness we include a description of the NT scheme. Given data Ωn
i,j at time tn, we solve for the

staggered value Ωn+1
i+1/2,j+1/2 at time tn+1,

Ωn+1
i+1/2,j+1/2 ≈

1
∆x∆y

∫

Ji,j

Ω(x, y, tn+1) dxdy for Ji,j = [xi, xi+1]× [yj , yj+1].

To go from a vertex-centered solution Ωn+1
i+1/2,j+1/2 to a cell-centered solution Ωn+1

i,j , we perform a piecewise
linear reconstruction of Ωn+1

i+1/2,j+1/2,

Ωn+1(x, y) = Ωn+1
i+1/2,j+1/2 + σi,j(x− xi+1/2) + γi,j(y − yj+1/2) for (x, y) ∈ Ji,j .

This function is then averaged over Ii,j to obtain the final solution

Ωn+1
i,j =

1
∆x∆y

∫

Ii,j

Ωn+1(x, y) dxdy.

To solve for Ωn+1
i+1/2,j+1/2, we first write the vorticity flux functions as f(Ω, U) = uΩ + dm2 + shy and

g(Ω, U) = vΩ− dm1 − shx, where d = ux + vy and s = u2+v2

2 (compare with (1.17)). We then have

Ωn+1
i+1/2,j+1/2 =

1
∆x∆y

∫

Ji,j

Ωn(x, y) dxdy − 1
∆x∆y

∫ tn+1

tn

∫

Ji,j

f(Ω, U)x + g(Ω, U)y dxdydt

≈ 1
4

(
Ωn

i,j + Ωn
i+1,j + Ωn

i,j+1 + Ωn
i+1,j+1

)

− ∆t

∆x∆y

∫

Ji,j

f
(
Ωn+ 1

2 , Un+ 1
2

)

x
+ g

(
Ωn+ 1

2 , Un+ 1
2

)

y
dxdy,

where we have used a quadrature rule for the time integral. Ωn+ 1
2 and Un+ 1

2 are approximations of Ω and U at
time tn+ 1

2
. We select Un+ 1

2 = 1
2 (Un + Ũn+1) and Ωn+ 1

2 = Ωn− ∆t
2 (fn

x +gn
y ), where fn

x and gn
y are the gradients

of the flux at time tn.
All gradients (σi,j , γi,j , fn

x and gn
y ) used in this method are obtained using the MC limiter

Ωi,j = mm
(

2
Ωi,j − Ωi−1,j

∆x
, 2

Ωi+1,j − Ωi,j

∆x
,

Ωi+1,j − Ωi−1,j

2∆x

)
,

where mm is the minmod function

(3.1) mm(a, b, c) =

{
max{|a|, |b|, |c|} if sign(a) = sign(b) = sign(c),
0 otherwise.

We are now in a position to state the vorticity projection algorithm for the shallow water system.
Step 1: Prediction. Compute a candidate solution Ũn+1

i,j of (1.1) at time tn+1 with any consistent finite volume
scheme(1.7). Let Ω̃n+1

i,j be the discrete pseudo-vorticity computed by

Ω̃n+1
i,j = Dx(m̃2)n+1

i,j −Dy(m̃1)n+1
i,j .

Step 2: Vorticity Estimate. Use the Nessyahu-Tadmor scheme to update the pseudo-vorticity and obtain an
estimate of the pseudo-vorticity Ωn+1

i,j .
Step 3: Elliptic Solve. Find the solution ψ = (ψi,j) of the discrete Poisson problem

(3.2)

{
−

(
D2

x + D2
y

)
ψi,j = Ω̃n+1

i,j − Ωn+1
i,j in the interior,

ψi,j = 0 at the boundary,

where Dx and Dy are the discrete derivatives (2.2) and Ωn+1 is the pseudo-vorticity estimate obtained
in step 2.

Step 4: Projection. Define the solution at the next time step Un+1
i,j =

[
hn+1

i,j , (m1)n+1
i,j , (m2)n+1

i,j

]! as

(3.3) hn+1
i,j = h̃n+1

i,j , (m1)n+1
i,j = (m̃1)n+1

i,j −Dyψi,j , (m2)n+1
i,j = (m̃2)n+1

i,j + Dxψi,j .
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The vorticity projection algorithm ensures that the pseudo-vorticity at any time level is equal to the estimated
pseudo-vorticity Ωn+1. The proof of this fact is identical to the proof of Lemma 2.1.

3.1. Numerical experiment: Vorticity advection. We test the projection method on a problem where the
exact solution is known. It can be readily checked that

h(x, y, t) = 1− c2
1

4c2g
e2f

u(x, y, t) = M cos(α) + c1(y − y0 −Mt sin(α))ef

v(x, y, t) = M sin(α)− c1(x− x0 −Mt cos(α))ef

(3.4)

where
f = f(x, y, t) = −c2

(
(x− x0 −Mt cos(α))2 + (y − y0 −Mt sin(α))2

)
,

gives a smooth solution U = [h, hu, hv]! of the shallow water equations (1.1) for any choice of constants M , g,
c1, c2, α, x0 and y0. The solution consists of a vortex traveling at a constant velocity M in a direction specified
by the angle α. We let M = 1/2, g = 1, c1 = 0.04, c2 = 0.02 and (x0, y0) = (−20,−10). To test the schemes’

(a) t = 0

(b) t = 100

Figure 3. Exact solution of the vorticity advection problem at t = 0 and t = 100.

ability of resolving flows that are not aligned with the computational grid, we let α = π
6 . We compute for

(x, y) ∈ [−50, 50]× [−50, 50] up to time t = 100. The exact solution is shown in Figure 3.
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The computed solutions with the Rus, Roe, VPRus and VPRoe schemes on a uniform 200 × 200 mesh are
plotted in Figure 5. The Rus scheme dissipates the solution by a large amount, and the vortex is barely visible
in the plot. The VPRus scheme, on the other hand, preserves both the magnitude and the symmetry of the
vorticity quite well, and the solution resembles the exact solution closely. The Roe scheme solves the vortex
advection problem poorly; the symmetry is destroyed. The projection method corrects this to some extent.

The numerical results show that in this vortex dominated problems, standard schemes are extremely in-
accurate and fail to approximate the solution, even qualitatively. This experiment is representative of more
complex vortex dominated flows. However, using the vorticity projection algorithm improves the accuracy to a
considerable extent.

The VP schemes take about twice as long to run as the prediction solver on the same grid, and as such, a
comparison of error versus grid size between the schemes would be unfair. Instead, we compute error versus run
time over a sequence of meshes, from 50× 50 to 250× 250 grid points. These are plotted in Figure 4. Clearly,
the VPRus scheme gives the best error per run time ratio of the schemes considered. The VPRoe scheme also
performs well, but it seems like the non-symmetry of the Roe scheme pollutes the solution of the height variable
and makes the solution look asymmetric. In both cases, the gain in computational efficiency with vorticity
projection schemes is close to an order of magnitude. This experiment serves to illustrate the considerable gain
in accuracy that results by using the vortex projection method.
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Figure 4. Runtime (x-axis) versus relative L1 errors in height, momentum and vorticity (y-axis).

3.1.1. Second-order schemes. We repeat the vorticity advection experiment using second-order versions of the
Rusanov (Rusanov2) and Roe (Roe2) schemes in the prediction step. The corresponding VP schemes are



16 ULRIK S. FJORDHOLM AND SIDDHARTHA MISHRA

(a) Rusanov

(b) VPRus

(c) Roe

(d) VPRoe

Figure 5. Height and pseudo-vorticity at t = 100 computed by the four schemes on a mesh
of 200× 200 grid points.
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termed VPRus2 and VPRoe2 respectively. The results are shown in Figure 6. Although the second-order
Rusanov scheme performs much better than its first-order counterpart, the VPRus2 scheme is still significantly
more accurate. The Roe scheme (even at second order) continues to perform extremely poorly on the vortex
advection problem. In particular, the geometric structure of the vortex is destroyed by the Roe scheme. Some
of the errors are corrected by the VPRoe2 scheme but it is still inferior in performance to the VPRus2 scheme.
The computational efficiency is presented in Figure 7 and shows that the VPRus2 is the most efficient with
accuracy-to-runtime ratios more than twice as high as in the Rusanov2 prediction solver. Interestingly, the Roe
scheme shows no sign of convergence in this experiment.

3.2. Shock-vortex interaction. The previous numerical experiment considered a smooth solution. However,
solutions of (1.1) contain discontinuities in the form of shock waves. It is interesting to study the performance
of the VP schemes in the presence of shocks. Furthermore, the interaction between shocks and vortices is quite
significant in many applications. Hence, we set the initial data to

h(x, y) =

{
h̃(x, y) if x < 20
h̃(x, y)(1 + ξ) else

u(x, y) =

{
ũ(x, y) if x < 20

ũ(x, y)−
√

1
2gh̃(x, y)ξ2 2+ξ

1+ξ else

v(x, y) = ṽ(x, y),

where h̃, ũ and ṽ are the initial data (3.4) of the previous experiment at t = 0. The initial data is displayed in
figure 8. The solution will consist of an advecting vortex, as in the previous example, moving over a left-going
shock. The vortex interacts with the shock, distorts it and emerges out of it to continue its motion. The shock
continues to move to the left. The parameter ξ > 0 determines the strength of the shock; we set ξ = 10−2

We run the Rusanov, VPRus, Rusanov and VPRus2 schemes on a 150 × 150 mesh and display the results
in Figure 9. Clearly, the resolution of the vortex in the VPRus scheme is by far superior to the Rusanov
scheme, while the shock is resolved up to the accuracy of the predictor scheme. Similarly, the VPRus2 scheme
is more accurate than the Rusanov2 scheme. The vortex resolved to a greater degree of accuracy and the
shock is captured as accurately as the underlying high resolution prediction scheme. This experiment clearly
demonstrates that the vorticity preserving schemes perform quite well, even in the presence of discontinuities
and complex shock-vortex interactions.

4. Conclusion

The shallow water equations (1.1) model a number of interesting flows in meteorology and oceanography.
The system is non-linear and solutions contains discontinuities like shocks and interesting smooth regions like
vortexes. In particular, the vorticity for smooth solutions is advected with the flow (1.5). Standard finite volume
schemes may not transport vorticity in the correct manner and result in large vorticity errors. We address this
issue and device vorticity preserving methods. These methods are based on a projection algorithm.

We illustrate the projection method by considering the system wave equation (1.13), a linearization of the
shallow water system. The equation is linear and vorticity is constant in time. The projection method consists
of an prediction step in which the solution is evolved by a standard finite volume scheme (1.7) at every time step.
The projection consists of solving a Poisson equation (2.3) and a projection step where the field is corrected to
obtain the right vorticity. The method preserves vorticity and some stability estimates are also shown. Numerical
experiments for the wave equation demonstrates the computational efficiency of this projection method.

The vorticity projection method is extended to the shallow water equations. The prediction step involves
computing approximate solutions with a finite volume scheme. However, the vorticity may no longer be constant
in time but is advected with the flow. Furthermore, the momenta are conserved variables. Hence, we use the
pseudo-vorticity (curl of the momentum) as a measure of the vorticity. The pseudo-vorticity is evolved via a
complicated transport equation (1.17). This equation is solved numerically at every time step with a Nessyahu-
Tadmor central scheme. The resulting quantity serves as a good estimate for the pseudo-vorticity at the next
time step. The momentum field is corrected by an elliptic solver, and the resulting method yields the correct
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(a) Rusanov2

(b) VPRus2

(c) Roe2

(d) VPRoe2

Figure 6. Height and pseudo-vorticity at t = 100 computed by the four schemes on a mesh
of 200× 200 grid points.
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Figure 7. Runtime (x-axis) versus relative L1 errors in height, momentum and vorticity (y-
axis). Note the change of axes from Figure 4.

Figure 8. Initial height of the shock-vortex interaction problem.

pseudo-vorticity. The vorticity projection algorithm is tested on a challenging vortex advection and shock-vortex
interaction problems. The numerical results demonstrate a considerable gain in accuracy and computational
efficiency due to the vorticity projection method.
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Figure 9. Shock-vortex interaction at times t = 20, 40, 60, 80.

This paper needs to be viewed as a first step in the design of vorticity preserving schemes for systems of
conservation laws. The projection method seems quite promising, at least for the shallow water equations.
Further investigation is required for analyzing the pseudo-vorticity transport equation (1.17), particularly on
unstructured meshes. The vorticity projection method will be extended to the Euler equations of gas dynamics
and to unstructured meshes in forthcoming papers.
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