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CONSTRAINT PRESERVING SCHEMES USING POTENTIAL-BASED FLUXES.
ITII. GENUINELY MULTI-DIMENSIONAL CENTRAL SCHEMES
FOR MHD EQUATIONS.

SIDDHARTHA MISHRA AND EITAN TADMOR

ABSTRACT. We design efficient numerical schemes for approximating the MHD equations in multi-dimensions.
Numerical approximations must be able to deal with the complex wave structure of the MHD equations and
the divergence constraint. We propose schemes based on the genuinely multi-dimensional (GMD) framework of
[31, 32]. The schemes are formulated in terms of vertez-centered potentials. A suitable choice of the potential
results in GMD schemes that preserve a discrete version of divergence. First- and second-order divergence
preserving GMD schemes are tested on a series of benchmark numerical experiments. They demonstrate the
computational efficiency and robustness of the GMD schemes.

1. INTRODUCTION

Modeling of plasmas lies at the core of many interesting problems in astrophysics, solar physics, electrical
and aerospace engineering. Macroscopic plasma dynamics is characterized by the interaction of the moving
plasma with the magnetic field. This model is often by the equations of ideal MagnetoHydrodynamics (MHD).
In two space dimensions, the MHD equations are

(1) U, + £(U), +g(U), =0, (z.9.0) €R xR xR,
for
P pu1 pu2
pu1 p(u1)? +p — 3(B1)? puruz — B1By
pu2 puruy — B1Bs p(uz)? +p — 3(Bs)?
_ pu3 _ puiusz — B1 B3 _ puiusz — B1B3
(12) U= B1 7f - 0 8= UgBl — u132
B2 7(U2B1 - U1BQ) O
B3 UlBg — ’LL3B1 Ung — ’U,gBQ
E (E-i-m’Uq —(u-B)B; (E+Dp)us — (u-B)Bs

Density of the plasma is denoted as p and u = {uy,us,uz}, B = {By, B2, Bs} are the velocity and magnetic
fields, respectively. F is the total energy and p is the total pressure:

1
p=p+5IBI%
with p being the thermal pressure. The unknowns are related by an ideal gas equation of state:
p 1 2 2
1.3 E=— +— B
(13) s Gl 4 [BP)

for gas constant ~.
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2 SIDDHARTHA MISHRA AND EITAN TADMOR

The ideal MHD equations (1.1) combine conservation laws for mass, momentum and energy with the Magnetic
induction equations (a special form of the Maxwell’s equations),

(1.4) B, +curl(Bxu) =0, (z,5,t)cRxRxR,.

A detailed derivation of (1.1) is described in [39]. Applying the divergence operator to both sides of (1.4), we
obtain the divergence constraint:

(1.5) (divB), = 0.

Since magnetic monopoles have not been observed in nature, the initial magnetic field is assumed to be divergence
free. The divergence constraint (1.5) implies that the divergence of the magnetic field remains zero.

The ideal MHD equations are an example for multi-dimensional systems of conservation laws with an intrinsic
constraint. The eigenvalues of the flux Jacobians of (1.1) are real [40] and the system is hyperbolic. However,
the system is non-strictly hyperbolic as the eigenvalues fail to be distinct.

Even for smooth initial data, the solutions of a non-linear system like (1.1) develop discontinuities in the
form of shock waves and contact discontinuities. Hence, solutions of (1.1) are sought in the weak sense. The
non-strict hyperbolicity and non-convexity of the MHD equations leads to a complex shock structure, consisting
of intermediate and compound shocks [41]. Very few theoretical results for the MHD equations (even in one
space dimension) are currently available.

1.1. Finite-volume schemes. Finite-volume methods are among the most widely used numerical methods
for the approximate solution of systems of conservation laws such as the mhd equations (1.1), see [26, 44] and
the references therein. In a finite volume approximation, the computational domain is discretized into cells and
an integral form of the conservation law (1.1) is discretized on each cell. This method relies on constructing
suitable numerical fluxes in the normal direction, across each cell interface. For simplicity, we consider a uniform
Cartesian mesh with mesh sizes Az, Ay in the z- and y- directions respectively. It consists of the discrete cells,
Cij = [zi_1,241) X [y;_1,y;41), centered at the mesh points (z;,y;) = (iAz,jAy), (i,j) € Z?. The cell
average of U over C; ; (at time t), denoted as U, ;(t), is updated with the semi-discrete scheme [26, 44]:w

d 1 1

(1.6) ﬁUi,j = _E(Fi-&-%,j - Fi—%,j) - Aiy(Gz}ﬂ% - Givj—%)'

The time dependence of all the quantities in the above expression is suppressed for notational convenience.
Classical first-order schemes employ two-point numerical fluxes of the form
(1.7) Fii1,;,=FU;;,Uit1;), Gip1=G(Ui; Upjp).

A canonical example is provided by the first-order Rusanov numerical flux:

1
Fiii,= Q(f(Um‘) + £(Uig1,5)) — max{|ai ], i1, [JL(Uis,; — Usy),

(1.8)
1
Gijiy = 5(8(Ui5) +8(Uijr1)) —max{|Bis], 85411 (Ui j1 = Usy).
for the 8 x 8 identity matrix Id and the scaling matrix L:
L = diag{1,1,1,1,1,-1,1,1}.
The sixth component fs of f has a negative sign, leading to the special form of the scaling matrix L. The o ;
and f3; ; in (1.8) are the maximal eigenvalues of the Jacobians A = Oyf and B = Oyg respectively, for any
given state U, ;, i.e,
(1.9) a=lul+|cfl, 8 =ual+I|c}l,
for

B o -
> =20 and bias= 222 B2 =52 403 402
p

NG

and

1
(1.10) 07 = & (8l 7 st
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The explicit dependence on %, j in the above quantities is supressed for notational convenience. Note that the
only characteristic information in the Rusanov flux is a local estimate on the wave speeds. This flux is almost
Jacobian free, very simple to implement and has a very low computational cost. But its resolution is limited
by the first-order accuracy. The Rusanov flux (1.8) has been used to define simple but highly effective high
resolution central schemes [2, 3] for the ideal MHD equations. Other popular numerical fluxes for the MHD
equations include the Roe type linearized solvers [40, 9, 39]) and HLL type solvers [30, 21, 34, 7, 17]. Detailed
comparisons of different solvers are performed in [33, 18].

The first-order schemes (1.6),(1.7) can be extended to higher order accuracy by employing numerical fluxes
based on wider, 2p-point stencils, I; 1 := {#’ ||i' —i—1/2| < p} along the z-axis and iy ={J' |1 —i—1/2| <
p} along the y-axis,

(1.11) Fiy, = F({Ui,,j}i/e,ﬂé), G,y = G({Uiyj/}j,ei,ﬁ%).

The building blocks for such extensions are still the 2-point numerical fluxes, F(-,-) and G(-,+). As a prototype
example, we recall the class of second-order schemes based on piecewise bilinear MUSCL reconstruction [25],

u’ . v
1.12 (my) = Us s+ =5 (g — )+ =y — y):
(1.12a) pi;(%,y) it x @)+ Ay (v —y;)
Here, U’ and U"' denote the numerical derivatives
. 1
(1 lzb) Ué,j = mland(UH_l’j — Ui,ja §(Ui+17j — Ui—l,j)an,j — Ui—l,j)a
’ 1

U} . = minmod(U; j11 — U, 5,

N (Ui,j+1 - Ui,jfl)an,j - Ui,jfl)a

2
which utilize the minmod limiter
sgn(a) min{|al, [b], |c[}, if sgn(a) = sgn(b) = sgn(c),

1.12 inmod(a, b, ¢) =
( ¢) minmod(a, 70) {()7 otherwise.

In this manner, one can reconstruct in each cell C; ;, the point values

(1.13a)  UP =pij(ri1,yy), UL =pij@,y), UN =pij(@nyen), U= pij(ei,y_1),

from the given neighboring cell averages U; j, U;+1,; and U; j, U; j41. The resulting second-order fluxes are
then given by

(1.13b) Fi+%,j = F(UE UK/&-l,j)» Gi,j+% = G(UN U§j+1)'

17J7 1,7]7

The use of minmod limiter ensures the non-oscillatory behavior of the second-order schemes (1.6),(1.12). Observe
that the second-order MUSCL fluxes (1.13b) are based on 4-point stencils

Fii1;=FUi—1;Ui;,Uit1;, Uitz;), G010 =F(Ui;1,Ui;, Ui 41, Ui o)

Similar reconstructions together with upwind or central averaging yield a large class of high-resolution finite-
volume semi-discrete schemes, e.g., [23, 43, 24], which could then be integrated in time using standard stable
high order Runge-Kutta methods [22].

1.2. Genuinely multi-dimensional (GMD) fluxes. Despite their considerable success, finite volume schemes
(1.6) are known to be deficient in resolving genuinely multi-dimensional waves [26]. Observe that the numer-
ical fluxes F; 1 ;,G; ;11 in (1.11) are based on one-dimensional stencils which are supported in each normal
direction but lack explicit transverse information. This could result in poor approximation of genuinely multi-
dimensional waves, particularly for complicated systems like the ideal MHD equations (1.1). A characteristic
feature of the MHD equations is the difference between the one- and multi-dimensional forms of (1.1) on ac-
count of the constraint. This aspect strongly illustrates the GMD nature of the MHD equations. Considerable
effort has been devoted to devising genuinely multi-dimensional (GMD) finite volume schemes for approxi-
mating (1.1). The proposed methods include dimensional splitting [26], wave propagation algorithms [26, 27],
method of transport [15, 16, 36], bi-characteristics based evolution Galerkin methods [28, 29] and fluctuation
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splitting schemes [12]. However, there is a lack of an optimal strategy for designing GMD schemes for systems
of conservation laws like the MHD equations.

This absence of an optimal strategy leaves room for designing stable GMD schemes that are easy to formu-
late and code, have a low computational cost and preserve other desirable properties rendered by the multi-
dimensional structure of the system (1.1) like the divergence constraint. Their numerical fluxes take a general
form

(1-143) Fi—i—%,j = F({U(i’,j')ESH%J})a Gi,j+% = G({U(i’,j’)esi’j+% })

Here, Si+%,j and qur% are genuinely two-dimensional stencils which, in contrast to (1.11), allow us to incor-
porate information from both the normal and transverse directions,

(L14D) Sy o= {7 [ =i =12+ 1§ = jl <} Sijuy = {5 |17 =il + 15 =5 —1/2] < q}

We present such a family of GMD schemes in section 2, based on the GMD framework advocated in recent
papers [31, 32].

1.3. Divergence preserving schemes. A major issue for the numerical approximation of multi-dimensional
ideal MHD equations (1.1) is the divergence constraint (1.5). Standard finite volume schemes may not preserve
discrete versions of the constraint, leading to numerical instabilities [47, 17]. Different approaches have been
suggested to handle the divergence constraint in MHD codes and we mention three of the currently available
approaches below.

1.4. Projection method. This method [10, 8, 6] is based on the Hodge decomposition of the solution u of
(1.4). The update u™ at each time step may not be divergence free and is corrected by the decomposition,
u” = VU + curl®. Applying the divergence operator to the Hodge decomposition leads to the elliptic equation:

—AT = div(u™).

The corrected field u* = u” — VV is divergence free. This method can be very expensive computationally as
an elliptic equation has to be solved at every time step, augmented with proper set of boundary conditions, e.g.
[47].

1.5. Source terms. Adding a source term proportional to the divergence in (1.4) results in
(1.15) B; + curl(B x u) = —udiv(B).
Applying the divergence to both sides, we obtain

(divB); + div(udivB) = 0.

Hence, any potential divergence errors are transported away from the computational domain by the flow.
Furthermore, the form (1.15) is symmetrizable [38]. This procedure for “cleaning” the divergence was introduced
in [38, 39]. Recent papers [17, 19] have demonstrated that the source term in (1.15) needs to be discretized in
a very careful manner for numerical stability. Another problem with this approach lies in the non-conservative
form of (1.15). Hence, numerical schemes based on this approach may result in wrong shock speeds [47]. A
variant of this approach is the Generalized Lagrange multiplier method [13].

1.6. Design of special divergence operators/staggering. This popular method consists of staggering the
discretizations of the velocity and magnetic fields in (1.4). A wide variety of strategies for staggering the meshes
has been proposed [14, 5, 11, 42, 47, 3, 2] and references therein. The presence of different sets of meshes leads
to problems when the staggered schemes are parallelized. Unstaggered variants of this approach have also been
proposed in [45, 46, 1].

The above discussion suggests there is ample scope for a simple, computationally cheap finite volume scheme
for the MHD equations that resolves genuinely multi-dimensional waves and preserves a discrete version of the
divergence constraint. We design a method with these desired properties in this paper.

Our starting point are the genuinely multi-dimensional (GMD) finite volume schemes for systems of conserva-
tion laws proposed in recent papers [31, 32]. These schemes modify standard finite volume fluxes by introducing
vertex centered numerical potentials. The potentials incorporate explicit transverse information and lead to
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a stable and accurate resolution of genuinely multi-dimensional waves. A suitable choice of potentials results
in GMD schemes that preserve constraints like divergence [31] and vorticity [32] in the magnetic induction
equation and the system wave equation, respectively. The schemes are very simple to implement and have low
computational cost.

We extend the GMD framework of [32] to the ideal MHD equations (1.1). The schemes are based on numerical
potentials. A suitable choice of the potential leads to schemes that preserves discrete divergence. The rest of
the paper is organized as follows: in section 2, we present the GMD framework of [32] and divergence preserving
modifications are presented in section 3. Numerical experiments are reported in section 4.

2. GENUINELY MULTI-DIMENSIONAL (GMD) SCHEMES

Following the presentation of [32], we introduce the numerical potentials qbiJr%’jJr% and wH%’jJr% at each
vertex (x;, LYl ), with the sole requirement that these potentials are consistent with the differential fluxes,
ie,

(biJr%,jJr% (U7 T 7U) = f(U)a wi+%,j+% (U7 e 7U) = g(U)

We need the following notation for standard averaging and (undivided) difference operators,

arpigtap_i arg+y T 015-3
Pgpl g i= ————(———, [yl g =,
(2.1) 2 2

dsargi=ary1 g—ar 1y, Oyargi=ar 1 —ar; 1.

A word about our notations: we note that the above discrete operators could be used with indexes I, J which
are placed at the center or at the edge of the computational cells, e.g., I =i or I =i+ % In either case, we
tag the resulting discrete operators according to the center of their stencil; thus, for example, pzw; ., 1 employs
grid values placed on the integer-indexed edges, w; and w;y1, whereas d,w; employs the half-integer indexed
centers, w;4 1.

2

We now set the numerical fluxes:

Fi+%,j = /‘y¢i+%,j»
(2.2)
Gijry = Hadijis-
The resulting finite volume scheme written in terms of the numerical potentials reads

d 1 1
Uy = =ity big — Oyt g,
dt »J Az /u‘y¢ »J Ay y:u 7/} 2]

1 /1 1
(2.3) = *Fm(iwwé,ﬁ% + ¢i+%,j—%) - i(d)i—%,j—l-% + Qsi—%,j—%))
1 /1 1
- Iy<§(¢i+%,j+% + T/Jz;%,jJr%) - §(¢i+%,j7% + 1/’%%,;'7%))

The potential based scheme (2.3) is clearly conservative as well as consistent as the potentials ¢, 1) are consistent.
The genuinely multi-dimensional nature of the scheme is evident from (2.3): the potentials are differenced in the
normal direction but averaged in the transverse direction. We claim that the family of potential-based schemes
(2.3) is rich: any standard finite volume flux can be used as a building block for constructing the numerical
potentials in (2.2), and the resulting potential-based scheme inherits the accuracy of the underlying numerical
flux. There are several ways to pursue the construction of numerical potentials and we outline three of them
below.

2.1. Symmetric potentials. In this approach, the potentials are defined by averaging the finite volume fluxes
neighboring a vertex:

(2.4) Pirdirs = MFirg g

Vit g+ = HeGirg ey
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where F, G are any numerical fluxes consistent with f and g respectively. An explicit computation of (2.3) with
potentials (2.4) leads to the revealing form,

d 1
(2:5) a0 = Tong Wiy F Py g —mFi gy —mFiog o)
2.5
1
T 2Ay (MGt it + Gy i1 — G 1 —paGiy 1)

Comparing the potential based scheme (2.5) with the standard finite volume scheme (1.6), we observe that the
potential based scheme modifies (1.6) by averaging the fluxes in the transverse direction. Hence, it incorporates
explicit transverse information in each direction. When employing two-point fluxes, the local stencil for the
GMD scheme (2.5) consists of nine points instead of the standard five point stencil for the finite volume scheme
(1.6). Onme can use wider stencils to achieve higher-order of accuracy; for example, the symmetric potential-
based scheme based on second-order four-point MUSCL flux (1.12) yields a second-order GMD scheme based
on a stencil of twenty-three points.

2.2. Weighted symmetric potentials. Weighted averages of the neighboring fluxes can be considered in
place of the simple averaging used in (2.4). For prescribed 91+%,j+§»’%‘+%,j+% € (0,1), the weighted potential
is defined as
2.6 Pirtjrt =OirsjraFint i T (101 50 1)Fiis
Vigr et =Rip1 501G+ (L= kg1 510 1)Gy gy
The weights can be chosen based on the local characteristic speeds,
0 max{—(,@l)iJr%’jJr%,O}
g = ,
i3t max{—(ﬁl>i+%’j+%, 0} + maX{(ﬁN)iJr%’jJr%, 0}
max{—(al)i+%)j+%70}
max{—(a1);y 1 41,0} + max{(an)ir1 11 0}

Here, oy and , 5;,0 = 1,2,--- , N are the real eigenvalues of A = 8Uf(uyuin+%7j+%) and B = %g(uxqui+%7j+%),

(2.7)

Fivdits =

sorted in an increasing order. This choice of weights implies that the potential (2.6) is “upwinded”.

2.3. Diagonal potentials. We define the diagonal potentials [31] ,
1

(2.80) ¢i+%,j+% = Q(F:r 1j+3 + Fi_—&-%,j—o—%)’
Vitdjrs = (G:rz gi T Gz_+2 ]+2)
Here, F*, G* are the diagonal fluxes
. Flo s =FUiUingn), Fro 0 =F(Ui;Uipa)
(2:5) Gl =GUi;Uinin), G, o= G(U; Ui i)

which amount to rotating the z- and y-axis by angles of 7 and —7, where F(-,-) and G(:,-) are any two-point
numerical fluxes consistent with f and g.

2.4. Isotropic GMD scheme. We conclude our list for recipes of GMD schemes with an example which is
not rendered by a numerical potential, but nevertheless, highlights the use of a GMD stencil. Let F(-,-) and
G(-,-) are any two-point consistent numerical fluxes and let F*, G* be the corresponding diagonal numerical
fluxes in (2.8b). We define the isotropic fluxes,

Fiyp ;= (F++27 L F2F  FFL ),
(2.9a) N
Gl,]+% = <G+ +1 +2G’Lj+1 + G7

i+3,j ,]+2>
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The resulting finite volume scheme reads as

d 1 .~ 1
5T

*Ui': rz‘*idéi'a
dt "’ Az Jo Dy Y

(2.9b) ) .
= —1A2 (6,F),; +26,Fi; + 6 F ;) — 1Ay (6,G; +20,Gi; — 6\Gy ;)

here, 6, and 4\ denote the diagonal difference operators,
(2.10) (S/Cl[’] 12a1+%’1+%—a17%’J7%, (5\0,]] —aIJr Jf,—alf, J+2

The GMD structure of the scheme is clear from (2.9b): the scheme averages the fluxes along transverse
directions. In contrast to the symmetric scheme (2.5), however, the explicit transverse information in (2.9b) is
obtained by “rotating” the fluxes. Since the scheme (2.9b) takes into account all the directions in a cell, we
term it as the isotropic GMD scheme.

The isotropic GMD scheme (2.9b) is a desirable form of GMD schemes as it is shown to be entropy stable,
see [32].

The stencil of the isotropic scheme consists of nine points. Second-order accuracy can be obtained by the
piecewise bilinear reconstruction (1.12). In addition to (1.13), we also need the corner point values,

U =Py yiey), UL = pis(@iogyi4y),
(2.11a) s S
Uy = pi,j(zi-t,-%vyj—%)a Uy = pi,j(xi—%vyj—%)v
and the corresponding diagonal fluxes,
+ NE - _ SE
Fl+z,j+2 —F<U'LJ 7Uz+1]+1) i+%,j—— F(Uzg 5U2+1]+1)
(2.110) GH =GUNF UV . ), GT =FUNY UPE ),
i+%,j+2 - 1,7 ) “i+1l,5+1)> ifé,j+2 i—1,7+1/>

to define the second order accurate version of the isotropic GMD scheme.

3. DIVERGENCE PRESERVING SCHEMES

The divergence of the magnetic field in (1.1) is preserved (1.5). Despite incorporating transverse information,
the GMD schemes (2.5) and (2.9) may not necessarily preserve a discrete version of the divergence constraint.
A possible explanation lies in the special structure of the fluxes f and g in (1.1).

The 8-vectors of fluxes associated with the ideal MHD equations (1.1) satisty,

(3.1) f5 = 86 = 0, —fg = g5 = UQBl - U1B2.

This structure of the fluxes ensures that the divergence is preserved. Accordingly, we need to respect this special
structure at the discrete level by choosing a suitable form of the potential to ensure a divergence-free numerical
solution. This is done by choosing numerical potentials,

¢z+2,y+1 = {(¢1)z+2,3+2 (¢4)7,+2,]+1 0, “Xitdg+do (¢7)i+§,j+§ (¢8)i+§,j+ 1}

3.2
O 1 S 3 A U7 O (/S WY

Here

n:(¢17"',¢45¢7a¢8)a C:(wl,"',¢47¢7,¢8)

are the corresponding components of any consistent potentials ¢ and 1 respectively.
The remaining non-zero component of the potentials (3.2), x needs to be consistent with —fs = g5 =
u1 Bs — usBy. Introducing

V= {p7 puy, puz, pus, B37 E},
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the divergence preserving version of the potential based scheme (2.3) reads as

d 1 1

—Vij=——0upyNij — ~OytazCij

dr APyl Ay yHaGij
d 1

(3.3) —(B1)ij = —5511%)(1‘,;‘,

d 1

7 (B2)ig = R 0ahyXij-

The above scheme amounts to a specific form of the potential based scheme (2.3). Its divergence preserving
property is summarized below.

Lemma 3.1. Let B, ; be the approzimate magnetic fields for (1.1) computed with (3.3). Then their discrete
divergence div*, given by

. x 1 1
(34&) dlvi,j = A—xuyém(Bl)z’] + Iyuzdy(BQ)Lﬁ
is preserved in time, i.e,
d, .. .. _ .
%(dlvi’j) =0, Vi,j.
The verification of (3.4b) is straightforward as the difference operators d,,d, and the averaging operators

Kz, fby commute with each other. We apply the discrete divergence operator div*® to the numerical scheme (3.3)
to find

(3.4b)

d .. .
AxAy%dlvm. = (a0y0afly — HyOzOzfiz)Xij = 0.

Remark 3.1. One approach in designing constraint preserving schemes is to satisfy that constraint approxi-
mately: for example, the discrete statement of the divergence constraint could be interpreted as a second-order
approxzimation of the differential divergence ,

divy ; = div(z;, y;) + O(Az? + Ay?).

This, however, requires the smoothness of the underlying solution. Instead, a key feature of constraint preserving
schemes based on numerical potentials is that they satisfy exactly a discrete constraint, so that their numerical
solution remains on a discrete sub-manifold, independent of the underlying smoothness. Similarly, a related
potential-based GMD scheme which preserves a discrete vorticity was described in [32].

The scalar potential x in (3.3) can be chosen in different ways. We mention two possible choices below.

3.1. Divergence preserving symmetric GMD scheme. The potentials n,{ are defined as in (2.4). A
natural choice [31] of the potential x is the symmetric potential:

1
(3.5) Xirdj+s = 7((Fo)ivsj + Fo)ivs jn +(Gs)ijus +(Gs)igr 1)

with F5 6, Gs,¢ being components of any consistent numerical fluxes F, G. Let
HZ{Fl»"'aF4aF7aF8}a K:{le"’,G4aG7vG8}

for any consistent fluxes F', G. The divergence preserving symmetric GMD scheme has the explicit form:

d 1
7R Ryl e e s it A= Sl U2 C SRR Y
1
56 - m(ﬂxKiJr%,jJr% ek gy =K s — e K1),
’ d 1 1
%(Bl)i,j = *m(#x(FG)i,jH — pz(Fe)ij-1) — m(ay(ﬂz((}5)i+%,j+% + /“Lf(G5)i—%,j+%))a

d 1 1
2 B2)ig = a7 (y(Go)iva — 1y(Go)io1) + 7 0a(y (Fo)ig g iy + 1y (Fo)ivg j-1))-
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3.2. Divergence preserving isotropic GMD scheme. We define a diagonal form of the potential x:

1 _ _
(3.7) Xitlj+1 = Z((Fg)iJr%,jJr% + (Gg)i+%,j+% + (Fg)ir1 12 (G5 )ip1 jp1)

for diagonal fluxes F¥, G* defined in (2.8b). Denote
H* = {F{, - F{ F7 Fg}, K*={G{, G}, G Gy}
The divergence preserving modification of the isotropic GMD scheme (2.9) based on the potential (3.7) is
d 1 1
V= ——— -
dt 4Ax 4Ay

(B1)ij = —ﬁ (120y (Fg)ij + (Fg )iy + (GF)ij + (G5 )ij)) 5

(0/H; +20,H; j + 0\ H; ) (/K +20,Ki; — 0K, ),

a
dt
d 1 N _ N _

5(B2id = (102 (FG )ig + (F5 )iy + (GF )iy + (G5)iy)) -

(3.8)

4. NUMERICAL RESULTS

All the potential based GMD schemes described in the previous section are semi-discrete. We define a fully
discrete version of the first-order GMD schemes by using standard forward Fuler time integration. Second-order
strong stability preserving Runge-Kutta method [22] defines fully discrete versions of the second-order accurate
GMD schemes. The time step is determined by a standard CFL condition. A CFL number of 0.45 is used in
all the subsequent simulations.

We test the following schemes:

SYM (SYM2) First (second

( -order version of the symmetric GMD scheme (2.5).
ISO (IS0O2) First (second

(

(

-order version of the isotropic GMD scheme (2.9).
-order version of the divergence preserving symmetric GMD scheme (3.6).
-order version of the divergence preserving isotropic GMD scheme (3.8).

SCP (SCP2)  First (second
ICP (ICP2) First (second

NEANE NG NG

4.1. Orszag-Tang vortex. The Orszag-Tang vortex is a widely reported benchmark for multi-dimensional
MHD equations [47]. The initial data is

(pu Uy, u2,Uus, Bla 327 Bdap) = (727 - Sin(y)7 Sin({E), 07 - Sin(y)7 Sil’l(2$)7 Oa ’V) )

in the computational domain: (x,y,t) € [0,27]? x [0, 7] with periodic boundary conditions.

Although the exact solution is not known, qualitative features have been reported [47]. The solution consists
of shocks along the diagonals and interesting smooth features including a vortex near the center of the domain.
The approximate pressures, computed on a 200 x 200 mesh, are shown in figures 1 and 2.

Figure 1 shows the approximate pressure computed with the first-order GMD schemes. The solution is
smeared at this resolution, but the qualitative features are captured without any spurious oscillations and other
numerical artifacts. The divergence preserving SCP and ICP schemes are clearly more accurate than the SYM
and ISO schemes, indicating that preserving a discrete version of the constraint leads to a gain in accuracy.
The results for the second-order schemes are plotted in figure 2 and show a considerable improvement in the
resolution. The gain in accuracy is pronounced, both at the shocks and at the central vortex. The divergence
preserving SCP2 and ICP2 are slightly more accurate than the SYM2 and ISO2 schemes.

In the absence of an exact formula for the solution, the maximum pressure [47, 17] has been suggested as a
measure of accuracy. The maximum pressure at time ¢ = m, computed on a sequence of meshes, is presented
in Table 1. The table provides a quantitative comparison between the schemes and vindicates the conclusions
from the plots. The first-order schemes are diffusive, with a consistent gain in accuracy when the divergence
preserving SCP and ICP schemes are used. The gain in resolution with the second-order schemes is considerable.

As the initial data is divergence free, the divergence constraint (1.5) implies that the divergence should remain
zero during the evolution. We show the errors in the discrete divergence operator div* (3.4a), measured in the
L' norm, in Table 2. The table shows that the standard GMD schemes lead to O(1) divergence errors. Large
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(d) ICP

F1GURE 1. The pressure p for the Orszag-Tang vortex computed at ¢ = 7 on a 200 x 200 mesh
with first-order GMD schemes.

M |SYM ISO SCP ICP SYM2 ISO2 SCP2 ICP2

50 | 3.17
100 | 3.54
200 | 4.24
400 | 4.78
TABLE 1. Maximum pressure for the Orszag-Tang vortex with all the GMD schemes on a
M x M mesh at time t = 7.

3.19 327 332 485 434 489 437
3.57 3.65 3.71 491  5.00 5.1 5.14
422 437 442 575 564 576 5.71
479 494 500 6.03 6.1 6.08 6.15

M | SYM ISO SCP ICP  SYM2 ISO2 SCP2 ICP2

50 | 0.53 042 4.7e-12 4.4e-12 149 132 5.8e-13 3.4e-13
100 | 0.89 0.70 2.1e-12 1.7e-12 3.39  3.07 5.1e-13 3.8e-13
200 | 1.23 1.11 1.0e-12 6.9e-13  5.57 512 5.7e-13 3.0e-13
400 | 1.61 1.52 1.3e-12 6.0e-13 8.08 11.3 6.0e-13 3.1e-13

TABLE 2. Discrete divergence div* (3.4a) in L! for the Orszag-Tang vortex with all the GMD
schemes on a M x M mesh at time ¢t = 7.
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(c) 1SO2 (d) 1CP2

F1GURE 2. The pressure p for the Orszag-Tang vortex computed at ¢ = 7 on a 200 x 200 mesh
with second-order GMD schemes.

amounts of discrete divergence is generated near the shocks. The divergence error is larger for the second-order
SYM2 and ISO2 schemes than the first-order schemes. This is to be expected as the second-order schemes
resolve the shocks sharply. On the other hand the SCP, SCP2, ICP and ICP2 schemes preserve the discrete
divergence to machine precision.

Tables 1 and 2 show that the all the GMD schemes (whether they preserve a discrete version of divergence or
not) are stable and do not crash at these resolutions. Note that numerical stability (particularly on fine meshes)
for the MHD equations is delicate [17]. Standard schemes (even those with some form divergence cleaning) may
crash due to instabilities and negative pressures on fine resolutions [17]. In spite of the large divergence errors,
the SYM (SYM2) and ISO (ISO2) schemes are stable.

4.2. Rotor problem. Another benchmark test for the MHD equations is the rotor problem [47]. The compu-
tational domain is (z,y,t) € [0,1]? x [0,0.295] with artificial Neumann type boundary conditions. The initial
density is
10.0 if r <0.1,
p=1<1+9f(r) if0.1<r <0.115,
1.0 otherwise,
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(c) SCP (d) ICP

FIGURE 3. The pressure p for the rotor problem computed at ¢ = 0.295 on a 200 x 200 mesh
with first-order schemes.

with r(z,y) = |(z,y) — (0.5,0.5)] and

23 — 2007
f(r) = 3 °
The other variables are initially,
((10y — 5)p, —(10x — 5)p) if r <0.1,
(pu1, pu2) = ¢ ((10y — 5) f(r)p, —(10z — 5) f(r)p) if 0.1 <r < 0.115,
(0.0,0.0) otherwise,

(puz, By, Bz, Bs, p) = (0.0,2.5/4/7,0.0,0.0,0.5) .

The initial velocity and magnetic fields are such that the variables are rotated in the domain. The pressure
drops to very low values in the center, and this test case is set up in order to determine how a scheme handles
low pressures. The approximate pressure computed with the first-order GMD schemes, on a 200 x 200 mesh, is
shown in figure 3. The figure shows that all the schemes are stable at this resolution and the low pressure at the
center is resolved. The first-order schemes are diffusive, particularly at the shocks. The divergence preserving
SCP and ICP schemes are more accurate in this case. The results for the second-order schemes are plotted
in figure 4. They reveal a significant gain in resolution with the second-order schemes, particularly at shocks.
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FIGURE 4. The pressure p for the rotor problem computed at t = 0.295 on a 200 x 200 mesh
with second-order schemes.

The errors in the discrete divergence div* are displayed in Table 3. The divergence errors generated by the
SYM and ISO schemes and their second-order versions are again O(1). These errors increase with increasing
resolution, i.e, either by reducing mesh size or by increasing the order of accuracy of the scheme, indicating
that the bulk of the divergence errors are generated near the shocks. The SCP, ICP, SCP2 and ICP2 schemes
preserve discrete divergence to machine precision.

4.3. Cloud-Shock Interaction. Another benchmark test case for the MHD equations involves the interaction
of a high density cloud with a shock. The initial data for this cloud-shock interaction problem [41] consists of
a shock located at x = 0.05 with

(41) (p7u17u27u37BlvB27B37p)

[ (3.86859,11.2536,0,0,0,2.1826182, —2.1826182,167.345), if = < 0.05
~ 1 (1.0,0,0,0,0,0.56418958, 0.56418958, 1.0), if 2 < 0.05.
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F1GURE 5. The density p for the cloud-shock interaction computed at ¢ = 0.06 on a 200 x 200
mesh with first-order schemes.

and a circular cloud of density p = 10 with radius 0.15, centered at (z,y) = (0.25,0.5). The computational
domain is [0,1] x [0, 1]. The test is configured in such a way that a right moving shock violently interacts with a
high density cloud. The solution has a extremely complex structure, consisting of bow shock at the left, trailing
shocks at the right and a complicated smooth region with turbulent features in the center.

M | SYM ISO SCP ICP SYM2 1SO2 SCP2 ICP2

50 | 0.70 0.57 6.0e-12 4.49e-12 1.03  1.03 6.3e-13 4.7e-13

100 | 1.25 0.93 2.3e-12 1.73e-12  1.92 1.9 24e-13 1.8e-13

200 | 1.7 1.23 8.8e-13 6.35e¢-13 3.41 3.27 4.1e-13 1.6e-13

400 | 2.09 1.56 3.3e-13 2.49e-13 6.0 5.7 4.2e-13 1.1le-13
TABLE 3. Discrete divergence div* (3.4a) in L' for the rotor problem with all the eight schemes
on a M x M mesh at time ¢t = 0.295.

We plot the approximate density, on a 200 x 200 mesh , at time ¢ = 0.06 in figures 5 and 6.
The first-order results in figure 5 show that the first-order GMD schemes are stable but quite diffusive. The
divergence preserving SCP and ICP schemes are again more accurate than the SYM and ISO schemes. The
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F1GURE 6. The density p for the cloud-shock interaction computed at ¢ = 0.06 on a 200 x 200
mesh with second-order schemes

second-order results are plotted in figure 6 and show a dramatic increase in resolution with the second-order
schemes. Both the bow shock and the trailing shock are captured accurately. The smooth region with turbulent
like features is also resolved quite well. The divergence errors for discrete divergence div* are shown in Table 4.
The table shows large divergence errors for the SYM (SYM2) and ISO (ISO2) schemes. On the other hand, the
constraint preserving SCP (SCP2) and ICP (ICP2) schemes preserve discrete divergence to machine precision.

M ‘ SYM ISO SCP ICP  SYM2 ISO2 SCP2 ICP2

50 | 4.56 2.59 2.8e-12 2.1e-12 5.79 538 3.4e-13 2.27e-13

100 | 447 3.3 1.2e-12 8.7e-13 1258 11.75 2.1e-13 1.14e-13

200 | 5.19 4.05 5.0e-13 3.7e-13 27.1 2648 1.4e-13 1.34e-13

400 | 75 64 23e-13 1.5e-13 38.0 41.3 1.8e-13 2.2e-13
TABLE 4. Discrete divergence div* (3.4a) in L! for cloud shock interaction with all the eight
schemes on a M x M mesh at time ¢ = 0.06.

Remark 4.1. The first-order GMD schemes were quite diffusive. A possible reason is the use of the Rusanov
fluz (1.8). This flux is known to produce excessive smearing at the shocks. However, we advocate the use of the
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Rusanov fluz as the accuracy is recovered at second-order. The Rusanov flux is very easy to implement, uses
minimal characteristic information and has a low computational cost. It fits into the black box framework of
our GMD schemes.

The three numerical experiments show that the GMD schemes are quite robust. There does not appear to be
a strong connection between the divergence errors and stability of a GMD scheme. The GMD structure of the
schemes incorporates stability. However, there is a gain in accuracy (at least at first-order) when the divergence
preserving versions of the scheme are used.

Physicists are generally reluctant to use numerical schemes that produce divergence errors. Hence, we advo-
cate the use of the divergence preserving GMD schemes. Furthermore, the computational cost of a divergence
preserving GMD scheme is virtually identical to the cost of other GMD schemes.

5. CONCLUSION

The ideal MHD equations (1.1) are considered. The equations are non-strictly hyperbolic and posses a
complex shock structure. Design of stable and accurate numerical methods for the MHD equations in multi-
dimensions is complicated on account of its genuinely multi-dimensional structure and the divergence constraint.

We extend the potential based GMD framework of recent papers [31, 32] to the MHD equations. The finite
volume schemes are formulated in terms of vertex centered numerical potentials. Symmetric (2.5) and isotropic
(2.9) versions of the potential based GMD schemes are described. The GMD schemes are modified with a
suitable choice of potentials to yield divergence preserving GMD schemes. Second-order versions are obtained
by employing non-oscillatory piecewise bilinear reconstructions. The schemes are constraint preserving GMD
extensions of the central schemes of Kurganov and Tadmor [24].

Benchmark numerical experiments for the MHD equations are presented. They show that the first-order
GMD schemes resolve the waves with some diffusion. There is a gain in accuracy when the divergence preserving
versions are used. The gain in resolution with the second-order schemes is considerable. The multi-dimensional
shocks are vortices are captured, with good accuracy.

The non divergence preserving versions of the GMD schemes can generate large divergence errors, partic-
ularly at shocks. These errors do not seem to affect the stability of the schemes, at least in our tests. But
large divergence errors might create instabilities at finer resolutions. Hence, we advocate using the divergence
preserving versions of the GMD schemes. The GMD approach is simple to implement, robust and has a very low
computational cost. It will be extended to higher than second-order of accuracy and to unstructured meshes in
future papers. Other future projects include using the divergence preserving GMD schemes to compute realistic
flows in solar physics and astrophysics.
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