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Hybrid FEM/BEM modeling of finite-sized
photonic crystals for semiconductor laser beams.

M. Durán†, M. Guarini† and C. F. Jerez-Hanckes∗,‡

Abstract

We propose a 2-D finite-element/boundary-element hybrid method for
calculating the spatial distribution and frequency response of electromag-
netic waves coming from a semiconductor laser when interacting with a
finite-sized photonic crystal. We thus provide a flexible tool for the de-
sign of novel optical and microwave devices, among other applications.
In opposition to current methodologies, we simultaneously take into ac-
count the laser modes, the finiteness of the crystal, and the unbounded-
ness of the isotropic medium in which the crystal is embedded. At the
laser output, instead of approximating reflected and transmitted beams
by plane waves, we use the more realistic Hermite-Gauss functions. In
the isotropic medium, we set an artificial boundary encircling the crystal
and define exterior and interior domains. Radiating solutions for the scat-
tered far-field over the exterior are derived analytically through a series of
Hankel polynomials. The interior domain is described by a finite-element
formulation coupled with Dirichlet-to-Neumann maps enforcing laser and
far-field behaviors. Results and error analyses are provided in view of
future improvements.

1 Introduction

Since the work by Yablonovitch [1], tremendous interest has been set towards
the investigation and design of so-called Photonic Crystals (PCs) [2, 3]. These
are a novel type of material in which the refractive index varies periodically with
position. The resulting Bragg scattering of electromagnetic waves leads to the
formation of a band structure which is, in several ways, analogous to the band
structure in semiconductors. Under suitable design of lattice symmetry and re-
fraction index contrasts, PCs may exhibit complete photonic bandgaps (PBGs),
i.e., ranges of frequencies over which ordinary (linear) propagation is forbidden,
irrespective of the propagation direction. By introducing defects in the lattice,
specific frequencies can be selected inside the bandgap and light paths can be
designed. Hence, the engineering of these materials offers enormous potential
for applications ranging from basic science like localization of light [4] to optical
telecommunication devices such as demultiplexers [5] or add-drop filters [6]. In
particular, we will concentrate on their use as filters for semiconductor lasers, a
cornerstone of modern technology.

∗ETH Zürich, Seminar für Angewandte Mathematik, Zürich, Switzerland
† Pontificia Universidad Católica de Chile, Facultad de Ingenieŕıa, Santiago, Chile
‡ Correspondence to: C. F. Jerez-Hanckes. Email: cjerez@sam.math.ethz.ch
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Along with their advantages in power consumption and versatility, semicon-
ductor lasers have certain drawbacks in regard to their spectrum definition and
field profile [16, 17]. In the case of the ubiquitous double heterojunction (DH)
stripe geometry injection lasers, the generated field profiles are astigmatic and
highly elliptical [18], requiring correction by external and often costly structures.
Furthermore, most semiconductor lasers allow multimode oscillation [19, 20].
This is due to the large spectral width of the gain coefficient which, regardless
of the small resonator length, still allows several modes to resonate. Such mul-
timode operation is also undesirable and different means have been designed to
ameliorate this [21].

Clearly, photonic crystals can address the laser’s frequency problem if ad-
equately tailored. That they can concurrently collimate beams is less known.
Indeed, subwavelength light focusing by PCs has been recently observed both
experimentally and numerically through finite-difference time-domain (FDTD)
simulations [22, 23]. Under particular conditions, light passing through the PC
focuses on a size smaller than a wavelength in contradiction to the diffraction
limit principle. This occurs when the photonic band diagram possesses a convex
topology and negative refraction takes place [24]. In the experiments performed
by Kramper et al. [23], they show that it is possible to couple out directional
beams from PC waveguides if they are terminated properly, i.e., when the PC-
air interface is such that surface modes are excited. This observation provides
a way to counteract the wide-angle beam for the DH laser and motivates the
present work. Nonetheless, other applications include the design of highly di-
rectional antennae from omnidirectional sources as proposed by Ozbay et al.
[24].

Grounded on these physical arguments, we aim to provide a suitable numer-
ical scheme for designing spatial and frequency filters based on PC structures
for a semiconductor laser (see Figure 1). Therefore, we need to simultaneously
describe the following aspects:

• reflection and transmission of actual lasing modes;

• wave diffraction caused by a finite photonic crystal slab – structures with
a finite number of identical cells; and,

• outgoing nature of scattered radiation as it propagates away from the
crystal over the infinite isotropic medium.

Now, the modeling of PCs from first principles or ab initio is encouraged by
the close agreement between simulation and experiment. Furthermore, the scal-
ability of Maxwell’s equations enables a given design to be used in any fre-
quence range – although we will be mostly interested in infrared and optical
wavelengths. Hence, numerous models and solution techniques have been devel-
oped [7]. Altogether, several issues remain untackled and constitute challenging
problems. In this work, we address the analysis of radiation losses in optically
integrated circuits [8, 9]; and, in a lesser extent, the distorsion of PBGs due to
the finiteness of the crystal [10].

Due to the geometric complexity of the structures devised, most modeling
approaches assume a periodic array or infinite crystal whose band diagram is
obtained by the conventional plane-wave method [11]. In the recent work by
Wu et al. [15], this technique is extended to describe finite-crystals by using an
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Figure 1: 3-D diagram portraying an heterojunction laser facing a photonic
crystal slab. The 2-D model is taken at the center plane of the gain layer wherein
photon generation takes place via electron-hole recombination after applying a
certain voltage. Dimensions are not in scale.

effective propagation constant and a frequency-dependent dielectric constant.
Nonetheless, it still assumes plane-wave functions which may not represent the
actual beam profile, that is, the one coming from lasers. Finite-sized structures
have also been modeled via FDTD using absorbing boundary conditions, and
by applying the finite-element method (FEM) enhanced with perfectly matched
layers (PML) [12, 13]. Unfortunately, these techniques do not automatically
yield the actual far-field radiation profiles requiring post-treatment. Moreover,
FDTD methods are well-known to be unstable when accounting for fine features
and can provide spurious modes [14].

In this article, we consider the system described in Figure 1 and neglect
the vertical direction as a first step towards the full R3-representation. The
associated 2-D model is set along the plane corresponding to that of crystal
periodicity and the gain medium. We propose to artificially divide the pho-
tonic slab into exterior and interior domains. Outside the fictitious boundary,
solutions are found as a particular series of Hankel polynomials which account
for radiation conditions at infinity. Description of the lasing system at the in-
put interface is achieved by an eigenfunction expansion of Hermite-Gauss (HG)
functions that yields the accurate behavior of the laser. On the interior domain,
fields are calculated using finite elements which easily take care of refraction in-
dex variations. Coupling between laser and outgoing wave behaviors is attained
by transmission conditions enforced by Dirichlet-to-Neumann (DtNs) maps over
the common boundaries. This calls for variants of the boundary element method
(BEM), and their agreement with the finite-element approximation coming from
the interior domain.

Combinations of the FEM and BEM have been extensively studied in many
settings as can be seen in [25, 26, 27, 28, 29, 30], among many other works. The
idea behind all of them is to derive accurate solutions by mixing the flexibility
of the FEM to model complex structures with the efficiency of the BEM to con-
dense information at the boundaries and eventually describe unbounded media.
In our case, the originality of the proposed approach is to combine the behavior

3



Figure 2: Coordinate and subdomain definitions. Coordinate axes are centered
at the laser/crystal interface Γl and the middle of the crystal. Note the splitting
of the interface boundary Γl into Γl∞ and Γli induced by the artificial domain
decomposition Ωint and Ω∞.

coming from the laser itself and adapt the far-field eigenmodes of the exterior
solution to deliver a FEM/BEM formulation which tries to efficiently portray
as much of the real physics as possible. The role of the finite-element modeled
domain is to combine these two behaviors and describe the complex near-field
scattering provoked by the PC. Consequently, the key feature of our model is
the extensive use of a priori information to represent the system in a physi-
cally realistic way in affordable computational times. Moreover, the proposed
methodology can be used for a larger range of applications and modifications
can be easily made to account for more complex phenomena.

This paper is structured as follows. In Section 2, we define the geometrical
characteristics, physical quantities and mathematical setting of the proposed
2-D model. Eigenfunction expansions for imposing boundary conditions are
presented in Section 3. Therein, the division of the original problem into two
dependent ones is presented as well as the variational formulation involved. In
Section 4, domain and solution discretizations are described along with bound-
ary elements employed. More details regarding approximation schemes are given
in the Appendices. In Section 5, physical parameters are further specified and
simulation results are analyzed and discussed. Finally, conclusions and future
developments are drawn in Section 6.

2 Model Description

2.1 Geometry

We are interested in analyzing the transmission properties of the output beam
of a double heterojunction semiconductor laser immediately scattered by a finite
2-D photonic crystal slab, as shown in Figure 1. We neglect vertical variations
and consider exclusively the plane given by that of PC periodicity and laser
gain layer. Figure 2 depicts the choice of coordinates x = (x, y) describing this
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plane with directions given by unitary vectors ex and ey.
We assume the direction of laser propagation to be along ex (positive x-

axis). The laser is located at the lower half-plane denoted by Ωlaser and the PC
is placed on the exterior domain, Ω, i.e.,

laser domain Ωlaser : =
{
(x, y) ∈ R2 : x < 0

}
, (1a)

exterior of laser domain Ω : =
{
(x, y) ∈ R2 : x > 0

}
, (1b)

laser output Γl : =
{
(x, y) ∈ R2 : x = 0

}
, (1c)

satisfying Ωlaser ∩ Ω = ∅ and R2 = Ω̄laser ∪ Ω̄. A finite 2-D lattice of width wpc

and length lpc, containing M circles, with bounded M ∈ N0, represents the two-

dimensional PC structure. These circles or inclusions, denoted by {Ωm}M
m =1 ⊂

Ω, are mutually disjoint, have radii {am}M
m= 1, and are centered at hexagonally

symmetric positions {cm}M
m = 1, such that, for each m, we set

m-th inclusion Ωm := { x ∈ Ω : ‖x − cm‖ < am} , (2a)

m-th inclusion boundary ∂Ωm := { x ∈ Ω : ‖x − cm‖ = am} , (2b)

where ‖·‖ is the classic euclidean norm. The choice of hexagonal periodicity
is explained in Section 5.1. Define the integer set identifying all inclusions by
M = {1, . . . , M}, wherein those corresponding to defects in the crystal are
indicated by a subset of indices D ! M of smaller cardinality, D ∈ N0, i.e.,
D < M . The physical and geometrical properties of defect inclusions can
eventually differ from the rest. In fact, the inclusions defining the base crystal
are the majority sharing the same geometrical and physical properties, as for
instance am = a for all m ∈ M \ D with values of a established later on. We
can define the subdomains:

photonic crystal Ωpc :=
⋃

m∈M

Ωm , (3a)

crystal defect Ωdef :=
⋃

m∈D

Ωm ! Ωpc , (3b)

connected subdomain in Ω Ωcon := Ω \ Ω̄pc , (3c)

photonic crystal boundary ∂Ωpc :=
⋃

m∈M

∂Ωm . (3d)

Set R ∈ R positive and bounded. For computational reasons, Ω is further
divided into two subdomains:

Ωint := {x ∈ Ω : ‖x‖ < R} and Ω∞ := Ω \ Ω̄int (4)

where Ωint is bounded and contains the photonic crystal Ωpc. If ∂Ωint denotes
the boundary of Ωint, this splitting introduces an artificial boundary, ΓR, given
by a half-circumference centered at the origin with radius R, i.e., ΓR := Ω ∩
∂Ωint. The remaining relevant domains and boundaries are

connected subdomain in Ωint Ωsub := Ωint ∩ Ωcon , (5a)

boundary of Ωsub ∂Ωsub := ∂Ωint ∪ ∂Ωpc , (5b)

laser output in Ω̄i Γli :=
{
x ∈ Γl : ‖x‖ < R

}
, (5c)

laser output in Ω̄∞ Γl∞ := Γl \ Γ̄li , (5d)
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and consequently, the boundary ∂Ωint is equal to ΓR ∪ Γ̄li. These definitions
are shown in Figure 2.

With this picture in mind, the physics of our problem can be easily described
when in steady-state operation. An incoming laser beam comes directly from
Ωlaser, following ex, with a profile known in advance. Depending upon the
properties of the lattice, part of the scattered radiation will return to the device
as a linear combination of the allowed laser modes. The remaining radiation
propagates over Ωint crossing ΓR and continues at infinity in Ω∞. This radiation
contains scattered terms that must decay at infinity even though the terms
associated to the incoming wave do not. Nonetheless, both waves are ruled by
the Helmholtz equation as shown below.

2.2 Maxwell’s equations. TM and TE decompositions

We assume the solutions over Ωlaser of the unperturbed lasing problem to be
known (see Section 3.1). Thus, we focus on solving the electromagnetic fields
on the entire half-plane Ω and start by recalling a few concepts before arriving
at the exact formulation. The set of harmonic Maxwell’s equations that governs
light in the absence of free charges and currents is [31]

∇× E = ı ω µoH (6a)

∇× H = − ı ω εo ε(x)E (6b)

∇ · H = 0 (6c)

∇ · εo ε(x)E = 0 (6d)

with E and H being the electric and magnetic vector-fields in R3, respectively.
We utilize the time convention exp(−ıωt) and the following linear constitutive
relations:

D = ε̃(x)E with ε̃(x) = εo ε(x) , (7a)

B = µ̃H with µ̃ = µo µ . (7b)

The dependence of the dielectric constant on position is made explicit by defin-
ing ε̃(x) as the product between the dielectric coefficient at vacuum, εo, and
the relative dielectric constant, ε(x), a dimensionless parameter. If constant
values are assigned over each subdomain, one can construct a relative dielectric
coefficient defined over Ω, ε(x) ∈ L∞(Ω), as follows:

ε(x) =






εdef if x ∈ Ωdef ,

εbase if x ∈ Ωpc \ Ωdef ,

εcon if x ∈ Ωcon

(8)

where εbase, εdef and εcon are positive and bounded scalars representing the
relative dielectric constants for the base crystal, the possible defect inclusions
and the unbounded connected media, respectively. Moreover, we denote by
εlaser the effective permittivity coefficient over Ωlaser. Materials are assumed
non-magnetic, i.e., µ ≡ 1, so that µ̃ = µo.

Recalling that c = 1/
√

εo µo is the speed of light at vacuum and defining
the free-space wave number k0 = ω/c, we obtain two equivalent formulations
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over Ω:

E-formulation






1

ε(x)
∇×∇× E = k2

0E

∇ · ε(x)E = 0
, (9a)

H-formulation





∇× 1

ε(x)
∇× H = k2

0H

∇ ·H = 0
. (9b)

Traditionally, Equation (9b) is treated first for solving H and then obtain E

from (6b). However, when the problem is taken to be two-dimensional (vertical
invariance), it can be formulated as two independent scalar ones, according to
the polarization of the fields. The found solutions are linearly combined to derive
a complete description of the beam. For transverse electric (TE) polarization
or Hz-polarization we have:

∇ ·
(

1

ε(x)
∇Hz(x)

)
= −k2

0Hz(x) (10)

whereas for the transverse magnetic (TM) or Ez-polarized case, it holds

1

ε(x)
∇ · (∇Ez(x)) = −k2

0Ez(x) . (11)

The latter can be directly rewritten as:

∆U(x) + k2
0ε(x)U(x) = 0 for x ∈ Ω , (12)

where the simplification U = Ez has been made. In the TE case, we take
U = Hz and obtain

∇ · 1

ε(x)
∇U(x) + k2

0 U(x) = 0 for x ∈ Ω . (13)

Hence, we consider in general the Helmholtz-type equation:

∇ · a(x)∇U(x) + k2
0 b(x)U(x) = 0 for x ∈ Ω , (14)

with polarization-dependent coefficients:

TM

{
a(x) ≡ 1 x ∈ Ω

b(x) ≡ ε(x) x ∈ Ω
, TE

{
a(x) ≡ ε−1(x) x ∈ Ω

b(x) ≡ 1 x ∈ Ω
.

(15)
This supports the choice of variational forms for finding solutions, as required
for the finite element method (see Section 3.4). An alternative approach con-
sists in exclusively using the classical Helmholtz equation (12) over each of the
subdomains. Since the permittivity is piecewise constant, in (13) ∇ε−1 is dif-
ferent from zero only when passing through the interior boundaries. Thus, in a
variational formulation, the gradient of ε−1 becomes a boundary integral which
requires to be imposed explicitly. This, however, demands an extra effort as
boundary elements need to be defined over each subdomain boundary.
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2.3 TE and TM transmission conditions

Keeping U for writing normal field components in Ω, let us introduce the short-
hand:

Uα := U |Ωα = {U(x) : x ∈ Ωα} , (16)

denoting field values over any of the subdomains Ωα previously defined (see
Figure 3). We assume normal vectors nα to point outwards each subdomain
boundary ∂Ωα with unitary norm. Hence, at the interface between two contigu-
ous domains Ωα and Ωβ , the normals will have the same direction but opposite
senses, i.e.,

nα

∣∣
∂Ωα∩ ∂Ωβ

= −nβ

∣∣
∂Ωα∩ ∂Ωβ

. (17)

For TE polarization, the Neumann transmission condition for adjacents domains
is given by normal continuity of the displacement vectors:

1

εα

∂Uα

∂n

∣∣∣∣
∂Ωα

= − 1

εβ

∂Uβ

∂n

∣∣∣∣
∂Ωβ

TE Neumann, (18)

while for TM waves, one has

∂Uα

∂n

∣∣∣∣
∂Ωα

= −
∂Uβ

∂n

∣∣∣∣
∂Ωβ

TM Neumann. (19)

Continuity of normal field components across the interfaces for both polariza-
tions, yields Dirichlet transmission conditions:

Uα

∣∣
∂Ωα

= Uβ

∣∣
∂Ωβ

Dirichlet. (20)

2.4 Scattered and incident parts field decomposition

By linearity of the physical system, one can split the fields into

U = U inc + U sc (21)

where U sc is the scattered part and U inc is the incoming field, a known solution
for Equation (12) in an isotropic medium. Hence, for each subdomain Ωα defined
in Section 2.1, we introduce the restrictions:

U inc
α := U inc

∣∣
Ωα

and U sc
α := U sc

∣∣
Ωα

, (22)

implying
Uα = U inc

α + U sc
α . (23)

Notice also that this decomposition can be extended to trace quantities as em-
ployed below.

2.5 Problem formulation at Ω

Let H1
loc(Ω) be the Sobolev space of functions which along with their first-

order derivatives are locally square-integrable on Ω. Its associated trace spaces
are H1/2(Γl) and H−1/2(Γl) [32]. Later on, we will also work in the space of
functions that can be extended by zero, which are differentiated by adding a
tilde, e.g., H̃1/2(Γl).
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Figure 3: Notation for field restrictions over subdomains and their decomposi-
tion into incident and scattered terms. Trace values are written in lower case.

Define Ulaser as the solution over Ωlaser. Then, the strong form of the problem
in Ω for both polarizations can be posed as follows: seek U ∈ H1

loc(Ω) such that

(Po)






∇ · a(x)∇U(x) + k2
0 b(x)U(x) = 0 for x in Ω ,

+ coupling conditions with Ulaser on Γl ,

+ radiation conditions for the scattered field ‖x‖ −→ ∞ , x ∈ Ω .
(24)

Well-posedness of the above problem can be achieved by establishing the Dirichlet-
to-Neumann maps coupling U and Ulaser over Γl (see Section 3.1). This is re-
lated to the continuity of both Dirichlet- and Neumann-type traces. From (20),
it holds

U
∣∣
Γl

= Ulaser

∣∣
Γl

=: ul ∈ H1/2(Γl) (25)

where we have defined the trace over Γl, ul, as a new unknown. In the following,
we write boundary quantities in lower case to distinguish them from values over
subdomains given in capital letters. From Section 2.3, Neumann traces at the
laser interface Γl must satisfy either

TE :
1

εlaser

∂Ulaser

∂x

∣∣∣∣
Γl

=
1

ε

∂U

∂x

∣∣∣∣
Γl

or TM :
∂Ulaser

∂x

∣∣∣∣
Γl

=
∂U

∂x

∣∣∣∣
Γl

,

(26)
where n is in fact heading towards ex. Moreover, the above traces lie in
H−1/2(Γl).

2.6 Problem formulations over Ωint and Ω∞

As it stands, the above problem is not suitable for a numerical scheme as both
the domain Ω and the boundary Γl are unbounded. To handle this, we divide
the original problem over Ω, (Po), into two coupled ones:

1. (Pint) defined over Ωint, wherein a solution denoted Uint is computed
through the FEM; and,

9



2. (P∞) whose solution, U sc
∞, is the scattered field over Ω∞, obtained as a

linear combination of eigenfunctions of the isotropic half-plane.

The link between both problems is achieved via continuity conditions for the
Dirichlet and Neumann traces at ΓR. The Dirichlet transmission condition for
the total field reads

U∞

∣∣
ΓR

= Uint

∣∣
ΓR

=: uR ∈ H1/2 (ΓR) , (27)

and hence, the defined trace uR constitutes another boundary unknown besides
ul. For the moment, we can neglect U inc as it is known everywhere and write
the conditions only for the scattered parts. Specifically, it must hold

U sc
∞

∣∣
ΓR

= U sc
int

∣∣
ΓR

=: ϕR ∈ H1/2 (ΓR) , (28a)

∂U sc
∞

∂r

∣∣∣∣
ΓR

=
∂U sc

int

∂r

∣∣∣∣
ΓR

=: ψR ∈ H−1/2 (ΓR) , (28b)

where we have defined the trace unknowns ϕR and ψR, related to each other by
the Dirichlet-to-Neumann operator introduced in Section 3.3. Notice that we
have used the exterior normal to Ωint at ΓR, nint = r/ ‖r‖. Moreover, trans-
mission conditions are independent from the polarization due to the artificial
character of the boundary.

We must now characterize the coupling between the solution of (Po) and the
one over Ωlaser – Equations (25) and (26) – for the artificial splitting (Pint) and
(P∞). By definition of ul, (25), the decomposition of the entire solution U over
Ω into scattered and incoming terms allows the next definitions:

uinc
l := U inc

∣∣
Γl

and usc
l := U sc

∣∣
Γl

. (29)

Let us assume the trace of U to be null over Γl∞ so as to simplify (P∞). Although
an approximation, this is not far from reality as laser radiation is focalized and
scattered energy decays away from the obstacles. This can be written as

Ulaser

∣∣
Γl∞

= U
∣∣
Γl∞

= U∞

∣∣
Γl∞

= 0 (30)

In other words, the sum of the traces of U inc
∞ and U sc

∞ vanishes over Γl∞. On
the other hand, the incoming wave is also compactly supported in Γli. This
immediately implies U sc|Γl∞

≡ 0.
Now, recalling that U sc

laser is the scattered solution in Ωlaser, one can write
the coupling at Γli through two new boundary unknowns, ϕli and ψli shown
next. Dirichlet continuity establishes

U sc
laser

∣∣
Γli

= U sc
int

∣∣
Γli

=: ϕli ∈ H̃1/2 (Γli) , (31)

while for the Neumann one, we define polarization-dependent unknowns ψTM
li

and ψTE
li , both in H−1/2 (Γli), as

∂U sc
laser

∂x

∣∣∣∣
Γli

=
∂U sc

∂x

∣∣∣∣
Γli

=
∂U sc

int

∂x

∣∣∣∣
Γli

=: ψTM
li ∈ H−1/2 (Γli) , (32a)

ε

εlaser

∂U sc
laser

∂x

∣∣∣∣
Γli

=
∂U sc

∂x

∣∣∣∣
Γli

=
∂U sc

int

∂x

∣∣∣∣
Γli

=: ψTE
li ∈ H−1/2 (Γli) . (32b)
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The scattered field returning to Ωlaser is assumed to be a combination of laser
modes and accordingly, ϕli must take such a form, as detailed in the next section.

Along with the above definitions, radiation conditions at infinity are imposed
to the scattered field on the unbounded domain Ω∞ by taking it to be a solution
of the following problem. Define the exterior domain permittivity ε∞ := εcon.
Then, for either polarization we seek U sc

∞ ∈ H1
loc(Ω∞) such that:

(P sc
∞)






∆U sc
∞(x) + k2

0 ε∞ U sc
∞(x) = 0 for x in Ω∞ ,

U sc
∞

∣∣
Γl∞

= 0 over Γl∞ ,

U sc
∞

∣∣
ΓR

= ϕR over ΓR ,

lim
r→∞

∣∣∣∣
∂U sc

∞

∂r
− ık0

√
ε∞ U sc

∞

∣∣∣∣
2

= 0 for ‖x‖ = r , x ∈ Ω∞ ,

(33)

where the last line is Sommerfeld’s radiation condition, which imposes a decay-
ing behavior at infinity for outgoing scattered waves. Solutions are obtained
in Section 3 and are dependent on the unknown Dirichlet trace ϕR. With the
above conditions, we look for the total field Uint ∈ H1(Ωint) satisfying

(Pint)






∇ · a(x)∇Uint(x) + k2
0 b(x)Uint(x) = 0 for x in Ωint ,

∂Uint

∂n

∣∣∣
Γli

=
∂U inc

int

∂n

∣∣∣
Γli

+ ψli over Γli ,

∂Uint

∂n

∣∣∣
ΓR

=
∂U inc

int

∂n

∣∣∣
ΓR

+ ψR over ΓR ,

(34)

which is coupled to the solutions over Ωlaser and Ω∞ by ϕli and ϕR, respectively.
We next find the eigenfunction expansions for the scattered solution over

Ω∞ and Ωlaser. At the boundaries ϕR and ϕli, these will be imposed upon the
interior problem via Dirichlet-to-Neumann operators that yield ψR and ψli. The
interior problem will be solved by first developing the variational formulation
and then applying the finite element method.

3 Boundary Eigenfunction Expansions and Vari-
ational Formulation

3.1 Laser modes

As described in 2.1, the photonic crystal lies in front of the laser’s output. For
the stripe geometry double heterojunction laser, lateral modes are produced by
a gain-guiding mechanism thoroughly studied in [33, 34, 35, 36]. The analytical
solutions proposed for the electric field are Hermite-Gauss functions obtained
primarily by the effective index method [37]. Since most injection lasers have
fields polarized predominantly along y, we limit our discussion to such modes.

Before reaching the output, the p-th transverse-electric laser mode propa-
gates as exp(−ıωt + ıβpx), according to the electric and magnetic fields compo-
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nents:

Ep
x(y, z) =

ı

βp

∂Ψp

∂y
(y, z) , Hp

x(y, z) =
ı

ωµ0

∂Ψp

∂z
(y, z) , (35a)

Ep
y(y, z) = Ψp(y, z) , Hp

y (y, z) =
1

βpωµ0

∂2Ψp

∂z∂y
(y, z) , (35b)

Ep
z (y, z) = 0 , Hp

z (y, z) = − 1

βpωµ0

∂2Ψp

∂y2
(y, z) , (35c)

where Ψp is equal to the fundamental vertical mode [17] times the normalized
p-th lateral mode ψp. This is given by

Ψp(y, z) := cos(κ0z)ψp(y) , for p ∈ N0 , (36)

wherein κ0 is the zeroth-mode eigenvalue along z, and

ψp(y) := 4

√
α

2π

√
1

p!
Hp(y

√
α)e−

1
4
αy2

, (37)

where the constant α = 2k0al

√
Υ, with Υ being confinement factor for the

sandwiched active layer – where photon generation takes place –, and al the
parameter for parabolic variation in gain index. Although al is generally a com-
plex number, we assume it to be real at x = 0 in order to avoid the biorthogonal
functions needed for dealing with complex-valued HG functions [38]. Hermite
polynomials Hp(·) are given by

Hp(ζ) = (−1)qeζ2/2 dq

dζq

(
e−ζ2/2

)
for q ∈ N0 . (38)

When z = 0, the magnetic field components Hx and Hy vanish and, therefore,
we have a TE laser polarization compatible with the picture used in defining
our 2-D model. The longitudinal modes βp depend on p as follows

β2
p = k2

0n
2
e − α

(
p +

1

2

)
for p ∈ N0 , (39)

where ne is the effective refractive index obtained as described in [39] for the case
of InGaAsP. By using Equation (35c), the normalized magnetic lateral modes
for Hz are

hp(y) :=
2√

3(2p2 + 2p + 1)1/2

(
2p + 1 −

α

2
y2
)

ψp(y) , (40)

derived from the generating function and orthogonality relations for HG poly-
nomials (see Appendix .1).

3.2 Eigenfunction expansion at the laser output Γl

Laser radiation in Ωlaser is a linear combination of the aforementioned modes.
When the beam is scattered by the PC, some of the radiation will re-enter into
Ωlaser as

U sc
laser(x, y) =

∞∑

q = 0

dq hq(y) e−ıβqx x ≤ 0 , y ∈ R , (41)

12



where (hq(y), βq)q∈N0
represent the eigenpairs. The negative sign in the phase

factor is due to the radiation reflected at the interface and transmitted from
the exterior. As described in Section 2.5, the total laser field Ulaser is divided in
incoming and scattered parts, U inc

laser and U sc
laser, respectively, with U inc

laser being
the radiation in Ωlaser travelling from minus infinity to Γl along ex. We now
require a description for the trace of U sc

laser(x, y) on Γl, usc
l (y) as defined in

Equation (29).
Coefficients {dq}q∈N0

can be obtained by taking the inner product between
U sc

laser with a mode hp, p ∈ N0 along any line with constant x. In particular, let
us choose x = 0 or Γl, and denote the inner product here by 〈·, ·〉. Then,

〈usc
l , hp〉 =

〈
Ulaser(0, ·) − U inc

laser(0, ·), hp

〉
=

∞∑

q =0

dq 〈hq, hp〉 (42)

according to the definitions given in Equations (25) and (29). The set of modes
{hp}p∈N0

are not entirely orthogonal but their inner product yields a banded
square matrix (see Appendix .1), denoted

H∞ = [ 〈hq, hp〉 ]∞,∞
q,p=0 . (43)

Hence, we can obtain the series coefficients via the unknown usc
l through the

vector-matrix product

[ dq(u
sc
l ) ]∞q=0 = H

−1
∞ [〈usc

l , hp〉]∞p=0 . (44)

Using the above in Equation (41) yields the truncated series for the scattered
field in the entire domain Ωlaser:

U sc
laser(x, y) :=

∞∑

q =0

dq(u
sc
l )hq(y) e−ıβqx (45)

where the dependence on usc
l is made explicit. Deriving Equation (45) along x

yields

∂U sc
laser

∂x
(x, y) = −

∞∑

q =0

ıβqdq(u
sc
l )hq(y) e−ıβqx for (x, y) ∈ Ωlaser , (46)

whose trace at Γl becomes

∂U sc
laser

∂x
(0, y) = −

∞∑

q =0

ıβqdq(u
sc
l )hq(y) for y ∈ R . (47)

This defines a DtN operator, denoted TTE
l : H1/2 (Γl) → H−1/2 (Γl), acting on

usc
l . By Equation (32b), restriction to Γli delivers an expression for ψTE

li ,

ψTE
li (y) =

ε

εlaser
T

TE
l (usc

l ) (y) = −
ε

εlaser

∞∑

q =0

ıβqdq(u
sc
l )hq(y) for |y| < R .

(48)
Notice that the operator TTE

l maps usc
l , which is defined over the entire Γl and

not its restriction to Γli, ϕli.
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3.3 Eigenfunction expansion for the field on Ω∞

The solution for the outgoing scattered field over the infinite domain Ω∞ or
exterior solution can be also expressed as an eigenfunction expansion of the
isotropic half-plane problem [40]:

U sc
∞(r, θ) =

∞∑

m =−∞

bm H(1)
m (k0

√
ε∞ r)eımθ for r ≥ R , 0 ≤ θ ≤ π ,

(49)

where R is the radius of the encircling frontier ΓR and H(1)
m is the first type

Hankel function of order m. From the first boundary condition in (P∞), it
holds

U sc
∞(r, 0) = U sc

∞(r, π) = 0 ∀ r ≥ R . (50)

Replacing this into Equation (49) shows that both conditions are linearly de-
pendent since the Hankel functions satisfy

H(1)
−m(ξ) = (−1)m H(1)

m (ξ) . (51)

After some algebra, it is possible to write the above expansion as

∞∑

m =−∞

bmH(1)
m (k0

√
ε∞r) = b0 H(1)

0 (k0
√

ε∞r) +
∞∑

m =1

[bm + (−1)mb−m]H(1)
m (k0

√
ε∞r)

(52)

which vanishes for r ≥ R, so that b0 = 0 and b−m = − bm(−1)m. When
replaced in Equation (49) they render

U sc
∞(r, θ) =

∞∑

m = 1

ı 2bmH(1)
m (k0

√
ε∞r) sin(mθ) . (53)

Equation (28a) together with the orthogonality relation for sinusoidal functions
yields ∫ 2π

0
U sc
∞(r, θ) sin(mθ)dθ = ı 2π bm H(1)

m (k0
√

ε∞ r) . (54)

By choosing r = R, the coefficient bm can be obtained as a function of the trace
unknown ϕR introduced in (28a). Thus, for all r ≥ R it holds

U sc
∞(r, θ) =

∞∑

m =1

γm(r)

k0
√

ε∞
sin(mθ)

∫ 2π

0
ϕR(θ) sin(mθ′)dθ′ (55)

with

γm(r) :=
k0
√

ε∞
π

H(1)
m (k0

√
ε∞ r)

H(1)
m (k0

√
ε∞ R)

(56)

and whose radial derivative, corresponding to the direction of −n∞, is

∂U sc
∞

∂r
(r, θ) =

∞∑

m =1

γ′

m(r) sin(mθ)

∫ 2π

0
ϕR(θ) sin(mθ′)dθ′ . (57)
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The trace of the normal derivative of Equation (57) gives the Dirichlet-to-
Neumann operator at ΓR:

TR : H1/2 (ΓR) −→ H−1/2 (ΓR) (58)

or, in other words, it provides the link between ϕR and ψR:

ψR = TR(ϕR) =
∂U sc

∞

∂r

∣∣∣∣
r=R

(59)

which is independent on the polarization since the boundary is artificial. This
kind of non-local DtN or non-reflecting boundary condition has been extensively
studied in [43, 44, 45]. Explicitly,

ψR(θ) =
∞∑

m =1

γ′

m(r) sin(mθ)

∫ 2π

0
ϕR(θ) sin(mθ′)dθ′ for 0 ≤ θ ≤ π .

(60)

3.4 Variational formulation for the interior problem

We now focus on Ωint where both operators TTE
l (usc

l ) and TR(ϕR) show up via
boundary integrals which follow from the analysis below. Let us introduce the
following variational forms defined for H1(Ωint)-fields:

K(U, V ) :=

∫

Ωint

a(x)∇U(x) ·∇V (x) dΩ , (61a)

M(U, V ) :=

∫

Ωint

b(x)U(x)V (x) dΩ , (61b)

B(U, V ) :=

∫

∂Ωint

a(s)
∂U

∂n
(s)V (s)ds . (61c)

After applying Green’s first theorem, the weak form of (Pint) for both polariza-
tion reads: find U ∈ H1(Ωint) such that

−K(U, W ) + B(U, W ) + k2
0M(U, W ) = 0 (62)

for all test functions in W ∈ H1(Ωint). The boundary integral can be split in
Γli and ΓR, and after replacing boundary conditions, one obtains

∫

Γli

a(s)
∂Uint

∂n
(s)W (s) ds =

∫

Γli

a(s)

{
∂U inc

int

∂n
(s) + ψli(s)

}
W (s)ds , (63a)

∫

ΓR

a(s)
∂Uint

∂n
(s)W (s)ds =

∫

ΓR

a(s)

{
∂U inc

int

∂n
(s) + ψR(s)

}
W (s)ds . (63b)

In order to apply the FEM, the scattered fields are expressed in terms of U and
U inc as shown in the following section. Henceforth, we consider coefficients a,
b for the TE polarization case as given in Equation (15). The form of U inc is
precised in Appendix .2.
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3.5 Reconstruction of the total field in Ωint

If one desires to obtain the entire field Uint, expressions for the scattered fields
ψTE

li and ψR, (85) and (59), respectively, must be written in terms of differences
between total and incident fields on each corresponding subdomain. This yields,

ψR = TR(ϕR) = TR

({
U∞ − U inc

∞

} ∣∣
ΓR

)
, (64)

ψTE
li =

ε

εlaser
T

TE
l (usc

l )
∣∣
Γli

=
ε

εlaser
T

TE
l

({
Ulaser − U inc

laser

} ∣∣
Γl

) ∣∣∣
Γli

, (65)

which can be left in terms of traces of Uint and U inc
int by Dirichlet transmis-

sion conditions (20). Thus, the corresponding boundary terms in (63a), (63b)
become
∫

Γli

ε−1ψTE
li Wds =

∫

Γli

ε−1
laserT

TE
l

(
Uint

∣∣
Γl

)
Wds −

∫

Γli

ε−1
laserT

TE
l

(
U inc

int

∣∣
Γl

)
Wds ,

∫

ΓR

ε−1ψRW ds =

∫

ΓR

ε−1
TR

(
Uint

∣∣
ΓR

)
W ds −

∫

ΓR

ε−1
TR

(
U inc

int

∣∣
ΓR

)
Wds .

(66)

Along with integrals of
∂U inc

int

∂n
in (63a) and (63b), the second terms in the right-

hand side of (66) also represent sources. With this, we are ready to discretize
and numerically solve our model.

4 Hybrid Finite Element / Boundary Element
Model

4.1 Finite element formulation on Ωint

Let
{
Ωh

int

}
h

denote the family of triangular meshes of Ωint, with exterior bound-

ary ∂Ωh
int. Moreover,

{
Ωh

α

}
h

describes the families of subsets of Ωh
int correspond-

ing to discretizations of Ωα ⊂ Ωint, such that they are mutually disjoint and
their union yields

Ω̄h
int =

⋃

α

Ω̄h
α , Ωh

α ∩ Ωh
β = ∅ for α 3= β . (67)

If Ωh
α and Ωh

β are adjacent, their common boundaries are given by Ω
h
α ∩ Ω

h
β (see

Figure 4). This allows the immediate transfer of physical properties from Ωα

over each element of Ωh
α.

We now construct a finite-element Galerkin formulation [40] over the interior
domain Ωint. Let Wj belong to the space of classic first-order polynomials,
P1(Ω̄h

int), representing the test function for the j-th node with compact support
in Ω̄h

int. The continuous solution Uint is approximated by

Uh
int(x) :=

N∑

i =1

φiWi(x) for x ∈ Ω̄h
int , Wi ∈ P1

(
Ω̄h

int

)
. (68)
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Ωh
m ∂Ωh

m

Ωh
m+2

Ωh
sub

∂Ωh
m+2

Ωh
m+1

∂Ωh
m+1

Figure 4: Triangular meshes Ωh
m and Ωh

sub corresponding to subdomains Ωm

and Ωsub, respectively. Discrete interfaces are given by boundaries ∂Ωh
m.

where N denotes the number of nodes in Ωh
int, proportional to h−1, and φi are

unknown field values at the nodes. We construct the following matrix entries
coming from the variational form (62) and Equations (61a), (61b), (66):

Domain integrals: (K)ij :=

∫

Ωh
int

∫

Ωh
int

ε−1∇Wi ·∇Wj dΩ , (69a)

(M)ij :=

∫

Ωh
int

∫

Ωh
int

WiWj dΩ , (69b)

Boundary integrals:
(
B

TE
l

)
ij

:=

∫

Γh
li

ε−1
laserWi T

TE
l (Wj) ds , (69c)

(BR)ij :=

∫

Γh
R

ε−1Wi TR(Wj) ds . (69d)

Source terms are written as:

(Sl)i :=

∫

Γh
li

Wi

{

ε−1 ∂U inc
int

∂n

∣∣∣∣
Γh

li

− ε−1
laserT

TE
l

(
U inc

int

∣∣
Γh

li

)}

ds , (70a)

(SR)i :=

∫

Γh
R

ε−1Wi

{
∂U inc

int

∂n

∣∣∣∣
Γh

R

− TR

(
U inc

int

∣∣
Γh

R

)}

ds . (70b)

We then solve the linear system for coefficients φi:

(
−K + k2

0M + B
TE
l + BR

)
φ = −Sl − SR (71)
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where K and M are built by adding contributions for each node in accordance to a
global node-numbering system. This yields a very sparse system but requires the
identification of nodes along the boundaries. Moreover, the boundary integrals
on Γh

li and Γh
R demand the derivation of ad hoc boundary elements defined as

the traces of Wi, subject tackled next.

4.2 Boundary elements on ΓR

The discrete version of (Pint) is coupled with the exterior problem (P∞) through
the line integrals in (70b) and (69d). Let the nodes describing Γh

R be identified by
increasing angles {θi}NR

i=0 counter-clockwise measured from the origin and where
NR(h) + 1 denotes the total number of nodes dependent on h. Furthermore,
assume the spacing between adjacent boundary nodes to be much smaller than
the boundary radius R. Then, the test functions at the edges of Γh

R can be
approximated as

Wi(r, θ)
∣∣
r=R

≈ Θi(θ) :=






θi+1 − θ

∆i+1(θ)
for θi < θ ≤ θi+1 ,

θ − θi−1

∆i(θ)
for θi−1 < θ ≤ θi ,

0 in any other case ,

(72)

and where we have defined the interval function ∆i(η) := ηi − ηi−1. Hence, the
trace unknown ϕR can be approached by

ϕh
R :=

NR∑

j = 0

φj Θj(θ) for θ ∈ (0, π) . (73)

Recalling the form of TR(ϕR) given by (60), we truncate the infinite series up
to a certain bounded N∞ ∈ N and define

T̃R(ϕh
R) :=

N∞∑

m =1

γm sin (mθ)




∫ 2π

0

NR∑

j =0

φj Θj(θ
′) sin (mθ′)dθ′



 (74)

wherein from (56), we have set γm := γ′
m(R). Define the short-hand:

σm
j :=

∫ θj+1

θj−1

Θj(θ
′) sin (mθ′)dθ′ , j = 1, . . . , NR − 1 , (75a)

σm
0 :=

∫ θ1

θ0

Θ0(θ
′) sin (mθ′)dθ′ , (75b)

σm
NR

:=

∫ θNR

θNR−1

ΘNR(θ′) sin (mθ′)dθ′ , (75c)

whose computation is given in Appendix .3. Since the problem at hand considers
only a half-circumference, (74) is turned into

T̃R(ϕh
R) =

NR∑

j =0

φj

N∞∑

m =1

γm sin(mθ)σm
j =

NR∑

j =0

φjT̃R(Θj)(θ) (76)
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for θ ∈ (0, π). Consequently, replacing test functions Θi in (69d) renders the
contributions:

(BR)ij =

∫ θi+1

θi−1

ε−1Θi(θ) T̃R(Θj)(θ)Rdθ , i = 1, . . . , NR − 1 , (77a)

(BR)0j =

∫ θ1

θ0

ε−1Θ0(θ) T̃R(Θj)(θ)Rdθ , (77b)

(BR)NRj =

∫ θNR

θNR−1

ε−1ΘNR(θ) T̃R(Θj)(θ)Rdθ , (77c)

for 0 ≤ j ≤ NR. Notice that the infinitesimal line segment ds is given by Rdθ.
Thus, since ε ≡ εcon, the matrix elements (BR)ij are

(BR)ij =
R

εcon

N∞∑

m = 1

γmσm
i σm

j , 0 ≤ i, j ≤ NR , (78)

or in matrix product form

(BR)ij =
R

εcon
σT

i diag {γm}σj , 0 ≤ i, j ≤ NR , (79)

wherein, for fixed i, σi is the vector with entries σm
i , m running from one to N∞,

the superindex T denotes transposition, and diag {γm} is the diagonal matrix
of size N∞ with terms γm. This is directly implemented in the solving code.
On the other hand, the non-homogeneous terms (SR)NR

i=1, defined in Equation
(70b) are given by

(SR)i =

∫

Γh
R

ε−1Wi
∂U inc

int

∂n
ds −

∫

Γh
R

ε−1Wi T̃R(U inc
int

∣∣
Γh

R

)ds . (80)

Replacing the truncated form of T̃R into the above yields

(SR)i =

∫

ΓR

Wi

ε

∂U inc
int

∂n
ds −

N∞∑

m =1

γm

∫

ΓR

Wi

ε
sin(mθ)ds

∫ 2π

0
U inc

int (R, θ′) sin(mθ′)dθ′

(81)

which is turned into

(SR)i =
R

εcon

∫ θi+1

θi−1

Θi(θ)
∂U inc

int

∂n
(R, θ)dθ −

R

εcon

N∞∑

m =1

γmσm
i

∫ 2π

0
U inc

int (R, θ′) sin(mθ′)dθ′

(82)

valid for i = 1, . . . , NR−1 and with corresponding modifications for i = {0, NR}.

An explicit expression for
∂U inc

int

∂n
is provided in (110).

4.3 Boundary elements on Γli

Interaction with the laser system over Ωlaser is given by the boundary integrals
(69c) and (70a). Following the same reasoning as before, the edge test functions
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used in this case are the following linear polynomials

Wi(x, y)
∣∣
x=0

= Yi(y) =






yi+1 − y

∆i+1(y)
yi < y ≤ yi+1 ,

y − yi−1

∆i(y)
yi−1 < y ≤ yi ,

0 in any other case ,

(83)

yi being the y-coordinate of the i-th node, i = 0, . . . , Nli(h), over the discretized
boundary Γh

li, Nli(h) depending on mesh refinement. With this, ϕli is approxi-
mated by

ϕh
li :=

Nli∑

j =0

φjYj(y) . (84)

On the other hand, numerical implementation of the DtN operator TTE
l given

in (48) requires truncating the series at a certain number Q ∈ N such that, for
small ε > 0, |dq| < ε for all q ≥ Q. This reduces the infinite dimensional
matrix H∞ from Equation (43) to a finite version denoted HQ. Specific values
of Q are discussed in Section 5.1. This yields the approximation

T̃
TE
l (ϕh

li)(y) = −
Q∑

q =0

ıβqdq(ϕ
h
li)hq(y) for |y| < R , (85)

with {dq}Q
q=0 given by

[
dq(ϕ

h
li)
]Q
q=0

= H
−1
Q

[〈
ϕh

li, hp

〉]Q
p=0

. (86)

Each entry of the vector on the right-hand side is given by the dot product:
〈
ϕh

li, hp

〉
= ρp · φ , p = 0, . . . , Q, (87)

wherein we have defined the integrals

ρp
j = 〈Yj(y), hp〉 (88)

computed numerically via trapezoidal approximation. Hence, coming back to
Equation (69c), and assuming εlaser constant, we obtain

(
B

TE
l

)
ij

= ε−1
laser

∫

Γh
li

YiT̃
TE
l (Yj) ds = −ε−1

laser

∫

Γh
li

Yi(y)
Q∑

q =0

ıβqdq(Yj)hq(y) dy

(89)

which in matrix form becomes

(
B

TE
l

)
ij

=
−ı

εlaser
ρT

i diag {βq}H
−1
Q ρj (90)

where diag {βq} denotes the diagonal (Q + 1)-matrix with terms equal to βq,
and the vector ρi has entries ρp

i , p = 0, . . . , Q, for fixed i. Analogously, (70a) is
approximated by

(Sl)i =

∫

Γh
li

Yi

{

ε−1 ∂U inc
int

∂n

∣∣∣∣
Γh

li

− ε−1
laserT̃

TE
l

(
U inc

int

∣∣
Γh

l

)}

ds (91)
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for which the last term can be expressed as

−ı

εlaser
ρT

i diag {βq}H
−1
Q

[〈
U inc

int (0, ·), hp

〉]Q
p=0

. (92)

In our numerical experiments, we will consider U inc as the zeroth-order lasing
mode, and consequently, the above expression simplifies to

(Sl)i =
−2ı

εlaser
β0ρ

0
i . (93)

5 Simulation Parameters and Results

5.1 Laser and photonic crystal parameters

The choice of hexagonal symmetry for the photonic crystal corresponds to the
overlap of PBGs for TM and TE polarizations in the infinitely periodic case.
Particular PC parameters are designed to portray this bandgap at a central
frequency λo = 1.55 µm. For this, the ratio between the inclusions radii r
and interhole spacing must be r/a = 0.3, and the substrate dielectric constant√

εcon = 2.65, corresponding to the effective refraction index described in [13].
Under these conditions, the PBG for a infinite periodic crystal lies in the interval
∆ωgap = (a/λo) ≈ 0.28 − 0.37. However, these values are obtained assuming
plane-wave propagation, and therefore, it is not the wavenumber k but the
fast-propagating factor β0 in the incoming wave that must correspond to the
desired bandgap. Consequently, for the observation of frequency response, we
sweep k so as to let β0 lie on the desired interval and choose a = 0.32 λo. Since
only a finite number of unit cells are modeled, a complete PBG does not exist,
i.e., evanescent modes are allowed to propagate. Examples of PCs and their
dimensions are discussed in Section 5.5.

Laser parameters are based primarily on the work by [39] for the InGaAsP
stripe geometry laser and have been summarized in Table 5.1. In practice, this
parameters are only used for computing εlaser and the factor α in the HG basis
over Ωlaser.

5.2 Mesh parameters

Typical FE modeling of wave propagation along one direction requires a number
of nodes per effective wavelength Nλ lying in the range between six and ten [45].
In our case, the effective wavelength λcon is given over the connected domain
Ωcon by λcon := λo/

√
εcon. Hence, for the artifical boundary ΓR radius, R,

an accurate description of Ωint, is achieved by N ∼ πN2
λ(R/λcon)2 nodes. In

particular, for R = 7λcon, the total number of nodes required should be around
N ∼ 1.5 × 104, as observed in the error analysis below.

Clearly, the choice of R is key in determining computational costs. Physi-
cally, R has to be large enough to allow near-field effects to vanish and retain
only the outgoing radiation, as it is the behavior prescribed over ΓR. This asks
for a sufficient free-propagation distance from the scattererers towards the arti-
ficial boundary of the order of λcon. It also defines the length of Γli and so the
number of wavelengths required to vanish away from the beam output. Conse-
quently, R depends in a non-trivial fashion on the lattice dimensions, wpc × lpc,
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Parameter Symbol Value Units

Free space wavenumber k0 4.05 × 106 m−1

Longitudinal mode spacing ∆k 3.12 × 103 m−1

Active layer thickness d 0.20 µm

Laser width wl 400.00 µm

Cavity length L 300 µm

Radiation confinement factor Υ 0.47 -

Effective refractive index ne 3.54 -

Refractive index at cladding layers n1 3.36 -

Refractive index at active layer n2 3.74 -

Parabolic parameter al 1.78 × 104 m−1

Table 1: Laser parameters as given in [39].

the wavelength λcon, and directly affects number of terms N∞ and Q used in
the trucated DtN operators T̃R and T̃TE

l .

5.3 Dirichlet-to-Neumann maps parameters

Under this heading we consider values for the truncation parameters N∞ and
Q of the DtNs previously defined in Sections 4.2 and 4.3, respectively. In the
case of T̃R, the general rule for bounded obstacles is [45]:

N∞ ≥ 6kR7 (94)

which in the case of R = 7λcon translates to N∞ ≥ 44. For the operator T̃TE
l

over Γl, minimal resolution is achieved for Q satisfying [41]

Q ≥
⌈

π2

[
max{wpc, λcon}

λcon

]2
⌉

(95)

where wpc is the photonic crystal width defined. Thus, even in the absence
of scatterers we require Q ≥ 9. Now, the conditioning number of the matrix
HQ deteriorates as Q increases and consequently an upper bound exists for
numerical applications. This trade-off will be analyzed in the following section.

5.4 Model validation and error analysis

We validate our model by comparing it with known solutions, in particular,
with the one in absence of scatterers and with results given in recent works. In
the first case, the model does portray the incoming wave over Ωint, defined in
Appendix .2, as shown in Figure 5 for a suitable choice of parameters. Notwith-
standing, numerical solutions reveal tails as well as a broader beam when com-
pared to the analytical solution provided by [17], which is based on the paraxial
approximation. This can explained by several reasons: (i) the paraxial approxi-
mation itself, as it is an approximation of the Helmholtz equation; (ii) mesh and
truncation errors for the DtN operators; (iii) the degree of the polynomials used
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Figure 5: Absolute value and profile at Γli for the solution in absence of scatters
with N∞ = 400, Q = 13 and N = 64433. Remaining in oscillations towards the
endpoints of Γli are due to the mismatch between T and TTE

l when approaching
the y-axis.

for the FEM approximation; (iv) the different nature of the responses enforced
at the boundaries Γli and ΓR by the Dirichlet-to-Neumann operators. In what
follows, we discuss the last three points.

Figure 6 shows the convergence rate for relative errors in L2-norm for in-
creasing number of nodes (decresing mesh parameter h) for different values of
N∞. As expected from standard FEM analysis, the convergence is algebraic in
h due to the use of P1-bases. Consequently, better convergence rates can be
expected if also p-refinements are employed. The lack of sensitivity in N∞ is
explained by the fact that measurements are taken in the L2-norm and that the
mesh has been refined above the threshold value given by the discrete inf-sup
condition (see [45] for details).

In Figure 7, solutions are shown to converge as N−1
∞ for L2-norms now taken

on the boundary Γli regardless of Q. However, the offset does dependent greatly
on the number of HG polynomials used. This reveals the interplay between
both operators and becomes more relevant when dealing with highly oscillatory
responses such as the ones produced by diffraction from the photonic crystal.
One remedy is to increase the number of modes. Figure 8 reveals the necessity
for Q larger than 40 to flatten out the profile as given by Equation (95) but for
R larger than 7λcon. In fact, the obtained results render the boundary condition
ul = 0 at r > R inaccurate when R is not large enough. Thus, exchaging the
Dirichlet condition over Γl∞ by a mixed type or Robin type condition suggests a
further improvement to the model. Nonetheless, results are still highly accurate
in the range 20o ≤ θ ≤ 160o [39].

5.5 Spatial response

As concrete examples, we consider the geometries depicted in Figure 9, denoted
PC 3×11 and PC 4×13, wherein the connected areas are characterized by εcon =
2.652, as mentioned before. In order to simplify the exposition, two cases will
be treated for each configuration: identical inclusions or full PC, in which case
εbase = εdef = 1; and, PC with defect, in which case inclusions lying along the
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Figure 6: Number of nodes versus relative error in L2-norm over Ωint for different
values of N∞. The reference or overkill solution is taken at N = 2.5× 105 with
N∞ = 400 and Q = 13 in all cases.

line y = 0 take the permittivity value εdef = εcon. Program routines were written
for Matlab 7.4 by adaptating existing functions from the PDE toolbox, and
tests were carried out in Linux and Mac OSX operating systems running on
laptop computers.

Let us first consider solutions for PC 3×11, as shown in Figures 10 and 11.
Figure 10 shows absolute values for the computed total field Uint for full PC
(left) and PC with defect (left) configurations. Clearly, a full lattice designed
at the PBG will force the beam to remain contained near the output. Since the
structure is not infinitely periodic, energy spreads symmetrically through the
crystal along all possible column-free paths as observed both numerically and
experimentally in [24], [22]. Figure 11 portrays traces uli (left) and uR (right)
for solutions of the full PC (dashed line) and PC with defects (solid line). In the
case of PC with defect, one observes a narrow beam at both Γli and ΓR mostly
due to the constructive superposition of scattered waves. On the right hand
side of Figure 11, the difference between the intensity profiles when a defect is
introduced is observed. Subwavelength focusing can be understood in this case
by the collimation along the angle π/2. Given the direction of the crystal, the
wave propagtes along the defect while at the same time narrowing the beam.
Still, tails persist due to the mismatch between DtN operators at the endpoints
of Γli and ΓR.

In the case of PC 4×13, equivalent results are depicted in Figures 12 and
13. The main difference with respect to the previous configuration lies in the
better definition of the laser beam when a defect is included. This somehow
confirms the intuition that the more unit cells contained in the PC, the better
the response. However, more energy is radiated towards Γli and consequently
more polynomials are required to smooth out the response. Certainly, this
imposes limits to the proposed model.

Though not presented at this time, changes in defect radii should be tried for
smoothing the beam and a figure of merit for spatial-beam filter design should
concern maximizing the ratio between the central part of the beam to the rest of
it. Also, the present method allows for calculation of eigenvalues or resonances
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inherent to the structure. These can be found by changing the condition at Γl∞

so that the system becomes homogeneous, and hence an eigenvalue problem.
Then, by sweeping the frequency and comparing the ratio between the maximum
and minimum eigenvalues yielding an approximate location for resonances.

6 Concluding Remarks

We have presented a flexible model useful in the design of actual photonic struc-
tures by taking into account: (1) a finite periodic arrangement; (2) a simple
implementation of radiation conditions at infinity for a half-space; and (3) the
lasing modes allowed by a gain-guided DH laser. Boundary conditions were
successfully implemented by use of Dirichlet-to-Neumann operators based on
physical considerations (2) and (3) yielding expansion series of Hankel and
Hermite-Gauss polynomials, respectively. In order to keep the problem com-
plexity to a minimum, the HG polynomials were not allowed to take complex
values though this could later on be developed by use of bi-orthogonal functions.
Numerical results for simple cases were obtained by deriving a convenient vari-
ational formulation for the hybrid finite-element method using Matlab. Error
analyses on different truncation and meshing parameters was carried out.

Several ideas can be further developed. Among these, we will be interested
in: (1) design figures for parameter optimization; (2) detailed analysis of spec-
tral properties; (3) replacing h-based FEM by hp-refinements; (4) introduction
of more accurate conditions on the laser interface as, for instance, impedance
conditions that would give rise to so-called surface or interfacial waves; (4) use
of local non-reflecting boundary conditions to increase efficiency over the arti-
ficial boundary; and (5) extension to R3 in order to account for the entire slab
structure and vertical diffraction.
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Figure 10: Absolute values for solutions of PC 3×11, εcon = 2.652 and εbase =
εdef = 1 (left) , and with a defect on the central row εdef = 2.65 (right). Model
parameters are N = 51, 245, N∞ = 200 and Q = 23.
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Figure 11: Solution profiles taken at Γli and ΓR in absolute value for the full
PC (dashed line) and PC with defect (solid line) configurations.
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Figure 12: Absolute values for solutions of PC 4×13, εcon = 2.652 and εbase =
εdef = 1 (left) , and with a defect on the central row εdef = 2.65 (right). Model
parameters are N = 63, 363, N∞ = 200 and Q = 27.
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Figure 13: Solution profiles taken at Γli and ΓR in absolute value for the full
PC (solid line) and PC with defect (dashed line) configurations.
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.1 Normalization of lateral modes Hp
z (y)

In Section 3.2, the normal component of the magnetic field is given by (35c),
which after derivation yields

Hp
z (y, 0) = η

(
2p + 1 −

α

2
y2
) ψp(y)

βp
(96)

where η = α/(ωµ0) and α = 2k0al

√
Υ assumed to be real-valued. Thus,

〈Hp
z , Hq

z 〉 =

∫ ∞

−∞

Hp
z (y, 0)Hq

z (y, 0) dy

= η2
[
(2p + 1)(2q + 1)

〈
ψp

βp
,
ψq

βq

〉
− α (p + q + 1)

〈
y2 ψp

βp
,
ψq

βq

〉

+
1

4
α2

〈
y2 ψp

βp
, y2 ψq

βq

〉]
.

(97)

The first inner product gives

〈
ψp

βp
,
ψq

βq

〉
=

{
β−2

p if q = p ,

0 any other case .
(98)

The second one has an y2 factor which can be separated so that
〈

y2 ψp

βp
,
ψq

βq

〉
=

〈
y
ψp

βp
, y

ψq

βq

〉
. (99)

Replacing the actual expression for ψ, Equation (37), above and using the re-
currence relation [42]:

Hp+1(ξ) − ξHp(ξ) + pHp−1(ξ) = 0 , (100)

one obtains

yψp(y) =
1√
α

4

√
α

2π

√
1

p!

(
Hp+1(y

√
α) + pHp−1(y

√
α)
)
e−

1
2
α y2

=

√
p + 1

α
ψp+1(y) +

√
p

α
ψp−1(y) .

(101)

Thus,

〈
y2 ψp

βp
,
ψq

βq

〉
=

1

α






(2p + 1)β−2
p if q = p

(p + 1)1/2(p + 2)1/2β−1
p β−1

p+2 if q = p + 2 ,

p1/2(p − 1)1/2β−1
p β−1

p−2 if q = p − 2 ,

0 any other case .

(102)

For the third inner product in (97) a similar procedure is carried out as

y2ψp = y

√
p + 1

α
ψp+1 + y

√
p

α
ψp−1 (103)
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is turned into

y2ψp =
1

α

(√
p + 1

√
p + 2ψp+2 + (2p + 1)ψp +

√
p − 1

√
p ψp−2

)
. (104)

Hence,

〈
y2 ψp

βp
, y2 ψq

βq

〉
=

1

α2






(6p2 + 6p + 3)β−2
p if q = p ,

(4p + 6)(p + 1)1/2(p + 2)1/2β−1
p β−1

p+2 if q = p + 2 ,

(4p − 2)p1/2(p − 1)1/2β−1
p β−1

p−2 if q = p − 2 ,√
(p + 4)!/p!β−1

p β−1
p+4 if q = p + 4 ,√

p!/(p − 4)!
/
β−1

p β−1
p−4 if q = p − 4 ,

0 any other case .
(105)

Hence, taking the above along with expressions (98) and (102) into (97) gives

〈Hp
z , Hp

z 〉 =
3

4

η2

β2
p

(2p2 + 2p + 1) , (106a)

〈
Hp

z , Hp+2
z

〉
= − η2

βpβp+2

√
p + 1

√
p + 2 (2p + 3) , (106b)

〈
Hp

z , Hp−2
z

〉
=
〈
Hp−2

z , Hp
z

〉
= −

η2

βpβp−2

√
p(p − 1) (2p − 1) , (106c)

〈
Hp

z , Hp+4
z

〉
=

1

4

η2

βpβp+4

√
(p + 4)!

p!
, (106d)

〈
Hp

z , Hp−4
z

〉
=
〈
Hp−4

z , Hp
z

〉
=

1

4

η2

βpβp−4

√
p!

(p − 4)!
. (106e)

.2 Incident field. Paraxial approximation

Contrary to most models, we assume that the incident wave is an actual laser
solution. In the isotropic case, analytic expressions can be obtained after carry-
ing out the paraxial approximation, i.e., under the assumption that beams vary
much faster along x than in y. Although this induces an error with respect to
the actual Helmholtz solution, it has the advantage of being readily amenable
for computational purposes. Thus, the incident wave is given by the first laser
mode propagating in free space [17]:

U inc(x, y) =
2√
3

(
1 −

α(x)

2
y2

)
4

√
α0

2π

(
q(0)

q(x)

)1/2

exp

[
ıβ0x − ı

α(x)

4
y2

]

(107)
where

α(x) =
2k0

√
ε

q(x)
, q(x) = q(0) + x , (108)

and q(0) is the parameter value at Γli. In fact, the term q(0) gives the beam
waist at x = 0. In order to retrieve the incoming wave over ΓR, we switch to
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polar coordinates:

U inc(r, θ) =
2√
3

(
1 − α(r sin θ)

2
r2 cos2 θ

)
4

√
α(r sin θ)

2π

× exp

[
ıβ0 r sin θ − ı

α(r sin θ)

4
r2 cos2 θ

] (109)

Since n = r/r over ΓR, we obtain

∂U inc

∂r

∣∣∣∣
ΓR

=
2√
3

4

√
α

2π
exp

[
ıβ0 R sin θ − ı

α

4
R2 cos2 θ

]
×
[
− α′

2
R2 sin θ cos2 θ

− αR cos2 θ +
(
1 − α

2
R2 cos2 θ

)( 1

4α
α′ sin θ − ıβ0 sin θ

)

− ı R cos2 θ
(
1 −

α

2
R2 cos2 θ

)(α′

4
R sin θ +

α

2

) ]

(110)

where α′ = −2k0
√

ε/(q0 + R sin θ)2

.3 Computation of terms σm
j

Coefficients σm
j are found by direct integration of the actual form of Θj , given

in Equation (72),

σm
j =

∫ θj

θj−1

(θ − θj−1)

∆j(θ)
sin (mθ)dθ +

∫ θj

θj−1

(θj+1 − θ)

∆j+1(θ)
sin (mθ)dθ (111)

Using formulae

∫ θb

θa

θ sin(mθ)dθ = − θ

m
cos(mθ)

∣∣∣
θb

θa

+
sin(mθ)

m2

∣∣∣
θb

θa

(112a)

∫ θb

θa

sin(mθ)dθ = − cos(mθ)

m

∣∣∣
θb

θa

(112b)

the first term on the right-hand side of (111) is equal to

∫ θj

θj−1

(θ − θj−1)

∆j(θ)
sin (mθ)dθ =

1

∆j(θ)

[
− θ

m
cos(mθ) +

sin(mθ)

m2

] ∣∣∣
θj

θj−1

+
θj−1

∆j(θ)

cos(mθ)

m

∣∣∣
θj

θj−1

(113)

which after rearranging terms becomes

∫ θj

θj−1

(θ − θj−1)

∆j(θ)
sin (mθ)dθ = −cos(mθj)

m
+

1

∆j(θ)

sin(mθ)

m2

∣∣∣
θj

θj−1
(114)

Repeating the process for the second integral yields

∫ θj+1

θj

(θj+1 − θ)

∆j+1(θ)
sin (mθ) =

cos(mθj)

m
−

1

∆j+1(θ)

sin(mθ)

m2

∣∣∣
θj+1

θj

(115)
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Hence,

σm
j =

1

m2

[
sin(mθ)

∆j(θ)

∣∣∣
θj

θj−1
− sin(mθ)

∆j+1(θ)

∣∣∣
θj+1

θj

]
1 ≤ j ≤ NR − 1 (116)

Expressions for σm
0 and σm

NR
are similarly obtained

σm
0 =

cos(mθ0)

m
− 1

∆1(θ)

sin(mθ)

m2

∣∣∣
θ1

θ0

(117a)

σm
NR

= − cos(mθNR)

m
+

1

∆NR(θ)

sin(mθ)

m2

∣∣∣
θNR

θNR−1

(117b)
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[27] Johnson C, Nédélec JC. On the coupling of boundary integral and finite
element methods. Mathematics of Computation 1980; 35(152): 1063–1079.

[28] Stephan E. Coupling of finite elements and boundary elements for some
nonlinear interface problems. Computational Methods in Applied Mechanics
and Engineering 1992; 101(2–3): 61–72.

33



[29] Li ZC, Lu TT. Singularities and treatments of elliptic boundary value prob-
lems. Mathematical and Computer Modelling 2000; 31(8): 97–145.

[30] Bossavit A. Mixed methods and the marriage between mixed finite ele-
ments and boundary elements. Numerical Methods for Partial Differential
Equations 2005; 7(4): 347–362.

[31] Jackson JD. Classical Electrodynamics (3rd edn). John Wiley & Sons, Inc.:
New York, 1999.

[32] McLean, W. Strongly Elliptic Systems and Boundary Integral Equations.
Cambridge University Press: New York, 2000.

[33] Butler JK, Delaney JB. A rigorous boundary value solution for the lat-
eral modes of stripe geometry injection lasers. IEEE Journal of Quantum
Electronics 1978; 14: 507–513.

[34] Butler JK, Delaney JB. Field solutions for the lateral modes of stripe ge-
ometry injection lasers. IEEE Journal of Quantum Electronics 1980; 16:
1326–1328.

[35] Mansuripur M, Wright EM. The optics of semiconductor diode lasers. Op-
tics & Photonics News 2002; (july): 57–61.

[36] Agrawal GP, Dutta NK. Semiconductor Lasers (2nd edn). Van Nostrand
Reinhold: New York, 1993.

[37] Paoli TL. Waveguiding in a stripe-geometry junction laser. IEEE Journal
of Quantum Electronics 1977; 13: 662–668.

[38] Kostenbauder A, Sun Y, Siegman AE. Eigenmode expansions using
biorthogonal functions: complex-valued Hermite-Gaussians. Journal of
Optical Society of America 1997; 14: 1780–1790.

[39] Botez D. InGaAsP/InP double-heterostructure lasers: Simple expressions
for wave confinement, beamwidth, and threshold current over wide ranges
in wavelength (1.1-1.65 µm). IEEE Journal of Quantum Electronics 1981;
17(2): 178–186.

[40] Jin J. The Finite Element Method in Electromagnetics. John Wiley & Sons,
Inc.: New York, 2002.

[41] Someda C. Electromagnetic Waves (2nd edn). CRC Press: Boca Raton,
2006.

[42] Hochstadt H. The Functions of Mathematical Physics. Dover Publications,
Inc.: New York, 1986.

[43] Givoli D. Numerical Methods for Problems in Infinite Domains. Elsevier:
Amsterdam, 1992.

[44] Givoli D, Patlashenko I, Keller, JB. High-order boundary conditions and
finite elements for infinite domains. Computational Methods in Applied Me-
chanics and Engineering 1997; 143: 13–39.

[45] Ihlenburg F. Finite Element Analysis of Acoustic Scattering, Series on Ap-
plied Mathematical Sciences, vol. 132 Springer-Verlag: New York, 1998.

34



Research Reports

No. Authors/Title

09-25 M. Durán, M. Guarini, C.F. Jerez-Hanckes
Hybrid FEM/BEM modeling of finite-sized photonic crystals for semi-
conductor laser beams

09-24 A. Bespalov, N. Heuer, R. Hiptmair
Convergence of the natural hp-BEM for the electric field integral equation
on polyhedral surfaces

09-23 R. Hiptmair, J. Li, J. Zou
Real interpolation of spaces of differential forms

09-22 R. Hiptmair, J. Li, J. Zou
Universal extension for Sobolev spaces of differential forms and
applications

09-21 T. Betcke, D. Kressner
Perturbation, computation and refinement of invariant pairs for matrix
polynomials

09-20 R. Hiptmair, A. Moiola and I. Perugia
Plane wave discontinuous Galerkin methods for the 2D Helmholtz
equation: analysis of the p–version

09-19 C. Winter
Wavelet Galerkin schemes for multidimensional anisotropic integrodiffer-
ential operators

09-18 C.J. Gittelson
Stochastic Galerkin discretization of the lognormal isotropic diffusion
problem

09-17 A. Bendali, A. Tizaoui, S. Tordeux, J. P. Vila
Matching of Asymptotic Expansions for a 2-D eigenvalue problem with
two cavities linked by a narrow hole

09-16 D. Kressner, C. Tobler
Krylov subspace methods for linear systems with tensor product
structure

09-15 R. Granat, B. K̊agström, D. Kressner
A novel parallel QR algorithm for hybrid distributed memory HPC
systems

09-14 M. Gutknecht
IDR explained

09-13 P. Bientinesi, F.D. Igual, D. Kressner, E.S. Quintana-Orti
Reduction to condensed forms for symmetric eigenvalue problems on
multi-core architectures


