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Abstract

We consider a wavelet Galerkin scheme for solving partial integrodifferen-
tial equations arising from option pricing in multidimensional Lévy models.
Sparse tensor product spaces are applied for the discretization to reduce the
complexity in the number of degrees of freedom and wavelet compression
methods are used to decrease the number of non-zero matrix entries. We
focus on algorithmic details of the scheme, in particular on the numerical
integration of the matrix coefficients.
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1 Introduction

Finite element methods have successfully been applied to integral operators of the
type, Au(z) = [ k(z,y)u(y)dy, where the kernel functions x(z,y) are piecewise
smooth apart form the diagonal {(z,y) € D x D : x = y}. Several schemes have
been developed to solve these problems in dimension d < 3, see [6, 11, 13] and
the references therein. For tensor product domains D of the type D = [—R, R]d,
R > 0, we extend these methods to the anisotropic case with singularities in each
direction {(z,y) € D x D : x; = y;, i = 1...,d} for d > 1. In particular, we
consider integrodifferential operators A arising in finance given by

1 d
Au(z) = —3 Z Qij Oz, u(T) — / (u(z + 2) — u(x) — z - Vu(z)l,<1y) k(2)dz,

d
ij=1 R
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where @ is the covariance matrix and k£ a multidimensional Lévy density satisfying
Jra 1A |2|? k(2)dz < 0o. The Lévy density k can for example be (isotropic) a-stable

like k(z) = |24, with 0 < & < 2 or (anisotropic) a-stable like

d d Ly
k(z) :H|Zi|aiﬁfl(2|zi|aiﬁ)_5_ ,
=1 i=1

with a = (aq,...,04), 0 < oy < 2,4 =1,...,d and 9 > 0. More examples are
given in [16].

Following [5, 9] we consider a wavelet Galerkin scheme where sparse tensor product
spaces are applied for the discretization to reduce the complexity in the number
of degrees of freedom from O(h~%) to O(h~!|log h|*"). Here, h denotes the mesh
width of the finite element discretization. The resulting matrices are dense since
the jump operator is non-local. Therefore, wavelet compression methods are used
to reduce the number of non-zero matrix entries. We focus on algorithmic details
of the scheme, in particular on the numerical integration of the matrix coefficients.
Since the multidimensional Lévy densities have singularities at the origin and on
the axes, variable order composite Gauss quadrature formulas are employed. We
show that the quadrature rule leads to exponential convergence for Lévy densities
which are piecewise analytic. Using an hierarchical data structure, an adaptive
numerical scheme is developed which computes each matrix entry with a given
accuracy. The accuracy is chosen by an a-priori numerical analysis of the scheme
such that the solution of the perturbed problem still converges at the optimal rate
and the computational complexity is log linear O(h~ [log h|*¢~?).

2 Preliminaries

Let D be a non-empty bounded open subset of R, If a function u : D — R is
sufficiently smooth, we denote the partial derivatives of u by 0™u = 07" - -- 9 u,
where n = (nq,...,n4) € N? is a multiindex. Throughout, we write z < y to
express that the scalar x is bounded by a constant multiple of y, i.e., there exists
a ¢ > 0 such that z < cy. Correspondingly x ~ y means z < y and y < x. For a
non-empty set Z C {1,...,d} we define its complement by Z¢ = {1,...,d}\Z. We
set 27 = (x;);e7 and use the notation

ct+yl =zeR? with z =
r; +vy; else,

for + € R% y € R, Furthermore, 87 = 0iy -+ 0, for T = {iy,...,ix}, k €
{1,...,d}. We need the tail integrals of the Lévy density k which is the function



U : RN{0} — R given by

d
U(wl,...,xd):Hsgn(xj)/ / k(z)dzq...dz,
i=1 I(z1) I(zq)

(x,00) ifz >0,
(—o0,z] if z<O.

with I(x) = {
The Z-marginal tail integrals UZ are the tail integral of marginal Lévy densities
k. Furthermore for 0 < o; < 2, i =1,...,d we call a Lévy density a-stable if
1 1 R
E¥R(r ez, oo r cdzg) = pitarttag E¥™(z1,...,2q4), VYr >0,
where k%™ (z) = (k(z) + k(—=))/2 is the symmetric part of k. We make the

following assumptions on the Lévy density k where we denote with k;, ¢ =1,...,d
the marginal Lévy densities.

Assumption 2.1. Let k be a Lévy density with marginal Lévy densities k;.

i) There are constants 3; >0, ﬁj >0,i=1,...,d such that

—B; 2] _
e P lFl 2 < -1,
ki(2) S {e—ﬁﬁ o (2.1)

ii) There exist an a-stable Lévy density k° such that

k(z) SE'2), 0< |z <1. (2.2)

ii1) If Q 1is not positive definite, we assume additionally that

EM(z) > KO (2), 0 < |z] <1, (2.3)
iv) We require that the density k is real analytic outside z; =0, i = 1,...,d,

d
0"k (2)| S CM i l2l| [T 1= ™™, v 0. (2.4)
=1

for C >0, a = |la|,, and multiinder n = (ny,...,ng) € N&.

For u,v € C§°(D) we associate with A the bilinear form

d
E(u,v) = % 421 Qij /D@iu(x)ajv(x)dx .
1,j= .

— / / (u(z + z) —u(z) — z - Vu(z)) v(z)k(z)dzdx,
D Jrd

3



where we extend u by zero outside of the domain D. We omitted the cut-of function
L{|z|<1} since we assume semi-heavy tails (2.1). The variational formulation is given

by,

Find u € L2((0,T); V) N H((0,T); V*) such that
(Oru, v)p=y +E(u,v) =0, t € (0,T), Vv €V, (2.6)
u(0) = uy,

with initial condition ug € L?(D). The well-posedness of (2.6) is ensured by the
next theorem. A proof is given in [9, Theorem 4.8].

Theorem 2.2. Assume either Q > 0 or @ = 0 and the Lévy density k satisfies
(2.2), (2.3), with o = (a1, ...,aq). Then, the variational equation (2.6) admits a
unique solution in V. For Q > 0 there holds V = fIl(D) and for Q = 0 one obtains
the anisotropic Sobolev space V = H®2(D) defined by HS(D) := {ulp : u €
H5(RY), ulga\ p = 0}.

Using partial integration we can rewrite the bilinear form £(-,-) as

d
E(u,v) = % Z Qij/D@iu(x)ajv(x)dx

1,j=1

d

d
_Z Z /i/D@Iu(a:+ZI)v(x)UI(zI)d:cdzI,

i=2  |Z|=i
I1<-<I;

where k=2(z) = sgn(z) f[(x) U(z)dz are the second antiderivative of k vanishing

at o0o. We refer to [9, Lemma 2.5] for more details.

3 Wavelet basis

We start by explaining wavelets in one dimension, following the construction de-
scribed in [2]. The d-variate bases are obtained by tensor product construction.

3.1 Spline wavelets on the interval

The one-dimensional interval D = [0, 1] is partitioned into an equidistant mesh
7, with mesh width hy = 27¢, ¢ € N. We define V, as the space of piecewise
polynomials of degree p —1 € N on the mesh 7, which vanish at the endpoints
and denote with N, = dim V, = O(2°). The spaces V; are nested, Vo C Vo 1,



and generated by single scale bases ®; := {¢g : k € Ay} with suitable index
set Ay. We assume that the basis functions ¢, € ®y, £ € N, have compact
support of size [supp ¢ x| S 2= and are normalized in L2, Dokl ;2 (01]) = 1. The
approx1mat10n order of @, is given by p. In addition, we assomated with @y a

dual basis, d, = {gbgk . k € Ay}, ie., one has <¢g7k,¢g7k/> =k w, k, k' € Ap. The
approximation order of <I>g is denoted by p, and we assume p < p.

Given the single-scale basis ®;, we can construct a biorthogonal complement or
wavelet basis \I/g = {1/)@7]C ke Vz}, \I/g = {Ibg,k ke VZ} with Vg = Angl\Ag
such that _ o

Ver1 =Ved Wy, Vo1 =Ve®Wy, LEN,

(3.1)
Ve=Wog®- - PWy_1, LEN,

where the increment spaces W, Wg are the span of Wy, \I/g for £ > 0, and Wy := Vl,
Wo =Y. We suppose the wavelets 1), ;, have compact support [supp ¥ x| S 2t
and are normalized in L?([0, 1]).

Any function v € V11 has the representation

L L
= Z Z g ko = Z Z <U,T,Zz,k>¢e,k-

(=0 keV, =0 kevy,

For u € H*([0,1]), 0 < s < p one obtains an infinite series

= Z Z g ke ks (3.2)

(=0 keV,

which converges in H*([0,1]). There holds the norm equivalence

oo
‘|u‘|2ﬁs([0,1]) S Z Z 229t |u€7k|2 S HUHQITF([OJ]) , 0<s<p-— 1/2 : (3'3)
{=0 keVy

Example 3.1. We give an example of wavelet basis for H*([0,1]), 0 < s <
3/2 using piecewise linear continuous functions, p = 2, on [0, 1] vanishing at the
endpoints. The mesh Ty is defined by the nodes xy 1, == E27Y with k=0, ..., 201,
Let Ny = 21 — 1 and ¢y := V3 - 28271 0 € Ny. We define the wavelets Yo for
level ¢ € No, k=1,...,2". For ¢ =0 we have Ny = 1 and 0,1 15 the function with
value 2¢cy at x10 = 1/2. For ¢ > 1 the wavelet 1y 1 has the values 1 1(x41) = 2¢,

Ye1(e2) = —c¢ and zero at all other nodes. The wavelet 1,40 has the values
¢g’22(.%'[7]\[£) = 2¢q, Py o0 (xe,N,—1) = —c¢ and zero at all other nodes. The wavelet
Yo with 1 < k < 2¢ has the values Yo r(Tpok—2) = —co, Yor(Tpon—1) = 2¢q,
Yo k(xe2k) = —c¢ and zero at all other nodes.



3.2 Sparse tensor product space

We define the subspace Vz, on D = [0,1]¢, d > 1 as the full tensor product of the
one-dimensional spaces V11 := Q) <;<4 Vr+1 which can be written as

Vi1 :span{w&k :0< <L,k € Vgi,i: 1,...,d},

with basis functions Yex = Ve, k- Yo,k 0 < 4 < Ly ki € Vy,, 1 =1,...,d.
Using (3.1) we can write V741 again in terms of increment spaces

Vit = EB Wh ... W,
0<6;<L

Therefore, together with (3.2) for any function u € L2([0,1]?) we have the series

representation
oo

u= Z Z Ug ke k-

£;=0 kiEVgi

Using the norm equivalences (3.3) we obtain

o
2 2 2
lalagone S 20 20 20+ + 22 ugadl” S ullfpuo ey, (34)
ZZ':OkiGVgi

for0<s;<p-—1/2,i=1,...,d.

Remark 3.2. To obtain a multilevel preconditioner we only need these norm equiv-
alences for H*/2([0,1]%), ie., 0< s; = ;/2<1,i=1,...,d. Therefore, p=2 is
sufficient.

The space Vi, has O(25?%) degrees of freedom which grow exponentially with in-
creasing dimension d. To avoid this “curse of dimension” we introduce the sparse
tensor product space

Visr =span{tgx : 0< i+ + L <L ki€ Vy,i=1,...,d}

— @ WZ1®"'®WZd-
0<li+-+L4<L

As L — 0o we have N = dim(Vz41) = O(29F) and N = dim(Vp41) = O(L4-125),
i.e., the spaces T?L have considerably smaller dimension than Vz. On the other
hand, they do have similar approximation properties as V7, provided the function
to be approximated is sufficiently smooth. As shown in [14] there holds for u €
H*(D) with0<r<p—1/2,r<s<p,

inf flu—urllg S (3.5)

ureVy

hs=T |logh|% itr=0,s=p
h=" else.

Here, H*(D) denotes the mixed Sobolev space H(D) = H*(D) ® --- @ H*(D).



3.3 Wavelet discretization

Let D = [—R, R]d. Since we are mainly interested in jump part we explain the
discretization only for @ = 0. Using the basis gx = ¥y, k1 - Ve, kg 0 < 1 +

-+l <L,k €V, of YA/LH we need to compute the stiffness matrix for the
jump part

Ay ex) = EWek: Yo ) Z// Oibexc(x + )0y g ()2 (2i) dadz

_Z Z / /DaIW,k(l“+Zz)we’,k'(x)UI(zI)dxdzI.

=2 |I|=
i< <I

We define
. R
My k. (.0) 22/ Yo e g de,
Aéé’ k’ / / ¢gk x4+ z rl,Z)gl k"( ) ( )dedZ (36)
A L T
A(e'zvk'z)v(iz,kz) " /]RI /R,R]I o* Ver k(T + 2)Yp 1 (2)U (2)dadz.

wheret=1,...,d, b7 = (&')Z’ej, 0<V; <L kg= (ki)ig_’[, k; € Vgi, IcC {1, ce ,d},
|Z| > 1, and write the jump stiffness matrix as

J
A1) e Z Z Aly, i, (lz,kz)HM(Z}yk})y(éjvkj)'

i=1 |Z|= JEIC
Il<---<1'i

Applying the #-scheme in time, we can write the problem (2.6) in fully discrete
form

Find uTLnJrl e RY such that for m = 0,...,M—1,
ATIM (U — uf) + AT + (1 - 0)AuT =0, (3.7)
ug (0) =upq-

with w7} = 3 <0< 2kev, UekVex and degree of freedoms N = dim(Vi4) =

O(2L L4=1). The stiffness matrix is, in general, densely populated. Using wavelet
compression we can reduce the number of non-zero entries in A to O(2% L2(@-1),

3.4 Wavelet compression of the Lévy measure

Wavelet compression for isotropic domains has been studied extensively by various
authors, e.g., [3, 2, 6, 15]. It is shown that compression yields asymptotically



optimal complexity (on not necessarily tensor product domains) in the sense that
the number of non-zero entries in the resulting matrices grows linearly with the
number of degrees of freedom. These results are extended to anisotropic spaces on
sparse tensor product spaces in [§].

To define the compression scheme we need to introduce some notation. Consider

tensor product wavelets Vg = o, gk @ ... @ Yy, kys Vo w = ¢Z/1,k’1 R...Q® ”l,Z)g:i,k&.
The distance of support in each coordinate direction is denoted by

0z, += dist{supp ¥, k;, sSupp e pr} ,
for i =1,...,d and the distance of singular support

5smg dist{singsupp 1y, k,, SUPP ¥y g}, if £ < l
' dist{supp ¢y, x,, singsupp W’ k/} else

Let0<0z<p—%,deﬁne

zz,e/ — { Llp—«a/2)—p|€| ifp(L—1€])>a/2(L— |£|OO)

—a/2 € else,
n Lip—a/2)—pl|l| ifp(L—|€])>a/2(L—|l|)
—a/2 {E {Oo else,
and m; := {;+ 0, —2min{/¢;, ¢;}. Furthermore, we denote the index sets Ty Tew C
{1,...,d} by
Tip={ie{l .t 6 >2 L 7, = (1. dNTE,
and set
5}5,,1:@,2/_ pl; + 1, +a2m1n{€], g Z mj — Z mj,
J# JEIe o J'fo,l/\{i}
1 ~
5@@ = Lee/ pmax{l;, {;} + aZmln{ﬁj, G} + 5 5 Z mj —p Z m; .
j#i J€Ty \{i} JELY g

The cut-off parameter are now defined by
BZ ¢ = amax {2_1“1“{6"’42}, 2621/(25+a)} , a>0,
BNE o= a’ max {2—max{€i,€;}’ 2ﬁz’l/(5+a)} , a >0.

The compression scheme is based on the fact that the matrix entries Ay /) (p10) =
E(Yex, Ve ) can be estimated a-priori and therefore neglected if these are smaller
than some cut-off parameter. There are two reasons for an entry to be omitted.
Either the distance of the supports suppy, r, and suppy ;s or the distance of
the singular supports is large enough for some i € {1,... ,d}l. '



Theorem 3.3. Assume Q > 0 and that the Lévy density k satisfies (2.4) with
0 < a <p—1/2. Define the compression scheme by

Aewnen = 0 F3ET,y 5> B,
A(i’,k’),(z,k), else.

If p > 2dp — (d+ 1)a and a < 2/d, the number of non-zero entries for the com-
pressed matriz A is O(2F LX41),

Proof. See [8, Theorem 4.6.3]. O

Remark 3.4. Here, we only stated the isotropic case a; = ... = ag = «, i.e., in
each direction the same compression is used. Although we still get asymptotically
optimal complexity, the mumber of matriz entries can further be reduced using
anisotropic compression. The corresponding compression scheme is defined in [8].

We now consider the fully discrete problem (3.7) where we replace the matrix A
with the compressed matrix A.

Find a7 € RY such that for m = 0,....,M —1,
ATIM(@P - @) + 0AT + (1 - 0)ATF =0, (3.8)
EOL(()) =Uro-

There exists a unique solution u}* of the perturbed scheme (3.8) and the solution
converges at the optimal rate.

Theorem 3.5. Assume the Lévy density k satisfies Assumption 2.1. Consider
A as giwen in Theorem 3.3 and let all assumptions of Theorem 3.3 hold. Then,
there exists a unique solution u}* of the perturbed 6-scheme (3.8). Furthermore, if
u e CY([0,T],HP(D)) N C3([0,T],V*) and the approzimation uy, , € Vi1 of the
initial data ugy is quasi-optimal in Lo(D), then for 6 = 1/2

M-—1
~ 2 m ~m 2 - -
[ — u%HLg(D) + At m§0j Hu 2y “/QHV < C(u) <At4 + 272 /2>) ,

where u is the solution of (2.6) and the constant C(u) > 0 depends on higher space
and time derivatives of u.

Proof. See [8, Theorem 2.2.3, Theorem 3.3.8]. O

These convergence rates are shown in the next example. We only look at inde-
pendent margins because here the matrix entries Ay 1) k) can be computed
exactly.



Example 3.6. Let d = 2 and consider

e B |zl e—ﬁjzz' .
k:l(zl) :CiTail{Zi<0} +CiTozi1{Zi>0}’ 1= 1,2, U(Zl,ZQ) =0.
z:

‘Zi i

We solve the elliptic problem Alu] = f on D = [0,1]2, where f is chosen such that
the exact solution is

(22 — 223 4+ o) (22 — 223 +23) ifz e D

u(z) = 0 else.

We set the model parameter ¢y = co = 1, f; = 10, ﬁf =15, 3, =9, ﬂ; = 16,
a1 = 0.5, ag = 0.7 and the compression parametera =1,a' =1, p =2, p=2. For
L = 8 the absolute value of the entries in the stiffness matriz A and the compressed
matriz A are shown in Figure 1. Here, large entries are colored red. For the
stiffness matrixz blue entries are small but non-zero whereas for the compressed
matriz blue entries are zero either due to the first or second compression. One
clearly sees that the compression scheme neglects small entries.

W N\\ :
i

| Ll 34 R \
500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000

Figure 1: Stiffness matrix A (left) and compressed matrix A (right) for level L = 8

To compare the convergence rates in Figure 2 we also solve the problem on full
grid. In the left picture it can be seen that sparse grid has (up to log terms) the
same rate as full grid and that the compression scheme preserves the convergence
rate. We additionally plot the convergence rate in terms of degrees of freedom. For
full grid we have N = O(22F) and for sparse grid N = O(L2%). The convergence
rate in full grid shows the “curse of dimension”, whereas for the sparse grid we
still obtain the optimal rate (up to log terms).

Since in general the matrix entries Ay /) o) cannot be computed exactly, we
need to approximate these with a numerical quadrature rule. To still retain the
optimal order of convergence, we require a certain accuracy.

Theorem 3.7. Consider A as given in Theorem 3.3 and let A be a perturbed
matriz such that

(A~ A) gy o] Seeen with e <2420 Ten  (39)

Then, Theorem 3.5 still holds with A instead of A.
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Figure 2: Convergence rate of the wavelet discretization in terms of the mesh width
h (left) and in terms of degrees of freedom (right)

Proof. We need to show that the error satisfies ||S||, < 27%¢# as shown in [8,
Theorem 2.5.2]. Let S = ‘;‘Z’,Z — 2‘;2/72‘ where Ay , is the block matrix with
entries (A 1) (ex))k eV, kv, - Estimating for each row (or column), the sum

over all entries yields

S Y Sk Sy and YT 0 YT Sk $2¢0e,,

k:1€Vgl k:dEng k’levﬂl k&EV[&

We can rewrite this as

/
Z o Z wksk’,k < wk,2(|£\+\e 1)/2 €op
k1€Vy, ka€Vy,

/
ST Y weSwx SwlHe2e,
LAY ELEV o
1 d

with weights wy = 2(€1=1€D/4 and wys = 20E-1€D/4, Using the Schur lemma [7,
Lemme 4] we obtain the required result. O

3.5 Multilevel preconditioning

We have to solve a linear system

(M+0A) @+t = (M- Au(1 - 0)AtA) @,

at each time step m = 0,..., M — 1. For an iterative solution of these systems,
Bu = b, we use multilevel preconditioning. The preconditioner is obtained by
using the wavelet norm equivalences. With (3.4) for s = 0 we have for every

u € Y7L+1 with coefficient vector u € RN that

(w,u) < (u,Mu) < (u,u),

11



Denote by Dy the diagonal matrix with entries 22141 4 ... 4 2% for an index
corresponding to level £ = (¢1,...,¢4). Then, Theorem 3.5 and (3.4) for s; = «;/2,
1 =1,...,d imply that

(u,Dau) S (u, Au) < (u,Dau),

Thus, we have (u,Du) < (u,Bu) < (u, Du), with the diagonal matrix D = I +
OALD 4. Written in terms of 7 = D2y we finally obtain

@® < (@ D~'*BD V) < [af* .

The linear system ﬁ@ = /Q\ with preconditioned matrix B = D /2BD1/2 and
right hand side b = D~'/2p can be solved with GMRES [10] in a number of steps
which is independent of level index L.

Lemma 3.8. For the linear system ﬁ@ = E let @j denote the iterate obtained
by the GMRES method with initial guess uy. There is a constant 0 < r < 1
independent of L and At such that

b-Bi,| v/ b Ba| -

Proof. See [5]. O

4 Composite Gauss quadrature rules

As seen in the last section we have to evaluate integrals f[—l N u(z5)U%(z)dz

for T C {1,...,d}. The tail integrals UZ(z) have a singularity at the origin and
possibly on each axis. Therefore, we can not use standard quadrature rules for
integration since these depend on the smoothness of the function. Instead, we
use a composite Gauss quadrature rule as proposed in [12]. Elementary Gauss
quadrature formulas of varying orders on subdomains are combined. The size of
these subdomains decreases geometrically towards the singular support of the in-
tegrand. Multidimensional quadrature rules are obtained by using tensor products
of one-dimensional quadrature formulas. We start recalling error estimates for the
basic Gauss-Legendre quadrature rules.

4.1 Gauss-Legendre quadrature

For a given function f € C([0,1]) we set I f .= fol f(s)ds and denote the g-
point Gauss-Legendre integration rule on [0,1] by ng’uf = 3[(:1 wgif(&g)- I
f € C?9(]0,1]) we obtain the following error estimate (see, e.g., [4])

4
o |

I I e | () ) [N - —
] s= |15 - Q| = G

, £€]0,1].

12



We use the Stirling formula g! ~ /27g gge_g to obtain the estimate

0| 5 o e [1990)] (4.1)

66[0 1

On [0,1]¢ we approximate the integral, I[O’l]df = Q1<i<d oy = f[o 1) f(s)ds
for f € C([0,1]%) by a tensor product Gauss-Legendre quadrature rule

g d
A= QPlr= > Twwid o bosd)-

1<i<d J1yeja=1i=1

and obtain the following error bound.

Lemma 4.1. If f € C*([0,1]%), the quadrature error Eé[yo’l]df = 1[0,1]df_QL0,1}df
s bounded by

0,
g

o 1(©)] (4:2)

—49 d
U9gl < 2 max
7= (29)! ;ﬁe[o,ﬂd

Proof. We prove this lemma by induction over the dimension d. With (4.1) it is
true for d = 1. For d > 1 we have

‘Eé[yo,l]df‘ _ ( R - ® ng,1}>f

1<i<d 1<i<d
(@1 @ Mledris @ eapi- @ ao)s
1<i<d 1<i<d—1 1<i<d—1 1<i<d
_ ® IOl [01] 01 f+< ® IOl ® Q[01]>®Q[01]f
1<i<d—-1 1<i<d—-1 1<i<d-1
9—4g o2 —49
< g )
~ (29)! ég{lt?i( a1 ‘ 'Z el a )‘

O

For our analysis we consider a class of functions which have singularities on the
origin and on the axes.

Assumption 4.2. Let f € L*([0,1]¢). There exist 0 < a < d, a« ¢ N, Cy > 0,
such that for k € No, i =1,...,d

FHO| S MCEEl €78 vee (0,17, (4.3)

Equation (4.3) is satisfied by all tail integrals corresponding to a Lévy density
which satisfy Assumption 2.1. We introduce the notation

1
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where we just integrate over the i-th dimension, ¢ € {1,...,d}. Similarly Q[go’l]fg

and Eg[,o’l] fe, = o1 fe, — Q[go’l]f&. We can now state the basic error estimates on

rectangular domains.

i

Proposition 4.3. Let i € {1,...,d}, interval [a,b] with a,b € R, 0 <a <b< 1
and h =b — a. Assume f satisfies (4.3) and set T ={1,...,d}\i. Then,

[a,b] T||—ot+G Cyh S T d—1
‘Eg ’ ffz S H£ HOO “h <E> a 4, fOT a > Oa 5 € (O’ 1) ) (44)
‘Eéa,b}f‘ S_, HSIH;OCV‘F% hl_%, fO?" a = 07 gI c (07 1)d—1 ) (45)

Proof. Consider the transformation ¢ : [0,1] — [a,b], ¢(§) = a + h§. Then, with
1t fo = 104 (fe 0 p)h and X f(&1,..., (&), - .. &q) = OF f h* we get (4.4) by

2
[a’b} = [071] <
R R B (29)! €:€loy

—a+4 Cth 29 _a
S n () o

o ()| h

With | f| < [|€]l" one obtains (4.5) since

‘E([)O’h]f&

:'/ FlEL o 50y Eq)dss
0,4

/ si_% ds;
[0,h]

< |l€F) ot < ||€FIT

4.2 Composite Gauss quadrature

On [0, 1] a geometric partition is given by 0 < o™ < 0" ! < ... <o < 1for n € N,
o € (0,1). We denote the subdomains by A; := [o""177 ¢" 7], with j = 1,...,n
and Ag := [0,0"]. Given a linear degree vector q € N", ¢; = [pj| with slope 1 > 0,
we use on each subdomain A;, j = 1,...,n, a Gauss quadrature with degree g;
and no quadrature points in Ag. The composite Gauss quadrature rule in the i-th
direction is defined by

Qrife, =3 Qg fe, i€ {l,....d}, (4.6)
j=1

and converges exponentially.

14



Theorem 4.4. Leti € {1,...,d} and f satisfy (4.3). Consider

Cr(l—
€(0,1), such that w = ¥ <1, (4.7)
o
and a linear degree vector q = (q1,...,Gqn),
o , (1-9)Ino
q; = [pjl, with slope p > EETE T (4.8)
Then,
n, atg n 1-<
100 fg — Quafe| < |67 om0 (4.9)

Proof. On each A;, j = 1,...,n we have the following estimate using (4.4) with
a=0""""Jand h =0"(1—-0)

o _ 2
B fe, s!!sfH;“dh(L(jw 0>> LoD || wegtnp-).

Summing over all subdomains j = 1,...,n, yields

& n
Z ‘E(?ijffi S HfIH;oaJrE E w29 g (P=)(1=%)
Jj=1 =

e}

I||~otq n(1-9) 2
S 0Dy (wihot )
J=1
. 1-9)1 . .
The last sum converges since p > %. We neglected the subdomains Ag in

the composite Gauss quadrature. Using (4.5) we have

‘ [0,0™] f& §H§IH ot g on(1=%)

O

Remark 4.5. Condition (4.7) is suboptimal. Using [12, Theorem 4.1] or [1,
Proposition 2.8] we can obtain exponential convergence for any o € (0,1).

We define the composite Gauss quadrature on [0, 1]¢ by the tensor product of one-

dimensional composite Gauss quadrature rules QZ’(““"“’%) J = Q1eica Q5 fe,
The composite Gauss quadrature rule converges exponentially with respect to the
number N of Gauss points.

Theorem 4.6. Let f satisfy (4.3). Consider a grading factor o € (0,1) satisfying
(4.7) and linear degree vectors (qi,...,qq) satisfying (4.8). Then, there exist a
v > 0 such that the quadrature error decays exponentially

[0 grlanad) £ < o= N

15



Proof. We prove this theorem in two steps.

1. As in proof of Lemma 4.1 we prove
‘I[Ovl}df — Q27(q17---7qd)f‘ < e

by induction over the dimension d. With (4.9) it is true for d = 1. For d > 1
we have with (4.9)

‘[[o,l]df _ QZ,(ql,...,qd)f‘ — < ® 710.1] _ ® Q27Q'L>f

1<i<d 1<i<d
® 701 <][071} _ ngqd) f
1<i<d—1
+ < ® I[O,l] o ® Q?(Ql,..-ﬂd—l)) ® QZ’q‘if
1<i<d—1 1<i<d—1
n  4qd,j
5/ e G GeTon(1-%) 4 o ynzz%m%m
[0,1]d—1 j=1m=1
< e,

2. Let pp = max{p1,...,uq}. We estimate the number of quadrature points by
n d n d
Ve (L) s (Xi) e
Jj=1 Jj=1

O

We give a numerical example which shows the exponential convergence of the
composite Gauss quadrature formula.

1
Example 4.7. Consider the function f(x) = (Zf 1T 62 ) ’ on the domain [0, 1]?
fora=061=...= P4 =0.5. We apply a composite Gauss quadrature formula with
grading factor o = 0.2 and linear degree vectors with slope uy = ... = pug = 0.5.

For ¥ = 0.5 the relative quadrature error

I[O,l]df _ ng((hnn,q(i)f‘ / ‘I[O,l}df‘ Versus

YN is plotted in logarithmic scale in Figure 3. Additionally, we also plot the
relative error for d = 2 and various . As already seen in the proof of Theorem 4.6
the convergence rate depends on 1 — «/d which increases in d.

5 Computational scheme

As seen in (3.6) we need to compute matrix entries of the type

Biewen = |, [ 0 dutesle + Dppelanldadz, ()
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Figure 3: Exponential convergence of the composite Gauss quadrature for 9 = 0.5,
0 =0.2 and d = 2,3 (left) and d = 2 and various o (right)

where the kernel x satisfies (4.3), i.e

ﬁ(z)‘gk!C}“HzH;Oazi_k, VzeRY, keNy, i=1,....d,

for 0 < o < d, @ ¢ N and Cy > 0. Introducing a new variable y = x + z we can
write the integral (5.1) as

B ), ex) / /  Oabex(Y) e 1o (2)k(y — 2)dyda, (5.2)
Sex J S
where g = supptpk. Similar equations have been studied for the boundary
element methods, although only in the isotropic setting. Several schemes have
been developed to solve these problems in dimension d < 3, see [6, 11, 13] and
the references therein. We adapt these methods to the anisotropic case for d > 1.
Throughout this section we consider wavelets as described in Example 3.1 which
are piecewise linear.

5.1 Hierarchical data structure

For an efficient implementation of the compression scheme it is necessary to have
an hierarchical data structure. Therefore, we introduce an hierarchical element
tree up to a given level L € N.

We start with D . 0)1,.,1) = D as the first generation. On the {-th generation
we consider the elements Dy where the multiindices are given by € = (¢1,...,4q),

b =0,...,0,i=1,...,d with [|£||,, = ¢, and k = (k1,...,ka), ki = 1,...,2%,

i =1,...,d. Each element Dy has sons D£+27 Ktk where ‘Z —i—Z‘ <L,
~ 0 if b; £ 4 ~
7 = HGAL 1 with €] =1,
e {0,1} if¢;=¢

and l;l = 25(1% -1)+ 1,...,2[Z'l<:z~7 i = 1,...,d. Since there exists a bijective
mapping which indicates each element Dypj uniquely by an integer A, we write

17



shortly Dy = Dpyx and set [A| = |, ||A]|5 = ||4||o- Similar to the standard single-
scale finite element method, we do not compute the matrix entry (5.2) directly
over supp gk, since gk is not smooth. Instead, we decompose ¥y into a set of
elements | J Dy such that ¥, x|p, is smooth. More precisely, consider the set

Lox = {DHLE : T = max{2(k; — 1),1}, ..., min{2k; + 1,271}, i =1,... ,d} .
Then,

Sex =suppter = | J Di, TyiE =singsuppex = |J 9Da,

DAeLl,k DAEEZ,k
and
2 o~
be@)py = Y. 24Pwpicnn dn(0y (), Da € Lok, (5.3)

ni,...,nqg=1

with weights wpkn = H?Zl We, ks mi ), Shape functions QASH(Z) = ngl QASnZ(ZZ) and
diffeomorphism ¢y : Dy — [0,1]%. The one-dimensional weights follow immedi-
ately from Example 3.1 and the one-dimensional shape functions are qAﬁl(z) =1-—z,
(/52(2) = z. To set up the compression scheme we need to check the distance criteria
Op; > BZ g U E Iz o and 5;iing > EZ ¢+ © € Ly . Checking these criteria for each
matrix coefficient would require (’)(N 2) operations. For an efficient computation
we exploit the tree structure described above. We denote by oy, 1, = supp vy, 1,
JZ?& = singsupp ¥y, k;» ¢ = 1,...,d and say that the wavelet ¢»; s the son of
Vg father if 07 son & Ot father, i =1,...,d and there exists i € {1, . ,d} such that

E = {; + 1. Then, the following lemmas hold.

Lemma 5.1. Let dist{oy, father, agﬁather} > BZZ’ for i € Ize, and o, 41,50n C
O0¢; fathers Uf;—i—l,son - Uﬁ;,father

Then dist{o¢,+1,50n: 0¢; father > B%e, and dist{o¢,+1,50n, ¢ 11,50n} > B%Z’ where

C= (00, .. 6i+1,... ) and & = (0}, ... . 0,+1,...,0).

)

Proof. The result follows from B

Ly > B > B O

[y
Lemma 5.2. Let dist{oy, jather, aZ}_%g,_}gze, fori € Typ, £ > £; and 04, 41,50n €
O¢; father-

. ~. ~ ~/
Then dist{o¢,+1,s0m 02}?5}8% v where £ = (0, ..., 0i+1, ..., 0g) and £ = (¢}, ... ti+
1,...,0).

> Bt O

Proof. The result follows from B e

2,0

Remark 5.3. Similar results for different wavelets in d = 2 are given in [6].
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Using Lemma 5.1 and 5.2 we have only to check the distance criteria for coeffi-
cients which have a non-zero father. The number of operations for setting up the
compression scheme is then obviously of log linear complexity O(2FL2(4-1).

5.2 Matrix computation

Replacing the wavelets in (5.2) by the element representation (5.3) leads to

2 2
B(E’vk’)v(&k): Z Z Z Z W,kvn,kwe’,k’,n',xQ(A,n),(x,n/),

D/\E,CLk D>\/ ELZ’,k/ ni,...,ng=1 nll"'“nél:l

with
Q) (v, = 2HZEXI2 /D o Badn (03 (1)) b (93} (2))kly — x)dydz
A N

or in terms of the reference interval

d
Qurm vy = (-1 222 T B () (7,9) AT, (5.4)
S i1 JoeJpd

where hf = R27%, i = 1,...,d, and Ry x(,7) = k(or(7) — ¢ (F)). Therefore,
computing the matrix entries reduces to computing the element-element interac-
tions Q()\,n),()\’,n’)'

We can again use the hierarchical data structure to obtain an entry of a father
element from the son elements. For example, for a father element Diyipner =
Dy with the two sons Dsony = Doy, 0;41,...00),(k1,2ki—1, k) 0 Dson, =
Doy, ti41,000), (k1o 2K k) s WE gL

Q(father,n),()\’,n’) = (Q(sonl,n),()\’,n’) + Q(song,n),()\’,n’)) 273/2 : (55)
Similarly,

Q(A,n),(father,n’l,...,1,...,n;l) = (Q(A,n),(sonl,n’l,...,l,...,n:i) + Q(A,n),(sonl,n/l,...,2,...,n:i)/2
+ Q()\,n),(sonz,n’l,...,l,...,n;l)/2)271/2 . (56)

5.3 Numerical integration

Consider £,k, ¢, k' € N¢ with the corresponding A, N, fix n,n’ and introduce the
notation &; = dist{D}, D}, } where Dy = D} x --- x DY. Let € > 0, i € {1,...,d}
and set Z = {1,...,d}\i and z = y — x. We distinguish several cases: The
integrand Ky y (z,y) is non-singular in y; —;, i.e., §; > 0, the elements are identical,
D) = Dy, or the elements share a common vertex.
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1. Let §; > Cymax{h;, h,}/4. Consider

> Ine+ SInd; + (JN]/2—|A]/2)In2

2Inw ’ (5 7)
s e+ (§ - DInd; + (N[ /2= |\ /2 —¥)In2
~ 2Inw’ '
. _ hiCy r h;Cf
number of Gauss points where w = 1o and w' = o Furthermore,

let the standard Gauss quadrature points and weights on [0,1] be given
by §g’£g € R9. Then, we define quadrature points £ € R9 and weights
w' € R by

f=goly-1L,eg, o =N (1, 0E) rwy@wy, (5.8)

where 1, = (1,..., T eRI, 52\4 = (ki—1)hi+h;&, ; and w;‘J = hjwg, ;. Here,
we used the Kronecker tensor product z =y ® z € R™ for yeR™ 2z € R
and the vector multiplication z = y.x z € R" where x; = y;2;5, j =1,...,n
for z,y € R™.
2. Let 6; =0, ¢; = ¢; and k; = k. Consider
S e+ (N[/2— A /2 4;)In2
n ~Y
(1-9)In(h;0)

refinements for the composite Gauss quadrature and o, q satisfying (4.7),
(4.8). Furthermore, let the composite Gauss quadrature points and weights
on [0,1] be given by £ wny € RY. Then, we define quadrature points §' e
R2N and weights w’ € R2 by

(5.9)

(Eh<jen = hi€,  (§)N+i<j<an = —hif,

1 ~
(Wiisjn = hi/o O (§, + 2l =€ Nder (1= )xwn (510

1 o~
(WHNs1<j<on = hi/o Gy (@(1 =€ ))dax (1 =& ).*xw,.

3. Let §; =0, ¢; = ¢, and k; = k} — 1. Consider

> Ine+ SGInh; + ([N /2 =[N /2)In2

2lnw ’
e+ (V] /2= M /2= £)In2 (5-11)
mn
~ (2—9%)In(h;0) ’

number of Gauss points or refinements, respectively. We define quadrature
points £’ € RYTY and weights w’ € RV by

(5})1§j§g =h; + hi§g7 (§§)Q+1SJSQ+N = hlén’
. 1.
(Wii<j<g = hi/o Ony(Eg + 2l = ) dwn (1 =€ )+ wy, (5.12)

1
(W)g+1<i<g+N = hz‘/ Oy (2§, )dw x5 wy,.
0
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Using a tensor product quadrature formula we have the following error estimate.

Theorem 5.4. Assume that the kernel k satisfies (4.3). Consider ¢ > 0 and
assume either 6; > Cymax{h;,hi}/4 or 6; =0, {; =0, k; =k or 6; =0, {; = 1},
ki = k.—1 fori=1,...,d. Define the d-dimensional quadrature points and weights
by

— — —

£ = regs @ 1V, w= Qv
1<j<i-1 i+1<;<d 1<j<d
where the one-dimensional quadrature points and weights g, Wwhi=1,...,d are
given by (5.8), (5.10) or (5.12). Then, we obtain
9IA/2+]A |/2Hh// . O (@) (7,9) 7T — (w, k(€. E))| S e

Proof. We again distinguish three cases.

1. Let ¢6; > Cymax{h;, h;}/4 and define f(Z,y) = 2|’\‘/2*|’\"/2$HI(EU\)EA7)\/(EE, Y).
Using the standard product rule

O F(3,9) = O R (T, 5)w () + O T (3, 9) Orow (3)
there holds for h; = R 242',

0 @, 5)| < 22N (a5 T i neN,

B

I-
and for §; > h} and h}, = R27%,
lon £(2,9)] < 2W2 X121 (miepn o T 1T 0T e .
Therefore, we obtain similar to (4.4)
BT fo] 5 2P/ [T 0 (e 7+ )5 2,

with w; = h;Cy/(46;), w; = hiCy/(46;). Choosing the number of Gauss
points according to (5.7) we have

By fou] SIS e

2. Let 6; = 0, ¢; = ¢; and k; = kj. The integrand =y »(Z,y) is singular on
the diagonal z; = y;. We first transform this singularity to the axis. Let
ki(s —t) = k(z1,...,hi(s —t),...,z4) and consider the integral

I= /[071} /[0’1] d(s)Y(t)ki(s —t)dsdt.
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Introducing the variable z = s — ¢ and splitting the integral yields

[ et - erasas
:/[071}/:1q§(s) s —2)ki(z dzds—l—/m/ d(s)Y(s — z)ki(z)dzds.

With ¢ = s — 2z, y = —z we have

/[071} /301 (s)(s — 2)ri(2)dzds = /[0’1] /Om o(z — y)(x)ki(—y)dyde,

and therefore,

I= /M | ot = mn)ayda + /M [ e = wptom-vva

Finally setting © = £ +n(1 — &), y = £, we obtain
1= / B& + (1 — )b(n(1 — E)ri(€)(1 — €)dedn
0,11 /[0,1]
+ [ s — )i+ a1 - -0 - Odedy.  (513)
0,1 J0,1]
The function
f(@,g) =22 Wi - @)(ﬁgn; (Ui + 2i(1 — ¥:)) ki (¥i)

+ Gt (1(1 = 5)) i (=)

has a singularity at y; = 0 and satisfies (4.3) with respect to y;, i.e.,

0 13| < PR ) i) E S ke,

The integrand f is polynomial in the Z; and can be integrated exactly. Thus,
similar to Theorem 4.4 we obtain

‘1[071}2]0@_ — Qi fy| < 222

O (o)D)

where o, q satisfy (4.7), (4.8). Choosing the number of refinements according
o (5.9) we have

S e

2
10 = Q3 <

. Let 6; =0, ¢; = ¢, and k; = k, — 1. Similar to the case of identical elements
we have k(s +t) = k(z1,...,hi(s+1t),...,zq) and transform the integral

I= / d(s)Y(t)ki(s +t)dsdt.
0,1 /[0,1]
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into
= / / S(€ (1 — E)b(1 + (€ — 1)ra(€ + 1)(1 — €)dedn
[0,1] J]0,1]
+ / SnEVD(E(L — m))ri(E)Ededn. (5.14)
[0,1] J[0,1]

The function
F(@,9) = 2 NRG @+ @1 - 5@ + DA - B,
can be integrated exactly in the Z; direction and has no singularity in 7;, i.e.,
05 1 @,9)| 5 22Nkt (), T [T, ke N
The function
1(@,5) = 2N NR6@ 5w (5:)5

can again be integrated exactly in the 7; direction and has singularity in 7;,
ie.,

08 £(2.9)] < 222 () (i)~ | L ke,

Choosing the number of Gauss points and refinements according to (5.11)

we again obtain an error in the ¢-th direction of order HZI H;OOHFE €.

Finally, tensorization arguments as in Theorem 4.6 yield the required result. [

5.4 Adaptive strategy

As proposed in [6] we define an adaptive strategy to compute the element-element
interactions Q(x n),(x,n’) With the precision €, given by (3.9).

We loop over the dimension i = 1,...,d. For each i we do:

1. Starting point. If 6; > C'y max{h;, h}/4 we define quadrature points in the
i-th direction according to (5.7). Else if 6; = 0, ¢; = ¢, and k; = k] or
ki =k — 1, k} = k; — 1 define quadrature points according to (5.9) or (5.11).
Otherwise go to item 2 if ¢; > ¢, item 3 if ¢; > ¢; and item 4 if ¢; = ¢].

2. Case l; > . Replace the larger element D)y by its two sons and compute the
associated element-element interaction with precision 2~/ 26572/ according to
item 1. The desired element-element interaction is calculated via formula

(5.6).
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3. Case l; > {;. Replace the larger element D) by its two sons and compute the
associated element-element interaction with precision 2~/ 26&Z1 according to
item 1. The desired element-element interaction is calculated via formula
(5.5).

4. Case l; = l]. Replace both elements Dy by their two sons and compute the
associated element-element interaction with precision €, p according to item
1. The desired element-element interaction is calculated via formulas (5.5)

and (5.6).

Note that using this strategy we only have to compute an element-element inter-
action where Theorem 5.4 holds. The next lemma shows that the algorithm stops
after, at the most, O(||¢; — 4| ) steps.

Lemma 5.5. Leti € {1,...,d}. The following statements concerning the compu-
tation of the element-element interaction by the above algorithm are valid:

1. The given element-element interaction is subdivided into at most O(|¢; — C}|)

interactions Q(X ), (V.m') where @\Z >4, ZQ > 0.

2. If 6; < U}, there holds ¢; < 0 < Z; ~ l.. The analogous result holds if £} < {;.

3. On a fixed levela and@z the number of directly computed as well as subdivided
element-element interactions is O(1).

Proof. See [6, Lemma 9.7]. O

Now with formulas (5.5), (5.6), Lemma 5.5 and Theorem 5.4 it follows that the
proposed quadrature algorithm computes the desired element-element interactions
with a precision that stays proportional to €, 4.

Corollary 5.6. Assume the Lévy density k(z) satisfies (2.4), i.e., is real analytic
outside of z; = 0, i = 1,...,d. Let ¢ be given by (3.9). Then, the number
of quadrature points to compute an entry Ay 11 (gx) 1S at most O(L?) and the

overall operations to compute the stiffness matriz A at most of log linear complexity
O(2LL4d_2).

Proof. We have for the one-dimensional Gauss points in (5.8), g,¢' < L, for the
refinements in (5.10), n < L and for the quadrature points and refinements in
(5.12) again, g,n < L. Therefore, we need at most O(L?) quadrature points in
each direction i =1,...,d. O
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