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Wavelet Galerkin schemes for multidimensional

anisotropic integrodifferential operators

C. Winter∗

May 27, 2009

Abstract

We consider a wavelet Galerkin scheme for solving partial integrodifferen-
tial equations arising from option pricing in multidimensional Lévy models.
Sparse tensor product spaces are applied for the discretization to reduce the
complexity in the number of degrees of freedom and wavelet compression
methods are used to decrease the number of non-zero matrix entries. We
focus on algorithmic details of the scheme, in particular on the numerical
integration of the matrix coefficients.

Keywords: Composite Gauss quadrature, multivariate Lévy models, wavelets

1 Introduction

Finite element methods have successfully been applied to integral operators of the
type, Au(x) =

∫
D κ(x, y)u(y)dy, where the kernel functions κ(x, y) are piecewise

smooth apart form the diagonal {(x, y) ∈ D × D : x = y}. Several schemes have
been developed to solve these problems in dimension d ≤ 3, see [6, 11, 13] and
the references therein. For tensor product domains D of the type D = [−R,R]d,
R > 0, we extend these methods to the anisotropic case with singularities in each
direction {(x, y) ∈ D × D : xi = yi, i = 1 . . . , d} for d ≥ 1. In particular, we
consider integrodifferential operators A arising in finance given by

Au(x) = −
1

2

d∑

i,j=1

Qij∂xixju(x) −
∫

Rd

(
u(x + z) − u(x) − z ·∇u(x)1{|z|≤1}

)
k(z)dz,

∗Seminar for Applied Mathematics, ETH Zurich, 8092 Zurich, Switzerland
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where Q is the covariance matrix and k a multidimensional Lévy density satisfying∫
Rd 1∧|z|2 k(z)dz < ∞. The Lévy density k can for example be (isotropic) α-stable

like k(z) = |z|−d−α, with 0 < α < 2 or (anisotropic) α-stable like

k(z) =
d∏

i=1

|zi|αiϑ−1 ( d∑

i=1

|zi|αiϑ
)− 1

ϑ
−d

,

with α = (α1, . . . ,αd), 0 < αi < 2, i = 1, . . . , d and ϑ > 0. More examples are
given in [16].

Following [5, 9] we consider a wavelet Galerkin scheme where sparse tensor product
spaces are applied for the discretization to reduce the complexity in the number
of degrees of freedom from O(h−d) to O(h−1 |log h|d−1). Here, h denotes the mesh
width of the finite element discretization. The resulting matrices are dense since
the jump operator is non-local. Therefore, wavelet compression methods are used
to reduce the number of non-zero matrix entries. We focus on algorithmic details
of the scheme, in particular on the numerical integration of the matrix coefficients.
Since the multidimensional Lévy densities have singularities at the origin and on
the axes, variable order composite Gauss quadrature formulas are employed. We
show that the quadrature rule leads to exponential convergence for Lévy densities
which are piecewise analytic. Using an hierarchical data structure, an adaptive
numerical scheme is developed which computes each matrix entry with a given
accuracy. The accuracy is chosen by an a-priori numerical analysis of the scheme
such that the solution of the perturbed problem still converges at the optimal rate
and the computational complexity is log linear O(h−1 |log h|4d−2).

2 Preliminaries

Let D be a non-empty bounded open subset of Rd. If a function u : D → R is
sufficiently smooth, we denote the partial derivatives of u by ∂nu = ∂n1

1 · · · ∂nd
d u,

where n = (n1, . . . , nd) ∈ Nd is a multiindex. Throughout, we write x ! y to
express that the scalar x is bounded by a constant multiple of y, i.e., there exists
a c > 0 such that x ≤ c y. Correspondingly x ∼ y means x ! y and y ! x. For a
non-empty set I ⊂ {1, . . . , d} we define its complement by Ic = {1, . . . , d}\I. We
set xI = (xi)i∈I and use the notation

x + yI = z ∈ R
d with zi =

{
xi if i /∈ I
xi + yi else,

for x ∈ Rd, y ∈ R|I|. Furthermore, ∂I = ∂i1 · · · ∂ik for I = {i1, . . . , ik}, k ∈
{1, . . . , d}. We need the tail integrals of the Lévy density k which is the function

2



U : Rd\{0} → R given by

U(x1, . . . , xd) =
d∏

i=1

sgn(xj)

∫

I(x1)
· · ·

∫

I(xd)
k(z)dzd . . . dz1,

with I(x) =

{
(x,∞) if x ≥ 0,
(−∞, x] if x < 0.

The I-marginal tail integrals UI are the tail integral of marginal Lévy densities
kI . Furthermore for 0 < αi < 2, i = 1, . . . , d we call a Lévy density α-stable if

ksym(r
− 1

α1 z1, . . . , r
− 1

αd zd) = r
1+ 1

α1
+···+ 1

αd ksym(z1, . . . , zd), ∀r > 0,

where ksym(z) = (k(z) + k(−z))/2 is the symmetric part of k. We make the
following assumptions on the Lévy density k where we denote with ki, i = 1, . . . , d
the marginal Lévy densities.

Assumption 2.1. Let k be a Lévy density with marginal Lévy densities ki.

i) There are constants β−
i > 0, β+

i > 0, i = 1, . . . , d such that

ki(z) !

{
e−β−

i |z|, z < −1,

e−β+
i z, z > 1.

(2.1)

ii) There exist an α-stable Lévy density k0 such that

k(z) ! k0(z), 0 < |z| < 1. (2.2)

iii) If Q is not positive definite, we assume additionally that

ksym(z) " k0,sym(z), 0 < |z| < 1, (2.3)

iv) We require that the density k is real analytic outside zi = 0, i = 1, . . . , d,

|∂nk(z)| ! C |n| |n|! ‖z‖−α
∞

d∏

i=1

|zi|−ni−1 , ∀zi .= 0. (2.4)

for C > 0, α = ‖α‖∞ and multiindex n = (n1, . . . , nd) ∈ Nd
0.

For u, v ∈ C∞
0 (D) we associate with A the bilinear form

E(u, v) =
1

2

d∑

i,j=1

Qij

∫

D
∂iu(x)∂jv(x)dx

−
∫

D

∫

Rd

(u(x + z) − u(x) − z ·∇u(x)) v(x)k(z)dzdx,

(2.5)
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where we extend u by zero outside of the domain D. We omitted the cut-of function
1{|z|≤1} since we assume semi-heavy tails (2.1). The variational formulation is given
by,

Find u ∈ L2((0, T );V) ∩ H1((0, T );V∗) such that

〈∂tu, v〉V∗,V + E(u, v) = 0 , t ∈ (0, T ), ∀v ∈ V, (2.6)

u(0) = u0,

with initial condition u0 ∈ L2(D). The well-posedness of (2.6) is ensured by the
next theorem. A proof is given in [9, Theorem 4.8].

Theorem 2.2. Assume either Q > 0 or Q = 0 and the Lévy density k satisfies
(2.2), (2.3), with α = (α1, . . . ,αd). Then, the variational equation (2.6) admits a
unique solution in V. For Q > 0 there holds V = H̃1(D) and for Q = 0 one obtains
the anisotropic Sobolev space V = H̃α/2(D) defined by H̃s(D) := {u|D : u ∈
Hs(Rd), u|Rd\D = 0}.

Using partial integration we can rewrite the bilinear form E(·, ·) as

E(u, v) =
1

2

d∑

i,j=1

Qij

∫

D
∂iu(x)∂jv(x)dx

+
d∑

i=1

∫

R

∫

D
∂iu(x + zi)∂iv(x)k−2

i (zi)dxdzi

−
d∑

i=2

∑

|I|=i
I1<···<Ii

∫

Ri

∫

D
∂Iu(x + zI)v(x)UI(zI)dxdzI ,

where k−2(x) = sgn(x)
∫
I(x) U(z)dz are the second antiderivative of k vanishing

at ±∞. We refer to [9, Lemma 2.5] for more details.

3 Wavelet basis

We start by explaining wavelets in one dimension, following the construction de-
scribed in [2]. The d-variate bases are obtained by tensor product construction.

3.1 Spline wavelets on the interval

The one-dimensional interval D = [0, 1] is partitioned into an equidistant mesh
T$ with mesh width h$ = 2−$, & ∈ N. We define V$ as the space of piecewise
polynomials of degree p − 1 ∈ N on the mesh T$ which vanish at the endpoints
and denote with N$ = dim V$ = O(2$). The spaces V$ are nested, V$ ⊂ V$+1,
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and generated by single scale bases Φ$ := {φ$,k : k ∈ ∆$} with suitable index
set ∆$. We assume that the basis functions φ$,k ∈ Φ$, & ∈ N, have compact
support of size |supp φ$,k| ! 2−$ and are normalized in L2, ‖φ$,k‖L2([0,1]) = 1. The
approximation order of Φ$ is given by p. In addition, we associated with Φ$,k a

dual basis, Φ̃$ := {φ̃$,k : k ∈ ∆$}, i.e., one has 〈φ$,k, φ̃$,k′〉 = δk,k′, k, k′ ∈ ∆$. The

approximation order of Φ̃$ is denoted by p̃, and we assume p ≤ p̃.

Given the single-scale basis Φ$, we can construct a biorthogonal complement or
wavelet basis Ψ$ = {ψ$,k : k ∈ ∇$}, Ψ̃$ = {ψ̃$,k : k ∈ ∇$} with ∇$ = ∆$+1\∆$

such that
V$+1 = V$ ⊕W$, Ṽ$+1 = Ṽ$ ⊕ W̃$, & ∈ N,

V$ = W0 ⊕ · · ·⊕W$−1, & ∈ N ,
(3.1)

where the increment spaces W$, W̃$ are the span of Ψ$, Ψ̃$ for & > 0, and W0 := V1,
W̃0 := Ṽ1. We suppose the wavelets ψ$,k have compact support |supp ψ$,k| ! 2−$

and are normalized in L2([0, 1]).

Any function u ∈ VL+1 has the representation

u =
L∑

$=0

∑

k∈∇#

u$,kψ$,k =
L∑

$=0

∑

k∈∇#

〈u, ψ̃$,k〉ψ$,k .

For u ∈ H̃s([0, 1]), 0 ≤ s ≤ p one obtains an infinite series

u =
∞∑

$=0

∑

k∈∇#

u$,kψ$,k, (3.2)

which converges in H̃s([0, 1]). There holds the norm equivalence

‖u‖2
eHs([0,1])

!
∞∑

$=0

∑

k∈∇#

22s$ |u$,k|2 ! ‖u‖2
eHs([0,1])

, 0 ≤ s < p − 1/2 . (3.3)

Example 3.1. We give an example of wavelet basis for H̃s([0, 1]), 0 ≤ s <
3/2 using piecewise linear continuous functions, p = 2, on [0, 1] vanishing at the
endpoints. The mesh T$ is defined by the nodes x$,k := k2−$−1 with k = 0, . . . , 2$+1.
Let N$ = 2$+1 − 1 and c$ :=

√
3 · 2$/2−1, & ∈ N0. We define the wavelets ψ$,k for

level & ∈ N0, k = 1, . . . , 2$. For & = 0 we have N0 = 1 and ψ0,1 is the function with
value 2c0 at x1,0 = 1/2. For & ≥ 1 the wavelet ψ$,1 has the values ψ$,1(x$,1) = 2c$,
ψ$,1(x$,2) = −c$ and zero at all other nodes. The wavelet ψ$,2# has the values
ψ$,2#(x$,N#

) = 2c$, ψ$,2#(x$,N#−1) = −c$ and zero at all other nodes. The wavelet

ψ$,k with 1 < k < 2$ has the values ψ$,k(x$,2k−2) = −c$, ψ$,k(x$,2k−1) = 2c$,
ψ$,k(x$,2k) = −c$ and zero at all other nodes.
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3.2 Sparse tensor product space

We define the subspace VL on D = [0, 1]d, d > 1 as the full tensor product of the
one-dimensional spaces VL+1 :=

⊗
1≤i≤d VL+1 which can be written as

VL+1 = span {ψ",k : 0 ≤ &i ≤ L, ki ∈ ∇$i
, i = 1, . . . , d} ,

with basis functions ψ",k = ψ$1,k1
· · ·ψ$d,kd

, 0 ≤ &i ≤ L, ki ∈ ∇$i
, i = 1, . . . , d.

Using (3.1) we can write VL+1 again in terms of increment spaces

VL+1 =
⊕

0≤$i≤L

W$1 ⊗ · · ·⊗W$d .

Therefore, together with (3.2) for any function u ∈ L2([0, 1]d) we have the series
representation

u =
∞∑

$i=0

∑

ki∈∇#i

u",kψ",k.

Using the norm equivalences (3.3) we obtain

‖u‖2
eHs([0,1]d)

!
∞∑

$i=0

∑

ki∈∇#i

(22s1$1 + . . . + 22sd$d) |u",k|2 ! ‖u‖2
eHs([0,1]d)

, (3.4)

for 0 ≤ si ≤ p − 1/2, i = 1, . . . , d.

Remark 3.2. To obtain a multilevel preconditioner we only need these norm equiv-
alences for H̃α/2([0, 1]d), i.e., 0 ≤ si = αi/2 ≤ 1, i = 1, . . . , d. Therefore, p = 2 is
sufficient.

The space VL has O(2Ld) degrees of freedom which grow exponentially with in-
creasing dimension d. To avoid this “curse of dimension” we introduce the sparse
tensor product space

V̂L+1 = span {ψ",k : 0 ≤ &1 + · · · + &d ≤ L, ki ∈ ∇$i
, i = 1, . . . , d}

=
⊕

0≤$1+···+$d≤L

W$1 ⊗ · · ·⊗W$d
.

As L → ∞ we have N = dim(VL+1) = O(2dL) and N̂ = dim(V̂L+1) = O(Ld−1 2L),
i.e., the spaces V̂L have considerably smaller dimension than VL. On the other
hand, they do have similar approximation properties as VL, provided the function
to be approximated is sufficiently smooth. As shown in [14] there holds for u ∈
Hs(D) with 0 ≤ r < p − 1/2, r ≤ s ≤ p,

inf
uL∈bVL

‖u − uL‖ eHr !

{
hs−r |log h|

d−1

2 if r = 0, s = p
hs−r else.

(3.5)

Here, Hs(D) denotes the mixed Sobolev space Hs(D) = H̃s(D) ⊗ · · ·⊗ H̃s(D).
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3.3 Wavelet discretization

Let D = [−R,R]d. Since we are mainly interested in jump part we explain the
discretization only for Q = 0. Using the basis ψ",k = ψ$1,k1

· · ·ψ$d,kd
, 0 ≤ &1 +

· · · + &d ≤ L, ki ∈ ∇$i
of V̂L+1 we need to compute the stiffness matrix for the

jump part

A("′,k′),(",k) = E(ψ",k,ψ"
′,k′) =

d∑

i=1

∫

R

∫

D
∂iψ",k(x + zi)∂iψ"

′,k′(x)k−2
i (zi)dxdzi

−
d∑

i=2

∑

|I|=i
I1<···<Ii

∫

Ri

∫

D
∂Iψ",k(x + zI)ψ"

′,k′(x)UI(zI)dxdzI .

We define

Mi
($′,k′),($,k) :=

∫ R

−R
ψ$,kψ$′,k′ dx,

Ai
($′,k′),($,k) := −

∫

R

∫ R

−R
ψ′

$,k(x + z)ψ′
$′,k′(x)k−2

i (z)dxdz,

AI
("′I ,k′

I),("I ,kI) :=

∫

R|I|

∫

[−R,R]|I|
∂Iψ"I ,kI (x + z)ψ"

′
I ,k′

I
(x)UI(z)dxdz .

(3.6)

where i = 1, . . . , d, "I = (&i)i∈I , 0 ≤ &i ≤ L, kI = (ki)i∈I , ki ∈ ∇$i
, I ⊂ {1, . . . , d},

|I| > 1, and write the jump stiffness matrix as

A("′,k′),(",k) = −
d∑

i=1

∑

|I|=i
I1<···<Ii

AI
("′I ,k′

I),("I ,kI)

∏

j∈Ic

M
j
($′j ,k′

j),($j ,kj)
.

Applying the θ-scheme in time, we can write the problem (2.6) in fully discrete
form

Find um+1
L ∈ R

bN such that for m = 0, . . . ,M − 1,

∆t−1M(um+1
L − um

L ) + θAum+1
L + (1 − θ)Aum

L = 0, (3.7)

u0
L(0) = uL,0 .

with um
L =

∑
0≤|"|≤L

∑
ki∈∇#i

um
",kψ",k and degree of freedoms N̂ = dim(V̂L+1) =

O(2L Ld−1). The stiffness matrix is, in general, densely populated. Using wavelet
compression we can reduce the number of non-zero entries in A to O(2L L2(d−1)).

3.4 Wavelet compression of the Lévy measure

Wavelet compression for isotropic domains has been studied extensively by various
authors, e.g., [3, 2, 6, 15]. It is shown that compression yields asymptotically
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optimal complexity (on not necessarily tensor product domains) in the sense that
the number of non-zero entries in the resulting matrices grows linearly with the
number of degrees of freedom. These results are extended to anisotropic spaces on
sparse tensor product spaces in [8].

To define the compression scheme we need to introduce some notation. Consider
tensor product wavelets ψ",k = ψ$1,k1

⊗ . . . ⊗ ψ$d,kd
, ψ"

′,k′ = ψ$′1,k′
1
⊗ . . . ⊗ ψ$′d,k′

d
.

The distance of support in each coordinate direction is denoted by

δxi := dist{suppψ$i,ki
, suppψ$′i,k

′
i
} ,

for i = 1, . . . , d and the distance of singular support

δsing
xi

:=

{
dist{singsuppψ$i,ki

, suppψ$′i,k
′
i
} , if &i ≤ &′i

dist{suppψ$i,ki
, singsuppψ$′i,k

′
i
} , else

Let 0 < α < p − 1
2 , define

L̃","′ :=

{
L(p − α/2) − p |"| if p(L − |"|) ≥ α/2(L − |"|∞)
−α/2 |"|∞ else,

+

{
L(p − α/2) − p

∣∣"′
∣∣ if p(L −

∣∣"′
∣∣) ≥ α/2(L −

∣∣"′
∣∣
∞)

−α/2
∣∣"′

∣∣
∞ else,

and mi := &i+&′i−2min{&i, &′i}. Furthermore, we denote the index sets Ic
","′ ,I","′ ⊂

{1, . . . , d} by

Ic
","′ =

{
i ∈ {1, . . . , d} : δxi > 2−min{$i,$′i}

}
, I","′ = {1, . . . , d}\Ic

","′ ,

and set

βi
"," = L̃","′ − p̃(&i + &′i) + α

∑

j (=i

min{&j, &
′
j} +

1

2

∑

j∈I
","′

mj − p̃
∑

j∈Ic
","′

\{i}

mj ,

β̃i
"," = L̃","′ − p̃ max{&i, &

′
i} + α

∑

j (=i

min{&j , &
′
j} +

1

2

∑

j∈I","′\{i}

mj − p̃
∑

j∈Ic
","′

mj .

The cut-off parameter are now defined by

Bi
","′ = amax

{
2−min{$i,$′i}, 2βi

","/(2ep+α)
}

, a > 0,

B̃i
","′ = a′ max

{
2−max{$i,$′i}, 2

eβi
","/(ep+α)

}
, a′ > 0.

The compression scheme is based on the fact that the matrix entries A("′,k′),(",k) =
E(ψ",k,ψ"

′,k′) can be estimated a-priori and therefore neglected if these are smaller
than some cut-off parameter. There are two reasons for an entry to be omitted.
Either the distance of the supports suppψ$i,ki

and suppψ$′i,k
′
i

or the distance of
the singular supports is large enough for some i ∈ {1, . . . , d}.
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Theorem 3.3. Assume Q > 0 and that the Lévy density k satisfies (2.4) with
0 < α < p − 1/2. Define the compression scheme by

Ã("′,k′),(",k) =






0, if ∃i ∈ Ic
","′ : δxi > Bi

","′

0, if ∃i ∈ I","′ : δsing
xi > B̃i

","′

A("′,k′),(",k), else.

If p̃ > 2dp − (d + 1)α and α ≤ 2/d, the number of non-zero entries for the com-
pressed matrix Ã is O(2LL2(d−1)).

Proof. See [8, Theorem 4.6.3].

Remark 3.4. Here, we only stated the isotropic case α1 = . . . = αd = α, i.e., in
each direction the same compression is used. Although we still get asymptotically
optimal complexity, the number of matrix entries can further be reduced using
anisotropic compression. The corresponding compression scheme is defined in [8].

We now consider the fully discrete problem (3.7) where we replace the matrix A

with the compressed matrix Ã.

Find ũm+1
L ∈ R

bN such that for m = 0, . . . ,M − 1,

∆t−1M(ũm+1
L − ũm

L ) + θÃũm+1
L + (1 − θ)Ãũm

L = 0, (3.8)

ũ0
L(0) = uL,0 .

There exists a unique solution ũm
L of the perturbed scheme (3.8) and the solution

converges at the optimal rate.

Theorem 3.5. Assume the Lévy density k satisfies Assumption 2.1. Consider
Ã as given in Theorem 3.3 and let all assumptions of Theorem 3.3 hold. Then,
there exists a unique solution ũm

L of the perturbed θ-scheme (3.8). Furthermore, if

u ∈ C1([0, T ],Hp(D)) ∩ C3([0, T ],V∗) and the approximation uL,0 ∈ V̂L+1 of the
initial data u0 is quasi-optimal in L2(D), then for θ = 1/2

∥∥uM − ũM
L

∥∥2

L2(D)
+ ∆t

M−1∑

m=0

∥∥∥um+1/2 − ũm+1/2
L

∥∥∥
2

V
≤ C(u)

(
∆t4 + 2−2L(p−α/2)

)
,

where u is the solution of (2.6) and the constant C(u) > 0 depends on higher space
and time derivatives of u.

Proof. See [8, Theorem 2.2.3, Theorem 3.3.8].

These convergence rates are shown in the next example. We only look at inde-
pendent margins because here the matrix entries A("′,k′),(",k) can be computed
exactly.

9



Example 3.6. Let d = 2 and consider

ki(zi) = ci
e−β−

i |zi|

|zi|1+αi
1{zi<0} + ci

e−β+
i zi

z1+αi
i

1{zi>0}, i = 1, 2, U(z1, z2) = 0.

We solve the elliptic problem A[u] = f on D = [0, 1]2, where f is chosen such that
the exact solution is

u(x) =

{
(x2

1 − 2x3
1 + x4

1)(x
2
2 − 2x3

2 + x4
2) if x ∈ D

0 else.

We set the model parameter c1 = c2 = 1, β−
1 = 10, β+

1 = 15, β−
2 = 9, β+

2 = 16,
α1 = 0.5, α2 = 0.7 and the compression parameter a = 1, a′ = 1, p = 2, p̃ = 2. For
L = 8 the absolute value of the entries in the stiffness matrix A and the compressed
matrix Ã are shown in Figure 1. Here, large entries are colored red. For the
stiffness matrix blue entries are small but non-zero whereas for the compressed
matrix blue entries are zero either due to the first or second compression. One
clearly sees that the compression scheme neglects small entries.

Figure 1: Stiffness matrix A (left) and compressed matrix Ã (right) for level L = 8

To compare the convergence rates in Figure 2 we also solve the problem on full
grid. In the left picture it can be seen that sparse grid has (up to log terms) the
same rate as full grid and that the compression scheme preserves the convergence
rate. We additionally plot the convergence rate in terms of degrees of freedom. For
full grid we have N = O(22L) and for sparse grid N̂ = O(L 2L). The convergence
rate in full grid shows the “curse of dimension”, whereas for the sparse grid we
still obtain the optimal rate (up to log terms).

Since in general the matrix entries A("′,k′),(",k) cannot be computed exactly, we
need to approximate these with a numerical quadrature rule. To still retain the
optimal order of convergence, we require a certain accuracy.

Theorem 3.7. Consider Ã as given in Theorem 3.3 and let Â be a perturbed
matrix such that

∣∣∣(Ã− Â)("′,k′),(",k)

∣∣∣ ! ε","′ , with ε","′ ! 2−(|"|+|"′|)/2 2−
eL","′ . (3.9)

Then, Theorem 3.5 still holds with Â instead of Ã.
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Figure 2: Convergence rate of the wavelet discretization in terms of the mesh width
h (left) and in terms of degrees of freedom (right)

Proof. We need to show that the error satisfies ‖S‖2 ! 2−
eL

","′ , as shown in [8,

Theorem 2.5.2]. Let S =
∣∣∣Ã"

′," − Â"
′,"

∣∣∣ where A"
′," is the block matrix with

entries (A("′,k′),(",k))k′
i∈∇#′

i
,ki∈∇#i

. Estimating for each row (or column), the sum

over all entries yields

∑

k1∈∇#1

· · ·
∑

kd∈∇#d

Sk′,k ! 2|"|ε","′ and
∑

k′
1∈∇#′

1

· · ·
∑

k′
d∈∇#′

d

Sk′,k ! 2|"
′|ε","′ ,

We can rewrite this as
∑

k1∈∇#1

· · ·
∑

kd∈∇#d

wkSk′,k ! wk′2(|"|+|"′|)/2 ε","′ ,

∑

k′
1∈∇#′

1

· · ·
∑

k′
d∈∇#′

d

wk′Sk′,k ! wk2(|"|+|"′|)/2 ε","′ ,

with weights wk = 2(|"′|−|"|)/4 and wk′ = 2(|"|−|"′|)/4. Using the Schur lemma [7,
Lemme 4] we obtain the required result.

3.5 Multilevel preconditioning

We have to solve a linear system
(
M + θ∆tÃ

)
ũm+1

L =
(
M − ∆t(1 − θ)∆tÃ

)
ũm

L ,

at each time step m = 0, . . . ,M − 1. For an iterative solution of these systems,
Bu = b, we use multilevel preconditioning. The preconditioner is obtained by
using the wavelet norm equivalences. With (3.4) for s = 0 we have for every

u ∈ V̂L+1 with coefficient vector u ∈ R
bN that

〈u, u〉 ! 〈u,Mu〉 ! 〈u, u〉 ,

11



Denote by DA the diagonal matrix with entries 2α1$1 + . . . + 2αd$d for an index
corresponding to level " = (&1, . . . , &d). Then, Theorem 3.5 and (3.4) for si = αi/2,
i = 1, . . . , d imply that

〈u,DAu〉 ! 〈u,Au〉 ! 〈u,DAu〉 ,

Thus, we have 〈u,Du〉 ! 〈u,Bu〉 ! 〈u,Du〉, with the diagonal matrix D = I +
θ∆tDA. Written in terms of û = D1/2u we finally obtain

|û|2 ! 〈û,D−1/2BD−1/2û〉 ! |û|2 .

The linear system B̂ û = b̂ with preconditioned matrix B̂ = D−1/2BD−1/2 and
right hand side b̂ = D−1/2b can be solved with GMRES [10] in a number of steps
which is independent of level index L.

Lemma 3.8. For the linear system B̂ û = b̂ let ûj denote the iterate obtained
by the GMRES method with initial guess û0. There is a constant 0 < r < 1
independent of L and ∆t such that

∣∣∣̂b − B̂ûj

∣∣∣ ! rj
∣∣∣̂b − B̂û0

∣∣∣ .

Proof. See [5].

4 Composite Gauss quadrature rules

As seen in the last section we have to evaluate integrals
∫
[−1,1]|I| u(zI)UI(z)dz

for I ⊂ {1, . . . , d}. The tail integrals UI(z) have a singularity at the origin and
possibly on each axis. Therefore, we can not use standard quadrature rules for
integration since these depend on the smoothness of the function. Instead, we
use a composite Gauss quadrature rule as proposed in [12]. Elementary Gauss
quadrature formulas of varying orders on subdomains are combined. The size of
these subdomains decreases geometrically towards the singular support of the in-
tegrand. Multidimensional quadrature rules are obtained by using tensor products
of one-dimensional quadrature formulas. We start recalling error estimates for the
basic Gauss-Legendre quadrature rules.

4.1 Gauss-Legendre quadrature

For a given function f ∈ C([0, 1]) we set I [0,1]f :=
∫ 1
0 f(s)ds and denote the g-

point Gauss-Legendre integration rule on [0, 1] by Q[0,1]
g f :=

∑g
j=1 ωg,jf(ξg,j). If

f ∈ C2g([0, 1]) we obtain the following error estimate (see, e.g., [4])

∣∣∣E[0,1]
g f

∣∣∣ :=
∣∣∣I [0,1]f − Q[0,1]

g f
∣∣∣ =

(g!)4

(2g + 1)[(2g)!]3

∣∣∣f (2g)(ξ)
∣∣∣ , ξ ∈ [0, 1] .
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We use the Stirling formula g! ∼
√

2πg gge−g to obtain the estimate

∣∣∣E[0,1]
g f

∣∣∣ !
2−4g

(2g)!
max
ξ∈[0,1]

∣∣∣f (2g)(ξ)
∣∣∣ . (4.1)

On [0, 1]d we approximate the integral, I [0,1]df :=
⊗

1≤i≤d I [0,1]f =
∫
[0,1]d f(s)ds,

for f ∈ C([0, 1]d) by a tensor product Gauss-Legendre quadrature rule

Q[0,1]d
g f :=

⊗

1≤i≤d

Q[0,1]
g f =

g∑

j1,...,jd=1

d∏

i=1

ωg,jif(ξg,j1, . . . , ξg,jd
) ,

and obtain the following error bound.

Lemma 4.1. If f ∈ C2g([0, 1]d), the quadrature error E[0,1]d
g f := I [0,1]df −Q[0,1]d

g f
is bounded by

∣∣∣E[0,1]d
g f

∣∣∣ !
2−4g

(2g)!

d∑

i=1

max
ξ∈[0,1]d

∣∣∣∂2g
i f(ξ)

∣∣∣ . (4.2)

Proof. We prove this lemma by induction over the dimension d. With (4.1) it is
true for d = 1. For d > 1 we have
∣∣∣E[0,1]d

g f
∣∣∣ =

( ⊗

1≤i≤d

I [0,1] −
⊗

1≤i≤d

Q[0,1]
g

)
f

=

( ⊗

1≤i≤d

I [0,1] −
⊗

1≤i≤d−1

I [0,1] ⊗ Q[0,1]
g +

⊗

1≤i≤d−1

I [0,1] ⊗ Q[0,1]
g −

⊗

1≤i≤d

Q[0,1]
g

)
f

=
⊗

1≤i≤d−1

I [0,1] ⊗
(
I [0,1] − Q[0,1]

g

)
f +

( ⊗

1≤i≤d−1

I [0,1] −
⊗

1≤i≤d−1

Q[0,1]
g

)
⊗ Q[0,1]

g f

!
2−4g

(2g)!
max

ξ∈[0,1]d

∣∣∣∂2g
d f(ξ)

∣∣∣ +
2−4g

(2g)!

d−1∑

i=1

max
ξ∈[0,1]d

∣∣∣∂2g
i f(ξ)

∣∣∣ .

For our analysis we consider a class of functions which have singularities on the
origin and on the axes.

Assumption 4.2. Let f ∈ L1([0, 1]d). There exist 0 < α < d, α /∈ N, Cf > 0,
such that for k ∈ N0, i = 1, . . . , d

∣∣∣∂k
i f(ξ)

∣∣∣ ! k!Ck
f ‖ξ‖−α

∞ ξ−k
i , ∀ξ ∈ (0, 1)d . (4.3)

Equation (4.3) is satisfied by all tail integrals corresponding to a Lévy density
which satisfy Assumption 2.1. We introduce the notation

I [0,1]fξi
:=

∫ 1

0
f(ξ1, . . . , si, . . . , ξd)dsi,
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where we just integrate over the i-th dimension, i ∈ {1, . . . , d}. Similarly Q[0,1]
g fξi

and E[0,1]
g fξi

:= I [0,1]fξi
−Q[0,1]

g fξi
. We can now state the basic error estimates on

rectangular domains.

Proposition 4.3. Let i ∈ {1, . . . , d}, interval [a, b] with a, b ∈ R, 0 ≤ a ≤ b ≤ 1
and h = b − a. Assume f satisfies (4.3) and set I = {1, . . . , d}\i. Then,

∣∣∣E[a,b]
g fξi

∣∣∣ !
∥∥ξI

∥∥−α+ α
d

∞ h

(
Cfh

4a

)2g

a−
α
d , for a > 0, ξI ∈ (0, 1)d−1 , (4.4)

∣∣∣E[a,b]
0 f

∣∣∣ !
∥∥ξI

∥∥−α+ α
d

∞ h1−α
d , for a = 0, ξI ∈ (0, 1)d−1 . (4.5)

Proof. Consider the transformation ϕ : [0, 1] → [a, b], ϕ(ξ) = a + hξ. Then, with
I [a,b]fξ = I [0,1](fξ ◦ ϕ)h and ∂k

i f(ξ1, . . . ,ϕ(ξi), . . . , ξd) = ∂k
i f hk we get (4.4) by

∣∣∣E[a,b]
g fξi

∣∣∣ = h
∣∣∣E[0,1]

g (fξi
◦ ϕ)

∣∣∣ ! h
2−4g

(2g)!
max

ξi∈[a,b]

∣∣∣∂2g
i f(ξ)

∣∣∣h2g

!
∥∥ξI

∥∥−α+ α
d

∞ h

(
Cfh

4a

)2g

a−
α
d .

With |f | ! ‖ξ‖−α
∞ one obtains (4.5) since

∣∣∣E[0,h]
0 fξi

∣∣∣ =

∣∣∣∣∣

∫

[0,h]
f(ξ1, . . . , si, . . . , ξd)dsi

∣∣∣∣∣

!
∥∥ξI

∥∥−α+ α
d

∞

∣∣∣∣∣

∫

[0,h]
s
−α

d
i dsi

∣∣∣∣∣ !
∥∥ξI

∥∥−α+ α
d

∞ h1−α
d .

4.2 Composite Gauss quadrature

On [0, 1] a geometric partition is given by 0 < σn < σn−1 < . . . < σ < 1 for n ∈ N,
σ ∈ (0, 1). We denote the subdomains by Λj := [σn+1−j ,σn−j ], with j = 1, . . . , n
and Λ0 := [0,σn]. Given a linear degree vector q ∈ Nn, qj = 7µj8 with slope µ > 0,
we use on each subdomain Λj , j = 1, . . . , n, a Gauss quadrature with degree qj

and no quadrature points in Λ0. The composite Gauss quadrature rule in the i-th
direction is defined by

Qn,q
σ fξi

=
n∑

j=1

Q
Λj
qj fξi

, i ∈ {1, . . . , d}, (4.6)

and converges exponentially.
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Theorem 4.4. Let i ∈ {1, . . . , d} and f satisfy (4.3). Consider

σ ∈ (0, 1), such that w =
Cf (1 − σ)

4σ
< 1, (4.7)

and a linear degree vector q = (q1, . . . , qn),

qj = 7µj8, with slope µ >
(1 − α

d ) ln σ

2 ln w
. (4.8)

Then, ∣∣∣I [0,1]fξi
− Qn,q

σ fξi

∣∣∣ !
∥∥ξI

∥∥−α+ α
d

∞ σn(1−α
d
) . (4.9)

Proof. On each Λj , j = 1, . . . , n we have the following estimate using (4.4) with
a = σn+1−j and h = σn−j(1 − σ)

∣∣∣EΛj
g fξi

∣∣∣ !
∥∥ξI

∥∥−α+ α
d

∞ h

(
Cf (1 − σ)

4σ

)2g

σ−(n+1−j)α
d !

∥∥ξI
∥∥−α+ α

d

∞ w2gσ(n−j)(1−α
d
) .

Summing over all subdomains j = 1, . . . , n, yields

n∑

j=1

∣∣∣EΛj
qj fξi

∣∣∣ !
∥∥ξI

∥∥−α+ α
d

∞

n∑

j=1

w2qjσ(n−j)(1−α
d
)

!
∥∥ξI

∥∥−α+ α
d

∞ σn(1−α
d
)

∞∑

j=1

(
w2µσ

α
d
−1

)j
.

The last sum converges since µ >
(1−α

d
) lnσ

2 ln w . We neglected the subdomains Λ0 in
the composite Gauss quadrature. Using (4.5) we have

∣∣∣E[0,σn]
0 fξi

∣∣∣ !
∥∥ξI

∥∥−α+ α
d

∞ σn(1−α
d
).

Remark 4.5. Condition (4.7) is suboptimal. Using [12, Theorem 4.1] or [1,
Proposition 2.8] we can obtain exponential convergence for any σ ∈ (0, 1).

We define the composite Gauss quadrature on [0, 1]d by the tensor product of one-

dimensional composite Gauss quadrature rules Qn,(q1,...,qd)
σ f =

⊗
1≤i≤d Qn,qi

σ fξi
.

The composite Gauss quadrature rule converges exponentially with respect to the
number N of Gauss points.

Theorem 4.6. Let f satisfy (4.3). Consider a grading factor σ ∈ (0, 1) satisfying
(4.7) and linear degree vectors (q1, . . . ,qd) satisfying (4.8). Then, there exist a
γ > 0 such that the quadrature error decays exponentially

∣∣∣I [0,1]df − Qn,(q1,...,qd)
σ f

∣∣∣ ! e−γ 2d√N .
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Proof. We prove this theorem in two steps.

1. As in proof of Lemma 4.1 we prove
∣∣∣I [0,1]df − Qn,(q1,...,qd)

σ f
∣∣∣ ! e−γn,

by induction over the dimension d. With (4.9) it is true for d = 1. For d > 1
we have with (4.9)

∣∣∣I [0,1]df − Qn,(q1,...,qd)
σ f

∣∣∣ =

( ⊗

1≤i≤d

I [0,1] −
⊗

1≤i≤d

Qn,qi
σ

)
f

=
⊗

1≤i≤d−1

I [0,1] ⊗
(
I [0,1] − Qn,qd

σ

)
f

+

( ⊗

1≤i≤d−1

I [0,1] −
⊗

1≤i≤d−1

Q
n,(q1,...,qd−1)
σ

)
⊗ Qn,qd

σ f

!

∫

[0,1]d−1

∥∥ξI
∥∥−α+ α

d

∞ dξIσn(1−α
d
) + e−γn

n∑

j=1

qd,j∑

m=1

ωj,mξ
−α

d
j,m

! e−eγn .

2. Let µ1 = max{µ1, . . . , µd}. We estimate the number of quadrature points by

N ≤
( n∑

j=1

qj,1

)d

!

( n∑

j=1

j

)d

! n2d .

We give a numerical example which shows the exponential convergence of the
composite Gauss quadrature formula.

Example 4.7. Consider the function f(x) =
(∑d

i=1 xβiϑ
i

)− 1

ϑ
on the domain [0, 1]d

for α = β1 = . . . = βd = 0.5. We apply a composite Gauss quadrature formula with
grading factor σ = 0.2 and linear degree vectors with slope µ1 = . . . = µd = 0.5.

For ϑ = 0.5 the relative quadrature error
∣∣∣I [0,1]df − Qn,(q1,...,qd)

σ f
∣∣∣ /

∣∣∣I [0,1]df
∣∣∣ versus

2d
√

N is plotted in logarithmic scale in Figure 3. Additionally, we also plot the
relative error for d = 2 and various σ. As already seen in the proof of Theorem 4.6
the convergence rate depends on 1 − α/d which increases in d.

5 Computational scheme

As seen in (3.6) we need to compute matrix entries of the type

B("′,k′),(",k) =

∫

Rd

∫

D
∂1 · · · ∂dψ",k(x + z)ψ"

′,k′(x)κ(z)dxdz , (5.1)
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Figure 3: Exponential convergence of the composite Gauss quadrature for ϑ = 0.5,
σ = 0.2 and d = 2, 3 (left) and d = 2 and various σ (right)

where the kernel κ satisfies (4.3), i.e.,
∣∣∣∂k

i κ(z)
∣∣∣ ! k!Ck

f ‖z‖−α
∞ z−k

i , ∀z ∈ R
d, k ∈ N0, i = 1, . . . , d ,

for 0 < α < d, α /∈ N and Cf > 0. Introducing a new variable y = x + z we can
write the integral (5.1) as

B("′,k′),(",k) =

∫

Σ",k

∫

Σ"′,k′

∂1 · · · ∂dψ",k(y)ψ"
′,k′(x)κ(y − x)dydx , (5.2)

where Σ",k = suppψ",k. Similar equations have been studied for the boundary
element methods, although only in the isotropic setting. Several schemes have
been developed to solve these problems in dimension d ≤ 3, see [6, 11, 13] and
the references therein. We adapt these methods to the anisotropic case for d ≥ 1.
Throughout this section we consider wavelets as described in Example 3.1 which
are piecewise linear.

5.1 Hierarchical data structure

For an efficient implementation of the compression scheme it is necessary to have
an hierarchical data structure. Therefore, we introduce an hierarchical element
tree up to a given level L ∈ N.

We start with D(0,...,0),(1,...,1) = D as the first generation. On the &-th generation
we consider the elements D",k where the multiindices are given by " = (&1, . . . , &d),
&i = 0, . . . , &, i = 1, . . . , d with ‖"‖∞ = &, and k = (k1, . . . , kd), ki = 1, . . . , 2$i ,

i = 1, . . . , d. Each element D",k has sons D
"+e",k+ek

where
∣∣∣" + "̃

∣∣∣ ≤ L,

&̃i =

{
0 if &i .= &

∈ {0, 1} if &i = &
, i = 1, . . . , d, with ‖"̃‖∞ = 1 ,

and k̃i = 2
e$i(ki − 1) + 1, . . . , 2

e$iki, i = 1, . . . , d. Since there exists a bijective
mapping which indicates each element D",k uniquely by an integer λ, we write
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shortly Dλ = D",k and set |λ| = |&|, ‖λ‖∞ = ‖&‖∞. Similar to the standard single-
scale finite element method, we do not compute the matrix entry (5.2) directly
over suppψ",k, since ψ",k is not smooth. Instead, we decompose Σ",k into a set of
elements

⋃
Dλ such that ψ",k|Dλ

is smooth. More precisely, consider the set

L",k =
{

D
"+1,ek : k̃i = max{2(ki − 1), 1}, . . . ,min{2ki + 1, 2l+1}, i = 1, . . . , d

}
.

Then,

Σ",k = suppψ",k =
⋃

Dλ∈L",k

Dλ, Σsing
",k = singsuppψ",k =

⋃

Dλ∈L",k

∂Dλ ,

and

ψ",k(x)|Dλ
=

2∑

n1,...,nd=1

2|"|/2ω",k,n,λ φ̂n(ϕ−1
λ (x)), Dλ ∈ L",k , (5.3)

with weights ω",k,n,λ =
∏d

i=1 ω$i,ki,ni,λ, shape functions φ̂n(z) =
∏d

i=1 φ̂ni(zi) and
diffeomorphism ϕλ : Dλ → [0, 1]d. The one-dimensional weights follow immedi-
ately from Example 3.1 and the one-dimensional shape functions are φ̂1(z) = 1−z,
φ̂2(z) = z. To set up the compression scheme we need to check the distance criteria
δxi > Bi

","′ , i ∈ Ic
","′ and δsing

xi > B̃i
","′ , i ∈ I","′ . Checking these criteria for each

matrix coefficient would require O(N̂2) operations. For an efficient computation
we exploit the tree structure described above. We denote by σ$i,ki

= suppψ$i,ki
,

σsing
$i,ki

= singsuppψ$i,ki
, i = 1, . . . , d and say that the wavelet ψe",son is the son of

ψ",father if σe$i,son
⊆ σ$i,father, i = 1, . . . , d and there exists i ∈ {1, . . . , d} such that

&̃i = &i + 1. Then, the following lemmas hold.

Lemma 5.1. Let dist{σ$i,father,σ$′i,father
} > Bi

","′ for i ∈ Ic
","′ and σ$i+1,son ⊆

σ$i,father, σ$′i+1,son ⊆ σ$′i,father

Then dist{σ$i+1,son,σ$′i,father
} > Bi

e","′
and dist{σ$i+1,son,σ$′i+1,son} > Bi

e",e"
′ where

"̃ = (&1, . . . , &i + 1, . . . , &d) and "̃
′
= (&′1, . . . , &

′
i + 1, . . . , &′d).

Proof. The result follows from Bi
","′ ≥ Bi

e","′
≥ Bi

e",e"
′ .

Lemma 5.2. Let dist{σ$i,father,σ
sing
$′i,k

′
i
}B̃i

","′ for i ∈ I","′, &i > &′i and σ$i+1,son ⊆
σ$i,father.

Then dist{σ$i+1,son,σsing
$′i,k

′
i
}B̃i

e","′
where "̃ = (&1, . . . , &i+1, . . . , &d) and "̃

′
= (&′1, . . . , &

′
i+

1, . . . , &′d).

Proof. The result follows from B̃i
","′ ≥ B̃i

e","′
.

Remark 5.3. Similar results for different wavelets in d = 2 are given in [6].
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Using Lemma 5.1 and 5.2 we have only to check the distance criteria for coeffi-
cients which have a non-zero father. The number of operations for setting up the
compression scheme is then obviously of log linear complexity O(2LL2(d−1)).

5.2 Matrix computation

Replacing the wavelets in (5.2) by the element representation (5.3) leads to

B("′,k′),(",k) =
∑

Dλ∈L",k

∑

Dλ′∈L"′,k′

2∑

n1,...,nd=1

2∑

n′
1,...,n′

d=1

ω",k,n,λω"
′,k′,n′,λ′Q(λ,n),(λ′,n′) ,

with

Q(λ,n),(λ′,n′) = 2|λ|/2+|λ′|/2
∫

Dλ

∫

Dλ′

∂1 · · · ∂dφ̂n(ϕ−1
λ (y))φ̂n′(ϕ−1

λ′ (x))κ(y − x)dydx ,

or in terms of the reference interval

Q(λ,n),(λ′,n′) = (−1)|n| 2|λ|/2+|λ′|/2
d∏

i=1

h′
i

∫

[0,1]d

∫

[0,1]d
φ̂n′(x̂)κ̂λ,λ′(x̂, ŷ)dŷdx̂ , (5.4)

where h′
i = R 2−$′i , i = 1, . . . , d, and κ̂λ,λ′(x̂, ŷ) = κ(ϕλ(ŷ) − ϕλ′(x̂)). Therefore,

computing the matrix entries reduces to computing the element-element interac-
tions Q(λ,n),(λ′,n′).

We can again use the hierarchical data structure to obtain an entry of a father
element from the son elements. For example, for a father element Dfather =
D(",k) with the two sons Dson1

= D($1,...,$i+1,...,$d),(k1,...,2ki−1,...,kd) and Dson2
=

D($1,...,$i+1,...,$d),(k1,...,2ki,...,kd), we get

Q(father,n),(λ′,n′) =
(
Q(son1,n),(λ′,n′) + Q(son2,n),(λ′,n′)

)
2−3/2 . (5.5)

Similarly,

Q(λ,n),(father,n′
1,...,1,...,n′

d) =
(
Q(λ,n),(son1,n′

1,...,1,...,n′
d) + Q(λ,n),(son1,n′

1,...,2,...,n′
d)/2

+ Q(λ,n),(son2,n′
1,...,1,...,n′

d)/2
)
2−1/2 . (5.6)

5.3 Numerical integration

Consider ",k, "′,k′ ∈ Nd with the corresponding λ,λ′, fix n,n′ and introduce the
notation δi = dist{Di

λ,Di
λ′} where Dλ = D1

λ × · · · × Dd
λ. Let ε > 0, i ∈ {1, . . . , d}

and set I = {1, . . . , d}\i and z = y − x. We distinguish several cases: The
integrand κ̂λ,λ′(x, y) is non-singular in yi−xi, i.e., δi > 0, the elements are identical,
Dλ = Dλ′ , or the elements share a common vertex.
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1. Let δi > Cf max{hi, h′
i}/4. Consider

g "
ln ε + α

d ln δi + (|λ′| /2 − |λ| /2) ln 2

2 ln w
,

g′ "
ln ε + (α

d − 1) ln δi + (|λ′| /2 − |λ| /2 − &′i) ln 2

2 ln w′ ,

(5.7)

number of Gauss points where w =
hiCf

4δi
and w′ =

h′
iCf

4δi
. Furthermore,

let the standard Gauss quadrature points and weights on [0, 1] be given
by ξ

g
,ωg ∈ Rg. Then, we define quadrature points ξi ∈ Rgg′ and weights

ωi ∈ Rgg′ by

ξi = ξλ
g
⊗ 1g′ − 1g ⊗ ξλ′

g′
, ωi = 2$i/2+$′i/2h−1

i φ̂n′
i
(1g ⊗ ξ

g′
).∗ ωλ

g ⊗ ωλ′

g′ , (5.8)

where 1g = (1, . . . , 1)* ∈ Rg, ξλ
g,j = (ki−1)hi+hiξg,j and ωλ

g,j = hiωg,j. Here,

we used the Kronecker tensor product x = y ⊗ z ∈ Rml, for y ∈ Rm, z ∈ Rl

and the vector multiplication x = y.∗ z ∈ Rn where xj = yjzj , j = 1, . . . , n
for z, y ∈ Rn.

2. Let δi = 0, &i = &′i and ki = k′
i. Consider

n "
ln ε + (|λ′| /2 − |λ| /2 − &i) ln 2

(1 − α
d ) ln(hi σ)

. (5.9)

refinements for the composite Gauss quadrature and σ, q satisfying (4.7),
(4.8). Furthermore, let the composite Gauss quadrature points and weights
on [0, 1] be given by ξ

n
,ωn ∈ RN . Then, we define quadrature points ξi ∈

R2N and weights ωi ∈ R2N by

(ξi
j)1≤j≤N = hiξn

, (ξi
j)N+1≤j≤2N = −hiξn

,

(ωi
j)1≤j≤N = hi

∫ 1

0
φ̂n′

i
(ξ

n
+ x(1 − ξ

n
))dx.∗ (1 − ξ

n
).∗ ωn,

(ωi
j)N+1≤j≤2N = hi

∫ 1

0
φ̂n′

i
(x(1 − ξ

n
))dx.∗ (1 − ξ

n
).∗ ωn.

(5.10)

3. Let δi = 0, &i = &′i and ki = k′
i − 1. Consider

g "
ln ε + α

d ln hi + (|λ′| /2 − |λ| /2) ln 2

2 ln w
,

n "
ln ε + (|λ′| /2 − |λ| /2 − &i) ln 2

(2 − α
d ) ln(hi σ)

,
(5.11)

number of Gauss points or refinements, respectively. We define quadrature
points ξi ∈ Rg+N and weights ωi ∈ Rg+N by

(ξi
j)1≤j≤g = hi + hiξg

, (ξi
j)g+1≤j≤g+N = hiξn

,

(ωi
j)1≤j≤g = hi

∫ 1

0
φ̂n′

i
(ξ

g
+ x(1 − ξ

g
))dx.∗ (1 − ξ

g
).∗ ωg,

(ωi
j)g+1≤j≤g+N = hi

∫ 1

0
φ̂n′

i
(xξ

n
)dx.∗ ξ

n
.∗ ωn.

(5.12)
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Using a tensor product quadrature formula we have the following error estimate.

Theorem 5.4. Assume that the kernel κ satisfies (4.3). Consider ε > 0 and
assume either δi > Cf max{hi, h′

i}/4 or δi = 0, &i = &′i, ki = k′
i or δi = 0, &i = &′i,

ki = k′
i−1 for i = 1, . . . , d. Define the d-dimensional quadrature points and weights

by

ξ
i
=

⊗̂

1≤j≤i−1

1j ⊗̂ ξi ⊗̂
⊗̂

i+1≤j≤d

1j , ω =
⊗̂

1≤j≤d

ωj,

where the one-dimensional quadrature points and weights ξi, ωi, i = 1, . . . , d are
given by (5.8), (5.10) or (5.12). Then, we obtain

∣∣∣∣∣2
|λ|/2+|λ′|/2

d∏

i=1

h′
i

∫

[0,1]d

∫

[0,1]d
φ̂n′(x̂)κ̂λ,λ′(x̂, ŷ)dŷdx̂ − 〈ω,κ(ξ

1
, . . . , ξ

d
)〉

∣∣∣∣∣ ! ε.

Proof. We again distinguish three cases.

1. Let δi > Cf max{hi, h′
i}/4 and define f(x̂, ŷ) = 2|λ|/2−|λ′|/2φ̂n′(x̂)κ̂λ,λ′(x̂, ŷ).

Using the standard product rule

∂n
xi

f(x̂, ŷ) = ∂n
xi

κ̂λ,λ′(x̂, ŷ)φ̂n′(x̂) + ∂n−1
xi

κ̂λ,λ′(x̂, ŷ) ∂iφ̂n′(x̂) ,

there holds for hi = R 2−$i ,

∣∣∂n
yi

f(x̂, ŷ)
∣∣ ! 2|λ|/2−|λ′|/2n! (hiCf )n δ

−α
d
−n

i

∥∥zI
∥∥−α−α

d

∞ , n ∈ N0 ,

and for δi " h′
i and h′

i = R 2−$′i ,

∣∣∂n
xi

f(x̂, ŷ)
∣∣ ! 2|λ|/2−|λ′|/2n! (h′

iCf )n−1 δ
−α

d
−n+1

i

∥∥zI
∥∥−α−α

d

∞ , n ∈ N0 .

Therefore, we obtain similar to (4.4)
∣∣∣E[0,1]2

g,g′ fbxi,byi

∣∣∣ ! 2|λ|/2−|λ′|/2
∥∥zI

∥∥−α+ α
d

∞
(
w2g

i δ
−α

d
i + (w′

i)
2g′δ

−α
d
+1

i 2$′i
)
,

with wi = hiCf/(4δi), w′
i = h′

iCf/(4δi). Choosing the number of Gauss
points according to (5.7) we have

∣∣∣E[0,1]2

g,g′ fbxi,byi

∣∣∣ !
∥∥zI

∥∥−α+ α
d

∞ ε.

2. Let δi = 0, &i = &′i and ki = k′
i. The integrand κ̂λ,λ′(x̂, ŷ) is singular on

the diagonal xi = yi. We first transform this singularity to the axis. Let
κi(s − t) = κ(z1, . . . , hi(s − t), . . . , zd) and consider the integral

I =

∫

[0,1]

∫

[0,1]
φ(s)ψ(t)κi(s − t)dsdt .
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Introducing the variable z = s − t and splitting the integral yields

I = −
∫

[0,1]

∫ s−1

s
φ(s)ψ(s − z)κi(z)dzds

=

∫

[0,1]

∫ 0

s−1
φ(s)ψ(s − z)κi(z)dzds +

∫

[0,1]

∫ s

0
φ(s)ψ(s − z)κi(z)dzds .

With x = s − z, y = −z we have

∫

[0,1]

∫ 0

s−1
φ(s)ψ(s − z)κi(z)dzds =

∫

[0,1]

∫ x

0
φ(x − y)ψ(x)κi(−y)dydx ,

and therefore,

I =

∫

[0,1]

∫ x

0
φ(x)ψ(x − y)κi(y)dydx +

∫

[0,1]

∫ x

0
φ(x − y)ψ(x)κi(−y)dydx .

Finally setting x = ξ + η(1 − ξ), y = ξ, we obtain

I =

∫

[0,1]

∫

[0,1]
φ(ξ + η(1 − ξ))ψ(η(1 − ξ))κi(ξ)(1 − ξ)dξdη

+

∫

[0,1]

∫

[0,1]
φ(η(1 − ξ))ψ(ξ + η(1 − ξ))κi(−ξ)(1 − ξ)dξdη . (5.13)

The function

f(x̂, ŷ) = 2|λ|/2−|λ′|/2(1 − ŷi)
(
φ̂n′

i
(ŷi + x̂i(1 − ŷi))κi(ŷi)

+ φ̂n′
i
(x̂i(1 − ŷi))κi(−ŷi)

)
,

has a singularity at ŷi = 0 and satisfies (4.3) with respect to ŷi, i.e.,
∣∣∣∂k

byi
f(x̂, ŷ)

∣∣∣ ! 2|λ|/2−|λ′|/2k! (hiCf )k (hiŷi)
−α

d
−k

∥∥zI
∥∥−α+ α

d

∞ , k ∈ N0 .

The integrand f is polynomial in the x̂i and can be integrated exactly. Thus,
similar to Theorem 4.4 we obtain

∣∣∣I [0,1]2fbyi
− Qn,q

hiσ
fbyi

∣∣∣ ! 2|λ|/2−|λ′|/2 2$i
∥∥zI

∥∥−α+ α
d

∞ (hi σ)n(1−α
d
) ,

where σ, q satisfy (4.7), (4.8). Choosing the number of refinements according
to (5.9) we have

∣∣∣I [0,1]2fbyi
− Qn,q

hiσ
fbyi

∣∣∣ !
∥∥zI

∥∥−α+ α
d

∞ ε.

3. Let δi = 0, &i = &′i and ki = k′
i − 1. Similar to the case of identical elements

we have κi(s + t) = κ(z1, . . . , hi(s + t), . . . , zd) and transform the integral

I =

∫

[0,1]

∫

[0,1]
φ(s)ψ(t)κi(s + t)dsdt .
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into

I =

∫

[0,1]

∫

[0,1]
φ(ξ + η(1 − ξ))ψ(1 + η(ξ − 1))κi(ξ + 1)(1 − ξ)dξdη

+

∫

[0,1]

∫

[0,1]
φ(ηξ)ψ(ξ(1 − η))κi(ξ)ξdξdη . (5.14)

The function

f(x̂, ŷ) = 2|λ|/2−|λ′|/2φ̂i(ŷi + x̂i(1 − ŷi))κi(ŷi + 1)(1 − ŷi) ,

can be integrated exactly in the x̂i direction and has no singularity in ŷi, i.e.,
∣∣∣∂k

byi
f(x̂, ŷ)

∣∣∣ ! 2|λ|/2−|λ′|/2k! (hiCf )k h
−α

d
−k

i

∥∥zI
∥∥−α−α

d

∞ , k ∈ N0 .

The function
f(x̂, ŷ) = 2|λ|/2−|λ′|/2φ̂(x̂iŷi)κi(ŷi)ŷi ,

can again be integrated exactly in the x̂i direction and has singularity in ŷi,
i.e.,

∣∣∣∂k
byi

f(x̂, ŷ)
∣∣∣ ! 2|λ|/2−|λ′|/2k! (hiCf )k (hiŷi)

−α
d
−k+1

∥∥zI
∥∥−α+ α

d

∞ , k ∈ N0 .

Choosing the number of Gauss points and refinements according to (5.11)

we again obtain an error in the i-th direction of order
∥∥zI

∥∥−α+ α
d

∞ ε.

Finally, tensorization arguments as in Theorem 4.6 yield the required result.

5.4 Adaptive strategy

As proposed in [6] we define an adaptive strategy to compute the element-element
interactions Q(λ,n),(λ′,n′) with the precision ε","′ given by (3.9).

We loop over the dimension i = 1, . . . , d. For each i we do:

1. Starting point. If δi > Cf max{hi, h′
i}/4 we define quadrature points in the

i-th direction according to (5.7). Else if δi = 0, &i = &′i and ki = k′
i or

ki = k′
i − 1, k′

i = ki − 1 define quadrature points according to (5.9) or (5.11).
Otherwise go to item 2 if &i > &′i, item 3 if &′i > &i and item 4 if &i = &′i.

2. Case &i > &′i. Replace the larger element Dλ′ by its two sons and compute the
associated element-element interaction with precision 2−3/2ε","′ according to
item 1. The desired element-element interaction is calculated via formula
(5.6).
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3. Case &′i > &i. Replace the larger element Dλ by its two sons and compute the
associated element-element interaction with precision 2−1/2ε","′ according to
item 1. The desired element-element interaction is calculated via formula
(5.5).

4. Case &i = &′i. Replace both elements Dλ by their two sons and compute the
associated element-element interaction with precision ε","′ according to item
1. The desired element-element interaction is calculated via formulas (5.5)
and (5.6).

Note that using this strategy we only have to compute an element-element inter-
action where Theorem 5.4 holds. The next lemma shows that the algorithm stops
after, at the most, O(‖&i − &′i‖∞) steps.

Lemma 5.5. Let i ∈ {1, . . . , d}. The following statements concerning the compu-
tation of the element-element interaction by the above algorithm are valid:

1. The given element-element interaction is subdivided into at most O(|&i − &′i|)
interactions Q(bλ,n),( bλ′,n′) where &̂i ≥ &i, &̂′i ≥ &′i.

2. If &i ≤ &′i, there holds &i ≤ &̂i ≤ &̂′i ∼ &′i. The analogous result holds if &′i ≤ &i.

3. On a fixed level &̂i and &̂′i the number of directly computed as well as subdivided
element-element interactions is O(1).

Proof. See [6, Lemma 9.7].

Now with formulas (5.5), (5.6), Lemma 5.5 and Theorem 5.4 it follows that the
proposed quadrature algorithm computes the desired element-element interactions
with a precision that stays proportional to ε","′ .

Corollary 5.6. Assume the Lévy density k(z) satisfies (2.4), i.e., is real analytic
outside of zi = 0, i = 1, . . . , d. Let ε","′ be given by (3.9). Then, the number

of quadrature points to compute an entry A("′,k′),(",k) is at most O(L2d) and the
overall operations to compute the stiffness matrix A at most of log linear complexity
O(2LL4d−2).

Proof. We have for the one-dimensional Gauss points in (5.8), g, g′ ! L, for the
refinements in (5.10), n ! L and for the quadrature points and refinements in
(5.12) again, g, n ! L. Therefore, we need at most O(L2) quadrature points in
each direction i = 1, . . . , d.
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[2] W. Dahmen, H. Harbrecht, and R. Schneider. Compression techniques for
boundary integral equations - asymptotically optimal complexity estimates.
SIAM J. Numer. Anal., 43(6):2251–2271, 2006.
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26



Research Reports

No. Authors/Title

09-19 C. Winter
Wavelet Galerkin schemes for multidimensional anisotropic integrodiffer-
ential operators

09-18 C.J. Gittelson
Stochastic Galerkin discretization of the lognormal isotropic diffusion
problem

09-17 A. Bendali, A. Tizaoui, S. Tordeux, J. P. Vila
Matching of Asymptotic Expansions for a 2-D eigenvalue problem with
two cavities linked by a narrow hole

09-16 D. Kressner, C. Tobler
Krylov subspace methods for linear systems with tensor product
structure

09-15 R. Granat, B. K̊agström, D. Kressner
A novel parallel QR algorithm for hybrid distributed memory HPC
systems

09-14 M. Gutknecht
IDR explained

09-13 P. Bientinesi, F.D. Igual, D. Kressner, E.S. Quintana-Orti
Reduction to condensed forms for symmetric eigenvalue problems on
multi-core architectures

09-12 M. Stadelmann
Matrixfunktionen - Analyse und Implementierung

09-11 G. Widmer
An efficient sparse finite element solver for the radiative transfer equation

09-10 P. Benner, D. Kressner, V. Sima, A. Varga
Die SLICOT-Toolboxen für Matlab

09-09 H. Heumann, R. Hiptmair
A semi-Lagrangian method for convection of differential forms

09-08 M. Bieri
A sparse composite collocation finite element method for elliptic sPDEs

09-07 M. Bieri, R. Andreev, C. Schwab
Sparse tensor discretization of elliptic sPDEs

09-06 A. Moiola
Approximation properties of plane wave spaces and application to the
analysis of the plane wave discontinuous Galerkin method

09-05 D. Kressner
A block Newton method for nonlinear eigenvalue problems


