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Abstract

The approximation of solutions of the homogeneous Helmholtz equation by

finite dimensional plane wave spaces is studied in two dimensions.
The main tool used is Vekua’s theory for elliptic PDE with analytic coeffi-

cients. This leads to a general approximation result for solutions of the Helmholtz

equation, using a finite dimensional space of plane wave functions, with respect
to weighted Sobolev norms.

As a consequence of these estimates, two new a priori error estimates with

respect to the energy and L
2 norms are proved for the plane wave discontinuous

Galerkin method for the homogeneous Helmholtz equation. These estimates are
sharp with respect to the order of convergence in the meshsize h. In all the

bounds, the dependence of the constants on the wavenumber is made explicit.
So it is possible to assess the pollution effect.

1 Introduction

The discretization of boundary value problems for the Helmholtz equation

−∆u + ω2u = f (1.1)

by standard polynomial finite element methods encounters several problems: in order
to represent the oscillations of the solution, either the mesh employed has to be ex-
tremely fine or the polynomial degree has to be very high. Furthermore, the so-called
pollution effect has to be dealt with: the discretization error drifts off the best ap-
proximation error, when the wavenumber ω increases [4]. Thus, satisfactory accuracy
comes with exceedingly high computational costs.

The most natural idea to handle this problem is to incorporate the properties of
the solutions into the discretization. This is possible by using discretization spaces
built from plane wave functions, as it has been done in the partition of unity method
(PUM, [3], [19]), in the discontinuous enrichment method (DEM, [12], [13]), in the
variational theory of complex rays (VTCR, [24]) or in the ultraweak variational for-
mulation (UWVF, [9]).

The ultraweak variational formulation, introduced by Cessenat and Després in [9],
makes use of piecewise plane waves as basis functions and their impedance traces on
the mesh skeleton as unknowns. This method can be reformulated within a more
general class of methods called plane wave discontinuous Galerkin methods (PWDG),
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see [7], [16] and Section 4 of this paper. In the last two works, a priori h-version error
estimates for these methods are also derived. In particular, for general f [16] shows
that, provided that a threshold condition on the meshsize h in terms of the wavenumber
ω is satisfied, linear convergence in h is obtained, in a particular mesh dependent energy
norm, no matter how many plane waves are used in the local approximation spaces.
The sharpness of this theoretical result is demonstrated by numerical experiments.

On the contrary, in the homogeneous case f = 0 it has been observed numerically
([17], [16], [7]) that the order of h-convergence improves when increasing the dimension
of the local plane wave spaces. The estimate in [7] relates the convergence rate in h in
the L2–norm to the dimension of the local space but overestimates the error compared
to what is experimentally observed. In this paper we prove error estimates, both in the
energy and the L2-norm, in which the rate of convergence agrees with the numerical
observations. The theoretical approach is the same as the one in [16], where the
analysis is based on a duality argument.

To that end, it is necessary to study how well the solutions of the two-dimensional
homogeneous Helmholtz equation can be approximated by plane wave spaces in Sobolev
norms. The fundamental tool is Vekua’s theory for elliptic partial differential equa-
tions with analytic coefficients, developed in [26]. Following the argument of [19], we
investigate how well the solutions of the Helmholtz equation can be approximated in
a class of functions, called generalized harmonic polynomials (Section 2). In Section
3 we see how these generalized harmonic polynomials can be approximated by plane
waves. Theorem 3.10 summarizes these approximation properties. A simple numerical
experiment shows the sharpness of these best approximation estimates. The approxi-
mation results proved in these sections are of interest in their own right, independently
of the application to the analysis of the PWDG method. Finally, in Section 4, we apply
these results to the convergence analysis of the PWDG methods introduced in [16].
We obtain the desired error estimate, namely order m and m + 1 in the energy and
L2-norm, respectively, if p = 2m+1 plane waves span the local approximation spaces.

The results in Section 2 are adapted from Chapter 4 of [19], but the dependence
of the constants on the wavenumber is made explicit for the first time. Moreover,
the approximation estimates with respect to h for an arbitrary plane wave function
(Lemmata 3.1 and 3.2) and for generalized harmonic polynomials (Theorems 3.9 and
3.10), in maximum and Sobolev norms, are new.

2 The approximation by generalized harmonic poly-

nomials

In order to study homogeneous elliptic partial differential equations with real analytic
coefficients, Vekua and Bergman ([26] and [5]) independently introduced an integral
operator Re V that maps holomorphic functions into solutions of the PDE under con-
sideration. This operator is continuously invertible with respect to Sobolev norms.
Since we know how to approximate a holomorphic function φ by harmonic polynomi-
als, we can use the continuity of Re V to study the approximation of Re V (φ) by the
transformed polynomials, which are called generalized harmonic polynomials.

We are interested in Vekua’s theory for the Helmholtz equation:

∆u + ω2u = 0, in D,

where, throughout all this section, u is a real function. The domain D ⊂ R2 is simply
connected, Lipschitz and bounded with diameter h; we identify R2 with C. Let D ⊂ C

2



be such that the closure of D is included in D and denote by D∗ and D∗ the complex
conjugates of D and D, respectively. The theory for the general PDEs is presented in
[26] and summarized in [19]. We follow the presentation of the latter, restricted to the
Helmholtz problem.

2.1 The Vekua operator and its inverse

The Vekua operator for the Helmholtz equation is defined as follows: if φ is an holo-
morphic function in D, given z0 ∈ D we set

V [φ, z0](z, z) = φ(z) −
∫ z

z0

φ(t)
∂

∂t
G(t, z0, z, z) dt, (2.2)

where G is the Riemann function1 for the Helmholtz equation, i.e.,

G : D ×D∗ ×D ×D∗ → C

G(z, ζ, t, τ) = J0(ω
√

(z − t)(ζ − τ)),
(2.3)

J0 being the Bessel function of the first kind of order zero.
The function u(x, y) = Re(V [φ, z0](x + iy, x − iy)) is a solution of the Helmholtz

equation. It is possible to prove the existence of an analytic function U(z, ζ), on
D × D∗, such that

U(z, z) = u(Re z, Im z), (2.4)

and U is a solution of ∂2

∂z∂ζ U + ω2

4 U = 0.
The following theorem guarantees the invertibility of Re V and gives the expression

of its inverse.

Theorem 2.1 (Vekua). Fixed z0 ∈ D, let u be a real solution of ∆u + ω2u = 0 in
D, then there exists a unique function φ, holomorphic in D, such that

φ(z0) ∈ R

u(x, y) = Re V [φ, z0](z, z), z = x + iy ∈ D.

Moreover, φ can be written as

φ(z) = (ReV )−1[u, z0](z, z) = 2U(z, z0) − U(z0, z0)G(z0, z0, z, z0). (2.5)

The proof of the theorem can be found in [26], in Section I.12.

1The Riemann function for the Helmholtz equation is defined as the complex function in D×D∗×

D ×D∗ such that

∂2

∂z∂ζ
G(z, ζ, t, τ) +

ω2

4
G(z, ζ, t, τ) = 0, z, t ∈ D, ζ, τ ∈ D

∗,

G(t, τ, t, τ) = 1, t ∈ D, τ ∈ D
∗,

∂

∂z
G(z, τ, t, τ) = 0, z, t ∈ D, τ ∈ D

∗,

∂

∂ζ
G(t, ζ, t, τ) = 0, t ∈ D, ζ, τ ∈ D

∗.

3



The remaining part of this subsection is devoted to the proof of the continuity of
Re V and (ReV )−1 in weighted Sobolev norms defined as follows: for all u ∈ Hk(D)
we define

‖u‖2
k,ω,D :=

k∑

l=0

ω2(k−l) |u|2l,D . (2.6)

These norms are equivalent to the standard Sobolev norms, but are more appropri-
ate for the solutions of Helmholtz equation in that all the terms are dimensionally
homogeneous.

From now on, we define a constant c∗ such that

c∗ := ωh, (2.7)

where h = diam(D).

Theorem 2.2 (Continuity of (ReV )−1). Let D ⊂ R2 be a bounded Lipschitz domain
with diameter h, star-shaped with respect to z0. Let u ∈ Hk(D), k ≥ 1, be a real
solution of ∆u + ω2u = 0 in D and φ(z) = (ReV )−1[u, z0](z, z), as in Theorem 2.1.
Then there are positive constants C0 and Ck, independent of h, ω and c∗, such that

‖φ‖0,D ≤ C0 ec∗
(
1 + c2

∗

)2( ‖u‖0,D + h ‖∇u‖0,D

)
,

‖φ‖k,ω,D ≤ Ck ec∗
(
1 + ck+3

∗

)
‖u‖k,ω,D .

(2.8)

Theorem 2.3 (Continuity of Re V ). Let D be as in Theorem 2.2 with z0 ∈ D fixed
and let φ ∈ Hk(D), k ≥ 0, be holomorphic in D. Then there exist positive constants
C0, Ck, depending only on the shape of D and the position of z0, such that

‖Re V [φ, z0]‖0,D ≤
(
1 + C0c

2
∗e

c∗
)
‖φ‖0,D ,

‖Re V [φ, z0]‖k,D ≤ Ckec∗
(
1 + ck+2

∗

)
‖φ‖k,ω,D , k ≥ 1.

(2.9)

Here the main novelty and the difference with the treatment given in [19] is the use
of the weighted Sobolev norms and some properties of Bessel functions. This allows
us to show that all the involved bounding constants depend on c∗ and not on ω and h
separately.

In order to prove Theorem 2.2 and Theorem 2.3 we need some intermediate results
which will be presented in Sections 2.1.1 and 2.1.2. The proof of Theorems 2.2 and
2.3 will be given in Section 2.1.3.

2.1.1 The estimates for G

In this section we give estimates for the Riemann function G and its derivatives. We
have

∂G(z, ζ, t, τ)

∂z
= −

∂G(z, ζ, t, τ)

∂t
= J ′

0(ω
√

(z − t)(ζ − τ))
ω

2

√
ζ − τ

z − t
,

∂G(z, ζ, t, τ)

∂ζ
= −

∂G(z, ζ, t, τ)

∂τ
= J ′

0(ω
√

(z − t)(ζ − τ))
ω

2

√
z − t

ζ − τ
.

Since the derivatives with respect to z and t and with respect to ζ and τ are identical
we can write the generic derivative of G by deriving only with respect to two variables:

∂|α|G(z, ζ, t, τ)

∂zα1∂ζα2∂tα3∂τα4
= ±

∂|α|G(z, ζ, t, τ)

∂zα1+α3∂ζα2+α4
. (2.10)

4



Using either the definition of the Riemann function or the Bessel equation, we can
calculate the mixed second order derivatives:

∂2G(z, ζ, t, τ)

∂z∂ζ
= −

ω2

4
G(z, ζ, t, τ); (2.11)

that is equal to other three mixed second order derivatives thanks to (2.10). We
calculate pure derivatives using Bessel power expansion:

∂kG(z, ζ, t, τ)

∂zk
=
∑

l≥k

(−1)lω2l l!
(l−k)! (z − t)l−k(ζ − τ)l

4l l! l!

=
∑

j≥0

(−1)kω2k(ζ − τ)k

2k

(−1)jω2j(z − t)j(ζ − τ)j

j! (j + k)! 22j+k

=

(
−

ω2(ζ − τ)

2

)k
Jk(ω

√
(z − t)(ζ − τ))

(
ω
√

(z − t)(ζ − τ)
)k

.

(2.12)

All the derivatives that involve only the variables z and t have this form; while the
ones involving ζ and τ are analogous. Using again the Bessel power expansion we have

∣∣∣∣
Jk(x)

xk

∣∣∣∣ ≤
∑

l≥0

1

2k k!

(
|x|
2

)2l

l! l!
≤

1

2k k!
e|x|, k ≥ 0 ∀x ∈ C. (2.13)

Remembering that |z − t| < h, |ζ − τ | < h and condition (2.7), we obtain the first
bound:

∣∣∣∣
∂kG(z, ζ, t, τ)

∂zk

∣∣∣∣ ≤
1

k!

(ωc∗
4

)k
ec∗ , k ≥ 0, z, t ∈ D, ζ, τ ∈ D. (2.14)

Now we consider a differential operator Dα of order k and define

j = |#(∂z , ∂t) − #(∂ζ , ∂τ )| = |α1 + α3 − α2 − α4|, j ∈ {0, 1, . . . , k}.

Applying (2.10), (2.11) and finally (2.14), we have the estimate

|DαG(z, ζ, t, τ)| =

∣∣∣∣∣
∂j

∂zj

∂k−j

∂z
k−j
2 ∂ζ

k−j
2

G(z, ζ, t, τ)

∣∣∣∣∣

≤

∣∣∣∣∣

(
−ω2

4

) k−j
2 1

j!

(ωc∗
4

)j
ec∗

∣∣∣∣∣
≤

1

j!

(ω

2

)k (c∗
2

)j
ec∗ ,

(2.15)

when α1 + α3 ≥ α2 + α4; in the other case we obtain the same bound.
Finally, we can bound the W k,∞(Ω) norms and seminorms:

|G|W k,∞(D×D∗×D×D∗) ≤ I(k)
(ω

2

)k
ec∗ max

{
1,
(c∗

2

)k
}

, k ∈ {0, 1, . . .}, (2.16)

‖G‖W k,∞(D×D∗×D×D∗) ≤ C(k)

(
1 +

(ω

2

)k
)(

1 +
(c∗

2

)k
)

ec∗ , k ∈ {0, 1, . . .},

(2.17)

where I(k) is the number of multiindices in N4
0 of length k, and C(k) is a constant

that depends only on k.
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2.1.2 The estimates for u and φ

We prove some results, following Chapter 4 of [19], in the particular case of L = ∆+ω2

and make explicit the dependence of all the constants on ω and h.

Lemma 2.4 (Helmholtz internal estimates). Let u ∈ H1(B(x0, R)) satisfy −∆u−
ω2u = f , with f ∈ H1(B(x0, R)), then there exists a positive constant C independent
of ω and R such that

‖u‖L∞(BR/2)
≤ C

((
R−1 + ω2R

)
‖u‖0,BR

+ ‖∇u‖0,BR
+ R ‖f‖0,BR

)
, (2.18)

‖∇u‖L∞(BR/2)
≤ C

(
ω2 ‖u‖0,BR

+
(
R−1+ω2R

)
‖∇u‖0,BR

+ ‖f‖0,BR
+ R ‖∇f‖0,BR

)
,

(2.19)

where BR and BR/2 indicate respectively the balls B(x0, R) and B(x0, R/2) with center
x0 and radius R and R/2.

Proof. It is enough to bound |u(x0)| and |∇u(x0)|, because for all x ∈ BR/2 we can
repeat the proof using B(x, R/2) instead of BR with the same constants.

Let ϕ : R+ → [0, 1] be a smooth cut-off function such that

ϕ(r) =

{
1 |r| ≤ 1

4 ,

0 |r| ≥ 3
4 ,

and ϕR : R2 → [0, 1], ϕR(x) := ϕ
(

1
R |x − x0|

)
. Then

∇ϕR(x) = ϕ′
(

1
R |x − x0|

) x − x0

R|x − x0|
,

∆ϕR(x) =
1

R2
ϕ′′
(

1
R |x − x0|

)
+

1

R|x − x0|
ϕ′
(

1
R |x − x0|

)
.

We define the average of u and two auxiliary functions on BR:

u =
1

πR2

∫

BR

u(y) dy, g(x) = u(x)ϕR(x), g(x) = (u(x) − u)ϕR(x);

their Laplacians are:

f̃(x) : = −∆g(x)

= −
[

1

R2
ϕ′′ +

1

R|x − x0|
ϕ′

]
u(x) − 2ϕ′ x − x0

R|x − x0|
·∇u(x) + ϕ(ω2u + f),

f(x) : = f1(x) + f2(x) + f3(x) := −∆g(x)

= −
[

1

R2
ϕ′′ +

1

R|x − x0|
ϕ′

]
(u(x) − u) − 2ϕ′ x − x0

R|x − x0|
·∇u(x) + ϕ(ω2u + f),

where ϕ and his derivatives are always evaluated in 1
R |x − x0|.

It is easy to see that, for all R > 0, we have:
∫

B(0,R)

(
log |x|− log R

)2
dx =

π

2
R2. (2.20)

6



The fundamental solution formula for Poisson equation states that, if −∆a = b in R2,
then

a(x) = −
1

2π

∫

R2

log |x − y|b(y) dy. (2.21)

This equality holds for all b ∈ L2(BR), thanks to Theorem 9.9 of [15]. We note that
from the divergence theorem

∫

BR

f̃(y) dy = −
∫

BR

∆g(y) dy = −
∫

∂BR

∇g(s) · nds = 0,

because g ≡ 0 in R2 \ B3R/4. We apply (2.21) with a = g and b = f̃ ; using Cauchy-

Schwarz inequality and (2.20) and remembering that f̃ = 0 in R2 \ B3R/4, we obtain:

|u(x0)| = |g(x0)| =

∣∣∣∣−
1

2π

∫

R2

(
log |x0 − y|− log R

)
f̃(y) dy

∣∣∣∣

≤
1

2π

√
π

2
R
∥∥∥f̃
∥∥∥

0,B3R/4

≤ CR

(
Cϕ,2

R2
‖u‖0,BR

+
Cϕ,1

R
‖∇u‖0,BR

+ Cϕ,0ω
2 ‖u‖0,BR

+ Cϕ,0 ‖f‖0,BR

)
,

where the constants Cϕ,j depend only on the j−th derivatives of ϕ and in the last step
we have used the definition of f̃ and the fact that ϕ′( 1

R |x − x0|) = ϕ′′( 1
R |x − x0|) = 0

in BR/4. The estimate (2.18) easily follows.

To prove the second estimate of the lemma we note that, for all ψ ∈ H1
0 (BR),

scaling the Lp-norm and H1-seminorm, using the Sobolev embeddings H1
0 (B1) ↪→

Lp(B1), 2 < p < ∞, and the Poincaré inequality, it holds

‖ψ‖Lp(BR) =

(∫

BR

|ψ(y)|p dy

) 1
p

=

(∫

B1

|ψ(Rŷ)|pR2 dŷ

) 1
p

= R
2
p

∥∥∥ψ̂
∥∥∥

Lp(B1)
≤ C(p)R

2
p

∥∥∥ψ̂
∥∥∥

H1
0 (B1)

≤ C(p)R
2
p

∥∥∥∇ψ̂
∥∥∥

L2(B1)
≤ C(p)R

2
p ‖∇ψ‖L2(BR) .

(2.22)

Now we can estimate the gradient of u in x0 by differentiating the relation (2.21):

|∇u(x0)| = |∇g(x0)|

=

∣∣∣∣−
1

2π

∫

R2

∇x log |x − y|
∣∣
x=x0

f(y) dy

∣∣∣∣ =
1

2π

∣∣∣∣∣

∫

B3R/4

x0 − y

|x0 − y|2
f(y) dy

∣∣∣∣∣

≤
1

2π

∫

B3R/4

1

|x0 − y|
∣∣f1(y) + f2(y)

∣∣ dy +
1

2π

∫

B3R/4

1

|x0 − y|
∣∣f3(y)

∣∣ dy

≤
1

2π

4

R

∥∥f1 + f2

∥∥
L1(B3R/4)

+
1

2π

∥∥∥∥
1

|x0 − y|

∥∥∥∥
Lp′(B3R/4)

∥∥f3

∥∥
Lp(B3R/4)

where we used Hölder inequality L∞ − L1, Lp′ − Lp, p > 2, f1 ≡ f2 ≡ 0 in BR/4,

≤
2

π

√
|B3R/4|

R

∥∥f1 + f2

∥∥
L2(B3R/4)

+ CpR
1− 2

p
∥∥f3

∥∥
Lp(B3R/4)

7



because
∥∥|y|−1

∥∥
Lp′

B(0,R)

= R
1− 2

p

(2−p′)
1
p′

for p > 2,

≤ C
1

R2
‖u − u‖L2(B3R/4)

+ C
1

R
‖∇u‖L2(B3R/4)

+ CR
∥∥∇f3

∥∥
L2(BR)

by definition of f1, f2,
√
|B3R/4| = 3

4

√
πR, and (2.22), f3 ∈ H1

0 (BR)

≤ C
1

R
‖∇u‖L2(B3R/4)

+ CR
∥∥(∇ϕR)(ω2u + f)

∥∥
L2(BR)

+ CR
∥∥ϕR∇(ω2u + f)

∥∥
L2(BR)

≤ C

(
1

R
‖∇u‖L2(BR)+ω2 ‖u‖L2(BR)+Rω2 ‖∇u‖L2(BR)+‖f‖L2(BR)+R ‖∇f‖L2(BR)

)
,

where in the last but one step we have used the Poincarè–Wirtinger inequality, whose
constant scales with R. The final constant depends only on the cut-off function ϕ but
not on R and ω, so we have the second estimate in the assertion.

Lemma 2.5. Let D be a star-shaped domain with respect to the origin, with diameter
h, such that exists α ∈ (0, 1

2 ) such that B(0, 2αh) ⊂ D. Let z = x + iy ∈ D and let
u ∈ H1(D) satisfy the homogeneous equation −∆u−ω2u = 0 in D. Then there exists
a constant C > 0 such that:

∫ 1

0

∫

D
|u(sx, sy)|2 dxdy ds ≤ C

1

α

(
(1 + h4ω4) ‖u‖2

0,D + h2 ‖∇u‖2
0,D

)
,

∫ 1

0

∫

D
|∇u(sx, sy)|2 dxdy ds ≤ C

1

α3

(
h2ω4 ‖u‖2

0,D + (1 + h4ω4) ‖∇u‖2
0,D

)
.

(2.23)

Proof. Following the proof of Lemma 4.2.8 of [19] and using |D| < h2 we get

∫ 1

0

∫

D
|u(sx, sy)|2 dxdy ds ≤ αh2 ‖u‖2

L∞(B(0,αh)) +
1

α
‖u‖2

0,D . (2.24)

Using (2.18) with f = 0, R = αh and α < 1
2 < 1

α we have the first bound. The second
bound follows from applying (2.24) to ∇u and using (2.19).

Lemma 2.6. Let D be as in Lemma 2.5, with B(z1, 2αh) ⊂ D, α ∈ (0, 1
2 ). Let u ∈

H1(D) be a solution of the homogeneous Helmholtz equation in D, and let U(z, z) =
u(Re z, Im z). Let M : D×D×D → C be bounded. Then there exists a constant C > 0
independent of all the parameters such that
∥∥∥∥∥∥

z∫

z1

U(t, t)M(z, t, t) dt

∥∥∥∥∥∥
0,D

≤ Cα− 1
2 h ‖M‖L∞

(
(1 + h2ω2) ‖u‖0,D + h ‖∇u‖0,D

)
,

∥∥∥∥∥∥

z∫

z1

U ′(t, t)M(z, t, t) dt

∥∥∥∥∥∥
0,D

≤ Cα− 3
2 h ‖M‖L∞

(
hω2 ‖u‖0,D + (1 + h2ω2) ‖∇u‖0,D

)
,

(2.25)

where the integrals are taken on the segment between z1 and z ∈ D and U ′(t, t) denotes
complex derivative with respect to t.
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Proof. See the proof of Lemma 4.2.9 of [19], using (2.23).

In the following, we will apply the previous results on a domain D that will be an
element of the mesh in the finite element method. We will assume the meshes to be
shape-regular, so there is no dependence of all the constants on α.

Proposition 2.7 (Holomorphic internal estimates). Let φ be a holomorphic func-
tion in D and φ ∈ L2(D), then for all z ∈ D it holds:

|φ(z)| ≤
1√

π d(z, ∂D)
‖φ‖0,D , (2.26)

∣∣∣∣
∂k

∂zk
φ(z)

∣∣∣∣ ≤
(k + 1)! e√

π

1

d(z, ∂D)k+1
‖φ‖0,D , k ≥ 1. (2.27)

Proof. The first bound follows from the mean-value property of holomorphic functions
and the Jensen inequality:

|φ(z)|2 =

∣∣∣∣∣

∫

B(z,r)
− φ(w) dw

∣∣∣∣∣

2

≤
∫

B(z,r)
− |φ(w)|2 dw =

1

πr2
‖φ‖2

0,B(z,r) ≤
1

πr2
‖φ‖2

0,D ,

with r = d(z, ∂D). For the second one, we fix r = k
k+1d(z, ∂D) so that d(B(z, r), ∂D) =

1
1+kd(z, ∂D); using the Cauchy formula and the previous inequality we have

∣∣∣∣
∂k

∂zk
φ(z)

∣∣∣∣ =

∣∣∣∣∣
k!

2πi

∫

∂B(z,r)

φ(w)

(w − z)k+1
dw

∣∣∣∣∣
≤

k!

2πrk+1
2πr ‖φ‖L∞(∂B(z,r))

≤
k!

rk

1√
πd(B(z, r), ∂D)

‖φ‖L2(D) ≤
(k + 1)!

(
1 + 1

k

)k
√

π d(z, ∂D)k+1
‖φ‖L2(D) .

With the hypotheses as in Lemma 2.5, the bound (2.24) holds also for a holomorphic
φ instead of u. This fact, together with the estimate (2.26), gives an analogue of Lemma
2.6 for holomorphic functions:

∥∥∥∥

∫ z

z1

φ(t)M(z, t, t) dt

∥∥∥∥
0,D

≤ h ‖M‖L∞

(
αh2 1

π(αh)2
‖φ‖2

0,D +
1

α
‖φ‖2

0,D

) 1
2

≤
(
π−1 + 1

) 1
2 h α− 1

2 ‖M‖L∞ ‖φ‖0,D .

(2.28)

2.1.3 Proofs of Theorems 2.2 and 2.3

Proof of Theorem 2.2. The function U satisfies

U(z, ζ) = U(ζ, ζ)G(ζ, ζ, z, ζ) +

∫ z

ζ
U(t, t)∂2G(t, t, z, ζ) dt +

∫ z

ζ
∂1U(t, t)G(t, t, z, ζ) dt

(see [18], § 3.13), where ∂j denotes the complex derivative with respect to the j-th
variable. This, together with (2.5) and (2.3), gives

φ(z) = U(z0, z0)+2

∫ z

z0

U(t, t)∂2G(t, t, z, z0) dt+2

∫ z

z0

∂1U(t, t)G(t, t, z, z0) dt. (2.29)
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We bound the L2-norm of φ using Lemma 2.6 twice with M = G, ∂2G:

‖φ‖0,D ≤ h|U(z0, z0)| + C
[
‖∂2G‖L∞ h

(
(1 + h2ω2) ‖u‖0,D + h ‖∇u‖0,D

)

+ ‖G‖L∞ h
(
hω2 ‖u‖0,D + (1 + h2ω2) ‖∇u‖0,D

) ]

(2.14)
≤ h ‖u‖L∞(B(z0,αh)) + C

[
ωc∗ec∗

4
h
(
(1 + h2ω2) ‖u‖0,D + h ‖∇u‖0,D

)

+ ec∗h
(
hω2 ‖u‖0,D + (1 + h2ω2) ‖∇u‖0,D

)

Lemma 2.4
≤ C

[
(1 + ω2h2) ‖u‖0,D + h ‖∇u‖0,D

+ ec∗(1 + ωhc∗)(1 + c2
∗)
(
‖u‖0,D + h ‖∇u‖0,D

)]
.

from which the first bound follows.
In order to obtain the second bound, we take the k-th derivative of (2.29):

dkφ

dzk
(z) = 2

k−1∑

n=0

dk−n−1

dzk−n−1

(
U(z, z)∂n

3 ∂2G(z, z, z, z0) + ∂1U(z, z)∂n
3 G(z, z, z, z0)

)

+ 2

[∫ z

z0

U(t, t)∂k
3 ∂2G(t, t, z, z0) dt +

∫ z

z0

∂1U(t, t)∂k
3 G(t, t, z, z0) dt

]
.

Now we bound these derivatives using Lemma 2.6 and the estimates from Section 2.1.1:

∥∥∥∥
dk

dzk
φ

∥∥∥∥
0,D

Lemma 2.6
≤ C

[ k∑

j=0

|G|W k−j,∞(D) |U |j,D

+ h
∥∥∂k

3∂2G
∥∥

L∞(D)

(
(1 + ω2h2) ‖u‖0,D + h ‖∇u‖0,D

)

+ h
∥∥∂k

3G
∥∥

L∞(D)

(
hω2 ‖u‖0,D + (1 + ω2h2) ‖∇u‖0,D

)]

(2.16), (2.15)
≤ C

[ k∑

j=0

ωk−jec∗(1 + ck−j
∗ ) |U |j,D

+ hωk+1ck−1
∗ ec∗

(
(1 + ω2h2) ‖u‖0,D + h ‖∇u‖0,D

)

+ hωkck
∗e

c∗
(
hω2 ‖u‖0,D + (1 + ω2h2) ‖∇u‖0,D

) ]

≤ Cec∗
[
(1 + ck

∗) ‖U‖k,ω,D + ck
∗

(
(1 + c2

∗)ω
k ‖u‖0,D + c∗ω

k−1 ‖∇u‖0,D

)

+ ck+1
∗

(
c∗ω

k ‖u‖0,D + (1 + c2
∗)ω

k−1 ‖∇u‖0,D

)]
≤ Cec∗(1 + ck+3

∗ ) ‖u‖k,ω,D ,

because |U |j,D ≤ C |u|j,D due to the definition of U ; here, the derivatives of U are

understood as ∂j

∂zj U(z, z). Finally we can bound the complete norms:

‖φ‖2
k,ω,D =

k∑

j=0

ω2(k−j) |φ|2j,D ≤ Ce2c∗
(
1 + ck+3

∗

)2
k∑

j=0

ω2(k−j) ‖u‖2
j,ω,D

≤ Ce2c∗
(
1 + ck+3

∗

)2 ‖u‖2
k,ω,D .

The constant C depends only on k, z0 and the shape of D, so we have the result.
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Proof of Theorem 2.3. From the definition (2.2) of the Vekua operator we can bound
the norm of u = ReV [φ, z0] using (2.28) and (2.14):

‖u‖0,D ≤ ‖φ‖0,D +

(
π + 1

πα

) 1
2

h

∥∥∥∥
∂

∂t
G

∥∥∥∥
L∞

‖φ‖0,D ≤
(

1 +
1

2α
1
2

hωc∗e
c∗

)
‖φ‖0,D .

Let f be a holomorphic function in three variables and z = x + iy; a derivative of
its integral can be written as

∂k

∂xj∂yk−j

z∫

a

f(t, z, z) dt = Pk−1,j

(
∂

∂z
,

∂

∂z

)
f(z, z, z) +

z∫

a

∂k

∂xj∂yk−j
f(t, z, z) dt,

(2.30)
where Pk−1,j is a formal polynomial of degree k − 1 in two variables. We apply this
formula to f(t, z, z) = φ(t) ∂

∂tG(t, z0, z, z):

|u|k,D ≤
k∑

j=0

∥∥∥∥
∂k

∂jx∂k−jy
u

∥∥∥∥
0,D

(2.2)
≤

k∑

j=0

∥∥∥∥∥
Re

(
∂k

∂jx∂k−jy
φ(z) − Pk−1,j

(
∂

∂z
,

∂

∂z

)
[φ(z)∂1G(z, z0, z, z)]

−
∫ z

a
φ(t)

∂k

∂jx∂k−jy

∂

∂t
G(t, z0, z, z) dt

)∥∥∥∥∥
0,D

(2.28)
≤ C(k)

[

|φ|k,D +
k−1∑

l=0

|G|W k−l,∞(D) |φ|l,D + h |G|W k+1,∞(D) ‖φ‖0,D

]

(2.16)
≤ C(k)

[

|φ|k,D +
k−1∑

l=0

ec∗ωk−l(1 + ck−l
∗ ) |φ|l,D + h ec∗ωk+1(1 + ck+1

∗ ) ‖φ‖0,D

]

≤ C(k) ec∗(1 + ck+2
∗ ) ‖φ‖k,ω,D .

Summing over k, gives the result:

‖u‖2
k,ω,D =

k∑

j=0

ω2(k−j) |u|2j,D ≤ Ce2c∗
(
1 + ck+2

∗

)2
k∑

j=0

ω2(k−j) ‖φ‖2
j,ω,D

≤ Ce2c∗
(
1 + ck+2

∗

)2 ‖φ‖2
k,ω,D .

From the proofs of these theorems we notice that it is easy to prove the continuity
of the complete Vekua operator V with the same constants; on the contrary, the
continuity of (Re V )−1 from Theorem 2.2 cannot be extended to the continuity of V −1

because, for a complex-valued function u, Theorem 2.1 is no longer valid (there is a
version of it that involves two different holomorphic functions; see [26], Section I.10).

We highlight the main difference between these two theorems: the real Vekua oper-
ator is continuous from L2(D) in itself, while its inverse is continuous only from H1(D).
The reason is that the mean-value property and the inverse estimates (2.26) hold true
for holomorphic functions, while for the solutions of the homogeneous Helmholtz equa-
tion we only have (2.18), that involves the norm of the gradient of u.
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2.2 The approximation by generalized harmonic polynomials

Using the Vekua transform, in order to study approximations to generic solutions of
the Helmholtz equation in Sobolev norms, it is enough to study approximations to
holomorphic functions in the same norms. The following theorem gives an approxima-
tion result for holomorphic functions by means of polynomials; for the proof, see [20],
Theorem 2.9. We restrict ourselves to a convex domain: in the following we will apply
this theorem to the cells of triangulations, which usually satisfy this requirement.

Theorem 2.8. Let D ⊂ R2 be a bounded, Lipschitz and convex domain with diameter
h and let 1 ≤ k ≤ N + 1.

Then there exists an operator Πk
N : {f ∈ Hk(D), ∆f = 0} → PN (D), where

PN (D) denotes the space of complex polynomials in D of degree at most N , such that

∣∣f − Πk
Nf
∣∣
j,D

≤ Chk−j

(
log(N + 2)

N + 2

)k−j

|f |k,D ∀ j ∈ {0, 1, . . . , k}, (2.31)

where C depends only on k and on the shape of D.

For the complete Hj-norm, j ∈ {0, 1, . . . , k}, we readily have:

‖f − fN‖j,ω,D ≤
j∑

l=0

ωj−l |f − fN |l,D ≤ C
j∑

l=0

ωj−lhk−l

(
log(N + 2)

N + 2

)k−l

|f |k,D

≤ Chk−j
(
1 + cj

∗

)( log(N + 2)

N + 2

)k−j

|f |k,D

(2.32)

because log(N+2)
N+2 < 1. For every j ∈ {0, 1, . . . , N + 1} also this bound is valid:

‖f − fN‖j,ω,D ≤
j∑

l=0

ωj−l |f − fN |l,D ≤ C
j∑

l=0

ωj−l |f |l,D ≤ C |f |j,ω,D . (2.33)

Definition 2.9. Fixed z0 ∈ D and 1 ≤ k ≤ N +1, for all real solution u of ∆u+ω2u =
0 in D, we define

P k
N (u) := ReV

[
Πk

N

(
(ReV )−1[u, z0]

)
, z0

]
.

The functions in the form P k
N (u) are the generalized harmonic polynomials that

approximate u. The functions P k
N (u) are images of the Vekua operator, so they are

solutions of the homogeneous Helmholtz equation in D, when N ≤ Nmax they belong
to a linear space of dimension Nmax + 1.

The main result of this section is the following theorem that provides the approxi-
mation properties of generalized harmonic polynomials.

Theorem 2.10. Let D ⊂ R2 be a bounded, Lipschitz and convex domain with diameter
h; fix z0 ∈ D. Let u ∈ Hk(D), k ≥ 1, be a real solution of ∆u + ω2u = 0 in D. Then
the generalized harmonic polynomial P k

N (u) satisfies

∥∥u − P k
N (u)

∥∥
j,ω,D

≤ Ce2c∗
(
1 + ck+2j+5

∗

)
hk−j

(
log(N + 2)

N + 2

)k−j

‖u‖k,ω,D

∀ j, k, N ∈ N0, k ≥ 1, 0 ≤ j ≤ k ≤ N + 1,

(2.34)

where the constant C depends only on k, z0 and the shape of D.
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Proof. It is enough to write the definition of P k
N (u) and use the Theorems 2.3, 2.8

(bound (2.32)) and 2.2:

∥∥u − P k
N (u)

∥∥
j,ω,D

=
∥∥∥u − ReV

[
Πk

N

(
(ReV )−1[u, z0]

)
, z0

]∥∥∥
j,ω,D

≤ C(j)ec∗
(
1 + cj+2

∗

) ∥∥(ReV )−1[u, z0] − Πk
N

(
(ReV )−1[u, z0]

)∥∥
j,ω,D

≤ C(j, k)ec∗
(
1 + c2j+2

∗

)
hk−j

(
log(N + 2)

N + 2

)k−j ∣∣(ReV )−1[u, z0]
∣∣
k,D

≤ C(j, k)e2c∗
(
1 + ck+2j+5

∗

)
hk−j

(
log(N + 2)

N + 2

)k−j

‖u‖k,ω,D .

Since j ≤ k, we can choose C depending only on k but not on j.

In [20, Theorem 3.16] the same result is proved for a more general PDE in a
starshaped and non-convex domain, using standard Sobolev norms, but the bounding
constants depend on ω in a unknown way.

3 The approximation by plane waves

In the previous section we have studied how to approximate a solution of the ho-
mogeneous Helmholtz equation by generalized harmonic polynomials. However the
analytical form of these functions is not simple, so we will not use them for imple-
menting the finite element method. Instead, we will use a finite dimensional space
of plane waves that approximates generalized harmonic polynomials, that, in turn,
approximate the solutions of the equation.

We start by studying the approximation of a plane wave with arbitrary direction
in maximum norm (Theorem 3.3). This allows to approximate in the same norm
the Herglotz functions, that are continuous linear combination of plane waves (Lemma
3.4). This class of functions includes the generalized harmonic polynomials. In order to
approximate these in Sobolev norms (Theorem 3.9), we need to write them explicitly
(Lemma 3.5) and to prove the continuity of the inverse of Vekua operator in L∞-
norm (Lemma 3.8). Finally we join the result of the previous section and we find
the approximation of an arbitrary solution of the Helmholtz equation with the desired
order of convergence in h (Theorem 3.10).

Let p = 2m + 1 ≥ 3 be an odd integer, and let ϕk ∈ [0, 2π), k = 1, . . . , p, be
distinct angles. We denote the plane wave functions of wave number ω and direction
dθ = (cos θ, sin θ), θ ∈ [0, 2π] by

eθ(x, y) = eiω(x cos θ+y sin θ) = eiωr cos(θ−ψ), (x, y) = (r cosψ, r sinψ) ∈ R
2.

We introduce the discrete space

PW p
ω(R2) =

{
v ∈ C∞(R2), v(x, y) =

p∑

k=1

αkeϕk(x, y), αk ∈ C

}
.

An interesting case is obtained when the angles are uniformly spaced, in this case we
write

PW p,ξ
ω (R2) =

{
v ∈ C∞(R2), v(x, y) =

p∑

k=1

αkeϕk(x, y), αk ∈ C, ϕk = (k−1)
2π

p
+ ξ
}
.
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3.1 The approximation of generic plane waves

We first study how the space PW p
ω approximates a plane wave with arbitrary direction.

In a first step we analyze the order of approximation with respect to ω in a normal-
ized reference element, then, scaling on the actual domain, we achieve the order of
convergence with respect to h. We will make use of the following technical lemma.

Lemma 3.1. Let ϕk ∈ [0, 2π), k = 1, . . . , p = 2m + 1, be different angles. Then the
p × p square matrix

Q =






1 1 · · · 1
cosϕ1 cosϕ2 · · · cosϕp

...
...

. . .
...

cosm ϕ1 cosm ϕ2 · · · cosm ϕp

sinϕ1 sinϕ2 · · · sinϕp

cosϕ1 sinϕ1 cosϕ2 sinϕ2 · · · cosϕp sinϕp
...

...
. . .

...
cosm−1 ϕ1 sinϕ1 cosm−1 ϕ2 sinϕ2 · · · cosm−1 ϕp sinϕp






is invertible.

Proof. Let v = [b0, . . . , bm, c1, . . . , cm]t ∈ Cp, be a vector. We define the function

Q(ϕ) =
m∑

j=0

bj cosj ϕ −
m∑

j=1

cj cosj−1 ϕ sinϕ.

If we can prove that Q(ϕk) = 0 for each k ∈ {1, . . . , p} implies v = 0 then, for all
v ∈ Cp, Qtv = {Q(ϕk)}k=1,...,p = 0 implies v = 0, thus kerQt = {0}, i.e., Q is not
singular.

For every 1 ≤ q ≤ j − 1, the following formula holds
(

j−1

q−1

)
−
(

j−1

q

)
=

(j − 1)!(q − j + q)

q!(j − q)!
=

2q − j

j

(
j

q

)
.

We rewrite Q by expanding the powers of cosines as powers of binomials, rearrang-
ing the indexes in order to collect the exponentials with the same exponent 2q− j = l,
isolating and then reinserting the terms with q = 0 and q = j in the sum over q:

Q(ϕ) =
m∑

j=0

bj

j∑

q=0

(
j

q

)
1

2j
eiϕ(2q−j) +

m∑

j=1

cj

j−1∑

q=0

(
j − 1

q

)
1

2ji
eiϕ(2q−j+1)

(
eiϕ − e−iϕ

)

= b0 +
m∑

j=1

bj

2j

j∑

q=0

(
j

q

)
eiϕ(2q−j) − i

m∑

j=1

cj

2j

[ j∑

q=1

(
j − 1

q − 1

)
eiϕ(2q−j)

−
j−1∑

q=0

(
j − 1

q

)
eiϕ(2q−j)

]

= b0 +
m∑

j=1

1

2j

[
bje

−iϕj + bje
iϕj − icje

iϕj + icje
−iϕj

+
j−1∑

q=1

(
bj

(
j

q

)
− icj

((
j − 1

q − 1

)
−
(

j − 1

q

)))
eiϕ(2q−j)

]
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= b0 +
m∑

j=1

1

2j

[ j∑

q=0

(
j

q

)(
bj − i

2q − j

j
cj

)
eiϕ(2q−j)

]

=
m∑

l=−m

eiϕl
∑

|l|≤j≤m
l+j even

1

2j

(
j

l+j
2

)(
bj − icj

l

j

)

︸ ︷︷ ︸
=:γl

where in the last step we have changed the index l = 2q − j; when l = j = 0 we
understand cj

l
j = 0.

Since Q(ϕ) is a trigonometric polynomial, if Q(ϕk) = 0 for every k ∈ {1, . . . , p}
then all the coefficients γk are zero.

Now we only have to prove that γl = 0, with l = 0, . . . , p, implies v = [b0, . . . , bm,
c1, . . . , cm]t = 0. We notice that

bm = 2m−1 1

2m

(
bm − icm + bm + icm

)
= 2m−1(γm + γ−m) = 0,

cm = i2m−1 1

2m

(
bm − icm − (bm + icm)

)
= i2m−1(γm − γ−m) = 0.

We can proceed by induction with respect to decreasing l: if bj = cj = 0 for every
j ≥ l > 0 then

bl−1 =
1

2
2l−1

(
j

j+l−1
2

)−1

(γl−1 + γ−(l−1)) = 0

cl−1 =
i

2
2l−1

(
j

j+l−1
2

)−1

(γl−1 − γ−(l−1)) = 0

We have proved that all the coefficients, including b0 = γ0 = 0, vanish: γ = 0 implies
v = 0, from which we have the result.

The necessity of using an odd number p of plane waves is evident from the definition
of the matrix Q. Furthermore with an even dimensional basis, in the limit ω → 0, we
have an incomplete space of harmonic polynomials and we cannot apply the theory
of [16]. Finally, from the simulations of [17, Sect. 3.2] we notice that increasing the
dimension from 2m + 1 to 2m + 2 does not improve the order of convergence of the
PWDG method.

Let D be a domain with diameter h; the reference domain is defined as D̂ = 1
hD,

with diameter 1. A plane wave with wavenumber ω > 0 scaled on D̂ has wavenumber
ω̂ = hω:

êθ(x̂, ŷ) := eiω̂(x̂ cos θ+ŷ sin θ) = eθ(hx̂, hŷ).

We have the following result.

Lemma 3.2. Let D̂ be a domain with diameter 1 including the origin. Let ϕk ∈ [0, 2π),
k = 1, . . . , p = 2m + 1 ≥ 3, all different. Then, having fixed θ ∈ [0, 2π], there exist
α1, . . . , αp ∈ C such that

∥∥∥∥∥
êθ −

p∑

k=1

αkêϕk

∥∥∥∥∥
L∞( bD)

≤ C ω̂m+1ec∗ , (3.35)

where C > 0 depends only on the set {ϕk}p
k=1.
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Proof. If we expand the exponentials in the difference between the plane wave functions
êθ(x, y) = eiω̂r cos(θ−ψ) and êϕk(x, y) = eiω̂r cos(ϕk−ψ), using polar coordinates (x, y) =
(r cosψ, r sinψ) we get:

êθ(x, y) −
p∑

k=1

αkêϕk(x, y) =
∑

j≥0

1

j!
ω̂j(ir)j

[
cosj(θ − ψ) −

p∑

k=1

αk(cosj ϕk − ψ)

]

=
∑

j≥0

1

j!
ω̂j(ir)j

[
(cos θ cosψ + sin θ sinψ)j −

p∑

k=1

αk(cos ϕk cosψ + sinϕk sinψ)j

]

=
∑

j≥0

1

j!
ω̂j(ir)j

[
j∑

l=0

j!

l! (j − l)!
cosl ψ cosl θ sinj−l ψ sinj−l θ

−
p∑

k=1

αk

j∑

l=0

j!

l! (j − l)!
cosl ψ cosl ϕk sinj−l ψ sinj−l ϕk

]

=
∑

j≥0

1

j!
ω̂j(ir)j

j∑

l=0

j!

l! (j − l)!
cosl ψ sinj−l ψ

[
cosl θ sinj−l θ −

p∑

k=1

αk cosl ϕk sinj−l ϕk

]
.

(3.36)

Lemma 3.1 guarantees that there is a vector α ∈ Cp such that

Qα = [1, cos θ, . . . , cosm θ, sin θ, . . . , cosm−1 θ sin θ]t,

that is





p∑

k=1

αk cosr ϕk = cosr θ, r = 0, . . . , m,

p∑

k=1

αk cosr−1 ϕk sinϕk = cosr−1 θ sin θ, r = 1, . . . , m.

(3.37)

We choose two nonnegative integers s and t such that s + t ≤ m; thus, when t is even,

p∑

k=1

αk coss ϕk sint ϕk =
p∑

k=1

αk coss ϕk(1 − cos2 ϕk)
t
2

=
p∑

k=1

αk coss ϕk

t
2∑

q=0

( t
2

q

)
(−1)q cos2q ϕk =

t
2∑

q=0

( t
2

q

)
(−1)q

p∑

k=1

αk coss+2q ϕk

=

t
2∑

q=0

( t
2

q

)
(−1)q coss+2q θ = coss θ(1 − cos2 θ)

t
2 = coss θ sint θ.

For odd t we get the same inequality by factorising sinϕk and using the second equality
of (3.37) instead of the first one.

If we insert the vector α in (3.36), the content of the last brackets vanishes for
every j = l + (j − l) ≤ m, so we can bound the L∞-norm as follows:

∥∥∥∥∥
êθ −

p∑

k=1

αkêϕk

∥∥∥∥∥
L∞( bD)

= sup
r,ψ

∣∣∣∣∣∣

∑

j≥m+1

1

j!
ω̂j(ir)j

[
(cos(θ − ψ))j −

p∑

k=1

αk(cos(ϕk − ψ))j

]
∣∣∣∣∣∣
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≤ ω̂m+1
∑

j≥0

ω̂j

(j + m + 1)!

(
1 +

p∑

k=1

|αk|
)

≤
1

(m + 1)!
ω̂m+1ec∗

(
1 + p

∥∥Q−1
∥∥

1

)
≤ C(p, {ϕk}) ω̂m+1 ec∗ ,

using r < 1, ω̂ = ωh < c∗ and

p∑

k=1

|αk| = ‖α‖1 ≤
∥∥Q−1

∥∥
1

∥∥[1, cos θ, . . . , cosm θ, sin θ, . . . , cosm−1 θ sin θ]t
∥∥

1

≤ C(p, {ϕk}).

By transforming to the original domain D, we obtain the convergence in h of the
best approximation in the L∞-norm.

Theorem 3.3. Let D be a domain of diameter h containing the origin. Let ϕk ∈
[0, 2π), k = 1, . . . , p = 2m + 1 ≥ 3, different directions. Thus, having fixed θ ∈ [0, 2π],
there exist α1, . . . , αp ∈ C such that

∥∥∥∥∥
eθ −

p∑

k=1

αkeϕk

∥∥∥∥∥
L∞(D)

≤ C(p, {ϕk}) hm+1ωm+1ec∗ . (3.38)

Proof. Choose the same αk of Lemma 3.2 and recall that eθ(x, y) = êθ

(
x
h , y

h

)
:

∥∥∥∥∥
eθ −

p∑

k=1

αkeϕk

∥∥∥∥∥
L∞(D)

= sup
(x,y)∈D

∥∥∥∥∥
êθ

(x

h
,
y

h

)
−

p∑

k=1

αkêϕk

(x

h
,
y

h

)
∥∥∥∥∥

=

∥∥∥∥∥
êθ −

p∑

k=1

αkêϕk

∥∥∥∥∥
L∞( bD)

≤ C(p, {ϕk}) ω̂m+1ec∗ = C(p, {ϕk}) hm+1ωm+1ec∗ .

If α is the vector of the coefficients that allows to approximate eθ and β is the
analogous for eθ+π = e−iω(x cos θ+y sin θ), then for all θ ∈ [0, 2π], with m ≥ 1, the
following bounds hold:

∥∥∥∥∥
cos

(
ω(x cos θ + y sin θ)

)
−

p∑

k=1

αk + βk

2
eϕk

∥∥∥∥∥
L∞(D)

=
1

2

∥∥∥∥∥
eiω(x cos θ+y sin θ) −

p∑

k=1

αkeϕk + e−iω(x cos θ+y sin θ) −
p∑

k=1

βkeϕk

∥∥∥∥∥
L∞(D)

≤ C(p, {ϕk}) hm+1ωm+1ec∗ ,

∥∥∥∥∥
sin
(
ω(x cos θ + y sin θ)

)
−

p∑

k=1

αk − βk

2i
eϕk

∥∥∥∥∥
L∞(D)
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=

∥∥∥∥∥
1

2i

(

eiω(x cos θ+y sin θ) −
p∑

k=1

αkeϕk − e−iω(x cos θ+y sin θ) +
p∑

k=1

βkeϕk

)∥∥∥∥∥
L∞(D)

≤ C(p, {ϕk}) hm+1ωm+1ec∗ , (3.39)

which means that for the real and imaginary parts of a plane wave of direction θ the
same best approximation estimates hold true.

Numerical experiment 1. Figure 1 shows that the infinity norm of the approxima-
tion error for a generic plane wave in D = (0, h)2 varies as hm+1, so the estimates
(3.38) are sharp. Evaluating the error with h approaching to zero is equivalent to
evaluating it on the reference domain D̂ with ω̂ going to zero, so it is not possible to
compute the plane wave by using the standard basis {eϕk} of PWω(R2) because this is
not stable with respect to this limit. The basis introduced in [16] has been used instead,
with a power expansion in ω truncated at the 13th term.

Figure 1: The norm ‖eθ −
∑p

k=1 αkeϕk‖L∞((0,h)2) with ϕk uniformly spaced, θ = 1,
ω = 1, plotted against h for p = 3, . . . , 11.
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3.2 The approximation of the generalized harmonic polynomi-
als

In the previous section we have derived best approximation estimates in the L∞-norm
for a plane wave function of a fixed direction in PW p

ω(R2). By using this result, in
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this section we derive best approximation estimates in L∞ and in Sobolev norms for
generalized harmonic polynomials.

If a function u is a solution of the homogeneous Helmholtz equation and is also a
tempered distribution, its Fourier transform satisfies

(|ξ|2 − ω2)û(ξ) = 0,

namely its support lies on the circle of radius ω centered in the origin. The Dirac delta
distribution centered in (ω cos θ, ω sin θ) is the Fourier transform of the eθ plane wave,
so, in terms of Fourier transform, Lemma 3.2 shows how it is possible to approximate
a Dirac delta centered at a point on this circle by a finite number of Dirac deltas
centered at fixed points on the same circle. Now we study how the same Dirac delta
distributions approximate a function g ∈ L1(0, 2π).

Lemma 3.4. Let D be a domain with diameter h and containing the origin. Let
g ∈ L1(0, 2π) and

u(x, y) =

∫ 2π

0
Re
(
g(θ)eiω(x cos θ+y sin θ)

)
dθ. (3.40)

Let ϕ1 . . .ϕp ∈ [0, 2π) be different angles, with p = 2m + 1 ≥ 3. Then there exist
α1, . . . , αp such that

∥∥∥∥∥
u −

p∑

k=1

αkeϕk

∥∥∥∥∥
L∞(D)

≤ C(p, {ϕk})ec∗hm+1ωm+1 ‖g‖L1(0,2π) . (3.41)

Proof. We fix δ > 0 and partition the interval [0, 2π) into measurable sets Aj such that
Aj ⊂ [aj, bj), bj − aj < δ and it is possible to approximate g with a simple function
gδ(θ) =

∑
j gjχAj (θ) in L1-norm:

‖g − gδ‖L1(0,2π)
δ→0−−−→ 0.

Plane waves are C1 functions in θ so, thanks to the Lagrange theorem, for all
θ ∈ Aj ⊂ [aj , bj) there exists c ∈ [aj , θ] such that

∣∣∣eiω(x cos θ+y sin θ) − eiω(x cos aj+y sin aj)
∣∣∣ =

∣∣∣∣(θ − aj)
∂

∂θ
eiω(x cos θ+y sin θ)

∣∣∣
θ=c

∣∣∣∣

= (θ − aj)
∣∣∣iωeiω(x cos c+y sin c)(−x sin c + y cos c)

∣∣∣ ≤ δωh.

We have
∣∣∣∣∣
u(x, y) −

∑

j

|Aj |Re
(
gje

iω(x cos aj+y sin aj)
)
∣∣∣∣∣

=

∣∣∣∣∣∣

∫ 2π

0
Re
(
g(θ)eiω(x cos θ+y sin θ) −

∑

j

χAj (θ)gje
iω(x cos aj+y sin aj)

)
dθ

∣∣∣∣∣∣

≤
∑

j

∫

Aj

∣∣∣g(θ)eiω(x cos θ+y sin θ) − gje
iω(x cos aj+y sin aj)

∣∣∣ dθ
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≤
∑

j

∫

Aj

|g(θ) − gj |
∣∣∣eiω(x cos θ+y sin θ)

∣∣∣ dθ

+ |gj |
∫

Aj

∣∣∣eiω(x cos θ+y sin θ) − eiω(x cos aj+y sin aj)
∣∣∣ dθ

≤ ‖g − gδ‖L1(0,2π) +
∑

j

|gj ||Aj | sup
θ∈Aj

∣∣∣eiω(x cos θ+y sin θ) − eiω(x cos aj+y sin aj)
∣∣∣

≤ ‖g − gδ‖L1(0,2π) + ‖gδ‖L1(0,2π) δωh
δ→0−−−→ 0,

because ‖gδ‖L1(0,2π) is bounded.
This convergence is uniform in (x, y). From (3.39) we approximate real and imag-

inary parts of eiω(x cos aj+y sin aj) and their linear combinations using plane waves be-
longing to PWω(R2), so there are αj ∈ Cp such that:

∥∥∥∥∥∥

∑

j

{

|Aj |Re
(
gje

iω(x cos aj+y sin aj)
)
−

p∑

k=1

αj,keϕk

}∥∥∥∥∥∥
L∞(D)

=

∥∥∥∥∥

∑

j

{
|Aj |

(
Re(gj) cos

(
ω(x cos aj + y sinaj)

)
− Im(gj) sin

(
ω(x cos aj + y sin aj)

))

−
p∑

k=1

αj,keϕk

}∥∥∥∥∥
L∞(D)

≤ ‖g‖L1(0,2π) C(p, ϕk) hm+1ωm+1ec∗ . (3.42)

Finally we use the triangle inequality, choosing δ small enough so that
∣∣u(x, y) −∑

j |Aj |Re
(
gjeiω(x cos aj+y sin aj)

)∣∣ is uniformly smaller than (3.42) and αk :=
∑

j αj,k,
we get

∥∥∥∥∥
u −

p∑

k=1

αkeϕk

∥∥∥∥∥
L∞(D)

≤

∥∥∥∥∥∥
u −

∑

j

|Aj |Re
(
gje

iω(x cos aj+y sin aj)
)
∥∥∥∥∥∥

L∞(D)

+

∥∥∥∥∥∥

∑

j

{
|Aj |Re

(
gje

iω(x cos aj+y sin aj)
)
−

p∑

k=1

αj,keϕk

}
∥∥∥∥∥∥

L∞(D)

≤ ‖g‖L1(0,2π) C(p, {ϕk}) hm+1ωm+1ec∗ .

We derive the following expressions for the generalized harmonic polynomials.
These functions are the circular waves in the plane.

Lemma 3.5. Let P (z) = aNzN + . . . + a1z + a0 be a complex polynomial of degree N .
Denoting z = x + iy = reiψ, the following identities hold

V [P, 0](x, y) =
N∑

n=0

an n!

(
2

ω

)n

einψJn(ωr)

=
N∑

n=0

an (−i)n 2nn!

2πωn

∫ 2π

0
einθeiω(x cos θ+y sin θ) dθ.

(3.43)
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Proof. For any holomorphic φ, having fixed z0 = 0, by the definition of the Vekua
transform (2.2) we get:

V [φ, 0](x, y) = φ(z) −
∫ z

0
φ(t)

∂

∂t
J0

(
ω
√

(t − z)(0 − z)
)
dt

= φ(z) −
∫ 1

0
φ(sz)

1

z

∂

∂s
J0

(
ω|z|

√
1 − s

)
z ds

= φ(z) −
∫ 1

0
φ(sz)J1

(
ωr

√
1 − s

) ωr

2
√

1 − s
ds,

(3.44)

because J ′
0 = −J1.

In the case φ(z) = zn, expanding the Bessel function J1 and using
∫ 1
0 sn(1−s)j ds =

β(1 + n, 1 + j) = n! j!
(n+j+1)! we obtain the first identity for a monomial:

V [zn, 0](x, y) = zn −
∫ 1

0
snzn

∞∑

j=0

(−1)j
(
ωr

√
1 − s

)2j+1

j! (j + 1)! 22j+1

ωr

2
√

1 − s
ds

= zn



1 −
∞∑

j=0

(−1)j
(
ωr
)2j+2

j! (j + 1)! 22j+2

∫ 1

0
sn(1 − s)j ds





= zn



1 −
2n n!

rnωn

∞∑

j=0

(−1)j
(
ωr
)2j+2+n

(n + j + 1)! (j + 1)! 22j+2+n





= einψ

(

rn +
2n n!

ωn

∞∑

l=1

(−1)l
(
ωr
)2l+n

(l + n)! l! 22l+n

)

= einψ 2n n!

ωn

∞∑

l=0

(−1)l
(
ωr
)2l+n

(l + n)! l! 22l+n
= einψn!

(
2

ω

)n

Jn(ωr).

In order to prove the second identity we use

∫ 2π

0
eilθ dθ =

{
0 l ∈ Z, l .= 0,

2π l = 0,

and obtain the result:

(−i)n 2nn!

2πωn

2π∫

0

einθeiωr cos(θ−ψ) dθ = (−i)n 2nn!

2πωn

2π∫

0

einθ
∞∑

j=0

1

j!

(
iωr cos(θ − ψ)

)j
dθ

= (−i)n 2nn!

2πωn

∞∑

j=0

1

j!
(iωr)j

∫ 2π

0
einθ

(
ei(θ−ψ) + e−i(θ−ψ)

2

)j

dθ

= (−i)n 2nn!

2πωn

∞∑

j=0

1

j!

(
iωr

2

)j j∑

k=0

j!

k! (j − k)!

∫ 2π

0
ei(n+2k−j)θ dθ eiψ(j−2k)

= (−i)n 2nn!

2πωn

∑

j≥0
0≤k≤j

n+2k−j=0

(
iωr

2

)j 1

k! (j − k)!
2πeiψ(j−2k)
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= (−i)n 2nn!

ωn

∞∑

k=0

(−1)kin
(ωr

2

)2k+n 1

k! (k + n)!
eiψn = n!

(
2

ω

)n

eiψnJn(ωr)

Finally we get the assertion for a generic polynomial by linearity.

Thanks to this lemma, we get that

Re V [P, 0](x, y) =
N∑

n=0

2nn!

2πωn

∫ 2π

0
Re
(
an(−i)neinθeiω(x cos θ+y sin θ)

)
dθ

can be written in the form (3.40), with

g(θ) =
N∑

n=0

2nn!

2πωn
an(−i)neinθ, (3.45)

with norm

‖g‖L1(0,2π) ≤
N∑

n=0

2nn!

ωn
|an|. (3.46)

So Lemma 3.4 applies to the generalized polynomials, which means that the space
PWω(R2) approximates these functions and generic plane waves with the same order
in h. The result is stated the following theorem.

Theorem 3.6. Let D be a domain of diameter h containing the origin. Let P (z) =
aNzN + . . .+a1z+a0 be a complex polynomials of degree N and let ϕ1, . . . , ϕp ∈ [0, 2π)
be different angles, with p = 2m + 1 ≥ 3. Then there exist α1, . . . , αp ∈ C such that

∥∥∥∥∥
Re V [P, 0] −

p∑

k=1

αkeϕk

∥∥∥∥∥
L∞(D)

≤ C(p, {ϕk})hm+1
N∑

n=0

2nn!ωm+1−n|an|.

Numerical experiment 2. The numerical studies show that with the optimal choice
of the αks the error behaves like

∥∥∥∥∥
Re V [zN , 0] −

p∑

k=1

αkeϕk

∥∥∥∥∥
L∞((0,h)2)

∼ C hmax(p−N,N),

as in Figure 2. When N = m, m + 1 we get exactly the order hm+1 we proved for the
generic function u, while with other values of the degree N the exponent of h is better.

We end this section by proving best approximation estimates in Sobolev norms.
In order to do that, we need the following two lemmata, about the link between
holomorphic and real harmonic functions and the continuity of (ReV )−1 in maximum
norm.

Lemma 3.7. Let u0 be a real harmonic function in the ball B(0, 3h) and let

v0(x, y) :=

∫ y

0
D1u0(x, t) dt −

∫ x

0
D2u0(t, 0) dt, (3.47)

where D1 and D2 denote the real derivatives with respect to x and y, respectively. Then
φ = u0 + iv0 is the unique holomorphic function in B(0, 3h) such that Re φ = u0 and
φ(0, 0) ∈ R. Furthermore there is a constant C independent of h such that

‖φ‖L∞(B(0,2h)) ≤ C ‖u0‖L∞(B(0,3h)) . (3.48)
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Figure 2: The norm
∥∥Re V [zN , 0] −

∑p
k=1 αkeϕk

∥∥
L∞((0,h)2)

with N = 1, . . . , 4, p =

3, . . . , 11, ϕk equally spaced, ω = 1 and varying h. The order of convergence is
hmax(p−N,N), better than hm+1 when N .= m, m + 1.
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Proof. From the definition of v0 it follows that φ(0, 0) = u0(0, 0) ∈ R and φ is holomor-
phic since the Cauchy-Riemann conditions hold. By contradiction, suppose there exists
another holomorphic function φ̃ .= φ satisfying the same condition, then φ̃ = u0 + iṽ0,
so D1ṽ0(x, y) = −D2u0(x, y) = D1v0(x, y) and D2ṽ0(x, y) = D1u0(x, y) = D2v0(x, y),
with ṽ0(0, 0) = v0(0, 0) = 0. Thus v0 and ṽ0 are functions with the same gradient ev-
erywhere and the same value in the origin, so they have to coincide and the uniqueness
of φ follows.

In order to prove the bound (3.48), we use the internal estimate:

|Djv(x, y)| ≤ C
1

R
‖v‖L∞(B((x,y),R)) , j = 1, 2,

that holds for all harmonic functions v in B((x, y), R). The proof can be find in
Theorem 2.4 of [2]. Using this estimate and (3.47) we get the results:

‖φ‖L∞(B(0,2h)) ≤ ‖u0‖L∞(B(0,2h)) + ‖v0‖L∞(B(0,2h))

≤ ‖u0‖L∞(B(0,2h)) + 2 h ‖D1u0‖L∞(B(0,2h)) + 2 h ‖D2u0‖L∞(B(0,2h))

≤ ‖u0‖L∞(B(0,2h)) + h C
1

h
‖u0‖L∞(B(0,3h)) ≤ C ‖u0‖L∞(B(0,3h)) .
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Lemma 3.8. Let u be a real function satisfying ∆u+ω2u = 0 in B(0, 3h). Then there
exists a constant C > 0 independent of h and ω such that

∥∥(ReV )−1[u, 0]
∥∥

L∞(B(0,2h))
≤ C(1 + c2

∗e
3
2 c∗) ‖u‖L∞(B(0,3h)) . (3.49)

Proof. Set z = x + iy. It is possible to prove ([26], §13.2) that there exists a unique
complex harmonic function u0 in B(0, 3h) such that the following identities hold:

u(x, y) = u0(x, y) −
∫ 1

0
u0(sx, sy)

∂

∂s
J0

(
ωr

√
1 − s

)
ds,

u0(x, y) = u(x, y) +
1

2
ωr

∫ 1

0

u(xs, ys)
√

s(1 − s)
I1(ωr

√
s(1 − s))) ds,

where r = |x + iy| and I1(z) = −iJ1(iz) is the modified Bessel function of order one.
Since u is real, also u0 is real. Thanks to (2.13) we have

∣∣∣∣
I1(x)

x

∣∣∣∣ =

∣∣∣∣
J1(ix)

x

∣∣∣∣ ≤
1

2
e|x| ∀ x ∈ C,

and using r
√

s(1 − s) < 3h · 1
2 the following bound holds

‖u0‖L∞(B(0,3h)) ≤ ‖u‖L∞(B(0,3h))+

∥∥∥∥∥∥

ω2r2

2

1∫

0

u(xs, ys)
I1(ωr

√
s(1−s))

ωr
√

s(1−s)
ds

∥∥∥∥∥∥
L∞(B(0,3h))

≤
(

1 +
1

4
ω2(3h)2eω 3

2h

)
‖u‖L∞(B(0,3h)) ≤

(
1 +

9

4
c2
∗e

3
2 c∗

)
‖u‖L∞(B(0,3h)) .

(3.50)
Lemma 3.7 guarantees that there exists only one φ holomorphic, with Re φ = u0

and φ(0, 0) ∈ R. Thanks to (3.44) we have

V [φ, 0](x, y) = φ(z) −
∫ 1

0
φ(sz)

∂

∂s
J0

(
ω|z|

√
1 − s

)
ds,

and taking the real part

Re V [φ, 0](x, y) = u0(z) −
∫ 1

0
u0(sz)

∂

∂s
J0

(
ω|z|

√
1 − s

)
ds = u(x, y).

thus, φ(z) = (ReV )−1[u, 0](x, y) and we can conclude using (3.48) and (3.50)

∥∥(ReV )−1[u, 0]
∥∥

L∞(B(0,2h))
= ‖φ‖L∞(B(0,2h)) ≤ C ‖u0‖L∞(B(0,3h))

≤ C(1 + c2
∗e

3
2 c∗) ‖u‖L∞(B(0,3h)) .

Now we are able to approximate the generalized polynomials in Sobolev norms.
The following theorem proves the existence of a linear combination of plane waves
in the space PWω(R2) that approximates any given generalized harmonic polynomial
with order hm+1−j simultaneously in the different Sobolev norms.
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Theorem 3.9. Let D be a domain of diameter h containing the origin and such that
d(0, ∂D) ≥ τh for a constant τ independent of h. Let P (z) be a complex polynomial of
degree N an let ϕ1, . . . , ϕp ∈ [0, 2π), p = 2m + 1 ≥ 3, be different angles. Then there
exist α1, . . . , αp ∈ C such that

∥∥∥∥∥
ReV [P, 0] −

p∑

k=1

αkeϕk

∥∥∥∥∥
j,ω,D

≤ Ce
7
2 c∗
(
1+c2j+4

∗

)
hm+1−j ωm+1−N ‖P‖N,ω,D , (3.51)

for every j ≥ 0, where the constant C > 0 is independent of h, ω, c∗ and the polynomial
P .

Proof. Let be P (z) = aNzN + . . . + a1z + a0; using (2.26), we have

|an| =

∣∣∣∣
1

n!

∂nP

∂zn
(0)

∣∣∣∣ ≤
1

n!

1√
πd(0, ∂D)

∥∥∥∥
∂n

∂zn
P

∥∥∥∥
0,D

≤ 1√
πn! τh

|P |n,D ,

where we have exploited the regularity of the domain. This and (3.46) imply that,
with g defined as in (3.45), the following bound holds

‖g‖L1(0,2π) ≤
N∑

n=0

2nn!

ωn
|an| ≤

N∑

n=0

2n

√
πτh

|P |n,D

ωn
≤ C(τ, N)

‖P‖N,ω,D

h ωN
. (3.52)

In order to get the result, we transform the term to be bounded with Vekua operator
and use its continuity (2.9): for every j ≥ 0 we have

∥∥∥∥∥
Re V [P, 0] −

p∑

k=1

αkeϕk

∥∥∥∥∥
j,ω,D

≤ C(j)ec∗(1 + cj+2
∗ )

∥∥∥∥∥
P −

p∑

k=1

αk(ReV )−1[eϕk , 0]

∥∥∥∥∥
j,ω,D

≤ C(j)ec∗(1 + cj+2
∗ )

j∑

l=0

ωj−lh

∣∣∣∣∣
P −

p∑

k=1

αk(ReV )−1[eϕk , 0]

∣∣∣∣∣
W l,∞(D)

≤ C(j)ec∗(1 + cj+2
∗ )

j∑

l=0

ωj−lh h−l−1

∥∥∥∥∥
P −

p∑

k=1

αk(ReV )−1[eϕk , 0]

∥∥∥∥∥
0,B(0,2h)

where we used the internal estimates for the derivatives of holomorphic functions
(2.27), with d(D, ∂B(0, 2h)) ≥ h, recall that we don’t have analogue estimates for
generalized harmonic polynomials,

≤ C(j)ec∗(1 + cj+2
∗ )(1 + cj

∗)h
−jh

∥∥∥∥∥
P −

p∑

k=1

αk(ReV )−1[eϕk , 0]

∥∥∥∥∥
L∞(B(0,2h))

≤ C(j)ec∗(1 + c2j+2
∗ )h1−j(1 + e

3
2 c∗c2

∗)

∥∥∥∥∥
Re V [P, 0] −

p∑

k=1

αkeϕk

∥∥∥∥∥
L∞(B(0,3h))
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where we have to use the L∞-continuity of (ReV )−1 (3.49), because Theorem 2.2 gives
an unsatisfactory estimate for the L2-norm; in this way we have bounded all the norms
we want to estimate using the L∞-norm of the same expression on a larger domain,

≤ C(j)e
5
2 c∗(1 + c2j+4

∗ )h1−j

∥∥∥∥∥

∫ 2π

0
Re
(
g(θ)eiω(x cos θ+y sin θ)

)
dθ −

p∑

k=1

αkeϕk

∥∥∥∥∥
L∞(B(0,3h))

with g in the form (3.45); finally, using (3.41) and (3.52), we get

≤ C(j, p, {ϕk}, N, τ)e
5
2 c∗(1 + c2j+4

∗ )h1−jhm+1ωm+1ec∗
‖P‖N,ω,D

h ωN

= C(j, p, {ϕk}, N, τ)e
7
2 c∗(1 + c2j+4

∗ )hm+1−jωm+1−N ‖P‖N,ω,D .

3.3 The approximation of the solutions of the homogeneous
Helmholtz equation

Now we have all the tools necessary to study the approximation of a generic solution
of the homogeneous Helmholtz equation by the plane waves of the space PW p

ω(R2).
The key instruments are Theorems 2.10 and 3.9.

Theorem 3.10. Let D be a bounded, Lipschitz and convex domain with diameter h,
containing B(0, τh) with τ independent from h. Let u ∈ Hk+1(D), k ≥ 0, be a complex-
valued function satisfying ∆u+ω2u = 0 in D. Let ϕ1, . . . , ϕp ∈ [0, 2π) different angles,
with p = 2m + 1 ≥ 3. Then there exists α1, . . . , αp ∈ C such that
∥∥∥∥∥
u −

p∑

l=1

αleϕl

∥∥∥∥∥
j,ω,D

≤ Ce
9
2 c∗
(
1 + ck+2j+7+|m−k|

∗

)
hmin(k,m)+1−j ω−(k−m)+ ‖u‖k+1,ω,D

(3.53)
for every integer 0 ≤ j ≤ k + 1 and where C is a positive constant depending only on
the shape of D, on p, on the choice of the angles {ϕl} and on the indices j and k.

Proof. We fix the degree N of the generalized harmonic polynomials to be used in this
proof equal to k and define two holomorphic function

φ1 := (ReV )−1[Re u, 0], φ2 := (ReV )−1[Imu, 0],

their approximating polynomials

P1 := Πk
k(φ1), P2 := Πk

k(φ2),

and the corresponding generalized harmonic polynomials

Q1 := Re V [P1, 0] = P k
k (Reu), Q2 := Re V [P2, 0] = P k

k (Im u).

Theorem 2.10 leads to

‖u − Q1 − iQ2‖j,ω,D ≤
∥∥Re u − P k

k (Reu)
∥∥

j,ω,D
+
∥∥Im u − P k

k (Imu)
∥∥

j,ω,D

≤ C(k)e2c∗
(
1 + ck+2j+6

∗

)
hk+1−j

(
log(k + 2)

k + 2

)k+1−j

‖u‖k+1,ω,D .
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The hypotheses about the indexes are verified because k + 1 ≥ j.
According to Theorem 3.9, there exist α1

1, . . . , α
1
p such that

∥∥∥∥∥
Q1 −

p∑

l=1

α1
l eϕl

∥∥∥∥∥
j,ω,D

=

∥∥∥∥∥
Re V [P1, 0] −

p∑

l=1

α1
l eϕl

∥∥∥∥∥
j,ω,D

≤ Ce
7
2 c∗
(
1 + c2j+4

∗

)
hm+1−j ωm+1−k ‖P1‖k,ω,D ,

and similarly, for iQ2, there exist α2
1, . . . , α

2
p that gives a similar bound. In order to

replace the norm of u on the right hand side, we apply Theorem 2.8 with j = k, and
we use (2.33) and the continuity of (ReV )−1 (2.8):

‖P1‖k,ω,D =
∥∥Πk

kφ1

∥∥
k,ω,D

≤ ‖φ1‖k,ω,D +
∥∥φ1 − Πk

kφ1

∥∥
k,ω,D

≤ C ‖φ1‖k,ω,D

≤ Cec∗(1 + ck+3
∗ ) ‖Re u‖k,ω,D ≤ Cec∗(1 + ck+3

∗ ) ω−1 ‖Re u‖k+1,ω,D ;

the analogous holds for P2.
Finally we combine the three last bounds written using triangle inequality and we

get:
∥∥∥∥∥
u −

p∑

l=1

(α1
l + iα2

l )eϕl

∥∥∥∥∥
j,ω,D

≤ ‖u − Q1 − iQ2‖j,ω,D +

∥∥∥∥∥
Q1 −

p∑

l=1

α1
l eϕl

∥∥∥∥∥
j,ω,D

+

∥∥∥∥∥
Q2 −

p∑

l=1

α2
l eϕl

∥∥∥∥∥
j,ω,D

≤ Ce2c∗
(
1 + ck+2j+6

∗

)
hk+1−j

(
log(k + 2)

k + 2

)k+1−j

‖u‖k+1,ω,D

+ Ce
7
2 c∗
(
1 + c2j+4

∗

)
hm+1−j ωm+1−k · ec∗

(
1 + ck+3

∗

)
ω−1 ‖u‖k+1,ω,D

≤ Ce
9
2 c∗
(
1 + ck+2j+7

∗

) (
hk+1−j + hm+1−j ωm−k

)
‖u‖k+1,ω,D

≤ Ce
9
2 c∗
(
1 + ck+2j+7

∗

)
hmin(k,m)+1−j






1 + (hω)m−k m ≥ k

hk−m +
1

ωk−m
m < k





‖u‖k+1,ω,D

≤ Ce
9
2 c∗
(
1 + ck+2j+7+|m−k|

∗

)
hmin(k,m)+1−jω−(k−m)+ ‖u‖k+1,ω,D

with C independent of ω, h and c∗.

This theorem shows that the approximation properties depends on the measure of
the domain, on the dimension of the local space of plane waves and on the regularity
of the solution. The two latter parameters limit the order of convergence with respect
to h.

Remark 3.11. If the domain D is small enough such that c∗ ≤ 1, the (3.53) becomes

∥∥∥∥∥
u −

p∑

l=1

αleϕl

∥∥∥∥∥
j,ω,D

≤ C hk+1−j ‖u‖k+1,ω,D , 0 ≤ j ≤ k + 1 ≤ m + 1.

This situation will be relevant in the study of the PWDG method where D will be any
element of the mesh.
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Numerical experiment 3. A simple numerical study demonstrates the sharpness
of the bound in Theorem 3.10. The function to approximate is the cylindrical wave

u(x, y) = H(1)
0 (ω|(x, y) − (−1/4, 0)|), where H(1)

0 is the Hankel function of the first
kind of order zero and the domain is the square D = (0, h)2. Since it is a C∞ function
we take k = m. We notice from Figure 3 that

∥∥∥H(1)
0 −

∑p
k=1 αkeϕk

∥∥∥
0,D∥∥∥H(1)

0

∥∥∥
m+1,ω,D

∼
hm+2

h
= hm+1,

as predicted by Theorem 3.10.

Figure 3: The norm
∥∥∥H(1)

0 −
∑p

k=1 αkeϕk

∥∥∥
0,(0,h)2

with p = 3, . . . , 11, ϕk equally

spaced, ω = 1 and h varying. The order of the error is hm+2.
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4 The PWDG method for the homogeneous Helm-

holtz equation

The theory of the approximation of homogeneous Helmholtz solutions using plane
waves functions can be used in the analysis of the plane wave discontinuous Galerkin
method (PWDG) derived in [16] as a a generalization of the ultraweak variational for-
mulation (UWVF) by Cessenat and Després (see [9]). The analysis of the homogeneous
case given below follows the same line as that in [16].
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Theorem 3.10 allows us to prove a sharp best approximation estimate. This leads
to new a priori error estimates for the method, both in a particular energy norm and
in the L2-norm. These estimates improve the one proved in [7] and are sharp with
respect to the meshsize h, as confirmed by the numerical results presented in [17].

Also in this section all the bounding constant are independent of the wavenumber,
this allows to make explicit the pollution effect.

4.1 The formulation of the method

We consider the usual homogeneous Helmholtz equation with impedance boundary
condition in a bounded, polygonal, convex domain Ω ⊂ R2:

{
−∆u − ω2u = 0 in Ω

∇u · n + iωu = g on ∂Ω,
(4.54)

where g ∈ L2(∂Ω) and ω > 0 is the wavenumber.
We introduce a triangular mesh Th where every element K satisfies hK = diamK ≤

h. Introducing a space Vh of (discontinuous) finite elements on this mesh, integrating
by parts and following the steps of [16] we can write the method as follows: we want
to find a function uh ∈ Vh such that
∫

K

(∇uh ·∇vh −ω2uhvh) dV −
∫

∂K

(uh − ûh)∇vh · ndS−
∫

∂K

iωσ̂h ·n vh dS = 0, (4.55)

for every vh ∈ Vh and for every K ∈ Th. In this equation ûh and σ̂h are the so-called
numerical fluxes, approximations of the traces of u and of its gradient on the skeleton of
the mesh. If we integrate by parts once more and we choose Trefftz-type test functions
(i.e. satisfying the homogeneous Helmholtz equation on each element), we obtain the
ultraweak form of the discontinuous Galerkin method:

∫

∂K
ûh ∇vh · ndS −

∫

∂K
iωσ̂h · n vh dS = 0.

In order to define ûh and σ̂h, we need to introduce some notation. Let uh and
σh be a function and a vector field that are regular in each element of Th, u±

h and
σ±

h their trace on ∂K+ ∩ ∂K−, and let n+, n− = −n+ be the outgoing normal unit
vectors to ∂K±; we define:

the averages: {{uh}} := 1
2 (u+

h + u−
h ) , {{σh}} := 1

2 (σ+
h + σ−

h ) ,

the jumps: [[uh]]N := u+
h n+ + u−

h n− , [[σh]]N := σ+
h · n+ + σ−

h · n− .

We define also a function that represents the local meshsize:

∀ x ∈ int(∂K− ∩ ∂K+) h(x) = min(hK− , hK+).

We choose the numerical fluxes depending on three parameters a, b, d that are real,
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bounded and independent of the meshsize and ω:

a ≥ amin > 0 in FI
h , b ≥ bmin > 0 in FI

h , 0 < dmin ≤ d < 1
2ωh

in FB
h ,






σ̂h =
1

iω
{{∇huh}}−

a

ωh
[[uh]]N ,

ûh = {{uh}}−
bh

i
[[∇huh]]N ,

in ∂K− ∩ ∂K+ ⊂ FI
h ,






σ̂h =
1

iω
∇huh − (1 − dωh)

(
1

iω
∇huh + uh n −

1

iω
g n

)
,

ûh = uh − dωh

(
1

iω
∇huh · n + uh −

1

iω
g

)
,

in ∂K ⊂ FB
h .

(4.56)

If we implement this method using plane wave basis functions, we obtain the
PWDG method.

Choosing the fluxes in a slightly different way, we can recover the UWVF (see [16]).
This choice however does not satisfies the hypothesis needed for the stability analysis.

We suppose h < 1 and that the mesh satisfies a regularity assumption: there exists
α0 > 0 such that, for every angle α of every triangle K ∈ Th, α > α0 holds.

Define the discontinuous finite element space of piecewise linear combination of
plane wave functions:

Vh = {v ∈ L2(Ω) : v|K ∈ PW p,0
ω (R2) ∀ K ∈ Th},

and the bilinear form on (H2(Ω) + Vh) × (H2(Ω) + Vh):

ah(u, v) :=(∇hu,∇hv) −
∫

FI
h

[[u]]N · {{∇hv}} dS −
∫

FI
h

{{∇hu}} · [[v]]N dS

−
∫

FB
h

dωh u∇hv · ndS −
∫

FB
h

dωh∇hu · n v dS

+ i

∫

FI
h

bh[[∇hu]]N [[∇hv]]N dS + i

∫

FB
h

dh∇hu · n∇hv · ndS

+ i

∫

FI
h

a

h
[[u]]N · [[v]]N dS + iω

∫

FB
h

(1 − dωh)u v dS .

We also define a seminorm and two norms related to the Sobolev H1-norm:

|v|2DG : = ‖∇hv‖2
0,Ω +

∥∥∥(bh)1/2[[∇hv]]N
∥∥∥

2

0,FI
h

+
∥∥∥a1/2

h
−1/2[[v]]N

∥∥∥
2

0,FI
h

+
∥∥∥(dh)1/2∇hv · n

∥∥∥
2

0,FB
h

+ ω
∥∥∥(1 − dωh)1/2v

∥∥∥
2

0,FB
h

,

‖v‖2
DG : = |v|2DG + ω2 ‖v‖2

0,Ω ,

‖v‖2
DG+ : = ‖v‖2

DG +
∥∥∥(bh)−1/2{{v}}

∥∥∥
2

0,FI
h

+
∥∥∥a−1/2

h
1/2{{∇hv}}

∥∥∥
2

0,FI
h

+
∥∥∥(dh)−1/2v

∥∥∥
2

0,FB
h

.

Finally we can reformulate the method in a new way, equivalent to the (4.55): find
uh ∈ Vh such that, for all vh ∈ Vh,

ah(uh, vh) − ω2(uh, vh) =

∫

FB
h

idh g∇hvh · ndS +

∫

FB
h

(1 − dωh) g vh dS , (4.57)
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and the method is consistent, i.e.,

ah(u − uh, vh) − ω2(u − uh, vh) = 0 ∀vh ∈ Vh, (4.58)

where u is the analytical solution of (4.54). The coercivity of the imaginary part of
ah guarantees the existence and the uniqueness of the discrete solution uh to (4.57).

Now we list the properties proved in [16] we need in order to obtain the error
estimates.

Theorem 4.1 ([16], Theorems 8 and 9). Let p = 2m+1 ≥ 3, then there exists two
constants Ctinv and Cinv independent of K and ω, such that, for all v ∈ PW p,0

ω (R2)
and for all K ∈ Th

‖v‖0,∂K ≤ Ctinvh−1/2
K ‖v‖0,K ,

‖∇v‖0,K ≤ Cinv(ωhK + 1)h−1
K ‖v‖0,K .

The bounds of Theorem 4.1 were used to derive the following abstract error esti-
mate.

Proposition 4.2 ([16], Proposition 19). Let u be the analytical solution of (4.54),
uh the discrete solution of (4.57) and a ≥ amin > C2

tinv. Then there exists Cabs > 0,
independent of ω and the mesh, such that

‖u − uh‖DG ≤ Cabs

(

inf
vh∈Vh

‖u − vh‖DG+ + sup
0*=wh∈Vh

ω |(u − uh, wh)|
‖wh‖0,Ω

)

.

Finally, an estimate of the second term on the right-hand side of the bound in
Proposition 4.2 was derived by a duality technique. We report here the result in the
homogeneous case.

Proposition 4.3. Let Ω be a bounded convex domain. Let u and uh be as in Propo-
sition 4.2, then

sup
0*=wh∈Vh

ω |(u − uh, wh)|
‖wh‖0,Ω

≤ Cdual ωh(1 + ωh)
3
2 (1 + diam(Ω)ω) ‖u − uh‖DG ,

holds, with Cdual > 0 independent of ω and the mesh.

4.2 The order of convergence of the method

We can use the results of Section 3.3 to get a best approximation estimate of ho-
mogeneous Helmholtz solutions in the space Vh with respect to the DG+ norm. We
know how the functions belonging to PW p,0

ω approximate a solution of the homoge-
neous Helmholtz equation, now we need the analogous approximation properties for
functions in Vh.

Proposition 4.4. Let u ∈ Hk+1(Ω), 1 ≤ k ≤ m, be the solution of the homogeneous
Helmholtz equation in a bounded and convex domain Ω, if ωh ≤ c∗ then

inf
vh∈Vh

‖u − vh‖DG+ ≤ CBAe
9
2 c∗
(
1 + cm+10

∗

)
hk ‖u‖k+1,ω,Ω , (4.59)

with CBA > 0 independent of ω and Th.
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Proof. For each K ∈ Th we have the inequality

‖u‖2
0,∂K ≤ C ‖u‖0,K

(
h−1

K ‖u‖0,K + |u|1,K

)
∀u ∈ H1(K) , (4.60)

obtained by scaling the norms in the thesis of Theorem 1.6.6 in [6] on a reference
domain with unitary diameter.

We define zh ∈ Vh such that for every triangle K, zh|K is the linear combination
of plane wave functions given by Theorem 3.10. The hypothesis B(0, τh) ⊂ K is
guaranteed for each K by the regularity assumption on the mesh. We bound the
approximation error of the traces using the same theorem:

‖u − zh‖2
0,∂K

(4.60)
≤ C ‖u − zh‖0,K

(
h−1

K ‖u − zh‖0,K + ‖u − zh‖1,ω,K

)

≤ Ce9c∗(1 + c2m+16
∗ )h2k+1

K ‖u‖2
k+1,ω,K ,

‖∇h(u − zh)‖2
0,∂K ≤ C |u − zh|1,K

(
h−1

K |u − zh|1,K + |u − zh|2,K

)

≤ C ‖u − zh‖1,ω,K

(
h−1

K ‖u − zh‖1,ω,K + ‖u − zh‖2,ω,K

)

≤ Ce9c∗(1 + c2m+20
∗ )h2k−1

K ‖u‖2
k+1,ω,K .

Now we bound the error in the DG+ norm (note that the terms with the traces of
u − zh contain h

− 1
2 and the ones with the trace of the gradient contain h

1
2 ):

inf
vh∈Vh

‖u − vh‖2
DG+ ≤ ‖u − zh‖2

DG+ ≤ ω2 ‖u − zh‖2
0,Ω + ‖∇h(u − zh)‖2

0,Ω

+
∑

K∈Th

(
sup a + hKω sup(1 − dωh) + sup b−1 + sup d−1

)
1

hK
‖u − zh‖2

0,∂K

+

(
sup b + sup d + sup a−1

)
hK ‖∇h(u − zh)‖2

0,∂K

≤ Ce9c∗(1 + c2m+20
∗ )h2k ‖u‖2

k+1,ω,K ,

by taking the square roots we have the result.

First, we prove an a priori error estimate with respect to the DG norm, that
corresponds to an energy norm. The order of convergence with respect to the meshsize
is k, the regularity of the exact solution u. When u is sufficiently regular, namely
u ∈ Hm+1(Ω), the order of convergence is O(hm), with m = (p − 1)/2, exactly as
predicted by the numerical simulation in [17]. In order to have this convergence is
necessary that the mesh Th is fine enough.

Theorem 4.5. Let Ω be a bounded convex domain, u ∈ Hk+1(Ω), 1 ≤ k ≤ m, be
the analytical solution of the Helmholtz homogeneous equation, the condition (4.56) on
the flux parameters be satisfied and amin > C2

tinv. Then, if this threshold condition is
satisfied:

ωh
(
1 + diam(Ω)ω

)
(1 + ωh)

3
2 <

1

CabsCdual
, (4.61)

the estimate
‖u − uh‖DG ≤ Ce

9
2 c∗
(
1 + cm+10

∗

)
hk ‖u‖k+1,ω,Ω (4.62)

holds with C > 0 independent of ω and Th.
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Proof. Combining the results of the Propositions 4.2, 4.3 and 4.4 we have

‖u − uh‖DG ≤ Cabs

(
CBAe

9
2 c∗
(
1 + cm+10

∗

)
hk ‖u‖k+1,ω,Ω

+ Cdual ωh(1 + ωh)
3
2
(
1 + diam(Ω)ω

)
‖u − uh‖DG

)
.

Taking to the left-hand side the last term, if (4.61) is verified, the coefficient of
‖u − uh‖DG is positive and we can conclude.

Remark 4.6. In order to obtain the best approximation estimate, it is enough to
require that ωh is small, because the (4.59) depends exponentially on c∗. For the
convergence of the method we need the more restrictive condition (4.61) which, with
ω > 1, requires a small ω2h. This is exactly the pollution effect as described in [4].
Also in the PWDG method this phenomenon imposes a strong constrain on the mesh,
and consequentially on the computational cost of the method. When the mesh satisfies
this constraint the order of convergence is optimal.

We conclude with an a priori error estimate with respect to the L2(Ω)-norm.

Theorem 4.7. With the same hypotheses of Theorem 4.5, the bound

‖u − uh‖0,Ω ≤ Ce
9
2 c∗
(
1 + c

m+ 23
2

∗

) (
1 + diam(Ω)ω

)
hk+1 ‖u‖k+1,ω,Ω , (4.63)

is verified, with C > 0 independent of the wavenumber ω and the mesh Th.

The proof can be carried out along the same lines as Theorem 28 of [16].
With a fixed ω, the order of convergence in the L2-norm is optimal; the constant

in the estimate increases linearly with ω as a consequence of the pollution effect.

Remark 4.8. In the regular case, when u ∈ Hm+1(Ω), and when c∗ < 1 the error
estimates for the method become

‖u − uh‖DG ≤ C hm ‖u‖m+1,ω,Ω ,

‖u − uh‖0,Ω ≤ C
(
1 + diam(Ω)ω

)
hm+1 ‖u‖m+1,ω,Ω

Both this estimates are sharp with respect to h, as it can be verified by the numerical
simulation in [17].
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