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EXPONENTIAL CONVERGENCE OF hp QUADRATURE FOR INTEGRAL OPERATORS

WITH GEVREY KERNELS

ALEXEY CHERNOV, TOBIAS VON PETERSDORFF, AND CHRISTOPH SCHWAB

Abstract. Galerkin discretizations of integral equations in Rd require the evaluation of integrals I =
R

S(1)

R

S(2) g(x, y)dydx where S(1), S(2) are d-simplices and g has a singularity at x = y. We assume that g is
Gevrey smooth for x != y and satisfies bounds for the derivatives which allow algebraic singularities at x = y. This
holds for kernel functions commonly occuring in integral equations. We construct a family of quadrature rules QN

using N function evaluations of g which achieves exponential convergence |I −QN | ≤ C exp(−rNγ) with constants
r, γ > 0.

1. Introduction

The numerical solution of singular integral equations

(Ku)(x) := c(x)u(x) +

∫

y∈Ω

K(x, y)u(y)dy = f(x) for all x ∈ Ω

for an unknown function u in a polyhedron or on its boundary Ω ⊂ Rd is a basic problem in engineering. For
integral operators K which are bounded, linear K : V → V ′, the weak formulation of Ku = f reads:

find u ∈ V : 〈v,Ku〉 = 〈v, f〉 ∀v ∈ V.

Here, V denotes a suitable separable Hilbertspace, V ′ its dual and 〈·, ·〉 the V ×V ′ duality pairing. Problems of this
type arise, for example, in the boundary reduction of linear, elliptic boundary value problems (e.g. [8, 13, 14, 18])
or in Dirichlet forms for Markov Processes with jumps (e.g. [9]). Typically, the kernel function K(x, y) is smooth
for x (= y, but possibly becomes strongly singular at x = y; in this case, integration with respect to K(x, y) must
be interpreted in a suitable sense (e.g. [15]).

A common approximation method for these equations is Galerkin approximation: one restricts the above weak
formulation to a space Vh ⊂ V of piecewise polynomials on a mesh of simplices on Ω of width h > 0 spanned by a
basis φh

i . Then one has to compute the elements of the stiffness matrix

Aij =

∫

x∈Ω

∫

y∈Ω

K(x, y)φh
j (y)φh

i (x)dy dx.

As the basis functions φh
j (x) are piecewise polynomials on simplices, this amounts to computing integrals of the

type

I =

∫

x∈S(1)

∫

y∈S(2)

K(x, y)v(x)w(y)dy dx =

∫

x∈S(1)

∫

y∈S(2)

g(x, y)dy dx (1.1)

where S(1), S(2) are closed simplices of the mesh and v(x), w(y) are smooth (e.g. analytic) functions. If the original
domain Ω is curved, or a manifold in a higher dimensional space (e.g. the boundary of a polyhedron in Rd+1) one
can use parametrizations and also has to compute integrals of the type (1.1) where the functions v, w may include
parametrization mappings and Jacobians, but still are piecewise smooth functions on the mesh of simplices.

Note that the kernel function K(x, y) may be nonintegrable (i.e. hypersingular or Cauchy singular) so that the
integrand g(x, y) in (1.1) is not in L1(S(1) × S(2)). The integral in (1.1) has therefore to be interpreted in a
suitable sense: prior to numerical integration, methods for “regularizing” the integral Aij resulting in an integrand
g(x, y) which belongs to L1(S(1) ×S(2)) must be employed. There are, roughly speaking three basic approaches for
regularization of integral equations with nonintegrable kernels: (i) exploit antisymmetry resp. parity of the most
singular part of K: this implies a cancellation of the divergent parts of the integral and ensures the existence of

1
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the integrals in (1.1) in the sense of Cauchy principal value. Such antisymmetry properties of the kernel functions
K(x, y) in (1.1) appear in all integral equations obtained from boundary reduction of second order, strongly elliptic
boundary value problems. (e.g. [18, Chapter 5] and [8] or the exposition in [10]), (ii) formally perform integration
by parts (e.g. [7, 15] and, in particular, [16, Chap. 5.6]), or (iii) subtract terms from the functions φj and φi (e.g.,
[17, Props. 4 and 5]).

In the end one still obtains integrals of the type (1.1) where v, w are smooth, the function g(x, y) is smooth for
x (= y and singular for x = y, but g ∈ L1(S(1) × S(2)).

The main difficulty in implementing Galerkin methods for integral operators is the numerical approximation of the
integrals (1.1) since the integrand is nonsmooth if S(1) ∩ S(2) (= {}.

In most applications the functions v, w are analytic and satisfy estimates of the type

|Dνv(x)| ≤ A0A
|ν|
1 ν! (1.2)

and the functions K(x, y) and g(x, y) can be written as F (x, y, y−x) where F satisfies an estimate (e.g. [8, Chap.9])

|DνF (x, y, z)| ≤ A0A
|ν|
1 ν! ‖z‖min(α−|νz |,0) . (1.3)

with the multiindices ν ∈ N3d
0 , νz := (ν2d+1, . . . , ν3d) and α > k−2d if S(1)∩S(2) is k-dimensional with k ∈ {0, . . . , d}

(note that this implies g ∈ L1(S(1) ×S(2))). This is in fact the case for strongly elliptic boundary integral operators
on boundaries of polyhedra (e.g. [8]).

The efficient accurate numerical evaluation of integrals (1.1) with integrand functions g(x, y) which become singular
at x = y has attracted considerable attention over the years. In the (important) special case when the singularity
order α in (1.3), (1.4) equal α = −1 > k − 2d (as is the case e.g. for K(x, y) given by the Coulomb potential), the
singularity can be removed completely by a (degenerate) coordinate transformation (see [6] for the case k = d = 2, 3
and [20] for k = d = 2). In these cases, Gaussian quadrature rules applied to the transformed integrands yield
approximations which converge exponentially in terms of N , the number of quadrature nodes [20].

In boundary element methods on surfaces in R3 the singularity order α is always integer so that the abovementioned
variable substitution descripted in [18, Chap 5] can be applied. In integral equations which involve fundamental
solutions of second order elliptic operators in R2, however, F (x, y, z) ∼ log ‖z‖ as z → 0 may occur. This case
is not covered by the variable substitutions [6, 20], but is contained in the assumptions (1.3) with α = −ε with
arbitrary small ε > 0. In integral operators arising in integrodifferential generators of Markov Processes with jumps
such as Levy processes, noninteger α may occur (see, e.g., [9, 17]). In option pricing applications from finance,
higher dimensions than d = 3 are also common (see, e.g., [17]). Although in applications from engineering and
the sciences, the kernel functions K(x, y) are analytic in the sense that the estimate (1.3) holds, we shall present a
quadrature error analysis for Gevrey regular kernel functions K(x, y), of Gevrey class with index δ ≥ 1 which have
been considered e.g. in [1, 2]. These functions satisfy estimates (1.2), (1.3), however with the term ν! in (1.2), (1.3)
replaced by (ν!)δ :

|DνF (x, y, z)| ≤ A0A
|ν|
1 (ν!)δ ‖z‖min(α−|νz|,0) . (1.4)

Analytic functions correspond to the case δ = 1. E.g., the usual C∞ cutoff functions are not analytic, but only in a
Gevrey class with δ > 1, see (6.2). This allows to treat more general problems involving Gevrey pseudodifferential
operators investigated e.g. in [1], discretization methods of “generalized Finite Element type” where the basis
functions φh

i of Vh are constructed with Gevrey-class cutoff functions or Gevrey partitions of unity.

It turns out in practice that the efficient approximation of the singular integrals is a difficult, because the convergence
rates of standard (e.g. Gaussian) quadratures with N points deteriorate for integrand functions with a singularity,
(e.g. [5] for an analysis of this).

Most methods in the literature rely on a very specific form of the kernel function K(x, y) or geometry of S(j). Our
proposed method has the advantage that it only uses pointwise evaluations of g(x, y) (no antiderivatives needed),
works for all integrands with (1.4) (which includes noninteger singularity orders and logarithmic singularities), and
uses the same algorithm in all dimensions d and all possible cases how the two simplices S(1), S(2) may touch.

We will construct families of variable order, composite quadrature methods QN of the form QN =
∑N

j=1 wjg(xj , yj)
with N integrand evaluations such that, as N → ∞, exponential convergence of the quadrature error is realized,
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i.e. we show for the integral I defined in (1.1) with integrand g(x, y) satisfying (1.3) or (1.4) the asymptotic error
estimate

|I −QN | ≤ C exp(−rNγ) (1.5)

with constants C, r, γ > 0 depending on A0, A1, α, δ, d. Specifically, we prove for the quadrature of integrals (1.1)
over the integration domains S(1) × S(2) ⊂ R2d with integrand function g(x, y) satisfying (1.4) with δ > 1 the error
bound (1.5) with γ = 1/(1 + 2dδ). This allows, using estimates for the impact of the quadrature error upon the
asymptotic accuracy of the Galerkin scheme as, eg. in [18, Chap. 4.2], to obtain fully discrete h-version Boundary
Element Methods on polygonal and polyhedral domains with analytic, possibly curved, sides, at a complexity which
is, up to terms logarithmic in the number of degrees of freedom, not larger than the total number of degrees of
freedom on the boundary.

In the context of hp-discretizations of strongly elliptic boundary integral equations which converge at an exponential
rate in terms of the number of degrees of freedom (e.g. [11] and the references there), our quadrature methods
imply exponential convergence in terms of the total work for all integral equations arising in engineering practice.

We assume that the mesh of simplices is shape regular, but not necessarily quasiuniform. This allows mesh re-
finement toward a point in the h-version and hp-version, and includes the meshes generated by standard adaptive
methods. Anisotropic mesh refinement (e.g. with long and thin elements) is excluded, however.

In our case the kernel function only becomes singular for y − x = 0. In the numerical solution of Kolmogoroff
Equations for Markov processes with jumps arising, for example, in mathematical finance occur kernel functions
with anisotropic singularities which can also become singular for yj − xj = 0. This case is not treated here but the
techniques developed herein can be suitably modified to deal with these cases (see, e.g. [23]).

We want to note that the same techniques also apply to other types of singular integrals, e.g. volume potentials
applied to a function, or pointwise evaluation of a potential (e.g. in collocation methods).

The main idea of the quadrature in [19] is that 1D Gaussian quadrature converges exponentially if the integration
interval is away from the singularity. If the integrand is singular at an endpoint, one can compensate for this
by geometric refinement. Here we generalize the results of [19] in two directions: first , we establish exponential
convergence rates for singular integrands with merely Gevrey regularity outside the compact support, and second, we
address the treatment of double integrals (1.1) which arise in Galerkin discretizations of singular integral equations.

The paper is organized as follows: In Section 2 we prove convergence rates (1.5) with γ = 1/(1 + δ) for Gevrey
class Gδ functions with an endpoint singularity (functions in Gδ without endpoint singularity yield γ = 1/δ) on the
domain [0, 1] and also for tensor product quadrature on [0, 1]d.

In the case of two simplices S(1), S(2) which do not touch one can obtain exponential convergence by simply using
Gaussian integration in a suitable way. If the two simplices touch we give a sequence of transformations which
isolate the singularity of the integrand in exactly one coordinate direction while preserving Gevrey regularity in
the remaining 2d − 1 coordinates. We then apply a tensor product quadrature consisting of the composite Gauss
quadrature from Section 2 in the singular coordinate direaction and a (2d− 1)-fold tensor product Gauss-Legendre
quadrature in the remaining directions. The transformations and the resulting quadrature algorithm are described
in Section 3.

Section 4 proves the Gevrey regularity of the resulting transformed integrands and gives the main theorem about
exponential convergence (1.5) of our quadrature algorithm.

In Section 5 we consider an integral as in (1.1) with parallelotopes (images of cubes under affine maps) C(1), C(2)

instead of the simplices S(1), S(2). In this case we obtain similar results.

In Section 6 we give an example with δ > 1 for an integral over [0, 1], and examples for integrals over S(1)×S(2) ⊂ R2d

with d = 2, 3. The examples indicate that the asymptotic convergence estimates (1.5) are sharp.

1.1. Definitions and Notations. Let N denote the set of positive integers and N0 := N ∪ {0}. For a multiindex

ν ∈ Nd
0 we use the standard notations |ν| =

∑d
i=1 νi, ν! =

∏d
i=1 νi! and Dνf(x) =

∂|ν|

∂xν1
1 · · · ∂xνd

d

f(x) for a function

f : Ω → R with Ω ⊂ Rd. For x ∈ Rd we let ‖x‖ := ‖x‖2 = (
∑

x2
j )

1/2. In integrals we write
∫

x∈Ω f(x)dx for
∫

x∈Ω f(x)dx1 · · ·dxd.
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Consider a subset N = {n1, . . . , nk} of {1, . . . , d} with n1 < · · · < nk. We will use the notation xN := (xn1 , . . . , xnk)

and #N := k. For x ∈ Rd we define x(N) ∈ Rd by x(N)
j := xj for j ∈ N , x(N)

j := 0 for j /∈ N . We write x ≥ 0 for a
vector x iff xj ≥ 0 for all j.

We will now introduce the spaces Gδ of Gevrey functions and Gδ,α
N of Gevrey functions with a singularity:

Definition 1.1. Let D ⊂ Rd be a closed bounded set and δ ≥ 1. A function f : D → R is in Gδ(D) iff there exist
A0, A1 > 0 so that

∀x ∈ D, ∀ν ∈ N
d
0 : |Dνf(x)| ≤ A0A

|ν|
1 (ν!)δ (1.6)

(i.e., the estimate holds uniformly on D).
Let α ∈ R, N ⊂ {1, . . . , d}. A function f : D → R is in Gδ,α

N (D) iff there exist A0, A1 > 0 so that

∀x ∈ D with xN (= 0, ∀ν ∈ N
d
0 : |Dνf(x)| ≤ A0A

|ν|
1 (ν!)δ ‖xN‖min{0,α−|νN |} (1.7)

A function f ∈ Gδ,α
N (D) may have a singularity at xN = 0. E.g., the function f(x) = ‖xN‖α g(x)+h(x) with α ∈ R

and g, h ∈ Gδ(D) satisfies f ∈ Gδ,α
N (D). In the case N = {1, . . . , d} we will write Gδ,α(D) := Gδ,α

N (D).

For sets Dj ⊂ Nd
0 we write D = D1

.
∪ · · ·

.
∪ Dm if Di ∩ Dj = {} for all i, j.

For functions f, g : Ω → R we will write f ∼ g if there exists c, C > 0 such that cg(x) ≤ f(x) ≤ Cg(x) for all x ∈ Ω.

Let Ψ : Rr → Rr. We denote the absolute value of the Jacobian determinant of Ψ by

JΨ := |det(DΨ)|. (1.8)

2. Quadrature of Gevrey Functions with Singularities on Intervals

2.1. Introduction. We consider a function g ∈ C0((a, b))∩L1((a, b)) on an interval (a, b) and want to approximate
the integral

Ig :=

b∫

a

g(x)dx

Definition 2.1. We denote by Qng the Gauss-Legendre quadrature approximation of Ig with n quadrature points

for the interval [a, b]. If the interval is not clear from the context we will also write Q[a,b]
n g and I [a,b]g.

First assume that g is analytic on the closed interval [a, b], i.e., g ∈ G1([a, b]). Then it is well known (e.g.,[22]) that
there is exponential convergence: There exist C, r > 0 so that for all n ∈ N

|Ig − Qng| ≤ C exp(−rn).

We consider two generalizations where g ∈ C∞((a, b)) but may not be analytic on [a, b]:

(1) For g ∈ Gδ([a, b]) with δ ≥ 1 we will obtain for n-point Gauss-Legendre quadrature Qn on (0, 1) exponential
convergence rates of the form |Ig − Qng| ≤ C exp(−rn1/δ).

(2) For the interval [a, b] = [0, 1] assume that g has an algebraic singularity at 0 in the sense that g ∈ Gδ,α([0, 1])
with δ ≥ 1, α > −1. For δ = 1 it is known that Gaussian quadrature converges in this case only with an
algebraic rate O(n−2(α+1)), see, e.g., [5]. In order to achieve exponential convergence we will use a geometric
subdivision with m = O(n1/δ) subintervals and then use composite Gauss quadrature with n nodes on each
subinterval. Then the quadrature error is bounded by C exp(−rN1/(1+δ)) where N is the total number of
quadrature points.

Therefore we always obtain an error bound C exp(−rNβ) with β > 0, but we pay for larger values of δ or the
presence of a singularity with a smaller exponent β.
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2.2. Convergence of Gauss-Legendre Quadrature for Gevrey Integrands. The classical error estimate for
Gauss-Legendre quadrature uses the derivative g(2n). This formula can be used to prove exponential convergence
of Qng if g is analytic in a sufficiently large neighborhood of [a, b]. In order to prove exponential convergence for
g ∈ G1([a, b]) (g analytic in a neighborhood of [a, b]) and g ∈ Gδ([a, b]) with δ > 1 (where g may not be analytic)
we need an estimate which allows to use lower order derivatives:

Lemma 2.2. Let n ∈ N and k ∈ {2, 3, . . . , 2n− 1}. Then we have for g ∈ Ck([a, b])

|Ig − Qng| ≤
32

15

(
b − a

2

)k+1 1

(k − 1)(2n − k)k−1

∥
∥
∥g(k)

∥
∥
∥
∞

Proof. We first consider [a, b] = [−1, 1]. Then Theorem 4.5 in [22] gives

|Ig − Qng| ≤
32

15

1

(k − 1)(2n − k)k−1

∥
∥
∥g(k)

∥
∥
∥
∞

using
∥
∥f(x)/(1 − x2)1/2

∥
∥

1
≤ π ‖f‖∞. A linear change of variables gives the result for general [a, b]. !

We now assume that g ∈ Gδ([a, b]) with Gevrey index δ ≥ 1, and consider the convergence of Gauss quadrature
Qng.

Theorem 2.3. Assume that g ∈ Gδ([a, b]) with δ ≥ 1 and constants A0, A1 in (1.6). Let ρ := A1(b − a)/2. For
δ = 1 let

r∗ := 2 log
[

ρ−1 +
√

1 + ρ−2
]

(2.1)

and for δ > 1 let
r∗ = δρ−1/δ. (2.2)

Then for any r < r∗ there exists C > 0 depending only on r, ρ and δ such that for all n ∈ N

|Ig − Qng| ≤ A0(b − a)C exp(−rn1/δ) (2.3)

Proof. In the case δ = 1 we consider g̃(z) := g(a+b
2 + z b−a

2 ) and see from its Taylor series that g̃ is analytic in
U := {z ∈ C | dist(z, [−1, 1]) < ρ−1} and |g̃(z)| ≤ A0/ (1 − ρ dist(z, [−1, 1])) for z ∈ U . For s > 1 let Es denote
the open ellipse Es := {(z + z−1)/2 | z ∈ C, |z| < s} with foci ±1 where the sum of its semiaxes is s. The largest
ellipse Es contained in U is Es∗ with s∗ := ρ−1 +

√

1 + ρ−2. By Theorem 4.5 in [22] we then obtain that for any
s ∈ (1, s∗)

∣
∣
∣I [a,b]g − Q[a,b]

n g
∣
∣
∣ =

b − a

2

∣
∣
∣I [−1,1]g̃ − Q[−1,1]

n g̃
∣
∣
∣ ≤ (b − a)MsCss

−2n (2.4)

where Ms := supz∈Es
|g̃(z)| ≤ A0/(1 − ρ(s − s−1)/2) < ∞ as (s∗ − s−1

∗ )/2 = ρ−1. This gives (2.1), (2.3).

In the case δ > 1 let En := |Ig − Qng|. Then Lemma 2.2, (1.6) and the Stirling estimate k! ≤ 1.1(2πk)1/2kke−k

give for any k ∈ {2, 3, . . . , 2n − 1}

En ≤ 32
15

(
b − a

2

)k+1 1

(k − 1)(2n − k)k−1
A0A

k
1(k!)δ

≤

[

A0
b − a

2
32
151.1δ(2π)δ/2

] [

A1
b − a

2
e−δ

]k kδ/2(2n − k)

k − 1

kδk

(2n − k)k
= cδ

kδ/2(2n − k)

k − 1

(
ρ̃kδ

2n − k

)k

(2.5)

where ρ̃ := A1
b−a
2 e−δ = ρe−δ. We now want to choose k such that f(k) :=

(
ρ̃kδ

2n−k

)k
is small. Let κ = e−1(n/ρ̃)1/δ

and k = 1κ2. If k ≤ n and κ ≥ 1 we have

f(k) ≤

(
ρ̃

n
kδ

)k

≤

(
ρ̃

n
κδ

)κ

= e−δκ

If κ ≥ n we let k := n. As κ ≥ n ⇐⇒ n ≤ (eδ ρ̃)−1/(δ−1) we obtain f(k) = ρ̃nn(δ−1)n ≤ e−δn. Note that
κ < 2 ⇐⇒ n < 2δeδρ̃ occurs only for n ≤ Cδ,ρ so that we still have f(k) ≤ cδ,ρe−δκ for n ∈ N.

Finally we note that the term kδ/2(2n−k)
k−1 in (2.5) grows at most algebraically in n and can therefore be absorbed

in (2.3) by using r < r∗. !
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2.3. Composite Gauss Quadrature for Singularity at Endpoint of Interval. We now consider the interval
[a, b] = [0, 1] and an integrand g(x) which may be singular at 0 in the sense that g ∈ Gδ,α([0, 1]) with δ ≥ 1 and
α > −1. Note that α > −1 implies g ∈ L1([0, 1]).

Let m ∈ N and σ ∈ (0, 1). We define the geometric subdivision [0, 1] = I1 ∪ · · · ∪ Im with

Ij := [σj , σj−1] for j = 1, . . . , m − 1; Im := [0, σm−1]. (2.6)

We then define two types of composite Gauss quadrature rules on this subdivision:

Definition 2.4. For m, n ∈ N and σ ∈ (0, 1) let Ij be given by (2.6). We define the constant order composite Gauss
rule

Qn,m,σg :=
m
∑

j=1

QIj
n g. (2.7)

For δ ≥ 1 we define the variable order composite Gauss rule by

nj :=

⌈
n(m + 1 − j)δ

mδ

⌉

for j = 1, . . . , m; Qn,m,σ,δg :=
m
∑

j=1

QIj
nj

g (2.8)

We will write Qn,m for results which hold for both Qn,m = Qn,m,σ and Qn,m = Qn,m,σ,δ.

The constant order rule Qn,m,σ uses n Gauss points on each subinterval and has hence a total of N = mn quadrature
points. The variable order rule Qn,m,σ,δ uses n1 = n Gauss points on the rightmost interval I1, and a decreasing
number of Gauss points towards 0. The total number of quadrature points is N =

∑m
j=1 nj ≈ nm/(δ + 1).

Theorem 2.5. Assume that g ∈ Gδ,α([0, 1]) with δ ≥ 1, α > −1. Let σ ∈ (0, 1), b > 0. Then the constant order

composite rule Qn,m,σ with m =
⌈

bn1/δ
⌉

has a total number of evaluation points N = O(n1+δ−1
) and there exist

C, r, r′ > 0 such that for all n ∈ N

|Ig − Qn,m,σg| ≤ C exp(−r′n1/δ) ≤ C exp(−rN1/(1+δ)). (2.9)

Proof. Define α̂ := min{α, 2}. Then g ∈ Gδ,α =⇒ g ∈ Gδ,α̂. An interval Ij = [σj , σj−1] with j < m has length
-j = σj(σ−1 − 1) and we have with Â0,j := A0σjα̂, Â1,j := A1σ−j

∀x ∈ Ij ∀k ≥ 2 :
∣
∣Dkf(x)

∣
∣ ≤ Â0,jÂ

k
1,j(k!)δ (2.10)

We now apply Theorem 2.3 to Q
Ij
n g. Note that in the proof of Theorem 2.3 only derivatives g(k) with k ≥ 2 were

used and that the constants C, r in (2.3) depend only on δ and ρ = Â1,j-j/2 = A1(σ−1 − 1)/2. As ρ is independent
of j we obtain with the same C, r > 0 for j = 1, . . . , m − 1

∣
∣IIj g − QIj

n g
∣
∣ ≤ Â0,j-jC exp(−rn1/δ) = A0σ

j(α̂+1)(σ−1 − 1)C exp(−rn1/δ) (2.11)
m−1∑

j=1

∣
∣IIj g − QIj

n g
∣
∣ ≤ A0

σ−1 − 1

σ−α̂−1 − 1
C exp(−rn1/δ) (2.12)

where we could add the geometric series for j = 1, . . . ,∞ as α̂ > −1 =⇒ σα̂+1 ∈ (0, 1).

For j = m we let α0 := min(α, 0) > −1 and f(x) := A0xα0 , then |g(x)| ≤ f(x) and
∣
∣QIm

n g
∣
∣ ≤ QIm

n f . Remark 4 in
[5] shows that QIm

n f converges as n → ∞ and QIm
n f ≤ cα0I

Imf . Hence

∣
∣IImg − QIm

n g
∣
∣ ≤
∣
∣IImg

∣
∣+
∣
∣QIm

n g
∣
∣ ≤ (1 + cα0)I

Imf = c

σm−1
∫

0

xα0dx = c′σ(m−1)(α0+1). (2.13)

Combining this with (2.12) gives

|Ig − Qn,m,σg| ≤
m
∑

j=1

∣
∣IIj g − QIj

n g
∣
∣ ≤ C′ exp(−rn1/δ) + C′′σ(m−1)(α0+1).

Choosing m =
⌈

bn1/δ
⌉

then gives (2.9). !
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Remark 2.6. Note that we have to know the value of the Gevrey parameter δ to obtain the rate C exp(−rN1/(1+δ)).
If we do not know the value of δ we can choose m = cn (as in the case δ = 1) and obtain N = O(n2) and

|Ig − Qn,mg| ≤ c′ exp(−rn1/δ) + c′′ exp(−r′m) ≤ C exp(−r̃N1/(2δ))

which is worse than C exp(−rN1/(1+δ)) for δ > 1 (but still gives exponential convergence).

We now consider the convergence rate of the variable order composite Gauss rule.

Theorem 2.7. Assume that g ∈ Gδ,α([0, 1]) with δ ≥ 1, α > −1. Let σ ∈ (0, 1), b > 0. Then the variable order

composite rule Qn,m,σ,δ with m =
⌈

bn1/δ
⌉

has a total number of evaluation points N = O(n1+δ−1
) and there exist

C, r, r′ > 0 such that for all n ∈ N

|Ig − Qn,m,σ,δg| ≤ C exp(−r′n1/δ) ≤ C exp(−rN1/(1+δ)). (2.14)

Proof. We proceed as in the proof of Theorem 2.5 and obtain for j = 1, . . . , m − 1 using nj ≥ nm−δ(m + 1 − j)δ

∣
∣
∣IIj g − QIj

nj
g
∣
∣
∣ ≤ A0σ

j(α̂+1)(σ−1 − 1)C exp(−rn1/δ
j ) ≤ cσj(α̂+1) exp

(

−rn1/δm−1(m + 1 − j)
)

=: Ej (2.15)

E1 = cσα̂+1 exp(−rn1/δ), Em−1 = cσ(m−1)(α̂+1) exp(−rn1/δ2m−1) ≤ cσ(m−1)(α̂+1)

As Ej is of the form Ej = aqj we have

m−1∑

j=1

Ej ≤ (m − 1) max
j=1,...,m−1

Ej ≤ (m − 1)max{E1, Em−1} ≤ C(m − 1)max
{

exp(−rn1/δ), σm(α̂+1)
}

. (2.16)

For j = m we use (2.13). Combining this with (2.11), (2.16) yields

|Ig − Qn,m,σ,δg| ≤
m∑

j=1

∣
∣
∣IIj g − QIj

nj
g
∣
∣
∣ ≤ C(m − 1)max{exp(−rn1/δ), σm(α̂+1)} + Cσm(α0+1)

and using bn1/δ ≤ m ≤ bn1/δ + 1 gives |Ig − Qn,m,σ,δg| ≤ Cr′ exp(−r′n1/δ) with r′ < r. !

2.4. Tensor product quadrature on [0, 1]d.

Proposition 2.8. Let d ∈ N, δ ≥ 1, α > −1 and assume g ∈ Gδ,α
{1}([0, 1]d). Let σ ∈ (0, 1), b > 0, m =

⌈

bn1/δ
⌉

and

Qn,m as in Definition 2.4. Then there exist C, r, r′ > 0 such that for all n ∈ N
∣
∣
∣
∣

∫

ζ∈[0,1]d

g(ζ) dζ − Qn,m ⊗ Qn ⊗ · · ·⊗ Qn
︸ ︷︷ ︸

d−1 times

g

∣
∣
∣
∣
≤ C exp(−rn1/δ) ≤ C exp(−r′N1/(δd+1)) (2.17)

Here N = (
∑m

j=1 nj)nd−1 = O(nd+δ−1

) is the total number of quadrature points.

Proof. We use induction over d. For d = 1 the result is given by Theorem 2.5. For d ≥ 2 we let ζ′ := (ζ1, . . . , ζd−1)
and define g̃(ζ′) := Qng(ζ′, ·), h(ζd) :=

∫

ζ′∈[0,1]d−1 g(ζ)dζ′. Then
∫

ζ∈[0,1]d

g(ζ)dζ − Qn,m ⊗ Qn ⊗ · · ·⊗ Qn
︸ ︷︷ ︸

d−1 times

g =

( ∫

ζ′∈[0,1]d−1

g̃(ζ′)dζ′ − Qn,m ⊗ Qn ⊗ · · ·⊗ Qn
︸ ︷︷ ︸

d−2 times

g̃

)

+

( 1∫

ζd=0

h(ζd)dζd − Qnh

)

=: T1 + T2.

For T1 we note that
∣
∣Dβ g̃(ζ′)

∣
∣ ≤ maxζd∈[0,1]

∣
∣D(β,0)g(ζ)

∣
∣ as Qn has positive weights with sum 1. Hence g ∈

Gδ,α
{1}([0, 1]d) implies g̃ ∈ Gδ,α

{1}([0, 1]d−1) and the induction assumption gives |T1| ≤ C exp(−rn1/δ).

For T2 we note that
∣
∣Dkh(ζd)

∣
∣ ≤

∫

ζ′∈[0,1]d−1

∣
∣
∣D(0,...,0,k)g(ζ)

∣
∣
∣ dζ′ ≤

∫

ζ′∈[0,1]d−1

A0A
k
1(k!)δ |ζ1|

min{0,α} dζ′ ≤ Ã0A
k
1(k!)δ

so that h ∈ Gδ([0, 1]). Hence Theorem 2.3 gives |T2| ≤ C exp(−rn1/δ). !
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Remark 2.9. In the case of g ∈ Gδ([0, 1]d) with d ∈ N, δ ≥ 1 we can use standard tensor product Gaussian
quadrature and obtain in the same way the result

∣
∣
∣
∣

∫

ζ∈[0,1]d

g(ζ) dζ − Qn ⊗ · · ·⊗ Qn
︸ ︷︷ ︸

d times

g

∣
∣
∣
∣
≤ C exp(−rn1/δ) ≤ C exp(−r′N1/(δd))

where N = nd is the total number of quadrature points.

3. Quadrature of Singular Functions on Simplices

3.1. Introduction. We want to compute the integral

I =

∫

x∈S(1)

∫

y∈S(2)

g(x, y) dy dx (3.1)

where we make the following assumptions:

Assumption 3.1. S(1), S(2) ⊂ Rd are d-dimensional closed simplices with positive volume. Moreover, S(1) ∩ S(2)

is either empty, or a k-dimensional simplex side with k ∈ {0, . . . , d}, i.e., the convex hull of k + 1 common vertices
of S(1), S(2) .

Assumption (3.1) is satisfied if S(j) are simplices in a regular finite element mesh.

Assumption 3.2. The function g(x, y) can be written as g(x, y) = F (x, y, y − x) with F ∈ Gδ,α
{2d+1,...,3d}(S

(1) ×

S(2) × (S(2) −S(1))) with δ ≥ 1, α ∈ R: There exist A0, A1 so that for all β = (βx, βy, βz) ∈ N3d
0 , x ∈ S(1), y ∈ S(2),

z ∈ S(2) − S(1)
∣
∣DβF (x, y, z)

∣
∣ ≤ A0A

|β|
1 (β!)δ ‖z‖min(α−|βz|,0) .

If S(1) ∩ S(2) is nonempty we assume α > k − 2d, this implies g ∈ L1(S(1) × S(2)).

We want to rewrite this integral in the form of nested one-dimensional integrals. Then we will approximate the
one-dimensional integrals either by Gauss quadrature or by composite Gauss quadrature.

We define the standard simplex in Rd by

Sd := {(x1, . . . , xd) | xj ≥ 0, x1 + · · · + xd ≤ 1}. (3.2)

Let us denote the vertices of S(j) by v(j,0), . . . , v(j,d), let w(j,k) := v(j,k) − v(j,0) for j = 1, 2 and k = 1, . . . , d. We
define A(j) := (w(j,1), . . . , w(j,d)) ∈ Rd×d and use the change of variables from x ∈ S(1), y ∈ S(2) to u, v ∈ Sd given
by

x = v(1,0) + A(1)u, y = v(2,0) + A(2)v (3.3)

yielding

G(u, v) := g
(

v(1,0) + A(1)u, v(2,0) + A(2)v
) ∣
∣
∣detA(2) detA(1)

∣
∣
∣ (3.4)

I =

∫

x∈S(1)

∫

y∈S(2)

g(x, y)dy dx =

∫

u∈Sd

∫

v∈Sd

G(u, v) dv du (3.5)

If the intersection S(1) ∩ S(2) is empty the simplices have a distance D > 0. Then the new integrand G(u, v)
is Gevrey regular on Sd × Sd. Using the coordinates ξj = (1 − u1 − · · · − uj−1)uj for j = 1, . . . , d we have

u = Ψ(ξ) := (ξ1, (1 − ξ1)ξ2, . . . , (1 − ξ1) · · · (1 − ξd−1)ξd) and JΨ(ξ) =
∏d−1

j=1 (1 − ξj)d−j so that

I =

∫

ξ∈[0,1]d

∫

η∈[0,1]d

G̃(ξ, η) dη dζ, G̃(ξ, η) := G(Ψ(ξ), Ψ(η))JΨ(ξ)JΨ(η).

We can now use Gaussian quadrature and obtain exponential convergence:

Proposition 3.3. The function G̃ satisfies G̃ ∈ Gδ([0, 1]2d). As a consequence we have for the quadrature error
with C, r > 0 ∣

∣
∣I − Qn ⊗ · · ·⊗ Qn(G̃)

∣
∣
∣ ≤ C exp(−rn1/δ) = C exp(−rN1/(2δd))
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Proof. The result follows from Corollary 4.9 in the next section and Remark 2.9. !

Note that for a shape regular finite element mesh we have D ≥ c max{diamS(1), diamS(2)} with fixed c, even for
non-quasiuniform meshes. Hence we obtain a uniform r > 0 for the convergence.

If the intersection S(1) ∩ S(2) is nonempty and k-dimensional with k ∈ {0, . . . , d} we can number the vertices
of the simplices so that v(1,j) = v(2,j) for j = 0, . . . , k, v(1,j) (= v(2,j) for j = k + 1, . . . , d. We now want to describe
the regularity of the function G given by (3.4).

Remember that g(x, y) = F (x, y, y − x) with F ∈ Gδ,α
{2d+1,...,3d}(S

(1), S(2), S(2) − S(1)). Hence we have in (3.5)

G(u, v) = c · F
(

v(1,0) + A(1)u, v(1,0) + A(2)v, A(2)v − A(1)u
)

(3.6)

as v(1,0) = v(2,0). Moreover, the first k columns of A(1), A(2) coincide so that A(j) = (B, B(j)) with B ∈ Rd×k,
B(j) ∈ Rd×(d−k). Let û := (u1, . . . , uk)', ǔ := (uk+1, . . . , ud)' and similarly for v, then (3.3) gives

x = v(1,0) + Bû + B(1)ǔ, y = v(1,0) + Bv̂ + B(2)v̌, (3.7)

y − x = A(2)v − A(1)u = B(v̂ − û) + B(2)v̌ − B(1)ǔ. (3.8)

By a closed cone we denote a closed subset X of Rd with the property x ∈ X =⇒ αx ∈ X for all α ≥ 0. For
u(1), . . . , u(m) ∈ Rd we define cone{u(1), . . . , u(m)} := { c1u(1) + · · · + cmu(m) | cj ≥ 0 }.

Proposition 3.4. Let X, Y be closed cones in Rd with X ∩ Y = {0}. Then there exists cX,Y > 0 such that

∀x ∈ X, ∀y ∈ Y : ‖x − y‖2 ≥ cX,Y

(

‖x‖2 + ‖y‖2
)

Proof. Let X1 = {x ∈ X | ‖x‖ = 1} and Y1 defined analogously. Since X1×Y1 is compact and X1∩Y1 = {} the inner
product (x, y) has on X1×Y1 a maximum 1−ε with ε > 0. Now let x ∈ X and y ∈ Y . Then (x, y) ≤ (1−ε) ‖x‖ ‖y‖
and

‖x − y‖2 = ‖x‖2 − 2(x, y) + ‖y‖2 ≥ ‖x‖2 − 2(1 − ε) ‖x‖ ‖y‖ + ‖y‖2 ≥ ε
(

‖x‖2 + ‖y‖2
)

using 2 ‖x‖ ‖y‖ ≤ ‖x‖2 + ‖y‖2. !

We define the closed cones

V := span{w(1,1), . . . , w(1,k)}, X(1) := cone{w(1,k+1), . . . , w(1,d)}, X(2) := cone{w(2,k+1), . . . , w(2,d)}

and have that S(j) ⊂ v(1,0) + V + X(j) for j = 1, 2. Let x ∈ S(1), y ∈ S(2), then (3.7) gives the decompositions

x = v(1,0) + x(0) + x(1), y = v(1,0) + y(0) + y(2), x(0) := Bû, x(1) := B(1)ǔ, y(0) := Bv̂, y(2) := B(2)v̌

with x(0), y(0) ∈ V , x(1) ∈ X(1), y(2) ∈ X(2). By the assumptions on the simplices S(1), S(2) we have X(1) ∩
(

V + X(2)
)

= {0} and V ∩ X(2) = {0}, hence Proposition 3.4 yields

‖y − x‖2 =
∥
∥
∥

(

y(2) + y(0) − x(0)
)

− x(1)
∥
∥
∥

2
≥ c

(∥
∥
∥y(2) −

(

x(0) − y(0)
)∥
∥
∥

2
+
∥
∥
∥x(1)

∥
∥
∥

2
)

≥ c′
(∥
∥
∥y(2)

∥
∥
∥

2
+
∥
∥
∥x(0) − y(0)

∥
∥
∥

2
+
∥
∥
∥x(1)

∥
∥
∥

2
)

‖y − x‖2 ≥ c′
(

‖B(v̂ − û)‖2 +
∥
∥
∥B(1)ǔ

∥
∥
∥

2
+
∥
∥
∥B(2)v̌

∥
∥
∥

2
)

≥ c′′
(

‖v̂ − û‖2 + ‖ǔ‖2 + ‖v̌‖2
)

(3.9)

since the columns of B, B(1), B(2) are linearly independent. We assumed that g(x, y) = F (x, y, y − x) with F ∈
Gδ,α

{2d+1,...,3d}(S
(1) × S(2) × (S(2) − S(1))), so (3.6) gives G(u, v) = H(u, v, v̂ − û, ǔ, v̌) with

H(u, v, ξ, η, ζ) := c · F
(

v(1,0) + A(1)u, v(1,0) + A(2)v, Bξ + B(2)ζ − B(1)η
)

. (3.10)

Let w := Bξ + B(2)ζ − B(1)η, then (3.9) gives ‖w‖ ≥ c ‖(ξ, η, ζ)‖. Hence we obtain with β = (βu, βv, βξ, βη, βζ)
∣
∣DβH(u, v, ξ, η, ζ)

∣
∣ ≤ Ã0Ã

β
1 (β!)δ ‖w‖min(α−|βξ|−|βη|−|βζ |,0) ≤ Ǎ0Ǎ

β
1 (β!)δ ‖(ξ, η, ζ)‖min(α−|βξ|−|βη|−|βζ |,0)

so that

G(u, v) = H(u, v, v̂ − û, ǔ, v̌), H ∈ Gδ,α
{2d+1,...,4d−k} (Sd × Sd × (Sk − Sk) × Sd−k × Sd−k) . (3.11)
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Our goal is to rewrite integral I as

I =

∫

u∈Sd

∫

v∈Sd

G(u, v) dv du =
K
∑

i=1

∫

[0,1]2d

G̃j(ζ)dζ

so that the new integrands satisfy G̃j ∈ Gδ,α̃
{1}([0, 1]2d), i.e., G̃j(ζ) is only singular with respect to ζ1 at ζ1 = 0. This

will allow us to use composite Gauss quadrature for ζ1, and standard Gauss quadrature for the variables ζ2, . . . , ζ2d.

We will first derive some useful tools, and then state the transformations and their properties.

3.2. Tools. The standard simplex (3.2) can be parametrized by (x1, . . . , xd) as follows:

x ∈ Sd ⇐⇒ xj ∈ [0, 1 −
j−1
∑

i=1

xi] for j = 1, . . . , d. (3.12)

∫

x∈Sd

f(x)dx =

1∫

x1=0

1−x1∫

x2=0

· · ·

1−x1−···−xd−1∫

xd=0

f(x)dxd · · · dx2dx1 (3.13)

Here we allow in parametrizations that the bounds for a variable depend on previous variables (so that we can
write integrals as nested one-dimensional integrals). In the sequel we will leave integrals in the form

∫

x∈Sd
f(x)dx,

it is then implicitly understood that they can be expressed as an iterated integral using (3.13). For a vector
v = (v1, . . . , vk) we will use the notations v′ := (v1, . . . , vk−1) ,

∑

j vj = v1 + · · · + vk, σv := 1 −
∑

j vj .

We now define a pyramid P (B) ∈ Rd with base B: Consider a (d− 1) dimensional hyperplane not containing 0 and
let B be a subset. Then define

P (B) := {sx | s ∈ [0, 1], x ∈ B}. (3.14)

With a parametrization B = {(x′, q(x′)) | x′ ∈ B′} with B′ ⊂ Rd−1 and an affine function q we can write

∫

x∈P (B)

f(x)dx =

1∫

s=0

∫

x′∈B′

f (s (x′, q(x′))) sd−1dx′ ds.

E.g., we have Sd = P (Bd) with the base

Bd := {(x1, . . . , xd) | xj ≥ 0,
∑

j

xj = 1} = {(x1, . . . , xd−1, 1 − x1 − · · ·− xd−1 | (x1, . . . , xd−1) ∈ Sd−1}. (3.15)

This gives another parametrization for Sd:

∫

x∈Sd

f(x)dx =

1∫

s=0

∫

x′∈Sd−1

f (s (x′, σx′)) sd−1dx′ ds. (3.16)

We will also encounter integrals over a domain P (Bm × Sn) ⊂ Rm+n: In this case we obtain with x ∈ Rm, y ∈ Rn

that
∫

(x,y)∈P (Bm×Sn)

f(x, y) dy dx =

1∫

s=0

∫

x′∈Sm−1

∫

y∈Sn

f (s (x′, σx′ , y)) sm+n−1dy dx′ ds. (3.17)

We now consider a Cartesian product of m pyramids and split it into m pyramids:

Proposition 3.5. Let D = P (B(1))× · · ·×P (B(m)) ∈ Rd1+···+dm where B(j) is a (dj − 1)-dimensional base in Rdj .
Then

D = D̃1 ∪ · · · ∪ D̃j , meas(D̃i ∩ D̃j) = 0, i, j ∈ {1, . . . , m}, i (= j (3.18)

where D̃j = P (B̃(j)) with

B̃(j) = P (B(1)) × · · ·× P (B(j−1)) × B(j) × P (B(j+1)) × · · ·× P (B(m)). (3.19)
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Figure 3.1. The domain Ad =
⋃

N⊂M

⋃

σ∈{+,−}

Aσ
N,M\N for d = 2 (left) and d = 3 (right, only

labeled for σ = +)

Proof. We have P (Bj) := {t(j)x(j) | t(j) ∈ [0, 1], x(j) ∈ Bj} and D = D̃1 ∪ · · · ∪ D̃m with

D̃1 =

{

(t(1)x(1), . . . , t(m)x(m)) | t(j) ∈ [0, 1], x(j) ∈ B(j), max
j

t(j) = t(1)
}

=
{

s
(

x(1), t(2)x(2), . . . , t(m)x(m)
)

| s ∈ [0, 1], t(j) ∈ [0, 1], x(j) ∈ B(j)

}

= P
(

B(1) × P (B(2)) × · · ·× P (B(m))
)

(3.20)

and correspondingly for D̃2, . . . , D̃m. !

We will need for (x, y) ∈ Sd × Sd the transformation (x, y) = (x, x + z) with z = y − x ∈ Sd − Sd and x ∈ Sd such
that y = x + z ∈ Sd: Let Ad := Sd − Sd and Ed(z) := Sd ∩ (Sd − z), then

Sd × Sd = {(x, x + z) | z ∈ Ad, x ∈ Ed(z)} .

Note that Ed(z) is always similar to Sd: We have x ∈ Ed(z) iff

xk ≥ max{0,−zk} and
∑

j

xj ≤ 1 − max{0,
∑

j

zj} (3.21)

Note that this yields a parametrization with the variables x1, . . . , xd where the lower bound for each variable is
given by the left inequality, and the upper bound (in terms of the previous variables) by the right inequality. Recall
the definitions of xN and x(N) for N ⊂ {1, . . . , d} and x ∈ Rd from section 1.1.

We now show that we can split Ad into pyramids A±
N,M\N = P (B±

N,M\N ). This is illustrated in Figure 3.1 for d = 2

and d = 3 dimensions. In the algorithm we will use the bases B+
N,M\N for all subsets N ⊂ M . Note that we can

visualize these bases flattened into Rd−1 as shown in Figure 3.2 for d = 3, 4. For #N = j equation (3.24) shows
that B+

N,M\N is a Cartesian product of a j-dimensional simplex and a d − j − 1-dimensional simplex. Consider

the case d = 4: For j = 0 we have
(
4
0

)

= 1 base which is (0-simplex) × (3-simplex) (tetrahedron), for j = 1

we have
(4
1

)

= 4 bases which are (1-simplex) × (2-simplex) (prisms), for j = 2 we have
(4
2

)

= 6 bases which are

(2-simplex)×(1-simplex) (prisms), for j = 3 we have
(4
3

)

= 4 bases which are (3-simplex)×(0-simplex) (tetrahedra).

Lemma 3.6. We have with M = {1, . . . , d}

Ad =
⋃

N⊂M

AN,M\N , AN−,N+ := {z ∈ Ad | zN− ≤ 0, zN+ ≥ 0} =
{

z | zN− ∈ −S#N− , zN+ ∈ S#N+

}

. (3.22)
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{}

{1}{2}

{3}

{1,2}

{1,3}{2,3}

Figure 3.2. The bases B+
N,M\N flattened into Rd−1 for d = 3 (left) and d = 4 (right) and labeled

with N . For d = 4 only 1 of 6 bases with #N = 2 and 1 of 4 bases with #N = 3 are shown with
dotted lines.

If N = {}
z ∈ A{},{1,...,d} = Sd =⇒ Ed(z) = (1 − z1 − · · ·− zd)Sd

If N = M

z ∈ A{1,...,d},{} = −Sd, =⇒ Ed(z) = −z + (1 + z1 + · · · + zd)Sd

If N (= {} and N (= M we have that AN,M\N is a Cartesian product of two pyramids with bases xN ∈ −B#N and
xM\N ∈ B#(M\N). Hence we can split it into two pyramids using AN,M\N = A+

N,M\N ∪ A−
N,M\N where

A+
N−,N+ := {z ∈ AN−,N+ |

∑

j zj ≥ 0} =
{

sz | zN− ∈ −tB#N− ; zN+ ∈ B#N+ ; s, t ∈ [0, 1]
}

= P (B+
N−,N+) (3.23)

B+
N−,N+ :=

{

x | xN− ∈ −S#N− , xN+ ∈ B#N+

}

(3.24)

A−
N−,N+ := {z ∈ AN−,N+ |

∑

j zj ≤ 0} =
{

sz | zN− ∈ −B#N− ; zN+ ∈ tB#N+ ; s, t ∈ [0, 1]
}

= P (B−
N−,N+) (3.25)

B−
N−,N+ :=

{

x | xN− ∈ −B#N− , xN+ ∈ S#N+

}

(3.26)

z ∈ A+
N−,N+ =⇒ Ed(z) = −z(N−) +



1 −
∑

j

(zN+)j



Sd (3.27)

z ∈ A−
N−,N+ =⇒ Ed(z) = −z(N−) +



1 +
∑

j

(zN−)j



Sd (3.28)

Proof. In (3.22) we split Ad into the parts belonging to the 2d octants in Rd. It remains to show the rightmost
equality in (3.22): If z ∈ Sd − Sd with zN− ≤ 0 and zN+ ≥ 0 we have to show that

∑

j(zN−)j ≥ −1 and
∑

j(zN+)j ≤ 1. But if z = y − x with x, y ∈ Sd we have with z± := zN± and correspondingly for x, y

∑

j

z−j =
∑

j

y−
j −
∑

j

x−
j ≥

∑

j

y−
j −



1 −
∑

j

x+
j



 ≥ −1

∑

j

z+
j =

∑

j

y+
j −
∑

j

x+
j ≤



1 −
∑

j

y−
j



−
∑

j

x+
j ≤ 1
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It is also clear that one can obtain all points z− ∈ −S#N− and z+ ∈ S#N+ in this way by choosing x, y ∈ Sd as
follows:

yN− = 0, yN+ = z+, xN− = −z−, xN+ = 0.

For the right equality in (3.23) we use that
∑

j zj ≥ 0 ⇐⇒
∑

j(−z−j ) ≤
∑

z+
j , and then we apply (3.20). The

statements about Ed(z) follow in each case directly from (3.21): For z ∈ A+
N−,N+ we have zN− ≤ 0, zN+ ≥ 0,

therefore xk ≥ max{0,−zk} is equivalent to x ≥ −z(N−). We also have z1 + · · · + zd ≥ 0, so
∑

j xj ≤ 1 −

max{0,
∑

j zj} is equivalent to
∑

j xj ≤ 1 − z1 − · · ·− zd = 1 −
∑

j(zN−)j −
∑

j(zN+)j . Therefore v := x + z(N−)

satisfies v ≥ 0 and
∑

j vj ≤ 1 −
∑

j(zN+)j . The other cases follow in the same way. !

Let A+
{},M := A{},M = Sd, A−

{},M := {}, A−
M,{} := AM,{} = −Sd, A+

M,{} := {} and define

E±
N−,N+(z) := −z(N−) +



1 ∓
∑

j

(zN±)j



Sd (3.29)

Then we can state the result as follows:
∫

x∈Sd

∫

y∈Sd

f(x, y) dy dx =
∑

N⊂M

∑

σ∈{−,+}

∫

z∈Aσ
N,M\N

∫

x∈Eσ
N,M\N(z)

f(x, x + z) dx dz (3.30)

This is a sum over 2d · 2 terms, but two of the Aσ
N,M\N are empty so that only 2d+1 − 2 terms remain. Recall that

all the domains Aσ
N,M\N are pyramids in Rd with apex in the origin. For z ∈ Aσ

N,M\N we use the parametrization

with the variables (s, t, zN− , zN+) from (3.23), (3.25) where (3.15) is used for zN− , zN+ . For x ∈ Eσ
N,M\N (z) we can

simply use the variables x1, . . . , xd.

3.3. Transformations. From (3.5) we obtain the integral

I =

∫

x∈Sd

∫

y∈Sd

G(x, y)dy dx. (3.31)

where G satisfies (3.11). Hence the function G is Gevrey smooth unless x = y, i.e., the singularity is in the interior
of the integration domain and affects all variables. We will now give a sequence of transformations which yields
an integrand g̃(ζ) which is only singular with respect to ζ1 at ζ1 = 0. We will state the Gevrey regularity of the
integrand after each transformation, but we postpone the proofs of these claims to Section 4. Section 3.4 will
describe the transformations in more detail and describe the resulting quadrature algorithm.

For x ∈ Rd we write x = (x̂, x̌) with x̂ = (x1, . . . , xk) and x̌ = (xk+1, . . . , xd). Remember that for v = (v1, . . . , vm)
we defined σv := 1 − v1 − · · ·− vm.

Step 1: Transform (x, y) ∈ Sd × Sd to (x̌, y̌, x̃, ỹ) ∈ Sd−k × Sd−k × Sk × Sk.

We see from (3.12) that (x̂, x̌) ∈ Sd is equivalent to x̌ ∈ Sd−k and x̂ ∈ σx̌Sk. Hence we let x̂ = σx̌x̃ with x̃ ∈ Sk

and obtain for an integral over x ∈ Sd
∫

x∈Sd

f(x)dx =

∫

x̌∈Sd−k

∫

x̃∈Sk

f (σx̌x̃, x̌) dx̃ σk
x̌dx̌.

By applying this to (3.31) we obtain

I =

∫

x̌∈Sd−k

∫

y̌∈Sd−k

∫

x̃∈Sk

∫

ỹ∈Sk

g1(x̃, ỹ, x̌, y̌)dỹ dx̃ dy̌ dx̌ (3.32)

g1(x̃, ỹ, x̌, y̌) := G (σx̌x̃, x̌, σy̌ ỹ, y̌)σk
x̌σk

y̌ .

where g1 is Gevrey smooth unless ‖(x̃ − ỹ, x̌, y̌)‖ = 0.
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Step 2: Use z̃ := ỹ − x̃ to transform (x̃, ỹ) ∈ Sk × Sk to (z̃, x̃) with z̃ ∈ Ak, x̃ ∈ Ek(z̃).
Then

I =

∫

x̌∈Sd−k

∫

y̌∈Sd−k

∫

z̃∈Ak

∫

x̃∈Ek(z̃)

g1(x̃, x̃ + z̃, x̌, y̌) dx̃ dz̃ dy̌ dx̌. (3.33)

Now g2(z̃, x̃, x̌, y̌) := g1(x̃, x̃ + z̃, x̌, y̌) is Gevrey smooth unless ‖(z̃, x̌, y̌)‖ = 0. More precisely, we claim that

g2 ∈ Gδ,α
{1,...,k,2k+1,...,2d}(Ω)

with Ω := {(z̃, x̃) | z̃ ∈ Ak, x̃ ∈ Ek(z̃)} × Sd−k × Sd−k.

We then apply (3.30) to split Ak into 2k+1 − 2 pyramids Aσ
N,M\N : With M = {1, . . . , k} we obtain an integral over

(x̌, y̌, z̃, x̃) ∈ Sd−k × Sd−k × Ω = Sd−k × Sd−k ×
⋃

N⊂M

⋃

σ∈{−,+}

{(z̃, x̃) | z̃ ∈ Aσ
N,M\N , x̃ ∈ Eσ

N,M\N (z̃)}.

Now
DN,σ := Sd−k × Sd−k × Aσ

N,M\N (3.34)

is a Cartesian product of m pyramids, with m = 3 for 1 ≤ k ≤ d − 1, m = 2 for k = 0 and m = 1 for k = d. By
Proposition 3.5 we can split DN,σ into m pyramids DN,σ

i with base BN,σ
i , i = 1, . . . , m, yielding an integral over

(x̌, y̌, z̃, x̃) ∈ Sd−k × Sd−k × Ω =
m
⋃

i=1

⋃

N⊂M

⋃

σ∈{−,+}

{(x̌, y̌, z̃, x̃) | (x̌, y̌, z̃) ∈ DN,σ
i , x̃ ∈ Eσ

N,M\N(z̃)}.

Note that by (3.27), (3.28) Eσ
N,M\N (z̃) is an affine image of Sk, and we can parametrize it with X̃ ∈ Sk.

Step 3: For w = (x̌, y̌, z̃) ∈ DN,σ
i use w = s · u with (s, u) ∈ [0, 1]× BN,σ

i .

We have DN,σ
i ⊂ Rd̃ with d̃ = k + 2(d − k) = 2d − k. Note that the parameter s ∈ [0, 1] satisfies s ∼ ‖w‖, and

that the determinant of the Jacobian gives a factor of sd̃−1 = s2d−k−1. We claim that the resulting integrands
gN,σ,i
3 (s, u) satisfy

gN,σ,i
3 ∈ Gδ,α̃

{1}(Ω3) (3.35)

with Ω3 = {(s, X̌, Y̌ , Z̃, x̃) | s ∈ [0, 1], (X̌, Y̌ , Z̃) ∈ BN,σ
i , x̃ ∈ Eσ

N,M\N (sZ̃)} and α̃ = α + 2d − k − 1.

Now we parametrize u ∈ BN,σ
i using Sj ×Sk−j−1 ×Sd−k ×Sd−k or [0, 1]×Sj ×Sk−j−1 ×Sd−k−1×Sd−k using

affine mappings: The pyramid DN,σ
i ⊂ Rd̃ has a (d̃−1)-dimensional base BN,σ

i ⊂ Rd̃. In (3.24) the base B+
N,M\N

of A+
N,M\N is expressed with S#N × B#(M\N). By (3.34), (3.19) we have for 1 ≤ k ≤ d − 1 with m = 3

BN,+
1 = Bd−k ×Sd−k ×P (B+

N,M\N), BN,+
2 = Sd−k ×Bd−k ×P (B+

N,M\N ), BN,+
3 = Sd−k ×Sd−k ×B+

N,M\N .

Let j = #N , then we parametrize B+
N,M\N with Sj × Bk−j and P (B+

N,M\N ) with [0, 1] × Sj × Bk−j . Finally we

use (3.15) to parametrize Bi with Si−1. As we used affine mappings for the parametrization of u we claim that we
obtain the same Gevrey regularity as (3.35) on the new domain. Corresponding arguments apply for A−

N,M\N , and
for the cases k = 0, k = d.

Step 4: Use (3.12) to parametrize all simplices Sp by [0, 1]p.
We therefore obtain with ζ1 = s

I =
∑

N⊂M

∑

σ∈{−,+}

3
∑

j=1

∫

ζ∈[0,1]2d

g̃N,σ,j(ζ)dζ. (3.36)

We claim that we have Gevrey regularity
g̃N,σ,m ∈ Gδ,α̃

{1}([0, 1]2d)

since the parametrization only affected the “smooth variables” with numbers 2, . . . , 2d.

In the case 1 ≤ k ≤ d − 1 we have in (3.34) m = 3 nontrivial factors, and we obtain for the integral a sum of
K = 3(2k+1 − 2) terms.
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In the case k = 0 there are no variables z̃, x̃ and there is no splitting of Ad, and nothing to do in step 2. In (3.34)
we have DN,σ = Sd−k ×Sd−k, i.e., m = 2 nontrivial factors. Hence we obtain for the integral a sum of K = 2 terms.

In the case k = d equation (3.34) becomes DN,σ = Aσ
N,M\N , i.e., we have m = 1. We obtain for the integral a

sum of K = 2k+1 − 2 terms.

To summarize: The total number K of terms in the sum for the integral is

K =








2 for k = 0

3(2k+1 − 2) for 1 ≤ k ≤ d − 1

2k+1 − 2 for k = d

(3.37)

Table 1 shows the number K for d = 1, . . . , 4.

d k = 0 k = 1 k = 2 k = 3 k = 4
1 2 2
2 2 6 6
3 2 6 18 14
4 2 6 18 42 30

Table 1. Number K of integrals after transformation in (3.37)

3.4. Detailed Form of Transformed Integrals. Here we want to give the resulting integrals explicitly as nested
one-dimensional integrals

b1∫

ξ1=a1

b2(ξ1)∫

ξ2=a2(ξ1)

· · ·

b2d(ξ1,...,ξ2d−1)∫

ξ2d=a2d(ξ1,...,ξ2d−1)

g̃0(ξ)dξ.

Then we can introduce the variables ζ1, . . . , ζ2d with ξj = aj(ξ1, . . . , ξj−1) + (bj(ξ1, . . . , ξj−1) − aj(ξ1, . . . , ξj−1)) ζj

and obtain integrals in the form (3.36).

In step 1 we have

g1(x̃, ỹ, x̌, y̌) := G(σx̌x̃, x̌, σy̌ ỹ, y̌)σk
x̌σk

y̌ . (3.38)

In step 2 we obtain I =
∑

N⊂M

∑

σ∈{−,+} Iσ
N,M\N with

Iσ
N,M\N =

∫

x̌∈Sd−k

∫

y̌∈Sd−k

∫

z̃∈Aσ
N,M\N

∫

x̃∈Eσ
N,M\N(z̃)

g1(x̃, x̃ + z̃, x̌, y̌) dx̃ dz̃ dy̌ dx̌

Note that A−
N−,N+ = −A+

N+,N− and E−
N−,N+(−z̃) = z̃ + E+

N+,N−(z̃). Hence we have

IN,M\N := I+
N,M\N + I−M\N,M =

∫

x̌∈Sd−k

∫

y̌∈Sd−k

∫

z̃∈A+
N,M\N

∫

x̃∈E+
N,M\N

(z̃)

f(z̃, x̃, x̌, y̌) dx̃ dz̃ dy̌ dx̌

with

f(z̃, x̃, x̌, y̌) := g1(x̃, x̃ + z̃, x̌, y̌) + g1(x̃ + z̃, x̃, x̌, y̌). (3.39)

For strongly elliptic boundary integral equations resulting from boundary reduction of second order elliptic boundary
value problems, the strongest singularity in the integrand is antisymmetric as a function of z and therefore eliminated
in the function f , cf. [8, Chap. 7],[10], [18, Chap. 5].

Next we can group all sets N with the same number j of elements together and obtain with Nj = {1, . . . , j},
N0 = {}, Rj = M \ Nj = {j + 1, . . . , k} that

I = I0 + · · · + Ik−1 (3.40)
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where

Ij =

∫

x̌∈Sd−k

∫

y̌∈Sd−k

∫

z̃∈A+
Nj,Rj

∫

x̃∈E+
Nj,Rj

(z̃)

fj(z̃, x̃, x̌, y̌) dx̃ dz̃ dy̌ dx̌

and fj is a sum of
(k

j

)

terms: For N ⊂ M and a vector v ∈ Rk we define the permutation w = PNv by wN =

(v1, . . . , vj) and wM\N = (vj+1, . . . , vk) with j = #N . Then

fj(z̃, x̃, x̌, y̌) :=
∑

N⊂M
#N=j

f(PN z̃, PN x̃, x̌, y̌). (3.41)

Using the definition of E+
Nj ,Rj

(z̃) we define

hj(z̃, x̌, y̌) :=

∫

x̃∈E+
Nj,Rj

(z̃)

fj(z̃, x̃, x̌, y̌)dx̃ =

∫

x̃∈Sk

fj(z̃,−z̃(Nj) + σz̃Rj
x̃, x̌, y̌)σk

z̃Rj
dx̃ (3.42)

and have

Ij =

∫

x̌∈Sd−k

∫

y̌∈Sd−k

∫

z̃∈A+
Nj,Rj

hj(z̃, x̌, y̌) dz̃ dy̌ dx̌.

Note that the integration domain Sd−k × Sd−k ×A+
Nj ,Rj

is a Cartesian product of pyramids, but Sd−k is empty for

d = k (no x̌, y̌ variables), and A+
Nj ,Rj

is empty for k = 0 (no z̃ variable). Therefore Ij is an integral over the domain

Dj :=









Sd−k × Sd−k for k = 0

Sd−k × Sd−k × A+
Nj,Rj

for 1 ≤ k ≤ d − 1

A+
Nj ,Rj

for k = d

We then use that the domain Dj is a Cartesian product of m pyramids, with m = 1 for k = d, m = 2 for k = 0,
m = 3 for 1 ≤ k ≤ d − 1 and can therefore be divided into m pyramids, yielding a sum of m terms for Ij .

In step 3 we parametrize the m integrals for Ij in terms of [0, 1] or S,.

For the integrals over x̌ ∈ Sd−k and y̌ ∈ Sd−k we use (3.16) with outer variables s1, s2 respectively. By (3.25)
A+

N,M\N is a pyramid where the base is a Cartesian product of −S#N and B#(M\N). Therefore we can apply (3.17)

and obtain a nested integral with outer variable s3 and inner variables z̃N , (z̃M\N )′.

Case 1 ≤ k ≤ d − 1: We get

Ij =

1∫

s1=0

1∫

s2=0

1∫

s3=0

(s1s2)
d−k−1sk−1

3 Gj(s1, s2, s3)ds3ds2ds1 (3.43)

Gj(s1, s2, s3) :=

∫

x̌′∈Sd−k−1

∫

y̌′∈Sd−k−1

∫

z̃Nj∈Sj

∫

z̃′
Rj

∈Sk−j−1

hj

(

s3(−z̃Nj , z̃
′

Rj
, σz̃ ′

Rj
), s1(x̌

′, σx̌′), s2(y̌
′, σy̌′)

)

dz̃ ′
Rj

dz̃Njdy̌′dx̌′

(3.44)
where expressions of the type z̃ ′

N mean (z̃N )′.

We use
1∫

s1=0

1∫

s2=0

1∫

s3=0

G(s1, s2, s3)ds3ds2ds1 =

1∫

s=0

s2

1∫

t=0

1∫

u=0

(G(s, st, su) + G(st, s, su) + G(st, su, s)) du dt ds

to split (3.43) into m = 3 terms as follows:

Ij =

1∫

s=0

s2d−k−1Fj(s)ds (3.45)
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Fj(s) :=

1∫

t=0

td−k−1

1∫

u=0

(

uk−1Gj(s, st, su) + uk−1Gj(st, s, su) + ud−k−1Gj(st, su, s)
)

du dt (3.46)

Case k = 0: Here we let I = I0 and have instead of (3.43)

I0 =

1∫

s1=0

1∫

s2=0

(s1s2)
d−k−1G0(s1, s2)ds2ds1 (3.47)

G0(s1, s2) :=

∫

x̌′∈Sd−k−1

∫

y̌′∈Sd−k−1

h0 (s1(x̌
′, σx̌′), s2(y̌

′, σy̌′)) dy̌′dx̌′. (3.48)

With
1∫

s1=0

1∫

s2=0

G(s1, s2)ds2ds1 =

1∫

s=0

s

( 1∫

t=0

G(s, st)dt +

1∫

t=0

G(st, s)dt

)

ds

we split (3.47) into m = 2 terms to obtain (3.45) with

F0(s) :=

1∫

t=0

td−1 (G0(s, st) + G0(st, s)) dt (3.49)

As there are no z̃, x̃-variables, we have instead of (3.42) simply

h0(x̌, y̌) = g1(x̌, y̌). (3.50)

Case k = d: Here m = 1 and we have instead of (3.43)

Ij =

1∫

s3=0

sk−1
3 Gj(s3)ds3 (3.51)

Gj(s3) :=

∫

z̃Nj∈−Sj

∫

z̃′
Rj

∈Sk−j−1

hj

(

s3z̃Nj , s3(z̃
′
Rj

, σz̃′
Rj

)
)

dz̃′Rj
dz̃Nj (3.52)

In this case we obtain (3.45) with
Fj(s) := Gj(s). (3.53)

For our quadrature algorithm we will use composite Gauss quadrature Qn,m with m = O(n1/δ) for the outermost
variable s, and standard Gaussian quadrature Qn for all inner variables.

Remark 3.7. If we implement this algorithm directly in machine arithmetic there will be function evaluations G(x, y)
with ‖x − y‖ ≈ σm 8 1 which will lead to subtractive cancellation if σm is of the order of the machine epsilon or
less. To avoid subtractive cancellation, we should use G(x, y) = H(x, y, ŷ − x̂, x̌, y̌) and evaluate H instead of G:
note that we have for given x̌, y̌, z̃, x̃

ẑ = ŷ − x̂ = σy̌(x̃ + z̃) − σx̌x̃ = σy̌ z̃ + (
∑

j x̌j −
∑

j y̌j)x̃.

We use instead of (3.38) the function g2(z̃, x̃, x̌, y̌) = g1(x̃, x̃ + z̃, x̌, y̌) and evaluate it in terms of H as

g2(z̃, x̃, x̌, y̌) := H
(

(σx̌x̃, x̌), (σy̌(x̃ + z̃), y̌), σy̌ z̃ + (
∑

j x̌j −
∑

j y̌j)x̃, x̌, y̌
)

σk
x̌σk

y̌ . (3.54)

We replace (3.39) with
f(z̃, x̃, x̌, y̌) := g2(z̃, x̃, x̌, y̌) + g2(−z̃, x̃ + z̃, x̌, y̌). (3.55)

We now summarize the resulting quadrature algorithm:

• sum over j = 0, . . . , max{0, k − 1} in (3.40)
• composite Gauss quadrature for s ∈ [0, 1] in (3.45)
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•







if 1 ≤ k ≤ d − 1: Gauss quadrature for (t, u) ∈ [0, 1]2 in (3.46)
if k = 0: Gauss quadrature for t ∈ [0, 1] in (3.49)
if k = d: Fj given by (3.53)

• If k ≤ d − 1: Gauss quadrature for (x̌′, y̌′) ∈ Sd−k−1 × Sd−k−1 in (3.44), (3.48)
• If k ≥ 1:

– Gauss quadrature for (z̃Nj , z̃
′

Rj
) ∈ Sj × Sk−j−1 in (3.44),(3.52)

– Gauss quadrature for x̃ ∈ Sk in (3.42)
– sum over all j-element subsets N of {1, . . . k} in (3.41), sum in (3.55)

If k = 0: h0(x̌, y̌) := g2(x̌, y̌)
• g2 is defined in terms of H by (3.54)

We can now count the number of quadrature points: For the integral over s ∈ [0, 1] we use composite Gauss
quadrature Qn,m with m = Cn1/δ subintervals, see Definition (2.4). Note that we can either have the constant order
rule Qn,m = Qn,m,σ, or the variable order rule Qn,m = Qn,m,σ,δ. In both cases we obtain N1 = O(nm) = O(n1+1/δ)
quadrature points for the integral over s. For the remaining 2d − 1 directions we use Gauss quadrature Qn with n
quadrature nodes. Since have a sum of K terms with K given by (3.37) the total number of quadrature points is

N = KN1n
2d−1 = KCn2d+1/δ. (3.56)

Note that it is also possible to use for the singular integration a value ñ = cn instead of n, see the numerical
experiments in section 6.

4. Gevrey regularity under coordinate transformations and convergence of quadrature

4.1. Preliminaries. In the previous section we performed a series of transformations and obtained

I =

∫

x∈Sd

∫

y∈Sd

G(x, y) dydx =

∫

ζ∈[0,1]2d

g̃(ζ) dζ (4.1)

with

g̃(ζ) :=
∑

N⊂M

∑

σ∈{−,+}

m
∑

j=1

g̃N,σ,j(ζ). (4.2)

The main result of this section is given by Theorem 4.5. It shows that under suitable assumptions on the
integrand G, the quadrature rule of tensor product type is applicable to the transformed function g̃ and converges
exponentially fast to the exact value I of the integral.

The section is organized as follows. In section 4.2 we formulate Theorem 4.2, which gives the necessary regularity
properties of the transformed function g̃. Then Theorem 4.5 is a corollary of Theorem 4.2 and Proposition 2.8.
In section 4.3 prove Theorem 4.2 and auxiliary Lemmas 4.7 – 4.10. Section 4.4 contains two technical Lemmas
required in the proof of Lemma 4.7.

4.2. Main result. As in the previous section we split x = (x̂, x̌) with x̂ := (x1, . . . , xk), x̌ := (xk+1, . . . , xn) and
similarly y = (ŷ, y̌). We make

Assumption 4.1. Let k ∈ {0, . . . , d}, δ ≥ 1, α > k − 2d and assume G(x, y) = H(x, y, ŷ − x̂, x̂, ŷ) with

H(x, y, ξ, η, ζ) ∈ Gδ,α
{2d+1,...,4d−k}(Ω

′) where Ω′ := Sd × Sd × (Sk − Sk) × Sd−k × Sd−k, (4.3)

i.e. ∃A0, A1 > 0 independent of ν := (ν◦, ν∗) ∈ N2d
0 × N

2d−k
0 and (x, y, ξ, η, ζ) ∈ Ω′ such that

|Dν◦

(x,y)D
ν∗

(ξ,η,ζ)H(x, y, ξ, η, ζ)| ≤ A0A
|ν|
1 (ν!)δ‖(ξ, η, ζ)‖min(α−|ν∗|,0). (4.4)

Note that Assumption 4.1 is satisfied if the integral I is defined by (3.1) where (i) the simplices S(1) and S(2) satisfy
Assumption 3.1 and (ii) the function g(x, y) in (3.1) satisfies Assumption 3.2. Then the function G(u, v) in (3.4),
(3.5) satisfies (3.11) and therefore Assumption 4.1.
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Theorem 4.2. Suppose G satisfies Assumption 4.1 and g̃ is obtained from G by the sequence of the coordinate
transformations given by Step 1 – Step 3 from the previous section. Then

g̃(ζ) ∈ Gδ,α̃
{1}([0, 1]2d) with α̃ = α + 2d − k − 1, (4.5)

Remark 4.3. Theorem 4.2 shows that the transformations in Section 3.3 isolate the singularity of the integrand g̃(ζ)
in the coordinate direction ζ1, while preserving Gevrey regularity in the remaining coordinates. We remark that in
certain special cases when α is an integer (such as, e.g., in boundary integral equations stemming from boundary
reduction of second order elliptic boundary value problems), these transformations actually completely remove the
singularity. In this case, the assertion (4.5) of Theorem 4.2 can be strengthened to g̃ ∈ Gδ([0, 1]2d) (generalizing
the case d = 3 and α = −1,−2 in [18, Chap. 5]).

The proof of the Theorem 4.2 requires auxiliary Lemmas 4.7–4.10 and is given at the end of the section. Theorem
4.2 allows an explicit construction of a quadrature rule for G on Sd × Sd, if G satisfies Assumption 4.1.

Definition 4.4. Let Q̂k,d
n,m be the quadrature rule on Sd × Sd such that

Q̂k,d
n,mG = [Qn,m ⊗ Qn ⊗ · · ·⊗ Qn

︸ ︷︷ ︸

2d−1 times

]g̃ (4.6)

where Qn,m is the quadrature rule in Definition 2.4, and g̃ is given in (4.2). Note that Qn,m can be either the
constant order composite rule Qn,m,σ with σ ∈ (0, 1), or the variable order composite rule Qn,m,σ,δ with σ ∈ (0, 1)
and δ ≥ 1.

Theorem 4.5. Suppose G satisfies Assumption 4.1. Let b > 0 and m =
⌈

bn1/δ
⌉

. Then there exist r, r′, C > 0 so
that for all n ∈ N

∣
∣
∣
∣

∫

x∈Sd

∫

y∈Sd

g(x, y) dxdy − Q̂k,d
n,mg

∣
∣
∣
∣
≤ C exp(−rn1/δ) = C exp(−r′N1/(2dδ+1)) (4.7)

where N = O(n2d+1/δ) is the number of function evaluations in the quadrature rule Q̂k,d
n,m.

Proof. The assertion of the Theorem follows directly from Theorem 4.2 and Proposition 2.8. !

Remark 4.6. The quadrature rule Q̂k,d
n,m given by (4.6) is 2d-fold tensor products rule applied to g̃(ζ). Since g̃(ζ) is

singular in ζ1 and smooth in the remaining coordinates, the rule uses the composite Gauss rule Qn,m in ζ1 and the
standard Gauss rule Qn in the coordinates ζ2, ..., ζ2d. In the special case mentioned in Remark 4.3 the integrand g̃
is smooth in all coordinates ζ1, . . . , ζ2d. Hence we can use instead of 4.6 the rule Q̂k,d

n,mG := [Qn ⊗ · · ·⊗Qn]g̃ which
uses standard Gauss quadrature for ζ1, . . . , ζ2d. Then Remark 2.9 gives in place of (4.7) the convergence rate

∣
∣
∣
∣

∫

x∈Sd

∫

y∈Sd

g(x, y) dxdy − Q̂k,d
n,mg

∣
∣
∣
∣
≤ C exp(−rn1/δ) = C exp(−r′N1/(2dδ)). (4.8)

4.3. Proof of the main result. We give the proof of Theorem 4.2. To this end, we set up some notation and then
verify preservation of Gevrey regularity under composition by establishing bounds on the growth of derivatives in
three technical lemmas. We recall σx̌ = 1 −

∑

j x̌j , σy̌ = 1 −
∑

j y̌j ,

g1(x̃, ỹ, x̌, y̌) := G(σx̌x̃, x̌, σy̌ ỹ, y̌)σk
x̌σk

y̌ (4.9)

and
g2(z̃, x̃, x̌, y̌) := g1(x̃, x̃ + z̃, x̌, y̌). (4.10)

Assumption 4.1, (4.9) and (4.10) give

g2(z̃, x̃, x̌, y̌) := (H ◦ φ)(z̃, x̃, x̌, y̌)σk
x̌σk

y̌ , with φ(z̃, x̃, x̌, y̌) = (σx̌x̃, x̌, σy̌(x̃ + z̃), y̌, σy̌(x̃ + z̃) − σx̌x̃, x̌, y̌). (4.11)

Lemma 4.7. Suppose H satisfies (4.4) and g2, φ are given by (4.11). Then

g2(z̃, x̃, x̌, y̌) ∈ Gδ,α
{1,...,k,2k+1,...2d}(Ω), with Ω = {(z̃, x̃) | z̃ ∈ Ak, x̃ ∈ Ek(z̃)}× Sd−k × Sd−k, (4.12)

i.e. ∃C0, C1 > 0 independent of ν = (ν◦, ν∗) ∈ Nk
0 × N

2d−k
0 and (z̃, x̃, x̌, y̌) ∈ Ω such that

|Dν◦

x̃ Dν∗

(z̃,x̌,y̌)g2(z̃, x̃, x̌, y̌)| ≤ C0C
|ν|
1 (ν!)δ‖(z̃, x̌, y̌)‖min(α−|ν∗|,0). (4.13)
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Proof. First we prove that the function H ◦ φ satisfy the estimate (4.26) and then generalize this result for g2.
Recalling (4.3) and (4.9) – (4.11) we have Ω ⊂ R2d, Ω′ ⊂ R4d−k, φ : Ω → Ω′ is a polynomial (4.11) and H : Ω′ → R

is of class C∞ in the interior of Ω′. Define s := (z̃, x̃, x̌, y̌) ∈ Ω and t := φ(s) ∈ Ω′. We recall a multivariate version
of the formula of Faà di Bruno [3], which represents the chain rule for multivariate composite functions

Dν
s (H ◦ φ)(s) =

|ν|
∑

l=1

∑

„

j1, . . . , jl

β(1), . . . , β(l)

«

∈Mν,l

γ|ν|,n,l
j,β(1),...,β(l)

(Dl
tj1 ...tjl

H(t))
l
∏

i=1

(D
β(i)
s φji (s)). (4.14)

Here γ|ν|,2d,l
j,β(1),...,β(l)

are positive integers and the sum is taken over the set

Mν,l :=
{(

j1, . . . , jl

β(1), . . . , β(l)

)

: j1, . . . , jl ∈ {1, . . . , 4d − k} and β(1) + · · · + β(l) = ν and β(i) (= 0, i = 1, . . . , l

}

.
(4.15)

Note that j1, . . . , jl ∈ N are integers and β(1), . . . , β(l) ∈ N2d are multiindices of the same length as ν, i.e. 2d. Let
us consider the multiindex ν and the associated differential operator Dν

s . By grouping the derivatives w.r.t. x̃ and
w.r.t. (z̃, x̌, y̌) in ν we obtain

Dν
s ≡ Dν◦

x̃ Dν∗

(z̃,x̌,y̌), (4.16)

which introduces a splitting of ν = (ν◦, ν∗). Note that ν◦ consists of k components, since x̃ ∈ Rk and ν∗ consists of
2d − k components, since (z̃, x̌, y̌) ∈ R2d−k. In the same manner we decompose the multiindices β(i) = (β◦

(i), β
∗
(i)),

i = 1, . . . , l such that

D
β(i)
s ≡ D

β◦
(i)

x̃ D
β∗
(i)

(z̃,x̌,y̌), (4.17)

Let us consider every particular summand in (4.14). Assume that the sets j1, . . . , jl and β(1), . . . , β(l) are fixed. We
group ji and β(i) with the same index i and define

N := {(j1, β(1)), . . . , (jl, β(l))}.

In what follows we obtain an upper bound for
∣
∣
∣
∣
Dl

tj1 ...tjl
H(t)

∣
∣
∣
∣

l
∏

i=1

∣
∣
∣
∣
D

β(i)
s φji (s)

∣
∣
∣
∣
.

Let us introduce a disjoint decomposition of the set of pairs N = N1
.
∪ N2

.
∪ N3, where

N1 :=
{

(ji, β(i)) ∈ N : ji ∈ {1, . . . , 2d}
}

N2 :=
{

(ji, β(i)) ∈ N : ji ∈ {2d + 1, . . . , 2d + k}
}

N3 :=
{

(ji, β(i)) ∈ N : ji ∈ {2d + k + 1, . . . , 4d − k}
}

and let us split N2 = N2,0
.
∪ N2,1

.
∪ N2,2 and N3 = N3,0

.
∪ N3,1, where

N2,0 :=
{

(ji, β(i)) ∈ N2 : |β◦
(i)| + |β∗

(i)| ≥ 3 or |β◦
(i)| ≥ 2

}

,

N2,1 :=
{

(ji, β(i)) ∈ N2 :
(

|β◦
(i)| = 0 and (|β∗

(i)| = 1 or 2)
)

or
(

|β◦
(i)| = 1 and |β∗

(i)| = 1
)}

,

N2,2 :=
{

(ji, β(i)) ∈ N2 : |β◦
(i)| = 1 and (|β∗

(i)| = 0
}

and
N3,0 :=

{

(ji, β(i)) ∈ N3 : |β◦
(i)| ≥ 1 or (|β∗

(i)| ≥ 2
}

,

N3,1 :=
{

(ji, β(i)) ∈ N3 : |β◦
(i)| = 0 and (|β∗

(i)| = 1
}

.

With the above notations we have

∣
∣
∣
∣
D

β(i)
s φji(s)

∣
∣
∣
∣
≤












0, if (ji, β(i)) ∈ N2,0
.
∪ N3,0

1, if (ji, β(i)) ∈ N1
.
∪ N2,1

.
∪ N3,1

|σy̌ − σx̌|, if (ji, β(i)) ∈ N2,2

(4.18)
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This gives

l
∏

i=1

∣
∣
∣
∣
D

β(i)
s φji(s)

∣
∣
∣
∣
≤









0, if N2,0
.
∪ N3,0 (= {},

∏

(ji,β(i))∈N2,1∪N2,2∪N3,1

∣
∣
∣
∣
D

β(i)
s φji(s)

∣
∣
∣
∣
, if N2,0

.
∪ N3,0 = {}. (4.19)

Using (4.18) we obtain the upper bound

∏

(ji,β(i))∈N2,1∪N2,2∪N3,1

∣
∣
∣
∣
D

β(i)
s φji(s)

∣
∣
∣
∣
≤

∏

(ji,β(i))∈N2,2

∣
∣
∣
∣
D

β(i)
s φji(s)

∣
∣
∣
∣
≤ |σy̌ − σx̌|

#N2,2 .

Note that |σy̌ − σx̌| = |
∑

j x̌j −
∑

j y̌j | ≤ Č‖(x̌, y̌)‖ and thus by (4.19)

l∏

i=1

∣
∣
∣
∣
D

β(i)
s φji(s)

∣
∣
∣
∣
≤

{
0, if N2,0 ∪N3,0 (= {},

C‖(x̌, y̌)‖#N2,2 , if N2,0 ∪N3,0 = {}.
(4.20)

H satisfies (4.4) by assumption which yields

|Dl
tj1 ...tjl

H(t)| ≤ A0Al
1(l!)

δ‖t{2d+1,...,4d−k}‖min(α−#N2−#N3,0)

≤ Ã0Ãl
1(l!)

δ‖(z̃, x̌, y̌)‖min(α−#N2−#N3,0),
(4.21)

since ‖t{2d+1,...,4d−k}‖ ≡ ‖(σy̌(x̃ + z̃) − σx̌x̃, x̌, y̌)‖ ∼ ‖(z̃, x̌, y̌)‖ by Lemma 4.12. Combining (4.20) and (4.21) we
obtain
∣
∣
∣
∣
Dl

tj1 ...tjl
H(t)

∣
∣
∣
∣

l∏

i=1

∣
∣
∣
∣
D

β(i)
s φji (s)

∣
∣
∣
∣

≤ Ã0Ãl
1(l!)

δ‖(z̃, x̌, y̌)‖min(α−#N2−#N3,0) ·

{

0, if N2,0 ∪N3,0 (= {}
C‖(x̌, y̌)‖#N2,2 , if N2,0 ∪N3,0 = {}

≤ C̃0C̃l
1(l!)

δ‖(z̃, x̌, y̌)‖min(α−#N2,1−#N2,2−#N3,1,0)+#N2,2 ,

≤ C0Cl
1(l!)

δ‖(z̃, x̌, y̌)‖min(α−#N2,1−#N3,1,0),

≤ C0Cl
1(l!)

δ‖(z̃, x̌, y̌)‖min(α−|ν∗|,0).
(4.22)

The last inequality holds, since ‖(z̃, x̌, y̌)‖∞ ≤ 1; a + min(b, 0) ≥ min(a + b, 0) if a ≥ 0; β∗
(1) + · · · + β∗

(l) = ν∗ and

#N2,1 + #N3,1 ≤
∑

(ji,β(i))∈N2,1∪N3,1

|β∗
(i)| ≤ |ν∗|.

We have l ≤ |ν| and thus by (4.14) we have

∣
∣
∣
∣
Dν

s (H ◦ φ)(s)

∣
∣
∣
∣
≤ C0C

|ν|
1 (|ν|!)δ−1‖(z̃, x̌, y̌)‖min(α−|ν∗|,0) ·








|ν|
∑

l=1

∑

„

j1, . . . , jl

β(1), . . . , β(l)

«

∈Mν,l

γ|ν|,n,l
j,β(1),...,β(l)

l!








. (4.23)

In order to estimate the double sum in parentheses we use the identity [4]

|ν|
∑

l=1

∑

„

j1, . . . , jl

β(1), . . . , β(l)

«

∈Mν,l

γ|ν|,d,l
j,β(1),...,β(l)

l!
l
∏

i=1

|νi|! = 3d(3d + 1)|ν|−1|ν|!, (4.24)

yielding
|ν|
∑

l=1

∑

„

j1, . . . , jl

β(1), . . . , β(l)

«

∈Mν,l

γ|ν|,d,l
j,β(1),...,β(l)

l! ≤ (3d + 1)|ν||ν|!, (4.25)

Inserting in (4.23) and using |ν|! ≤ (2d)|ν|ν!, which holds by the multinomial theorem we obtain
∣
∣
∣
∣
Dν

s (H ◦ φ)(s)

∣
∣
∣
∣
≤ Ĉ0Ĉ

|ν|
1 (ν!)δ‖(z̃, x̌, y̌)‖min(α−|ν∗|,0). (4.26)
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The estimate (4.13) follows, since σx̌ = 1 −
∑

j x̌j ≤ 1, σy̌ = 1 −
∑

j y̌j ≤ 1 yielding

|Dµ
s σk

x̌σk
y̌ | ≤ (d!)2, ∀µ ∈ N

2d
0 ,

and thus by the product rule
∣
∣
∣
∣
Dν

s

(

(H ◦ φ)(s)σk
x̌σk

y̌

)
∣
∣
∣
∣
≤
∑

µ≤ν

∣
∣Dµ

s (H ◦ φ)(s)
∣
∣ ·
∣
∣Dν−µ

s (σk
x̌σk

y̌ )
∣
∣ ≤ max

µ≤ν

∣
∣Dµ

s (H ◦ φ)(s)
∣
∣(d!)22|ν|, (4.27)

which together with (4.26) yields the asserted inequality (4.13). !

Lemma 4.8. Let q, q′ ∈ N, Ω ⊂ [−1, 1]q and Ω′ ⊂ [−1, 1]q
′
. Suppose N ⊂ {1, . . . , min(q, q′)} and f ∈ Gδ,α

N (Ω). Let
Ψ : Ω′ → Ω be a polynomial of degree p such that for t = Ψ(s) there holds tN = sN . Then

(i) f̂(s) := (f ◦ Ψ)(s) ∈ Gδ,α
N (Ω′),

(ii) If in addition q = q′ and JΨ (= 0 in the interior of Ω′, then f̃(s) := (f ◦ Ψ)(s)JΨ(s) ∈ Gδ,α
N (Ω′).

Proof. We use the same technique as in the proof of Lemma 4.7. First we prove (i). Recall the formula of Faà Di
Bruno (4.14), (4.15) and consider a fixed set N :=

{

(j1, β(1), . . . , (jl, β(l))
}

. Define

N1 :=
{

(ji, β(i)) ∈ N : ji ∈ N
}

, N2 = N \ N1.

Further, define

N1,1 :=
{

(ji, β(i)) ∈ N1 : |β(i)| = 1, and (β(i))ji = 1
}

, N1,0 := N \N1,1.

With the above definitions we have N = N1,0
.
∪ N1,1

.
∪ N2 and

∣
∣
∣
∣
D

β(i)
s Ψji(s)

∣
∣
∣
∣
≤













0, if (ji, β(i)) ∈ N1,0,

1, if (ji, β(i)) ∈ N1,1,

c(p, q), if (ji, β(i)) ∈ N2.

Thus
∣
∣
∣
∣
Dl

tj1 ...tjl
f(t)

∣
∣
∣
∣

l∏

i=1

∣
∣
∣
∣
D

β(i)
s Ψji(s)

∣
∣
∣
∣
≤ A0A

l
1(l!)

δ‖tN‖min(α−#N1,1,0) ≤ Ã0Ã
l
1(l!)

δ‖sN‖min(α−|νN |,0), (4.28)

since #N1,1 ≤ |νN |. We recall (4.25) and get
∣
∣
∣
∣
Dν

s (f ◦ Ψ)(s)

∣
∣
∣
∣
≤ C0C

|ν|
1 (ν!)δ‖sN‖min(α−|νN |,0) (4.29)

or f̂ ∈ Gδ,α
N (Ω′). To show (ii) we note that Ψ is a polynomial and JΨ (= 0 in the interior of Ω′ yield that JΨ is a

polynomial, thus

∃c(p, r) > 0 : |DµJΨ(s)| ≤ c(p, r) ∀µ ∈ N
r
0 ∀s ∈ Ω′.

Hence, by the product rule

|Dν
s f̃(s)| ≤

∑

µ≤ν

|Dµ
s (f ◦ Ψ)(s)| · |Dν−µ

s JΨ(s)| ≤ C̃0C̃
|ν|
1 (ν!)δ‖sN‖min(α−|νN |,0), (4.30)

yielding f̃ ∈ Gδ,α
N (Ω′). !

Corollary 4.9. Suppose f ∈ Gδ(S(1) × S(2)), where S(1), S(2) are simplices in Rd. Let φi : Sd → S(i) be an affine
transformation to the reference simplex and ψ : [0, 1]d → Sd be the parametrization of Sd by simplex coordinates

ψ1(x) = x1, . . . , ψd(x) = xd(1 − x1) . . . (1 − xd). (4.31)

Define Ψ := (φ1 ◦ ψ, φ2 ◦ ψ) : [0, 1]2d → S(1) × S(2) and f̃ := (f ◦ Ψ)JΨ. Then f̃ ∈ Gδ([0, 1]2d).

Proof. Lemma 4.8 with N = {}. !
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Lemma 4.10. Suppose 1 ≤ p ≤ q are integers, B is a bounded subset of a (p − 1)-dimensional hyperplane not
containing 0, so that P (B) ⊂ Rp, and Ω ⊂ Rq−p. Define N := {1, . . . , p} and suppose f(t) ∈ Gδ,α

N (P (B) × Ω), i.e.
∃A0, A1 > 0 independent of ν ∈ N

q
0, and t ∈ (P (B) \ {0}) × Ω such that

|Dνf(t)| ≤ A0A
|ν|
1 (ν!)δ‖tN‖min(α−νN ,0). (4.32)

Consider a nonlinear mapping Λ : [0, 1]× B × Ω → P (B) × Ω,

(t1, . . . , tq) = Λ(ζ) := (ζ1, ζ1ζ2, . . . , ζ1ζp, ζp+1, . . . , ζq). (4.33)

Then JΛ = ζp−1
1 and f̃ := (f ◦ Λ)(ζ)ζp−1

1 ∈ Gδ,α̃
{1}([0, 1] × B × Ω) with α̃ = α + p − 1, i.e. ∃C0, C1 > 0 independent

of ν ∈ N
q
0, and ζ ∈ (0, 1] × B × Ω such that

|Dν f̃(ζ)| ≤ C0C
|ν|
1 (ν!)δ|ζ1|

min(α+p−1−ν1,0). (4.34)

Proof. The chain rule gives for t = Λ(ζ)

Dνi
ζi

(f ◦ Λ)(ζ) =













(Dt1 + ζ2Dt2 + · · · + ζpDtp)ν1f(t), i = 1,

(ζ1Dti)
νif(t), i = 2, . . . , p

Dνi
ti

f(t), i = p + 1, . . . , q.

(4.35)

We abbreviate κν := ν2 + · · · + νp, then

Dν
ζ (f ◦ Λ)(ζ) = Dν1

ζ1

(

ζκν D
(ν2,...,νq)
(t2,...,tq) f(t)

)

=
min(ν1,κν)
∑

i=0

(

ν1

i

)

Di
ζ1

(ζκν
1 )Dν1−i

ζ1

(

D
(ν2,...,νq)
(t2,...,tq) f(t)

)

. (4.36)

The chain rule (4.35) and the multinomial theorem yield

Dν1−i
ζ1

(

D
(ν2,...,νq)
(t2,...,tq) f(t)

)

=
∑

µ ∈ N
p
0 ,

|µ| = ν1 − i

(

ν1 − i
µ

)

ζµ2
2 . . . ζµp

p D
ν∗

i,µ

t f(t), ν∗
i,µ = (µ1, ν2+µ2, . . . , νp+µp, νp+1, . . . , νq).

(4.37)
By assumption f ∈ Gδ,α

N (P (B) × Ω) yielding for 0 ≤ i ≤ min(ν1, κν)

∣
∣Di

ζ1
(ζκν

1 )D
ν∗

i,µ

t (f(t))
∣
∣ ≤

κν !

(κν − i)!
ζκν−i
1 A0A

|ν∗
i,µ|

1 (ν∗
i,µ!)δ‖(t1, . . . , tp)‖

min(α−κν−|µ|,0)

≤ Ã0Ã
|ν|
1 (ν!)δ|ζ1|

min(α−ν1,0),

(4.38)

where the last inequality holds, since |µ| = ν1 − i; a + min(b, 0) ≥ min(a + b, 0) if a ≥ 0;

κν !

(κν − i)!
(ν∗

i,µ!)δ ≤

(
κν !

(κν − i)!
|ν∗

i,µ|!

)δ

≤

(
κν !

(κν − i)!
q|ν

∗
i,µ|ν1!(κν − i)!νp+1! . . . νq!

)δ

≤ q2δ|ν|(ν!)δ

and

ζ1 ≤ ‖ζ1(1, ζ2, . . . , ζp)‖ ≤ C(B, q) · ζ1,

where the constant C(B, q) > 0 is independent of ζ and ν. The estimate

min(ν1,κν)
∑

i=0

(

ν1

i

)
∑

µ ∈ N
p
0 ,

|µ| = ν1 − i

(

ν1 − i
µ

)

ζµ2
2 . . . ζµp

p ≤
ν1∑

i=0

(

ν1

i

)

(1 + ζ2 + · · · + ζp)
ν1−i = (2 + ζ2 + · · · + ζp)

ν1

together with (4.36), (4.37) and (4.38) yields

∣
∣Dν

ζ (f ◦ Λ)(ζ)
∣
∣ ≤ C0C

|ν|
1 (ν!)δ|ζ1|

min(α−ν1,0). (4.39)
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With similar arguments we obtain the asserted estimate for f̃(ζ) = (f ◦ Λ)(ζ)ζp−1
1 :

|Dν
ζ f̃(ζ)| = |Dν1

ζ1

(

ζp−1
1 D

(ν2,...,νq)
(ζ2,...,ζq) (f ◦ Λ)(ζ)

)

|

≤
min(ν1,p−1)
∑

i=0

(

ν1

i

)
∣
∣Di

ζ1
(ζp−1

1 )D
(ν1−i,ν2,...,νq)
(ζ1,ζ2,...,ζq) (f ◦ Λ)(ζ)

∣
∣

≤
min(ν1,p−1)
∑

i=0

(

ν1

i

)
(p − 1)!

(p − 1 − i)!
ζp−1−i
1 C0C

|ν|−i
1 ((ν1 − i)!ν2! . . . νq!)

δ|ζ1|
min(α−ν1+i,0)

≤ C̃0C̃
|ν|
1 (ν!)δ|ζ1|

min(α+p−1−ν1,0).

(4.40)

This finishes the proof. !

Proof of Theorem 4.2

We recall the sequence of transformations from the previous section

I =

∫

x∈Sd

∫

y∈Sd

G(x, y) dydx
Steps 1,2

=
m
∑

j=1

∑

N⊂M

∑

σ∈{−,+}

∫

(x̌,y̌,z̃)∈DN,σ
j

∫

x̃∈Eσ
N,M\N

(z̃)

g2(z̃, x̃, x̌, y̌) dx̃dz̃dy̌dx̌

Step 3
=

m
∑

j=1

∑

N⊂M

∑

σ∈{−,+}

∫

(s,u)∈[0,1]×BN,σ
j

∫

x̃∈[0,1]k

g3(s, u, x̃) dx̃duds

Step 4
=

∫

ζ∈[0,1]2d

g̃(ζ) dζ.

(4.41)

As asserted, the integrand G satisfies Assumption 4.1, hence a direct application of Lemma 4.7 yields

g2(z̃, x̃, x̌, y̌) ∈ Gδ,α
{1,...,k,2k+1,...2d}(Ω), with Ω =

m⋃

j=1

⋃

N⊂M

⋃

σ∈{−,+}

{

(z̃, x̃, x̌, y̌)|(x̌, y̌, z̃) ∈ DN,σ
j , x̃ ∈ Eσ

N,M\N (z̃)
}

.

(4.42)

Further, we transform the simplex Eσ
N,M\N to Sk by (3.29) and then to [0, 1]k by introducing the simplex coordinates

and denote the above transformation by ψ(z̃, x̃, x̌, y̌). Clearly ψ is a polynomial with Jψ (= 0 and the assumptions
of Lemma 4.8.(ii) are satisfied with q = q′ = 2d, Ψ = ψ and f = g2, thus

g̃2(x̌, y̌, z̃, x̃) := (g2◦ψ)(z̃, x̃, x̌, y̌)Jψ ∈ Gδ,α
{1,...,2d−k}(Ω), Ω =

m
⋃

j=1

⋃

N⊂M

⋃

σ∈{−,+}

{

(x̌, y̌, z̃, x̃)|(x̌, y̌, z̃) ∈ DN,σ
j , x̃ ∈ [0, 1]k

}

.

Recall that each DN,σ
j = P (BN,σ

j ) is a pyramid. Hence the assumptions of Lemma 4.10 are satisfied with p = 2d−k,
q = 2d and f = g̃2 yielding

g3(s, u, x̃) ∈ Gδ,α+2d−k−1
{1} (Ω), Ω =

m
⋃

j=1

⋃

N⊂M

⋃

σ∈{−,+}

{

(s, u, x̃)|s ∈ [0, 1], u ∈ BN,σ
j , x̃ ∈ [0, 1]k

}

.

Note that BN,σ
j is a tensor product of simplices. We parametrize each of these simplices by the simplex coordinates

and obtain

g̃(ζ) ∈ Gδ,α+2d−k−1
{1} ([0, 1]2d),

which follows directly from Lemma 4.8. !
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4.4. Technical results. Finally we prove two technical Lemmas. Lemma 4.11 is required in the proof of Lemma
4.7 and Lemma 4.11 is used in the proof of Lemma 4.12.

Lemma 4.11. For arbitrary x, y ∈ [0, 1]2 there holds

‖(x1(1 − x2), x2)‖ ∼ ‖(x1, x2)‖, (4.43)

‖(x1(1 − x2) − y1(1 − y2), x2, y2)‖ ∼ ‖(x1 − y1, x2, y2)‖. (4.44)

Proof. We prove the Lemma for ‖ · ‖1. Considering (4.43) we note that ‖(x1, x2)‖1 ≤ 2. Then

‖(x1, x2)‖1 ≥ ‖(x1(1 − x2), x2)‖1 ≥

{ 1
2 , x1 ≥ 1

2

1
2‖(x1, x2)‖1, x1 < 1

2

}

≥
1

4
‖(x1, x2)‖1 (4.45)

and (4.43) follows. We prove (4.44) in several steps. On the one hand there holds

f := x1(1 − x2) − y1(1 − y2) ≡ (x1 − y1)(1 − x2) − y1(x2 − y2), (4.46)

thus using the triangle inequality we have

‖(f, x2, y2)‖1 ≤ |x1 − y1| + 2x2 + 2y2 ≤ 2‖(x1 − y1, x2, y2)‖1. (4.47)

On the order to show the reverse estimate we define z := |x1 − y1|, yielding

|f | = |z(1 − x2) − y1sign{x1 − y1}(x2 − y2)| (4.48)

and consider the three following cases.

Consider the case (x1 − y1)(x2 − y2) < 0. Then

z(1 − x2) − y1sign{x1 − y1}(x2 − y2) ≥ z(1 − x2) ≥ 0 (4.49)

and thus using (4.45)

‖(f, x2, y2)‖1 ≥ z(1 − x2) + x2 + y2 ≥
1

4
‖(z, x2, y2)‖1. (4.50)

Consider the case (x1 − y1)(x2 − y2) > 0 and either z ≤ x2 or z ≤ y2. Then

‖(f, x2, y2)‖1 ≥ ‖(0, x2, y2)‖1 ≥
1

2
‖(z, x2, y2)‖1 (4.51)

Consider the case (x1 − y1)(x2 − y2) > 0 and z > max{x2, y2}. Let us show that

|f | ≥ z − max{x2, y2}. (4.52)

Indeed, if x2 ≥ y2, then

x1 ≥ y1, z = x1 − y1 ≥ 0, (x1 − y1) − x1x2 = z − x1x2 ≥ z − x2 > 0, (4.53)

which yields
|f | = |x1 − y1 − x1x2 + y1y2| = x1 − y1 − x1x2 + y1y2 ≥ z − x2. (4.54)

Further, for x2 ≤ y2 we have

x1 ≤ y1, z = y1 − x1 ≥ 0, (y1 − x1) − y1y2 = z − y1y2 ≥ z − y2 > 0, (4.55)

which gives
|f | = |x1 − y1 − x1x2 + y1y2| = y1 − x1 + x1x2 − y1y2 ≥ y1 − x1 − y1y2 ≥ z − y2 (4.56)

and (4.52) holds true. Define v := min{x2, y2}, w := max{x2, y2}, then z > w and

‖(f, x2, y2)‖1 ≥ ‖(z − max{x2, y2}, x2, y2)‖1 = ‖(z − w, v, w)‖1 = z + v ≥
1

2
‖(z, v, w)‖1 ≥

1

2
‖(z, x2, y2)‖1. (4.57)

The proof is complete. !

Lemma 4.12. Define σx̌ := 1 − ‖x̌‖1. Then

(x̃, x̌) ∈ Sk × Sd−k ⇐⇒ (σx̌x̃, x̌) ∈ Sd, (4.58)

‖(x̃ − ỹ, x̌, y̌)‖ ∼ ‖(σx̌x̃ − σy̌ ỹ, x̌, y̌)‖. (4.59)
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Proof. Equivalence (4.58) follows directly from the definition of Sd. Define u := ‖x̌‖1, v := ‖y̌‖1. Note that
u, v ∈ [0, 1] and

‖(σx̌x̃ − σy̌ ỹ, x̌, y̌)‖1 = ‖((1 − u)x̃ − (1 − v)ỹ, u, v)‖1. (4.60)

Thus by Lemma 4.11 we obtain

1

4k
‖(x̃−ỹ, x̌, y̌)‖1 =

1

4k
‖(x̃−ỹ, u, v)‖1 ≤ ‖((1−u)x̃−(1−v)ỹ, u, v)‖1 ≤ 2k‖(x̃−ỹ, u, v)‖1 = 2k‖(x̃−ỹ, x̌, y̌)‖1. (4.61)

!

5. Singular Integrals over Parallelotopes in Rd

5.1. Introduction. We want to compute the integral over two d-dimensional parallelotopes (images of d-
dimensional cubes under affine transformations)

I =

∫

x∈P (1)

∫

y∈P (2)

g(x, y) dy dx

where we make the following assumptions:

Assumption 5.1. P (1), P (2) ⊂ Rd are d-dimensional closed parallelotopes with positive volume. Moreover, P (1) ∩
P (2) is either empty, or a k-dimensional parallelotope side with k ∈ {0, . . . , d}

This assumption is satisfied if P (j) are parallelotopes in a regular finite element mesh.

Assumption 5.2. The function g(x, y) can be written as g(x, y) = F (x, y, y − x) with F ∈ Gδ,α
{2d+1,...,3d}(P

(1) ×

P (2) × (P (2) − P (1))) where δ ≥ 1, α ∈ R. If P (1) ∩ P (2) is nonempty we assume α > k − 2d, this implies
g ∈ L1(P (1) × P (2)).

Let J := [0, 1]. Then we can use a change of variables from x ∈ P (1), y ∈ P (2) to u, v ∈ Jd with x = v(1,0) + A(1)u,
y = v(2,0) + A(2)v and obtain

I =

∫

u∈Jd

∫

v∈Jd

G(u, v)dv du (5.1)

with G(u, v) given by (3.4).

If the intersection P (1)∩P (2) is empty (i.e., the parallelotopes have a positive distance) we obtain as in Proposition 3.3
that G ∈ Gδ(J2d) and |I − Qn ⊗ · · ·⊗ Qn(G)| ≤ C exp(−rn1/δ).

If the intersection P (1) ∩ P (2) is a k-dimensional parallelotope side with k ∈ {0, . . . , d}, then we can choose v(j,0)

and A(j) such that v(1,0) = v(2,0) and the first k columns of A(1), A(2) coincide. Therefore we obtain as in section 3.1
that we can write G in the form

G(u, v) = H(u, v, v̂ − û, ǔ, v̌)

H(u, v, ξ, η, ζ) ∈ Gδ,α
{2d+1,...,4d−k}

(

Jd × Jd × [−1, 1]k × Jd−k × Jd−k
)

.
(5.2)

5.2. Transformations for Cubes.

(1) Let us first assume k ≥ 1. We now use ẑ := ŷ− x̂ to transform (x̂, ŷ) ∈ Jk ×Jk to (ẑ, x̂) with ẑ ∈ Jk −Jk =
[−1, 1]k, x̂ ∈ Fk(ẑ) := Jk ∩ (Jk − z) so that for g1(x̂, ŷ, x̌, y̌) := G(x̂, ŷ, x̌, y̌) we have

I =

∫

ẑ∈[−1,1]k

∫

x̂∈Fk(ẑ)

∫

x̌∈Jd−k

∫

y̌∈Jd−k

g1(x̂, x̂ + ẑ, x̌, y̌) dy̌ dx̌ dx̂ dẑ. (5.3)

We now split [−1, 1]k along the octants into 2k cubes: with M = {1, . . . , k} we have with CN−,N+ = {z |

zN− ∈ [−1, 0]#N−
, zN+ ∈ [0, 1]#N+

}

[−1, 1]k =
⋃

N⊂M

CN,M\N

ẑ ∈ CN−,N+ =⇒ Fk(ẑ) = −ẑ(N−) + [0, 1 − |ẑ1|] × · · ·× [0, 1 − |ẑk|] =: FN−,N+(ẑ) (5.4)
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and get

I =
∑

N⊂M

∫

ẑ∈CN,M\N

∫

x̂∈FN,M\N(ẑ)

∫

x̌∈Jd−k

∫

y̌∈Jd−k

g1(x̂, x̂ + ẑ, x̌, y̌) dy̌ dx̌ dx̂ dẑ (5.5)

which is a sum over 2k terms. Note that g2(ẑ, x̂, x̌, y̌) := g1(x̂, x̂ + ẑ, x̌, y̌) is Gevrey unless ‖(ẑ, x̌, y̌)‖ = 0.

(2) We now note that w := (ẑ, x̌, y̌) ∈ CN,M\N × Jd−k × Jd−k =: DN ⊂ Rd̃ with d̃ = k + 2(d − k) = 2d − k.
Then DN is a Cartesian product of m = 2d− k pyramids (since [0, 1] is a pyramid with base B = {1}). By
Proposition 3.5 we can split DN into m = 2d − k pyramids, yielding DN = DN

1 ∪ · · · ∪ DN
m.

(3) We use the parametrizations (3.20) to transform each DN
j to [0, 1]2d−k. Note that the parameter s ∈ [0, 1]

satisfies s ∼ ‖w‖, and that the determinant of the Jacobian gives a factor of sd̃−1 = s2d−k−1. We will finally
obtain with ζ1 = s

I =

∫

ζ∈[0,1]2d

g̃(ζ)dζ, g̃(ζ) :=
∑

N⊂M

m
∑

j=1

g̃N,j(ζ)dζ (5.6)

where g̃N,j ∈ Gδ,α̃
{1}(J

2d).

So far we assumed k ≥ 1 so that we need to deal with the variables x̂, ŷ in the intersection cube. In the case k = 0
where the two original parallelotopes touch at a vertex there are no variables x̂, ŷ and we obtain instead of (5.3)

I =

∫

x̌∈Jd

∫

y̌∈Jd

g1(x̌, y̌)dy̌ dx̌.

Therefore we can skip step (1). In step (2) we split the domain D = Jd × Jd into m = 2d pyramids.

Therefore the total number K of terms we obtain is always

K = 2k(2d − k). (5.7)

Table 2 shows K for d = 1, . . . , 4.

d k = 0 k = 1 k = 2 k = 3 k = 4
1 2 2
2 4 6 8
3 6 10 16 24
4 8 14 24 40 64

Table 2. Number K of integrals after transformation in (5.7)

Note that in the case d = 1 both simplices and parallelotopes are just intervals, and we obtain the same transfor-
mations.

5.3. Quadrature and Error Estimate. We defined the transformed integrand g̃ in (5.6). The main result of this
section is the following theorem.

Theorem 5.3. Let k ∈ {0, . . . , d}, δ ≥ 1, α > k − 2d. Suppose G satisfies (5.2) and g̃N,j are obtained from G by
the sequence of the coordinate transformations given by Step 1 – Step 2 from the previous section. Then

g̃(ζ) ∈ Gδ,α̃
{1}(J

2d), with α̃ = α + 2d − k − 1,

i.e. ∃C0, C1 > 0 independent of ν ∈ N2d
0 and ζ ∈ (0, 1] × [0, 1]2d−1 such that

|Dν
ζ g̃(ζ)| ≤ C0C

|ν|
1 (ν!)δ |ζ1|

min(α̃−ν1,0), α̃ = α + 2d − k − 1.

Definition 5.4. Let Q̃k,d
n,m be the quadrature rule on J2d such that

Q̃k,d
n,mG := [Qn,m ⊗ Qn · · ·⊗ Qn

︸ ︷︷ ︸

2d−1 times

]g̃.

where Qn,m is the quadrature rule in Definition 2.4 and g̃ is given by (5.6).
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The exponential convergence of the quadrature rule Q̃k,d
n,m is a corollary of Theorem 5.3 and Proposition 2.8:

Theorem 5.5. Let k ∈ {0, . . . , d}, δ ≥ 1, α > k− 2d. Suppose G satisfies (5.2). Let b > 0 and m =
⌈

bn1/δ
⌉

. Then
there exist r, r′, C > 0 so that for all n ∈ N

∣
∣
∣
∣

∫

x∈Jd

∫

y∈Jd

G(x, y) dydx − Q̃k,d
n,mG

∣
∣
∣
∣
≤ C exp(−rn1/δ) ≤ C exp(−r′N1/(2dδ+1)),

where N = O(n2d+1/δ) is the number of function evaluations in the quadrature rule Q̃k,d
n,m.

The proof of Theorem 5.3 is similar to the proof of Theorem 4.2 and requires the following auxiliary Lemma.

Lemma 5.6. Let g2(ẑ, x̂, x̌, y̌) = G(x̂, x̂ + ẑ, x̌, y̌) and (5.2) holds true. Then

g2(ẑ, x̂, x̌, y̌) ∈ Gδ,α
{1,...,k,2k+1,...,2d}(Ω

′), Ω′ =
{

(ẑ, x̂)|ẑ ∈ [−1, 1]k, x̂ ∈ Fk(ẑ)
}

× Jd−k × Jd−k,

i.e. ∃C0, C1 > 0 independent of ν◦ ∈ Nk
0 , ν∗ ∈ N

2d−k
0 and (ẑ, x̂, x̌, y̌) ∈ Ω such that

|Dν◦

x̂ Dν∗

(ẑ,x̌,y̌)g2(ẑ, x̂, x̌, y̌)| ≤ C0C
|ν◦|+|ν∗|
1 (ν◦!ν∗!)δ‖(ẑ, x̌, y̌)‖min(α−|ν∗|,0)

Proof. The proof follows directly from Lemma 4.8. Indeed, with φ(ẑ, x̂, x̌, y̌) := (x̂, x̌, x̂ + ẑ, y̌, ẑ, x̌, y̌) we have

g2(s) = (H ◦ φ)(s), s := (ẑ, x̂, x̌, y̌).

Then the assumptions of Lemma 4.8 are satisfied with f = H , Ψ = φ,

Ω := Jd × Jd × [−1, 1]k × Jd × Jd, Ω′ =
{

(ẑ, x̂)|ẑ ∈ [−1, 1]k, x̂ ∈ Fk(ẑ)
}

× Jd−k × Jd−k

and N such that tN = sN = (ẑ, x̌, y̌) up to reordering of variables.

!

Proof of Theorem 5.3 We recall the sequence of transformations

I =

∫

x∈Jd

∫

y∈Jd

G(x, y) dydx
Step 1,2

=
∑

N⊂M

m∑

j=1

∫

(ẑ,x̌,y̌)∈DN
j

∫

x̂∈FN,M\N(ẑ)

g2(ẑ, x̂, x̌, y̌) dy̌dx̌dx̂dẑ

Step 3
=

∑

N⊂M

m
∑

j=1

∫

ζ∈[0,1]2d

ĝN,j(ζ) dζ

Lemma 5.6 yields directly

g2(ẑ, x̂, x̌, y̌) ∈ Gδ,α
{1,...,k,2k+1,...,2d}(Ω), Ω := {ẑ ∈ [−1, 1]k, x̂ ∈ Fk(ẑ)}× Jd−k × Jd−k.

Further we transform ψ : FN,M\N → Jk by using parametrizations (5.4). The transformation ψ is a polynomial
and Jψ (= 0. Thus, assumptions of Lemma 4.8.(ii) are satisfied with q = q′ = 2d, Ψ = ψ and f = g2, hence

g̃2(x̌, y̌, z̃, x̃) := (g2 ◦ ψ)(z̃, x̃, x̌, y̌)Jψ ∈ Gδ,α
{1,...,2d−k}(Ω), Ω =

m
⋃

j=1

⋃

N⊂M

{

(x̌, y̌, z̃, x̃)|(x̌, y̌, z̃) ∈ DN
j , x̃ ∈ [0, 1]k

}

.

Furthermore, each DN
j is a pyramid and might be written in the form P (J2d−k−1). Hence the assumptions of

Lemma 4.10 are satisfied for every summand with p = 2d − k, B = J2d−k−1 and Ω = [0, 1]k, hence by Lemma 4.8
gN,j(ζ) ∈ Gδ,α̂

{1}(J
2d). !
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Figure 6.1. log |Ifp − QNfp| for function fp in (6.1) with p = 2, δ = 3
2 and N = 1, . . . , 250. The

horizontal axis is N1/δ, the line corresponds to |Ifp − QNfp| = C exp(−rN1/δ).

6. Numerical Examples

6.1. Gevrey functions on an interval. In the case of g ∈ Gδ([a, b]) with δ = 1 the function g is analytic in
a neighborhood of [a, b], and the exponential convergence |Ig − QNg| ≤ C exp(−rN) of Gaussian quadrature is
known to be sharp.

The case g ∈ Gδ,α([0, 1]) with δ = 1, α > −1 corresponds to a function g which is analytic on (0, 1], but may have
an algebraic singularitiy at 0. The method of composite Gauss quadrature with geometric subdivision was first
used in [19] and yields |Ig − Qn,mg| ≤ C exp(−rN1/2) where m = <βn= and N = O(n2) denotes the total number
of quadrature points. Note that the sinc method of Stenger [21] also yields the convergence rate C exp(−rN1/2). It
is shown in [21] that this rate is optimal among all sequences of quadrature formulas for a certain class of analytic
functions on an interval with endpoint singularities.

In the case of a Gevrey function g ∈ Gδ([a, b]) with δ > 1 we obtain the rate |Ig − QNg| ≤ C exp(−rN1/δ). We
want to provide numerical evidence that this rate is sharp: We consider the function

fp(x) :=

{

exp(x−p) for x > 0

0 for x ≤ 0
(6.1)

with p > 0 on the interval [−1, 1]. Then we have

fp ∈ Gδ([−1, 1]) ⇐⇒ δ ≥ 1 + 1/p (6.2)

see e.g. [2], p. 16. In Figure 6.1 we show N1/δ on the horizontal axis, and log |Ifp − QNfp| on the vertical axis.

6.2. Integrals over simplices in R2 and R3. Here we consider for d = 2, 3 the integral (3.5) with S(1) = Sd and
S(2) = ((y1, . . . , yk,−yk+1, . . . ,−yd) | y ∈ Sd) where k = 0, . . . , d, i.e., the intersection S(1) ∩ S(2) = {(x̂, 0, . . . , 0) |
x̂ ∈ Sk} is k-dimensional. Hence Assumption 3.1 is satisfied.

We use the integrand

g(x, y) = ‖y − x‖α , α = k − 2d + β

with β > 0, i.e., the exponent is by β larger than the critical exponent k − 2d where g /∈ L1(S(1) × S(2)). Therefore
g(x, y) = F (x, y, y − x) with F (x, y, z) = ‖z‖α and F ∈ Gδ,α(S(1) × S(2) × (S(2) − S(1))) with δ = 1. Hence
Assumption 3.2 is satisfied. With x̂ = (x1, . . . , xk) and x̌ = (xk+1, . . . , xd) we have G(x, y) = ‖(ŷ − x̂, x̌ + y̌)‖α and
H(x, y, ẑ, x̌, y̌) = ‖(ẑ, x̌ + y̌)‖α.
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Figure 6.2. Relative errors |QN − I| /I for d = 2 (left) and d = 3 (right), with k = 0, . . . , d

In our numerical experiments we chose for each d and k the exponent α so that β = 1/π. We chose singularities
very close to the nonintegrable case for all k = 0, . . . , d as a tough test for our algorithm. In applications for
integral equations one has a fixed integrand g(x, y) ∼ ‖x − y‖α∗ with α∗ > −d for all k, and one would have
βk := α∗ − (k − 2d) > d − k.

We use Gaussian quadrature with n nodes for each of the smooth variables ζ2, . . . , ζ2d. For the singular variable ζ1

we let ñ = 2n. We use a geometric mesh with ratio σ = 0.1 and m = ñ subintervals, with 1, 2, . . . , ñ Gauss points
on the subintervals. We use n = 2, . . . , 12 for d = 2 and n = 2, . . . , 10 for d = 3.

In Figure 6.2 we show on the vertical axis the relative error |QN − I| /I with a logarithmic scale, and on the
horizontal axis N1/(2d+1) where

N = K ·
1

2
ñ(ñ + 1) · n2d−1

is the total number of quadrature points. The bound in Theorem 4.5 then corresponds to a straight line.

In implementation, particular attention must be paid to the numerical evaluation of the integrand: as discussed in
Section 3.4, Remark 3.7. To illustrate Remark 3.7 numerically, we show results for d = 2 and k = 1 in Figure 6.3: if
we evaluate the function G(x, y) using (3.39) and (3.38) we encounter dramatic subtractive cancelation. If we use
equations (3.55) and (3.54) to evaluate the function H the roundoff error does not affect the convergence behavior.

Acknowledgement: This research was performed while T. von Petersdorff visited the Seminar for Applied Math-
ematics (SAM) of ETH Zürich during sabbatical leave in 2008 and while A. Chernov was a postdoctoral fellow at
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