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Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo

Swiss Federal Institute of Technology Zurich

Optimal bounds in reaction diffusion problems
with variable diffusion coefficient

R. Sperb

Research Report No. 2008-32
December 2008

Seminar für Angewandte Mathematik
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Optimal bounds in reaction diffusion problems with
variable diffusion coefficient

R. Sperb

Abstract

A diffussion-reaction problem is considered involving a variable diffusion coeffi-

cient. A maximum principle for a functional of the solution is proven, which allows

to derive bounds for various quantities of interest. The bounds are optimal in the

sense that they become sharp if the domain is a slab or an N -sphere and the diffusion

coefficient has an appropriate form.

1 Introduction

A chemical reaction diffusion process, with a single reactant of concentration u(x), taking
place in an inhomogeneous catalyst Ω is often modeled by

{

div(σ(x)∇u) + f(u) = 0 in Ω

u = 0 on ∂Ω .
(1.1)

Here σ(x) is the diffusion coefficient and f(u) describes the kinetics of the reaction. There
are of course numerous other possible backgrounds for problem (1.1).

In the case σ(x) = const. there is a great amount of literature available on problem
(1.1), dealing with many interesting phenomenae such as critical parameter values, dead
cores and other features.

In this work bounds are derived with a modification of a method introduced by Payne
& Stakgold [1] and extended by Schaefer & Sperb [2]. The bounds derived in these papers
are optimal in the sense that they become sharp in the limit as the domain Ω degenerates
into an infinite slab or strip. The bounds derived in this paper are also sharp if σ = const.
and Ω is a slab, but, in addition, there is a new situation here: if σ = σ(r) = 1

r2(N−1) and Ω
is a spherical shell R1 ≤ r ≤ R2 in N -dimensions, then the bounds are sharp. Though σ
is singular at the origin there is still a bounded solution if R1 = 0, such that the diffusion
flux |σ ·∇u| remains bounded for r → 0.



2 Maximum principle for a functional of u

Our bounds will be derived from a maximum principle for the functional

P = σ · |∇u|2 g(u) + h(u) (2.1)

where u is the solution of (1.1) and g(u), h(u) will be specified later on.

It is convenient to derive the main result from auxiliary results, starting with

Lemma 2.1. Let Ω be a plane domain and choose g(u) = e−α·u, h(u) = 2
∫ u

0 e−α·vf(v) dv,
u = solution of (1.1). Then P satisfies the elliptic equation

∆P −
1

σ
∇σ ·∇P +

→
W ·∇P

|∇u|2
= e−αu · |∇u|2{∆σ + 2α∇σ ·∇u + σf}

→
W=

2f

σ
∇u −

1

σ
eβu ∇P − 2e−αuσ · He[∇u,∇u] ,

(2.2)

where He denotes the Hessian of log σ, i.e. He[∇u,∇u] = (log σ)′ik u′i u′k, where a sub-
script denotes a derivative and the summation convention is used.

Proof. Straightforward calculation gives

∇P = ∇σ · |∇u|2 g + 2σg∇∇u ·∇u + σ|∇u|2 g′∇u + h′ ·∇u (2.3)

∆P = ∆σ · |∇u|2 g + 2σg(|∇∇u|2 + ∇(∆u) ·∇u) (2.4)

+ σ|∇u|2(g′∆u + g′′|∇u|2) + h′∆u + h′′|∇u|2

+ 4∇σ(∇∇u ·∇u)g + 2∇σ ·∇u · g′|∇u|2 + 4σ(∇∇u ·∇u ·∇u)g′ .

Here the following notations have been used:

∇∇u ·∇u = u′ik u′k, |∇∇u|2 = u′ik u′ik .

We can now use the differential equation for u to express the third derivative term ∇(∆u)
as follows:

∇(∆u) = −
f

σ
∇u +

f

σ2
∇σ −∇∇(log σ) ·∇u −∇(log σ) ·∇∇u . (2.5)

Furthermore, we use the identity (valid for any smooth function in R2)

|∇∇u|2 = (∆u)2 +
2

|∇u|2
(|∇∇u ·∇u|2 − ∆u(∇∇u ·∇u) ·∇u) . (2.6)

As another step we eliminate the terms ∇∇u ·∇u and |∇∇u|2 through the relations (2.3),
(2.6). After a considerable amount of algebra (which can easily be done e.g. by using
“Mathematica”) one finds, with our choice of g(u) and h(u), the equation (2.2).
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In N > 2 dimensions we can derive an elliptic inequality. To this end we rewrite the
relation (2.3) in the form

1

2σg
(∇P − $A) = ∇∇u ·∇u , (2.7)

with the obvious interpretation of the vector $A. Schwarz’s inequality for vectors then tells
us that

1

4σ2g2
(∇P − $A)2 ≤ |∇∇u|2 · |∇u|2 . (2.8)

The relations (2.7) and (2.8) allow to eliminate all terms in (2.4) containing the expression
∇∇u.

The result is summarized in

Lemma 2.2. For N > 2 the functional

P = g(u) · |∇u|2 + 2

∫ u

0

g(v) f(v) dv satisfies (2.9)

∆P − (log g)′∇u ·∇P +
$B ·∇P

|∇u|2
≥− 2g · σ · (g−1/2)′′ · |∇u|4

+ |∇u|2{−g′(f + ∇u ·∇σ) + 2g · µ
√

σ}
(2.10)

where $B = 2f
σ ∇u −

1

2gσ
·∇P and µ is the lowest eigenvalue of the matrix

Sik = ∆(
√

σ) δik −
√

σ · (&u σ)′ik .

The first result concerns the case N = 2. Let k denote the curvature of the boundary
and set

β2 = min
∂Ω

(

σ−1/2 ·
2σ

∂n
+ 2σ1/2 · k

)

,
∂

∂n
: outward normal derivative (2.11)

γ = max
Ω

(|∇σ| σ−1/2) , (2.12)

τ = max
Ω

(
√

σ · |∇u|) . (2.13)

Theorem 2.3. a) the matrix Mik = ∆σ · δik − 2σ(log σ)′ik has the lowest eigenvalue
µ2 and α can be chosen so that

µ2 − 2αγ + αf(u) ≥ 0 for 0 ≤ u ≤ um .

b) β2 ≥ ατ . Then the function

P = e−αu · σ |∇u|2 + 2

∫ u

0

e−αvf(v) dv

takes its maximum at a point where |∇u| = 0.

3



Remark: In b) we need an upper bound for the quantity τ = maxΩ(
√

σ · |∇u|) containing
the gradient of the solution. We will see that Theorem 2.3 often allows to determine a
bound for τ .

Proof. If condition a) is satisfied, P satisfies an elliptic inequality by (2.2). The maximum
principle then tells us that maximum of P must occur on ∂Ω or at a point where a
coefficient of ∇P becomes singular, i.e. where ∇u = 0. We therefore check the normal
derivative of P on ∂Ω. Since u = 0 on ∂Ω we have

P = e−αu · u2
n + 2

∫ u

0

e−αu · f(v) dv, un =
∂u

∂n
. (2.14)

Hence
Pn = σn · u2

n + 2σ · unn · un − Hασu3
n + 2f un . (2.15)

We now use the facts that on ∂Ω we can write

∆u = unn + kun (2.16)

and since ∂Ω ∈ C2+ε, the differential equation for u also is valid on ∂Ω, that is

σ(unn + kun) + σn · un = −f . (2.17)

Elimination of unn in (2.15) allows to write

Pn = −u2
n(ασun + σn + 2σk) = −|∇u|2

√
σ

( σn√
σ

+ 2
√

σ k − α
|∇u|√

σ

)

. (2.18)

By condition b) we know that Pn ≤ 0. The boundary point lemma would be violated if
the maximum were to occur on ∂Ω. This proves the statement of Theorem 2.3.

In case of N ≥ 3 dimensions we have the corresponding result. The quantity ω2 defined
in (2.11) is replaced now by

βN =
σn√

σ
+ 2

√
σ (N − 1) H, H = mean curvature of ∂Ω . (2.19)

Then one has

Theorem 2.4. Assume that ∂Ω ∈ C2+ε, f ∈ C1 and

a) The matrix ∆(
√

σ) · δik −
√

σ(log σ)′ik has the lowest eigenvalue µN and for 0 ≤ u ≤
um one has

√
σ · µN +

1

1 + u
f(u) ≥

1

1 + u
γτ . (2.20)

b) βN ≥ 2ατ . Then

P =
σ · |∇u|2

(1 + αu)2
+ 2

∫ u

0

f(v)

(1 + αv)2
dv

takes its maximum where ∇u = 0.

4



Proof. The choice g(u) = 1
(1+αu)2 makes the term containing |∇u|4 in (2.10) vanish. Con-

dition (2.20) ensures that P satisfies an elliptic inequality. The same calculation as in the
foregoing proof shows that if b) holds then ∂P

∂n ≤ 0 on ∂Ω, so that the boundary point
lemma can be invoked again. This proves Theorem 2.4.

Remarks:

(1) For σ = 1
r2(N−1) and Ω a spherical shell in N -dimensions, a radially symmetric

solution of (1.1) satisfies

1

rN−1

(

rN−1σ(r) ur

)

r
+ f(u) = 0 r in (R1, R2) . (2.21)

Taking the new variable s = 1
N rN we find

1

rN−1

(

rN−1 ·
1

r2(N−1)
ur

)

r
= u′′(s)

hence (2.21) is equivalent to

u′′ + f(u) = 0 for s in
(RN

1

N
,

RN
2

N

)

, (2.22)

and then

u2
s + 2F (u) =

1

r2(N−1)
u2

r + 2F (u) = σ|∇u|2 + 2F (u) = const. . (2.23)

This is the optimal case of Theorem 2.4 with α = 0.

2) For N = 2 and σ = σ(r) the eigenvalue µ2 of the matrix Mik is given by

µ2(r) =
σ′2

σ
−

∣

∣

∣

σ′2

σ
+

σ′

r
− σ′′

∣

∣

∣
.

In particular, if σ′2

σ + σ′

r − σ′′ ≥ 0 then

µ2(r) = σ′′ −
σ′

r
= r

(σ′

r

)′
, (2.24)

3 Examples and applications

A.f(u) = 1, N = 2A.f(u) = 1, N = 2A.f(u) = 1, N = 2

We first consider the analog of the “torsion problem”, i.e.
{

div(σ ·∇ψ) + 1 = 0 in Ω
ψ = 0 on ∂Ω .

(3.1)

5



In order to make the assumptions required in Theorem 2.4 explicit we need an upper
bound for τ = maxΩ(

√
σ · |∇u|): The lower eigenvalue µ2 of the matrix

MiR = ∆σ · δik − 2σ(log σ)′ik and γ = max
Ω

|∇σ|√
σ

must satisfy
µ2 − 2αγ + α ≥ 0 (3.2)

for some α which has to be determined. In addition we need to satisfy

min
∂Ω

( 1√
σ

∂σ

∂n
+ 2

√
σ · k

)

≥ α · τ . (3.3)

If (3.2), (3.3) hold we know from Theorem 2.3 that

e−αψσ|∇ψ|2 + 2

∫ ψ

0

e−αvdv ≤ 2

∫ ψ

0

e−αv dv, um = max
Ω

u . (3.4)

We rewrite (3.4) in the form

σ · |∇ψ|2 ≤
2

α
(1 − e−α(ψm−ψ) . (3.5)

Let xm be a point in Ω where u(xm) = um and x0 a point on ∂Ω. Measuring the distance
from xm by r we use that

−
dψ

dr
≤ |∇ψ| ≤

1√
σ

√

2

α
(1 − e−α(ψm−ψ| . (3.6)

Separation of variables and integration yields
∫ ψm

0

du√
1 − e−α(ψm−ψ)

≤
√

2

α

∫ x0

xm

1
√

σ(r)
dr =

√

2

α
dσ , (3.7)

with the obvious definition of dσ. This is equivalent to the inequality

ψm ≤
2

α
log

(

cosh
(

√

α

2
dσ

))

. (3.8)

We now combine (3.8) with inequality (3.5) evaluated on ∂Ω. This gives after some
simplification

τ ≤
√

2

α
· tanh

(

√

2

α
dσ

)

. (3.9)

Hence, for the validity of Theorem 2.3 it is sufficient to satisfy the set of inequalities










a) µ2 + α ≥ 2αγ

b) β2 ≥
√

2α · tanh
(

√

α

2
dσ

) (3.10)

for some α > 0.

6



Numerical examples:

a) Ω = rectangle (−1, 1) × (−2, 2)

σ(x, y) = 1 + 1
4 (x2 + y2).

One finds µ2 = 0, β2 ≥ 0 so that we can choose α = 0. Then from (3.8) we get

ψm ≤ 0.463 (exact: ψm = 0.370)

and (3.9) yields
τ ≤ δ6 ≤ 0.962 (exact: τ = 0.773) .

b) Ω = unit disk

σ = e0·2·r2

ϕ(r) =
1

2

∫ R

r

t · e−dk2
dt =

1

4a
(e−αr2 − e−αR2

) .

One finds µ2 = 0, γ2 = 0.442, β2 = 2.442, dσ = 0.9676, α = 4.4 which leads to the bound
ψm ≤ 0.362. The exact value is ψm = 0.227.

f(u) = 1, N ¿2

If the assumptions of Theorem 2.4 are satisfied we have

σ
|∇u|2

(αu + 1)2
+ 2

∫ u

0

dv

(αv + 12
≤ 2

∫ um

0

dv

(αv + 1)2
, (3.11)

which can be rewritten as

τ 2 ≤ max
u∈(0,um)

2(um − u)(αu + 1)

αum + 1
=

1 + αum

2α
. (3.12)

In order to derive a bound for um we can use the same reasoning as the one following
inequality (3.6), with e−αu replaced by 1

(αu+1)2 .

After integration and some simplification one arrives at

√
αum + 1 · arccos

( 1√
αum + 1

)

≤
√

α

2
dσ . (3.13)

B. Applications of Bounds for ψψψ

The bounds for ψ derived in part 3.A are useful for the general problem (1.1) as the next
result shows.

Theorem 3.1. Assume that µN ≥ 0 and βN ≥ 0 and f(0) > 0 and f ′ ≥ 0. Let ψ be the
solution of (3.1) and X(s) the solution of X ′′ + f(X) = 0 in (0, s0)

X ′(0) = 0, X(s0) = 0 with s0 =
√

2ψm .

Then u(x) = X(s(x)) is a supersolution of problem (1.1). Here

s(x) =
√

2(ψm − ψ(x)) .

7



Proof. By direct calculation one finds

∇s = −
∇ψ

s

∆s = −
∆ψ

s
−

|∇ψ|2

s2
,

so that

div(σ ·∇ψ) = σ∆ψ + ∇σ ·∇s −
1

s

(

1 −
σ · |∇ψ|2

s2

)

Under the assumptions µN ≥ 0, βN ≥ 0 we can apply Theorem 2.4 which implies that

1 −
σ · |∇ψ|2

s2
≥ 0 .

Setting now u(x) = X(s(x)) we calculate

∆u = X ′ · ∆s + X ′′ · |∇s|2

and

σ · ∆u + ∇σ ·∇u = X ′ 1

s

(

1 − σ ·
|∇ψ|2

s2

)

+ σ · X ′′ ·
|∇ψ|2

s2
.

Therefore one has

div(σ ·∇u) + f(u) =
{X ′

s
+ f(X)

}[

1 − σ ·
|∇ψ|2

s2

]

.

To see the sign of the term in curly brackets we set

h(s) = X ′ + sf(X) .

We have h(0) = 0 and
h′(s) = X ′′ + f(x) + sf ′ · X ′ ≤ 0,

since f ′ ≥ 0 and X ′ ≤ 0 in (0, s0). Thus u satisfies

div(σu) + f(u) ≤ 0 in Ω

and because of the definition s0 we also have u(x) = 0 for x ∈ ∂Ω. This proves Theorem
3.1

Numerical example:

We take the same domain and σ as in Example a) before, and consider the Gelfand
Problem

{

div(σ∇u) + λeu = 0 in Ω
u = 0 on ∂Ω .

(3.14)

8



A quantity of interest here (see also [3] is the critical value λ∗. For values λ > λ∗ problem
(3.14) has no solution. The case σ = 1 has been discussed in [3] and it was shown that

λ∗ ≥
0.4392

ψm
(3.15)

with the exact value 0.3704 of ψm one finds in our case λ∗ ≥ 1.186 whereas the numerical
solution of (3.14) gives λ∗ = 1.356.

With the upper bound for ψm derived in example a) one would get the cruder bound

λ∗ = 0.949 .

Concluding Remark:

The methods developed in [3] can be combined with the results of this paper. This allows
among other things an extension to parabolic problems of the form











ut = div(σ∇u) + f(u) in Ω

u = 0 on ∂Ω

u(x, 0) = u0(x) .

(3.16)
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