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D. Kressner, Ch. Schröder† and D.S. Watkins‡

Seminar für Angewandte Mathematik
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Switzerland

Research Report No. 2008-18 May 2008

Abstract

In the spirit of the Hamiltonian QR algorithm and other bidirectional chasing algo-
rithms, a structure-preserving variant of the implicit QR algorithm for palindromic
eigenvalue problems is proposed. This new palindromic QR algorithm is strongly
backward stable and requires less operations than the standard QZ algorithm, but
is restricted to matrix classes where a preliminary reduction to structured Hes-
senberg form can be performed. By an extension of the implicit Q theorem, the
palindromic QR algorithm is shown to be equivalent to a previously developed
explicit version. Also, the classical convergence theory for the QR algorithm can
be extended to prove local quadratic convergence. We briefly demonstrate how
even eigenvalue problems can be addressed by similar techniques.

Keywords: palindromic eigenvalue problem, implicit QR algorithm, bulge chas-
ing, bulge exchange, (even eigenvalue problem, convergence theory)

Subject Classification 2000: 65F15, 15A18, 15A22, 15A23

†Institut für Mathematik, MA 4-5, Technische Universität Berlin, Germany,
schroed@math.tu-berlin.de. Supported by Deutsche Forschungsgemeinschaft through
Matheon, the DFG Research Center Mathematics for key technologies in Berlin.

‡Department of Mathematics, Washington State University, Pullman, WA, 99164, USA,
watkins@math.wsu.edu.Partly supported by Deutsche Forschungsgemeinschaft through
Matheon, the DFG Research Center Mathematics for key technologies in Berlin.



1 Introduction

Consider the palindromic eigenvalue problem

Ax = λA⋆x, (1)

where A ∈ Cn×n. The operator (·)⋆ denotes either the transpose, or the conjugate transpose of a
matrix. We treat both cases in a unified way.

Palindromic eigenvalue problems of the form (1) are (up to a sign) the linear case of polynomial
palindromic eigenvalue problems

P (λ)x =

(

k
∑

i=0

Aiλ
i

)

x = 0, where A⋆
k−i = Ai ∈ C

n×n, i = 0, . . . , k. (2)

The name palindromic stems from the invariance of the matrix polynomial P (λ) under reversing
the order of the coefficients and (conjugate) transposing the individual matrices Ai, i = 0, . . . , k, a
property that is shared by palindromes, i.e., words like ’rotor’. Polynomial palindromic eigenvalue
problems were introduced and analyzed in [16] and arise for example in the vibration analysis of
rail tracks [9]. In the following, we only consider linear palindromic problems of the form (1).
From a theoretical point of view this is not a severe restriction as polynomial problems of the
form (2) can, under mild assumptions, be reformulated as equivalent but larger linear palindromic
problems, see [16].

Another class of structured eigenvalue problems are symmetric/skew symmetric problems of
the form

Mx = λNx, with M = M⋆, N = −N⋆. (3)

Again, there is a natural generalization to polynomial problems,

P (λ)x =

(

k
∑

i=0

Aiλ
i

)

x = 0, where A⋆
i = (−1)iAi ∈ C

n×n, i = 0, . . . , k. (4)

Because of the relation P (−λ) = P (λ)⋆, these polynomials are called even. As for the palindromic
case, a polynomial even eigenvalue problem can, under mild assumptions, be reformulated as a
linear even eigenvalue problem (3), see [16].

Even and palindromic eigenvalue problems can be related to each other via the generalized
Cayley transformation [16], which maps a generalized eigenvalue problem Ax = λBx into

(A + B)x =
λ + 1

λ− 1
(A−B)x.

The associated matrix pairs (A, B) and (A + B, A − B) have the same eigenvectors and the
eigenvalues are transformed as λ 7→ λ+1

λ−1 . The generalized Cayley transform of an even problem,

(M + N)x = λ+1
λ−1 (M −N)x, is palindromic and vice versa.

The structure in the coefficient matrices of (1) and (3) induces symmetries in the spectrum.
Indeed, transposing the palindromic problem (1) yields x⋆A = 1

λ⋆ x⋆A⋆. Hence, if λ is an eigenvalue
with (right) eigenvector x then also 1

λ⋆ is an eigenvalue with left eigenvector x⋆. This pairing
also holds for a zero eigenvalue – its counterpart is an infinite eigenvalue. From here on, we
use the convention 1

0 = ∞ in order to unify the treatment of finite and infinite eigenvalues.
Also the number and sizes of Jordan blocks corresponding to the eigenvalues λ and 1

λ⋆ coincide.
This follows from the structured Kronecker canonical forms for palindromic eigenvalue problems
presented in [23] or (as canonical forms under congruence) in [10, 11, 21].

Analogously, (conjugate) transposing (3) yields x⋆M = −λx⋆N . Hence, the eigenvalues of an
even problem come in pairs (λ,−λ⋆). Canonical forms of symmetric/ skew symmetric [30], or
Hermitian skew-Hermitian [29] pencils under congruence show that also the number and sizes of
Jordan blocks corresponding to λ and −λ⋆ coincide.
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The existence of symmetries in the spectrum of palindromic and even eigenvalue problems calls
for algorithms that preserve these symmetries. Due to rounding errors, the eigenvalues computed
by a general-purpose method (such as the QZ algorithm [8]) are in general not paired. To avoid this
effect, a structure-preserving method is needed. Ideally, the method is strongly backward stable,
i.e., it returns computed eigenvalues that are the exact ones of a slightly perturbed structured
eigenvalue problem.

There are a number of structure preserving-methods for palindromic eigenvalue problems avail-
able. Implicitely based on the generalized Cayley transform, the URV-like algorithm described
in [25] is suitable for computing eigenvalues but not immediately for computing eigenvectors or in-
variant subspaces. The Jacobi-style method in [9] is strongly backward stable for both eigenvalues
and eigenvectors, but requires much more computing time than the QZ algorithm; a disadvan-
tage that is common to all nonsymmetric Jacobi methods [18]. Alternatively, a variant of the
Laub trick [17] can be used to post-processes the output of the QZ algorithm, enforcing a small
structured backward error. In the presence of near-exceptional eigenvalue, this computationally
quite inexpensive approach breaks down and must be combined with a strongly backward stable
method [17]. Other alternatives arise from the fact that palindromic eigenvalue problems of even
size can be transformed into symplectic eigenvalue problems; for example the structured doubling
algorithm can be adapted to also solve (1), see [6].

None of the methods described above is ideal in the sense of being strongly backward stable and
requiring less computing time than the QZ algorithm. The goal of this paper is to approach this
ideal by continuing the work from [24], where an explicit, structure-preserving QR-like algorithm
was presented. We derive an implicit version of this algorithm, bringing the complexity from
O(n4) down to O(n3). Our implicit QR-like algorithm is much in the spirit of Byers’ Hamiltonian
QR algorithm [4] and its symplectic variant [19]. It also shares their fundamental limitation of
being only applicable to problems for which a structured Hessenberg(-triangular) form is known
a priori or can be computed within reasonable complexity.

The rest of this paper is structured as follows. Section 2 revisits the explicit palindromic
QR algorithm. Section 3 introduces a Hessenberg-like matrix form. Our implicit algorithm,
which preserves this form, is presented in Section 4. In Section 5 we show that both the explicit
and implicit algorithms produce essentially the same result in exact arithmetic. The existing
convergence theory for the QZ algorithm is extended in Section 6 to cover our algorithm. In
Section 7, we discuss modifications to adequately address real palindromic problems. The extension
to even eigenvalue problems is briefly described in Section 8.

1.1 Notation

A matrix A is called antitriangular, if aij = 0, whenever i + j ≤ n. An antitriangular matrix

is depicted by A = �. The identity matrix of order n is denoted by In, its columns, the unit

vectors, are denoted by e1, e2, . . . , en. Fn = [en, . . . , e2, e1] denotes the flip matrix. The subscript
is omitted if clear from context. The set of eigenvalues of a matrix A or a pencil (B, C) is denoted
by Λ(A) and Λ(B, C), respectively.

We use MATLAB notation for submatrices, e.g., A(i : j, :) denotes the rows i to j, whereas
A(:, k : l) selects the columns k through l. Moreover, A(i : j, k : l) denotes the rows i to j of the
columns k through l.

2 The palindromic Schur form and the palindromic QR step

For the rest of this paper, we will assume that the matrix pair (A, A⋆) is regular, i.e., det(A −
λA⋆) 6≡ 0. The following result provides a structured Schur form which is the basis and aim of the
palindromic QR algorithm. Note that we call an eigenvalue λ exceptional if λ = 1/λ⋆.
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Theorem 1 Let A ∈ Cn,n be such that (A, A⋆) is a regular matrix pair with at most one excep-
tional eigenvalue. Then there exists a unitary matrix Q such that

Q⋆AQ = T =�. (5)

Proof: A proof can be found in [24]. Note that the case ⋆ = T case was first proved in [17]. �

Given a decomposition (5), the eigenvalues of (A, A⋆) coincide with those of (T, T ⋆) and can
thus be read off from the antidiagonal of T :

λi =
tn+1−i,i

t⋆i,n+1−i

, for i = 1, . . . , n. (6)

Further, for each k = 1, 2, . . . , n it holds that the first k columns of Q span a right deflating
subspace [28] belonging to the eigenvalues λ1, . . . , λk . The corresponding left deflating subspace
is spanned by the last k columns of Q−⋆. Note that, after a suitable reordering, the matrix Q in (5)
can be chosen such that any prespecified eigenvalue order λ1, λ2 . . . λn appears on the antidiagonal
of T , provided of course that λ⋆

i = 1
λn+1−i

is satisfied for i = 1, . . . , n.

Definition 2 Let A ∈ C
n,n be such that (A, A⋆) is regular. A matrix T ∈ C

n,n is called a
palindromic Schur form of A, if T is antitriangular and there exists a unitary Q ∈ Cn,n such that
T = Q⋆AQ.

The main algorithm for solving the dense standard eigenvalue problem Ax = λx is the QR
algorithm. In its simplest form one step consists of computing a QR factorization A = QR and
forming the next iterate A+ = QHAQ. In [24] the QR algorithm was adapted to the palindromic
problem (1). In the basic palindromic QR step the next iterate A+ is formed as A+ = Q⋆AQ,

where the unitary matrix Q stems from an anti-QR factorization A = Q−⋆R with R =�. Note

that, because Q is unitary, Q−⋆ is simply Q or Q̄, respectively. In the case that all eigenvalues
have different absolute value the iteration converges linearly to palindromic Schur form [34].

Shifts can be incorporated as follows. Given numbers (κ1, . . . , κk), none of which is an exact
eigenvalue of (1), define the shift polynomial p(λ), its ⋆-reversal q(λ) and the rational function
r(λ) via

p(λ) =

k
∏

i=1

(λ− κi), q(λ) =

k
∏

i=1

(κ⋆
i λ− 1), r(λ) = p(λ)/q(λ). (7)

Note that r(A−⋆A) =
∏k

i=1(κ
⋆
i A − A⋆)−1(A − κiA

⋆) and hence the expression r(A−⋆A) and its
inverse are always well-defined, even if A itself is not invertible. We define an explicit palindromic
QR step with shifts (κ1, . . . , κk) applied to A as

A+ = Q⋆AQ, (8)

where the unitary matrix Q stems from the QR decomposition

r(A−⋆A) = QR, R =@. (9)

Note that in [24] p(λ) and q(λ) were admitted to have independent coefficients, and the above
step was called a “palindromic QR step with the 2k shifts κ1, κ1, . . . , κk, κk”. Forcing q to be the
⋆-reversal of p gives the relation

r(A−⋆A) = r(AA−⋆)−⋆, (10)

as is easily checked. Together with (9) this implies

r(AA−⋆) = (r(A−⋆A))−⋆ = (QR)−⋆ = Q−⋆R−⋆ = Q−⋆L,
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where L = R−⋆ is lower triangular. Thus, the palindromic QR step effects a standard QR step
on A−⋆A and a standard QL step on AA−⋆ driven by the same function r. This mixed behavior
can be explained by the fact that if A is in palindromic Schur form, i.e., it is antitriangular, then
A−⋆A is upper triangular, whereas AA−⋆ is lower triangular.

It follows from (10) that

A+ = Q⋆AQ = R−⋆r(A−⋆A)⋆Ar(A−⋆A)R−1 = R−⋆Ar(AA−⋆)⋆r(A−⋆A)R−1 (10)
= R−⋆AR−1.

(11)
Thus, if A has a structure that is invariant under ⋆-congruence transformations R̃⋆AR̃ with arbi-
trary upper triangular matrices R̃, then this structure is preserved by palindromic QR steps. One
such structure is the following variant of Hessenberg matrices.

Definition 3 A matrix A ∈ Cn,n is called an anti-Hessenberg matrix, if aij = 0 whenever i+ j <

n. An anti-Hessenberg matrix is depicted by A =�� .

In this paper we only consider the case that A is already in anti-Hessenberg form. In contrast
to the standard Hessenberg from, there is no direct method known that reduces a general matrix
to anti-Hessenberg form by a unitary ⋆-congruence transformation. However, several applications
where this matrix shape arises naturally or can be computed with reasonable complexity are listed
in [24].

3 Anti-Hessenberg-triangular matrices

Somewhat surprisingly, an anti-Hessenberg matrix can be transformed into an even further con-
densed form that remains invariant under palindromic QR steps. In this section, we introduce
such a form along with an algorithm for transforming an anti-Hessenberg matrix into this form.

Definition 4 An anti-Hessenberg matrix A ∈ Cn,n is called an anti-Hessenberg-triangular matrix,
if ai,n−i = 0 for i = 1, . . . , n1 := ⌊n−1

2 ⌋. It is called unreduced, if ai,n−i 6= 0 for i = n1+1, . . . , n−1
and ai,n−i+1 6= 0 for i = 1, . . . , n1.

An anti-Hessenberg-triangular matrix can be depicted by

A =







n2 n1

n1 0 �
n2 ��







Lemma 5 The anti-Hessenberg-triangular structure is invariant under palindromic QR steps.

Proof: This structural invariance also follows from (11), as the anti-Hessenberg-triangular struc-
ture is invariant under ⋆-congruence transformations with an upper triangular matrix. �

We now show that any matrix in anti-Hessenberg form can be transformed to anti-Hessenberg-
triangular form by a unitary ⋆-congruence transformation. To this end, let us assume that A is
in anti-Hessenberg form and we have already annihilated the m − 1 ≤ n1 − 2 super-antidiagonal
elements ai,n−i, i = 1, . . . , m− 1, in the top right corner. To explain the idea of the reduction, we
consider only the following submatrix in the middle of A:

A(m− 1 : n−m + 2, m− 1 : n−m + 2) =



















0 x
x x x

. .
. ...

x x x x
x x x x x
x x · · · x x x



















.
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Our aim is to annihilate the next super-antidiagonal element am,n−m. This can be achieved by
applying a Givens rotation to columns n−m, n−m+1. However, in order to preserve ⋆-congruence,
we have to apply this rotation also to rows n−m, n−m + 1, resulting in an additional nonzero
entry at position (n−m, m− 1):

A(m− 1 : n−m + 2, m− 1 : n−m + 2)←



















x
0 x x

. .
. ...

+ x x x x
x x x x x
x x · · · x x x



















.

This fill-in is annihilated by a rotation in columns m − 1, m. The corresponding row rotation
introduces a nonzero at (n−m + 1, m).

A(m− 1 : n−m + 2, m− 1 : n−m + 2) =



















+ x
0 x x

. .
. ...

0 x x x x
x x x x x
x x · · · x x x



















Thus, both rotations together have moved the unwanted nonzero one position to the top right
corner. Hence, repeated application of this process moves the nonzero (1, n− 1) position, where
it can be annihilated by a rotation in the last two columns. The corresponding row rotation
introduces no fill-in.

The described procedure leads to the following algorithm.

Algorithm 1 Reduction to anti-Hessenberg-triangular form

Input: A ∈ Cn,n in anti-Hessenberg form
Output: A is overwritten by Â = Q⋆AQ in anti-Hessenberg-triangular form
1: for m = 1 : ⌊n−1

2 ⌋ do
2: for j = m : −1 : 2 do
3: define rotation G such that A(j, n− j : n− j + 1)G = [0, ∗]
4: A(j : n, n− j : n− j + 1)← A(j : n, n− j : n− j + 1)G
5: A(n− j : n− j + 1, j − 1 : n)← G⋆A(n− j : n− j + 1, j − 1 : n)
6: define rotation G such that A(n− j, j − 1 : j)G = [0, ∗]
7: A(n− j : n, j − 1 : j)← A(n− j : n, j − 1 : j)G
8: A(j − 1 : j, n− j : n)← G⋆A(j − 1 : j, n− j : n)
9: end for

10: define rotation G such that A(1, n− 1 : n)G = [0, ∗]
11: A(:, n− 1 : n)← A(:, n− 1 : n)G
12: A(n− 1 : n, :)← G⋆A(n− 1 : n, :)
13: end for

Algorithm 1 requires approximately 3
2n3 flops. Forming Q as the product of all employed

Givens rotations takes another 1
2n3 flops, provided that the nonzero pattern of Q is exploited

during the accumulation. In contrast, updating an existing full matrix Q by the Givens rotations
costs 3

2n3 flops.
The above reduction to anti-Hessenberg-triangular form resembles the reduction of a pair of

Hessenberg matrices to Hessenberg-triangular form [8]. To see this, set H = FA(⌊n
2 ⌋ + 1 : n, 1 :

⌈n
2 ⌉) and R1 = FA(1 : ⌈n

2 ⌉, ⌊n
2 ⌋ + 1 : n)⋆, where F denotes the flip matrix of dimension ⌈n

2 ⌉.
Note that the submatrices H and R1 overlap in the case of odd n. Since A is in anti-Hessenberg
form, both, H and R1, are in upper Hessenberg form. The pencil (H, R1) can be transformed to
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Hessenberg-triangular form by subsequently chasing the subdiagonal entries in R1 to the top left
corner, where they are annihilated without introducing additional fill-in. Interpreting these trans-
formations on H and R1 as transformations on A yields the anti-Hessenberg-triangular reduction.

Example 1 We illustrate Algorithm 1 for the reduction of a 5-by-5 anti-Hessenberg matrix and
the corresponding transformations on the flipped submatrices H and R1.

A













x x
x x x

x x x x
x x x x x
x x x x x













→













0 x
x x x

x x x x
x x x x x
x x x x x













→













x
0 x x

+ x x x x
x x x x x
x x x x x













→













+ x
x x

0 x x x x
x x x x x
x x x x x













→













0 x
x x

x x x x
x x x x x
x x x x x













H





x x x
x x x

x x









x x x
x x x

x x









x x x
x x x
+ x x









x x x
x x x
0 x x









x x x
x x x

x x





R1





x x x
x x x

x x









x x x
0 x x

x x









x x x
x x
0 x









x x x
+ x x

x









x x x
0 x x

x





�

The described relationship already indicates some resemblance between the palindromic QR algo-
rithm applied to A and the QZ algorithm applied (H, R1). This relation will allow us to extend
existing results on the QZ algorithm partially to the palindromic QR algorithm. However, it is
important remark that – due to the coupling nonzero element in the middle of the antidiagonal of
A – the eigenvalue problems (A, A⋆) and (H, R1) are not equivalent.

3.1 Deflation

An anti-Hessenberg-triangular matrix that is not unreduced in the sense of Definition 4 can be
deflated to yield unreduced eigenvalue problems of smaller order. This is easily seen when ak,n−k =
0 for some k ∈ [n1 + 1, n− 1], since A can then be partitioned as

A =





n− k 2k − n n− k

l 0 0 A13

2k − n 0 A22 A23

n− k A31 A32 A33



,

and the eigenvalues of (A, A⋆) are obtained from the generalized eigenvalue problem (A31, A
⋆
13)

and the palindromic eigenvalue problem (A22, A
⋆
22).

In the case of a zero antidiagonal element, ak,n−k+1 = 0 for k = 1, . . . , n1, we can adapt the
standard algorithm for the deflation of infinite eigenvalues [8] (making use of the relation to the
QZ algorithm described above), to move this zero to position k = 1 by a unitary ⋆-congruence
transformation and additionally force an−1,1 = 0. Partitioning

A =





1 n− 1 1

l 0 0 0
n− 1 0 A22 A23

1 A31 A32 A33



,

the eigenvalues of (A, A∗) are given by 0,∞, and the eigenvalues of A22, A
⋆
22.

In practice, it will be a rare event that the entries ak,n−k or ak,n−k+1 become exactly zero.
Following [35, 12], we regard such an entry as zero if it is not larger than machine precision times
the sum of the absolute values of the neighbouring elements.

4 The Implicit palindromic QR step

The explicit palindromic QR step (8) involves the formation and QR factorization of r(A−⋆A),
where r is a rational function. Both operations are prohibitive for stability and efficiency reasons.
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In [24] a method was presented that does not require inverses, but works directly with the fac-
tors A − κiA

⋆. Still, the anti-Hessenberg structure of A is only implicitely preserved during the
algorithm. This implies that roundoff error will intrude the zero part of A, yielding either compu-
tational complexity O(n4) or, if the top left part of A is explicitely set to zero after each iteration,
loss of numerical stability. In the following, we present an implicit version of the palindromic QR
step that avoids this drawback.

Consider a set of k shifts κ1, . . . , κk ∈ C, k < n
2 , that is assumed to be ⋆-reciprocal free, i.e.,

κi 6= 1/κ⋆
j for any 1 ≤ i, j ≤ k. Set p(λ) =

∏k
i=1(λ − κi). Let us illustrate the proposed implicit

algorithm for k = 2 shifts. Only the bottom left and top right 5× 5 corners of A are displayed:

A :



















. .
.

. .
.

x x
x x x

x x x x
x x x x x
x x x x x · · ·





































x
x x

x x x
x x x x

x x x x x

. .
. ...



















Consider the first column of the shift polynomial,

x = A⋆p(A−⋆A)e1 = p(AA−⋆)A⋆e1 = αp(AA−⋆)en

for some constant α. Since the last ⌊n−1
2 ⌋ columns of AA−⋆ are in lower Hessenberg form, only

the last k + 1 elements of x are nonzero. Let Q0 be a unitary matrix (e.g., a Householder
transformation) such that Q⋆

0x is mapped to a scalar multiple of en and apply the congruence
A0 = Q⋆

0AQ0.

A0 :



















. .
.

. .
.

x x
x x x

+ x x x x
x x x x x
x x x x x · · ·





































+ + x
+ x x
x x x

x x x x
x x x x x

. .
. ...



















. (12)

Following the usual convention, the caused fill-in is referred to as bulges. We will now show how
to chase these bulges towards the middle of the antidiagonal.

To this end, let Q̃1/2 be a unitary matrix, such that the first row of Q̃⋆
1/2A0(1 : 3, n−2 : n) is a

multiple of e⋆
3. This could be the unitary factor of the anti QR factorization of A0(1 : 3, n−1 : n) or

an opposite Householder transformation, which was introduced in [34], and shown to be backward
stable in [14, Section 2.3.3]. Imbedding Q̃1/2 into Q1/2 = Q̃1/2⊕In−3 and applying the congruence
A1/2 = Q⋆

1/2A0Q1/2 yields

A1/2 :



















. .
.

. .
.

x x
+ + x x x
x x x x x
x x x x x
x x x x x · · ·





































0 0 x
x x x
x x x

x x x x
x x x x x

. .
. ...



















.

Next, the first column of A1/2 is reduced. To this end, let Q̃1 be a unitary matrix such that

Q̃⋆
1A1/2(n − 4 : n − 1) is a multiple of e3. Applying this Q̃1 to rows and columns n − 4 : n − 1

7



results in the following nonzero pattern:

A1 :



















. .
.

. .
.

x x
0 x x x x
0 x x x x
x x x x x
x x x x x · · ·





































x
+ x x x
+ x x x
x x x x

x x x x x

. .
. ...



















.

Comparing A0 with A1 indicates that the two transformations just described moved the bulges
indeed one step to the middle of the antidiagonal. Repeating the described procedure effects
another step:

A1+1/2 :



















. .
.

. .
.

+ + x x
x x x x
x x x x

x x x x x
x x x x x · · ·





































x
0 0 x x
x x x x
x x x x

x x x x x

. .
. ...



















A2 :



















. .
.

. .
.

0 x x x
0 x x x
x x x x

x x x x x
x x x x x · · ·





































x
x x

+ x x x x
+ x x x x
x x x x x

. .
. ...



















After n1 − k steps the bulges arrive at the center. Note the structural difference depending on
whether n is even or odd:

n even n odd

An1−k :













































. .
.

0 x · · ·
x x x x
x x x x

x x x x x
x x x x x x x
x x x x x x x

x x x x x x x x

. .
.

x x x x x x x x · · ·

. .
. ...

...
. . .





















































































. .
.

0 x · · ·
x x x x
x x x x

x x x x x x
x x x x x x

x x x x x x x

. .
.

x x x x x x x · · ·

. .
. ...

...
. . .









































(13)

At this point the bulge chase cannot be continued as before, as the bulges would interfer with each
other. In order to explain how to go on, we require the notion of bulge pairs.

We have seen that the sequence of transformed matrices Ai contains two bulges. One bulge is
located in the submatrix

Bi := Ai(n− k − i : n− 1− i, i + 1 : i + k) (14)

and moves upwards. The other bulge is located at

Ci := Ai(i + 1 : i + k, n− k − i : n− 1− i) (15)
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and moves downwards. Considering the matrix pair (Ai, A
⋆
i ) we thus have an upwards mov-

ing bulge pair (Bi, C
⋆
i ) and a downwards moving bulge pair (Ci, B

⋆
i ). The bulge pairs show an

important invariance property.

Lemma 6 Assume that the anti-Hessenberg-triangular matrix A is unreduced. Then the eigen-
values of (Bi, C

⋆
i ) are given by the shifts κ1, . . . , κk for all i = 0, . . . , n1 − k. Consequently, the

eigenvalues of (Ci, B
⋆
i ) are 1/κ⋆

1, . . . , 1/κ⋆
k for all i = 0, . . . , n1 − k.

Proof: Let H = FA(⌊n
2 ⌋+ 1 : n, 1 : ⌈n

2 ⌉) and R1 = FA(1 : ⌈n
2 ⌉, ⌊n

2 ⌋+ 1 : n)⋆, where F denotes
the flip matrix of appropriate dimension. Then (H, R1) is a matrix pair in unreduced Hessenberg-
triangular form. Note that the submatrices H and R1 include a common element from A for odd
n. This does not pose a problem, however, since the bulge chase is stopped before the bulges
touch this overlap, see (13). Analogous to the discussion in Section 3, the palindromic bulge chase
applied to A can be shown to be equivalent to a bulge chase in the implict QZ step applied to
(H, R1) stopped just before squeezing out the bulges, see [32] for more details. Also, the bottom
part of x can be written as x(⌊n

2 ⌋+ 1 : n) = FR1p(R−1
1 H)e1 = α⋆Fp(HR−1

1 )e1, the flipped first
column of the shift polynomial in the QZ step.

Because of this equivalence, the statement of the lemma follows from the corresponding result
for the QZ algorithm, see [32, Section 7.1]. Note that in the terminology of [32], the pencils
(Bi, C

⋆
i ) and (Ci, B

⋆
i ) are intermediate bulge pencils. �

Lemma 6 shows that the upward moving bulge carries the shifts and the downward moving
bulge their (conjugated) reciprocals. In order to allow this shift transport mechanism to continue,
the bulges have to be “passed through each other”, i.e., we need a matrix An1+k−1 that has
the same shape as An1−k such that the eigenvalues of (Bn1+k−1, C

⋆
n1+k−1), which is the upper

bulge now, are still the shifts. Of course this also implies that the eigenvalues of the lower bulge
(Cn1+k−1, B

⋆
n1+k−1) are 1/κ⋆

1, . . . , 1/κ⋆
k. Note that the jump in the index from An1−k to An1+k−1

is needed in order to be consistent with the definition (14)–(15) of Bi, Ci. We postpone the
description of a method for computing such a matrix An1+k−1 to Section 4.1.

Once the bulges are exchanged, they have to be chased out again. This process is exactly the
opposite of the process presented above and we thus refrain from discussing it in detail.

Summarizing the discussion so far yields the following algorithm.

Algorithm 2 Implicit Palindromic QR step

Input: A ∈ C
n,n in unreduced anti-Hessenberg-triangular form, ⋆-reciprocal free shifts κ1, . . . , κk, k < n

2

Output: one palindromic QR step is applied to A

1: n1 = ⌊n−1

2
⌋

2: compute x = A⋆p(A−⋆A)e1 % create bulges

3: define unitary Q̃ with Q̃⋆x(n− k : n) = αek+1

4: A(n− k : n, :)← Q̃⋆A(n− k : n, :)
5: A(:, n− k : n)← A(:, n− k : n)Q̃
6: for i = 0 : n1 − k − 1 do % chase bulges towards middle

7: define unitary Q̃ with eT
1 Q̃⋆A(i + 1 : i + k + 1, n− k − i : n− i) = αeT

k+1

8: A(i + 1 : i + k + 1, n− k − i : n)← Q̃⋆A(i + 1 : i + k + 1, n− k − i : n)
9: A(n− k − i− 1 : n, i + 1 : i + k + 1)← A(n− k − i− 1 : n, i + 1 : i + k + 1)Q̃

10: define unitary Q̃ with Q̃⋆A(n− k − 1− i : n− 1− i, i + 1) = αek+1

11: A(n− k − 1− i : n− 1− i, i + 1 : n)← Q̃⋆A(n− k − 1− i : n− 1− i, i + 1 : n)
12: A(i + 2 : n, n− k − 1− i : n− 1− i)← A(i + 2 : n, n− k − 1− i : n− 1− i)Q̃
13: end for

14: apply Algorithm 3 to A(n1 − k + 1 : n− 1− n1 + k, n1 − k + 1 : n− 1− n1 + k) % exchange bulges

15: A(n1 − k + 1 : n− 1− n1 + k, n1 − k + 1 : n)← Q̃⋆A(n1 − k + 1 : n− 1− n1 + k, n1 − k + 1 : n)
16: A(n1 − k + 1 : n, n1 − k + 1 : n− 1− n1 + k)← A(n1 − k + 1 : n, n1 − k + 1 : n− 1− n1 + k)Q̃
17: for i = n1 − k − 1 : −1 : 0 do % chase bulges outwards

18: define unitary Q̃ with A(2 + i : 2 + k + i, n− k − 1− i : n− 1− i)Q̃e1 = ek+1

19: A(2 + i : n, n− k − 1− i : n− 1− i)← A(2 + i : n, n− k − 1− i : n− 1− i)Q̃
20: A(n− k − 1− i : n− 1− i, 1 + i : n)← Q̃⋆A(n− k − 1− i : n− 1− i, 1 + i : n)
21: define unitary Q̃ with A(n− k − 1− i, 1 + i : k + 1 + i)Q̃ = αeT

k+1

9



22: A(n− k − 1− i : n, 1 + i : k + 1 + i)← A(n− k − 1− i : n, 1 + i : k + 1 + i)Q̃
23: A(1 + i : k + 1 + i, n− k − i : n)← Q̃⋆A(1 + i : k + 1 + i, n− k − i : n)
24: end for

25: for i = k : −1 : 1 do % squeeze out bulges

26: define unitary Q̃ with A(1 : i + 1, n− i : n)Q̃e1 = ei+1

27: A(:, n− i : n)← A(:, n− i : n)Q̃
28: A(n− i : n, :)← Q̃⋆A(n− i : n, :)
29: if i > 1 then

30: define unitary Q̃ with A(n− i, 1 : i)Q̃ = αeT
i

31: A(n− i : n, 1 : i)← A(n− i : n, 1 : i)Q̃
32: A(1 : i, n− i + 1 : n)← Q̃⋆A(1 : i, n− i + 1 : n)
33: end if

34: end for

Algorithm 2 requires (8k + 6)n2 +O(k3n) flops to transform A and the same amount to update
a given n × n unitary matrix Q by the employed unitary transformations. This is the same flop
count required by one implicit QZ iteration for an n× n matrix pair [14].

It remains to determine the shifts. A reasonable choice is to take the eigenvalues of the pencil
(A(1 : k, n+1−k : n), A(n+1−k : n, 1 : k)⋆), as this corresponds to Rayleigh quotient shifts. Using
Algorithm 2 with these shifts typically results in rapid decay of one or more super antidiagonal
elements of A close to the bottom left corner, see Section 6 for a more detailed convergence
discussion. Once such an element becomes negligible we can deflate the eigenvalue problem, see
Section 3.1. As the eigenvalue problem is deflated simultaneously at both corners, whereas the
QZ algorithm typically yields deflations only at one corner, it can be expected that the implicit
palindromic QR algorithm yields a faster reduction of the problem size and is more efficient than
the implicit QZ algorithm applied to (A, A⋆). Numerical experiments from Section 9 will confirm
this expectation.

4.1 Bulge exchange

To complete the description of Algorithm 2, we still need to show how to exchange bulges in the
middle of the antidiagonal. To avoid technicalities, let us only consider the submatrix of An1−1

that contains the bulges (cf. the highlighted area in (13)) and partition it as follows:

A =





k m k

k A13

m A22 A23

k A31 A32 A33



. (16)

Note that m = 1 if n is even and m = 0 otherwise, but the discussion below is for general m.
Exchanging the bulges consists of finding a unitary matrix Q such that

Ã = Q⋆AQ =





k m k

k Ã13

m Ã22 Ã23

k Ã31 Ã32 Ã33



, (17)

and Λ(Ã31, Ã
⋆
13) = Λ(A13, A

⋆
31).

For the moment, we allow non-unitary transformations. Note that, if Y, Z⋆ ∈ Ck×m satisfy

A31Y + Z⋆A22 = −A32, (18)

A⋆
13Y + Z⋆A⋆

22 = −A⋆
23, (19)

and X ∈ Ck×k solves

A31X + X⋆A13 = −(A33 + A32Z + Z⋆A23 + Z⋆A22Z), (20)
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then the following ⋆-congruence transformation achieves our goal,




X⋆ Z⋆ I
Y ⋆ I
I









A13

A22 A23

A31 A32 A33









X Y I
Z I
I



 =





A31

A22

A13



 .

The system (18), (19) is a generalized Sylvester equation and thus has a unique solution if and
only if Λ(A31, A

⋆
13) ∩ Λ(A22, A

⋆
22) = ∅, see [27] or [32, Theorem 6.6.8]. The solvability condition

for (20) is provided by the following lemma.

Lemma 7 Let B, C ∈ Ck×k. Then the matrix equation

BX + X⋆C = D (21)

has a unique solution X for every right hand side D ∈ Ck×k if and only if the following conditions
hold:

1) the pencil (B, C⋆) is regular, and

2a) if ⋆ = T , Λ(B, CT ) \ {1} is T-reciprocal free and if 1 is an eigenvalue, it has algebraic
multiplicity 1, or

2b) if ⋆ = H, Λ(B, CH) is H-reciprocal free.

Proof: The case ⋆ = T is proved in [5].
For the case ⋆ = H note that the matrix operator S : (Re(X), Im(X)) 7→ (Re(BX+XHC), Im(BX+

XHC)) is linear and thus is injective if and only if its surjective.
We consider the following cases:
Case 1: Assume that (B, CH) is regular and its spectrum is H-reciprocally free. Then

Λ(B, CH) ∩ Λ(C, BH) = ∅ and the generalized Sylvester equation

BX + Y C = D, CHX + Y BH = DH

has a unique solution (X, Y ). By symmetry, (Y H , XH) is also a solution, so X = Y H . Thus, X
is a solution of (21).

Case 2: Assume there is a nonzero vector x and λ on the unit circle such that Bx = λCHx,

i.e., (B, CH) is singular or has an eigenvalue on the unit circle. Then X1 :=
√

−λxxHC 6= 0 gives
S(Re(X1), Im(X1))=0.

Case 3: Analogously, if λ and 1/λ̄ are distinct eigenvalues with corresponding eigenvectors x
and y, then choosing X2 = xyHC − yxHBH 6= 0 results in S(Re(X2), Im(X2)) = 0. �

Hence, the matrix equations (18)–(20) are uniquely solvable under rather mild conditions on
the shifts. To solve these equations we apply Gaussian elimination with partial pivoting to the
corresponding vectorized linear systems. Note that for the case of m = 0, Y, Z are void and (20)
reduces to A31X + X⋆A13 = −A33.

In order to obtain a unitary transformation let us consider the QR factorization




X Y I
Z I
I



 = Q





R11 R12 R13

R22 R23

R33



 , (22)

where Rii, i = 1, 2, 3 are non-singular, since the left hand matrix is. Then

Ã = Q⋆





A13

A22 A23

A31 A32 A33



Q =





R−⋆
11 A31R

−1
33

R−⋆
22 A22R

−1
22 Ã23

R−⋆
33 A13R

−1
11 Ã32 Ã33



 , (23)

achieves the desired exchange.
The described exchange procedure is summarized in the following algorithm.
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Algorithm 3 Palindromic bulge exchange

Input: A in form (16) with Λ(A13, A
⋆
31) ⋆-reciprocal free, (in the T-case possibly with the excep-

tion of an eigenvalue 1 having algebraic multiplicity 1) and Λ(A22, A
⋆
22) ∩ Λ(A13, A

⋆
31) = ∅.

Output: Ã, Q satisfying (17) with Λ(Ã31, Ã
⋆
13) = Λ(A13, A

⋆
31)

1: solve (18),(19) for Y, Z
2: solve (20) for X
3: compute QR factorization (22)
4: compute Ã = Q⋆AQ

In finite-precision arithmetic, roundoff error pollutes the block antitriangular form (23) of Ã
and elements above the block antidiagonal need to be explicitely set to zero. It might happen
that the elements become significantly larger than unit roundoff times ‖A‖F , in which case the
exchange must be rejected in the interest of numerical backward stability. Then all transformations
of the current QR step need to be undone and a new attempt with different shifts has to be
started. In several numerical experiments with random matrices, we have not encountered a single
instance of such a rejection, even though the equations (18)–(20) become very ill-conditioned
as convergence sets in. This surprisingly robust behavior bears similarities to the well-known
robustness of swapping algorithms for (unstructured) Schur forms [1, 13].

4.2 Aggressive early deflaiton

Modern implementations of the standard QR and QZ algorithms employ several strategies to
considerably speed up the computation, in particular multi-shift and advanced deflation tech-
niques [2, 3, 12] These strategies can be extended to the palindromic QR algorithm in a rather
straightforward way. We demonstrate this claim with the aggressive early deflation technique in-
troduced in [3], which often detects converged eigenvalues much earlier than the classical deflation
described in Section 3.1.

Given A in anti-Hessenberg-triangular form, we select a window size w with 1 < w ≪ n and
partition A as

A =









w n− 2w w

w 0 0 A13

n− 2w − 1 0 A22 A23

1 A31 A32 A33

w A41 A42 A43









.

By the generalized Schur form, there are unitary matrices U, V such that U⋆A23V and V ⋆A41U
are anti-triangular. Setting Q = diag(U, In−2w, V ) thus yields the transformed matrix

Q⋆AQ =









w n− 2w w

w 0 0 Ã13

n− 2w − 1 0 A22 Ã23

1 Ã31 A32 Ã33

w Ã41 Ã42 Ã43









=













�

*−*

�













.

Provided that the first entry of the so-called spike Ã31 ∈ C
1,n is negligible, it can be set to zero

and the eigenvalue residing in the outer corners is deflated. If the entry is not negligible, any other
eigenvalue λ of (Ã13, Ã

⋆
14), can be tested by reordering λ to the outer corners. This process can

be repeatedly applied until no further deflatable eigenvalue can be found. As the entire procedure
is numerically equivalent to aggressive early deflation in the QZ algorithm in the sense of the
discussion in Section 3, we refer to [12] for more details.

5 Equivalence of explicit and implicit procedures

In this section we show that the implicit palindromic QR step carries its name rightfully, i.e., it
effects the same transformation as the explicit palindromic QR step. As for the standard eigenvalue
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problem, an implicit Q theorem will play a prominent role in the proof.

Theorem 8 (palindromic implicit Q Theorem) Let A ∈ Cn,n. Let Q, V be unitary matrices
such that Q⋆AQ and V ⋆AV are both in unreduced anti-Hessenberg-triangular form. Then, if
Qe1 = const · V e1 or Qen = const · V en, there exists a unitary diagonal matrix D such that
V = QD.

Proof: For n ≤ 2 there is nothing to show, so let n ≥ 3. Set n1 = ⌊n−1
2 ⌋ and n2 = n−n1. We will

show that the knowledge of the first or the last column of Q fixes every column up to a constant
of norm 1.

We have Q⋆AQ = H , with H in unreduced anti-Hessenberg-triangular form. Inverting and
(conjugate-) transposing gives

Q−1A−⋆QH⋆ = H−⋆ =: G =







n2 n1

n1 �
n2 0






,

so multiplication by (the conjugate of) Q yields

AQ = QH⋆H, (24)

A−⋆QH⋆ = QG. (25)

Evaluating the last column of (25) gives A−⋆qH⋆
n = q1g1,n. So, if q1 is given, then this determines

qn up to a multiple of norm one, and vice versa. Hence, at this point q1 and qn are known.
Evaluating the first column of (24) yields Aq1 = qH⋆

n hn,1 + qH⋆
n−1hn−1,1. Since q1 and qn are known

and qn−1 is orthogonal to qn, this fixes qn−1 up to a multiple of norm one.
The remainder follows by induction. Suppose the first k − 1 and the last k columns of Q are

known. The (n + 1− k)th column of (25) is

A−⋆qH⋆
n+1−k =

k
∑

i=1

qigi,n+1−k.

This determines qk up to a multiple of norm one. The kth column of (24) is given by

Aqk =
k+1
∑

i=1

qH⋆
n+1−ihn+1−i,k.

This fixes qn−k up to a multiple of norm one.
If n is odd, all columns of Q are determined in this manner. If n is even, the column n

2 is still
missing. It cannot be determined by (25), as the column n2 of G is full. However, qn

2
has to span

the orthogonal complement of the known (n − 1) columns and is thus fixed up to a constant of
modulus one. �

So, as is the case with the reduction to standard Hessenberg form (e.g., [8]), the first column
essentially fixes the whole transformation matrix. But in case of the palindromic eigenvalue
problem this is not enough to prove that the explicit and implicit QR steps yield the same result,
because the first column of Q is manipulated not only in the beginning, but also in the very end
of the implicit QR step. More work is necessary to derive the desired result.

Let V be the unitary matrix generated by the implicit QR algorithm, i.e., Â = V ⋆AV . Consider
the enlarged matrix

[

0 0
x A

]

. Then

[

1
V

]⋆ [
0 0
x A

] [

1
V

]

=

[

0 0

x̂ Â

]

(26)

where x = A⋆p(A−⋆A)e1, x̂ = V ⋆x.

13



Analyzing what happens to x during an implicit palindromic QR step, we note that the first
transformation reduces x to a multiple of en. Then it stays untouched until the last phase of the
process when the bulges are squeezed out again. Then the last k+1 elements are transformed. Since
the eigenvalues of the bulge that was squeezed out at the lower left corner of A were 1/κ⋆

1, . . . , 1/κ⋆
k,

and because of the following lemma, x̂ satisfies a relation similar to x. Indeed,

x̂ = Â⋆q(Â−⋆Â)e1, (27)

where q(λ) =
∏k

i=1(κiλ− 1) is the reversal of p(λ).

Lemma 9 Let k < n
2 , and let x ∈ Cn have the property that xi = 0 for i = 1, . . . , n − k − 1

and xn−k 6= 0. Then there exists a unique monic polynomial p of degree exactly k such that
x = αA⋆p(A−⋆A)e1 for some nonzero scalar α.

Proof: The result follows from an analogous result for the QZ algorithm, see [32, Section 7.1]. �

Combining (26) with (27) yields

A⋆p(A−⋆A)e1 = x = V −⋆x̂ = V −⋆Â⋆q(Â−⋆Â)e1 = A⋆V q(Â−⋆Â)e1 = A⋆q(A−⋆A)V e1 (28)

So,
V e1 = q(A−⋆A)−1p(A−⋆A)e1 = r(A−⋆A)e1

with r = p/q. By (9) the first column of the transformation matrix used in the explicit palindromic
QR step also satisfies

Qe1 = const · r(A−⋆A)e1.

Thus, by the palindromic implicit Q Theorem, V and Q are essentially equal. We have thus proven
the following central result.

Theorem 10 Let A ∈ Cn×n be nonsingular and unreduced anti-Hessenberg-triangular. Let κ1, . . . , κk

with k < n
2 be a ⋆-reciprocal free set of shifts, that are not exact eigenvalues of (A, A⋆). Let A+

be the result of an explicit palindromic QR step (8), applied to A. Let Â be the result of the im-
plicit palindromic QR step applied to A. Then there exists a unitary diagonal matrix D such that
Â = D⋆A+D.

6 Convergence theory

In the following, we show local quadratic convergence of the palindromic QR iteration, provided
that Rayleigh-quotient shifts are chosen, see the discussion after Algorithm 2. Because of the
equivalence shown in Theorem 10, we can restrict our convergence proof to the more accessible ex-
plicit palindromic QR algorithm. Moreover, by deflation, we may assume without loss of generality
that A is invertible.

Let us recall that for rational functions r1, r2, . . . the palindromic QR iteration is defined as

ri(A
−⋆
i−1Ai−1) = QiRi, (QR decomposition) (29)

Ai ← Q⋆
i Ai−1Qi. (30)

The aim is to show that the sequence Ai converges to block anti-triangular form

Ai →





k n− 2k k

k A13

m A22 A23

k A31 A32 A33



. (31)

for some 1 ≤ k ≤ ⌊n
2 ⌋. Since Ai = Q̂⋆

i AQ̂i with Q̂i = Q1Q2 · · ·Qi, this is equivalent to the

convergence of the linear subspaces Si and Ti spanned by the first k columns of Q̂i and the last k
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columns of Q̂−⋆
i to right and left deflating subspaces X1 and Y1, respectively. Note that X1 and

Y1 are also invariant subspaces of A−⋆A and AA−⋆, respectively.
Assuming that no zero or pole of ri coincides with an eigenvalue of (A, A⋆), all Ri are invertible,

which together with (29)–(30) implies

Si = Q̂i−1ri(A
−⋆
i−1Ai−1)S0 = ri(A

−⋆A)Si−1 = · · · = r̂i(A
−⋆A)S0,

where S0 = span{e1, . . . , ek} and r̂i = r1r2 · · · ri. Similarly,

Ti = r̂i(A
−⋆A)−⋆T0, T0 = span{en−k+1, . . . , en}.

The convergence of r̂i(A
−⋆A)S0 to an invariant subspace of A−⋆A is covered by the standard

convergence theory for the QR algorithm [33], in principle only for the case of polynomial r̂i.
However, as noted in [31], the Cayley-Hamilton theorem allows us to extend this theory to any

analytic function f̂i. In particular, we obtain the following result as a corrollary of Theorem 5.4
in [33].

Corollary 11 Let r be a rational function and λ1, . . . , λn denote the eigenvalues of A−⋆A, ordered
so that |r(λ1)| ≥ |r(λ2)| ≥ · · · ≥ |r(λn)|. Suppose there is an integer k < ⌊n/2⌋ such that
|r(λk)| > |r(λk+1)| and let ρ = |r(λk+1)|/|r(λk)|. Consider a sequence of rational functions
r1, r2, . . . such that ri → r. Let X1 and X2 be the invariant subspaces of A−⋆A associated with
λ1, . . . , λk and λk+1, . . . , λn, respectively, and assume S0 ∩ X2 = {0}. Then for every ρ̂ satisfying
ρ < ρ̂ < 1 there is a constant Ĉ not depending on S0 such that

d(Si,X1) ≤ Ĉ
d(S0,X1)

√

1− d(S0,X1)2
ρ̂i,

where d denotes the gap between two subspaces [8].

An analogous result holds for Ti, with the most notable difference that a gap between r(λn−k+1),
r(λn−k) is required and ρ is replaced by ρ̃ = |r(λn−k+1)|/|r(λn−k)|. Let us now restrict ourselves
to the particular choice r = p/q for some polynomial p and its ⋆-reversal q, see (7). Then

1
|r(µ)| = |r(1/µ⋆)|, implying that we can choose λn−j+1 = 1/λ⋆

j in the ordering of Corrolary 11

and ρ̃ = |r(λ⋆
k+1)|/|r(λ⋆

k)|.
We thus have shown superlinear convergence of the palindromic QR iteration if the zeros and

poles of ri tend to λ1, . . . , λk and 1/λ⋆
1, . . . , 1/λ⋆

k, respectively, provided of course that the set
λ1, . . . , λk is ⋆-reciprocal free. Even better convergence results are obtained when choosing

pi(z) =
∏

κp∈Σ

(z − κp), qi(z) =
∏

κp∈Σ

(κ⋆
pz − 1), ri(z) =

pi(z)

qi(z)
. (32)

with Σ = Λ((A
(i−1)
13 )−⋆A

(i−1)
31 ) and the partitioning

Ai−1 = Q̂∗
i−1AQ̂i−1 =







k n− 2k k

k A
(i−1)
11 A

(i−1)
12 A

(i−1)
13

n− k A
(i−1)
21 A

(i−1)
22 A

(i−1)
23

k A
(i−1)
31 A

(i−1)
32 A

(i−1)
33






. (33)

This parallels Francis’ choice of shifts for the standard QR algorithm and can be expected to

result in rapid convergence, since A
(i−1)
31 and A

(i−1)
13 contain increasingly good approximations

to eigenvalues as the iterations proceeds. The main result of this section shows that this choice
actually results in local quadratic convergence.

Theorem 12 Assume (A, A⋆) has distinct finite eigenvalues and let r̂i = r1r2 · · · ri, where rj =
pj/qj with pj and qj defined as in (32). Suppose the corresponding subspace sequences

Si = r̂i(A
−⋆A)S0, Ti = r̂i(A

−⋆A)−⋆T0,
with S0 and T0 as above, converge to a pair of right and left deflating subspaces of (A, A⋆). Then
both converge quadratically.
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Proof: The proof follows the ideas of [33, Thm 6.3]; it is shown that for sufficiently small

ε = d(Si−1,X1) + d(Ti−1,Y1) (34)

the distances of the next iterates, d(Si,X1) and d(Ti,Y1), are proportional to ε2.
For this purpose, consider the partitioning (31) of A and let Λ1 = Λ(A−⋆

13 A31), Λ3 = Λ(A−⋆
31 A13)

denote the eigenvalues associated with X1,Y1. Set Λ3 = Λ(A)\(Λ1 ∪ Λ2). Consider the analo-

gous partition (33) of Ai−1. From (34) it follows that ‖[A(i−1)
11 A

(i−1)
12 ]‖2 ≤

√
2ε‖A‖2 as well as

∥

∥

∥

∥

[

A
(i−1)
11

A
(i−1)
21

]
∥

∥

∥

∥

2

≤
√

2ε‖A‖2, see [34, Lemma 3.1]. Analogously, d(Ti−1,Xq) ≤ ε implies

∥

∥

∥

∥

[

A
(i−1)
21

A
(i−1)
31

]
∥

∥

∥

∥

2

≤ Christian: changed
atop to smallmatrix√

2ε‖A‖2. Since (A, A⋆) is diagonalizable, the generalized Bauer-Fike theorem [7] yields bounds Christian: changed
atop to smallmatrix

for the eigenvalues of the truncation of the iterate (Ai−1, A
⋆
i−1):

max
λ∈Λj ,λ̃∈Λ̃j

|λ− λ̃| ≤ cε‖A‖2, (35)

where c only depends on A and Λ̃1 = Λ((A
(i−1)
13 )−⋆A

(i−1)
31 ) = Σ, Λ̃2 = Λ((A

(i−1)
22 )−⋆A

(i−1)
22 ),

Λ̃3 = Λ((A
(i−1)
31 )−⋆A

(i−1)
13 ). Here, we implicitely assumed that ε is sufficiently small such that

none of the Λ̃j contains an infinite value. Thus

max{|pi(λp)| : λp ∈ Λ1} ≤ cpε

with a constant cp only depending on k and A. By (35) we may assume for sufficiently small ε

that the distance between Λ1 and Λ̃3 (containing the roots of qi) is at least δΛ1,Λ3/2, i.e., half the
distance between Λ1 and Λ3. This yields

min{|qi(λp)| : λp ∈ Λ1} ·
∏

κp∈Σ

|κp| ≥ (δΛ1,Λ3/2)k.

Similarly,
min{|pi(λ)| : λ ∈ Λ2 ∪ Λ3} ≥ (δΛ1,Λ2∪Λ3/2)k

and
max{|qi(λ)| : λ ∈ Λ2 ∪ Λ3} ≤ cq (36)

for some constant cq only depending on A and k. Hence,

ρ :=
max{|ri(λp)| : λp ∈ Λ1}

min{|ri(λ)| : λ ∈ Λ2 ∪ Λ3}

=
max{|pi(λp)| : λp ∈ Λ1} ·max{|qi(λ)| : λ ∈ Λ2 ∪ Λ3}
min{|pi(λ)| : λ ∈ Λ2 ∪ Λ3} ·min{|qi(λp)| : λp ∈ Λ1}

≤ cpcq(2/δΛ1,Λ2∪Λ3)
k(2/δΛ1,Λ3)

k
∏

κp∈Σ

|κp| · ε =: Cpε.

For sufficiently small ε, the conditions of Corollary 11 are clearly satisfied. Setting ρ̂ =
√

2Cpε
and applying Corollary 11 to one step of the iteration results in

d(Si,X1) ≤
√

2ĈCp
ε2

√
1− ε2

≤ 2ĈCpε
2,

where the latter inequality holds for ε ≤ 1/
√

2. The proof for d(Ti,Y1) is analogous. �

Remark 13 In the practically not so relevant case 2k = n the inequality (36) can be improved
to

max{|qi(λ)| : λ ∈ Λ1 ∪ Λ2} ≤ cqε.

This yields cubic convergence for Si and Ti. �
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7 The real implicit palindromic QR algorithm

Often the problems arising in physical applications are real. In these cases one wants to keep
the computations in real arithmetic, mainly because complex computations need twice as much
memory and are up to four times slower.

There is a real version of the palindromic Schur form.

Theorem 14 (real palindromic Schur form, [24]) Let A ∈ Rn,n be such that (A, AT ) is a
regular pencil with at most one eigenvalue on the unit circle. Then there exists an orthogonal Q
such that

QT AQ =





T13

T22 T23

T31 T32 T33



 ,

where T31, T13 ∈ Rm×m, m = ⌊n
2 ⌋ are such that (FT31, FT T

13) is in real generalized Schur form.
The eigenvalues of (A, AT ) are given by the eigenvalues of (FT31, FT T

13), their reciprocals, and,
if n is odd, additionally 1. Moreover, Q can be chosen such that the eigenvalues of (FT31, FT T

13)
appear in any order.

Furthermore, the first k columns of Q span a right deflating subspace with the corresponding
left deflating subspace spanned by the last k columns of Q−⋆, belonging to the eigenvalues of
(FT (n− k + 1 : n, 1 : k), FT (1 : k, n− k + 1 : n)T ) for all k satisfying tn−k,k = 0 = tk,n−k.

If A in (1) is real then every algorithm discussed in this paper stays in real arithmetic provided
that the vector x = αAT p(A−T A)e1 is real. This is the case if the shifts are closed under complex
conjugation. In this case x can also be computed completely avoiding complex operations. Note
that for complex conjugate sets, T- and H-reciprocal freeness are equivalent.

8 The even implicit QR algorithm

In this section we briefly show how the results of this paper can be extended to the even eigenvalue
problem

Mx = λNx, where M = M⋆, N = −N⋆.

One way to solve an even eigenvalue problem is to transform it to a palindromic problem by
a Cayley transform. However, it is also possible to work directly on the matrices M , N . In the
following we show that the palindromic QR algorithm has an even counterpart.

We will assume that the pencil (M, N) is given in anti-Hessenberg form, i.e., both, M and N ,
are anti-Hessenberg. As in the palindromic case, this form arises in some applications, but there
is no direct method known to reduce a general even pencil to this form.

The first step is to transform the pencil into anti-Hessenberg-triangular form, in which M
is anti-Hessenberg and N is antitriangular. This form can be achieved by chasing the super-
antidiagonal elements of N , one at a time, out to the (1, n− 1) and (n− 1, 1) position, where they
can be annihilated by a ⋆-congruence rotation in the last two rows and columns. Algorithm 1 can
be adapted to even pencils as follows. In the lines 3 and 10 ‘A’ is replaced by ‘M ’, whereas ‘A’ is
replaced by ‘N ’ in line 6. Moreover, the transformations are applied to both, M and N .

An even implicit QR step with the shifts κ1, . . . , κk has the following form: compute the vector
x = Np(N−1M)e1 where p(λ) =

∏k
i=1(λ−κi). Note that N−1M is upper Hessenberg. Thus, only

the last k +1 elements of x are nonzero. Applying a transformation that reduces the nonzero part
of x to a multiple of ek+1 to the last k + 1 rows and columns of M and N creates two bulges in
the pencil. One bulge appears at the lower left corner of (M, N) carrying the shifts as eigenvalues.
Because of symmetry there is another bulge at the upper right corner, having −κ⋆

1, . . . ,−κ⋆
k as

eigenvalues. By alternating elimination of a row or column of the bulge these bulges are chased
towards the center. There, the bulges are passed through each other by a technique similar to
palindromic bulge exchange. This is discussed in the following subsection. Then the bulges are
chased out again and squeezed out at the corners.
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An algorithm for the even QR step can be obtained from Algorithm 2 upon replacing line 2
by x = Np(N−1M)e1; replacing ‘A’ by ‘M ’ in lines 10, 21, and 30; replacing ‘A’ by ‘N ’ in lines
7, 18, and 26; and applying all transformations to M and N . If only one half of M and N are
stored, it has the same flop counts as Algorithm 2.

Note, that this algorithm is equivalent to the bidirectional QZ algorithm [32] applied to
(FM, FN) with top shifts κ1, . . . , κk and bottom shifts −κ⋆

1, . . . ,−κ⋆
k. Also, if n is even and

N =
[

0 I
−I 0

]

, the algorithm essentially reduces to the Hamiltonian QR algorithm [4]. Christian: changed
smatrix to smallma-
trix

8.1 Bulge exchange

A ⋆-congruence transformation (M̃, Ñ) = W ⋆(M, N)W with

W =





X Y I
Z I
I





block diagonalizes the 3-by-3 block antitriangular even pencil (M, N) if and only if Y, Z⋆ satisfy

M31Y + Z⋆M22 = −M32, (37)

N31Y + Z⋆N22 = −N32, (38)

and X is a solution of

M31X + X⋆M⋆
31 = −(M33 + M32Z + Z⋆M⋆

32 + Z⋆M22Z
⋆), (39)

N31X −X⋆N⋆
31 = −(N33 + N32Z − Z⋆N⋆

32 + Z⋆N22Z
⋆). (40)

The system (37), (38) is a generalized Sylvester equation and thus has a unique solution if and
only if Λ(M31, N31) ∩ Λ(M22, N22) = ∅. In order to assess the solvability of (39), (40), we note
that their sum

(M31 + N31)X + X⋆(M31 −N31)
⋆ = rhs (41)

(with rhs the sum of the right hand sides of (39), (40)) is of the form (20) and that (39) and
(40) can be recovered as the symmetric and skew symmetric parts of (41), respectively. Thus, by
applying Lemma 7 to (41), the system of matrix equations (39), (40) have a unique solution, if
and only if Λ(M31 +N31, M31−N31) is ⋆-reciprocal free (in the T-case possibly with the exception
of an eigenvalue 1 of algebraic multiplicity 1). Because (M31 + N31, M31 − N31) is the Cayley
transform of (M31, N31), this is the case if and only if Λ(M31, N31) contains no pairs of the form
(λ,−λ⋆) (in the T-case possibly with the exception of an eigenvalue ∞ of algebraic multiplicity
1).

The actual solution of (37), (38), and (39), (40) amounts to small vectorized linear systems,
which can be solved by Gaussian elimination with partial pivoting.

The material of this subsection is summarized in the following algorithm.

Algorithm 4 Even bulge exchange

Input: even 3-by-3 block antitriangular pencil (M, N) such that Λ(M31, N31) contains no pairs of
the form (λ,−λ⋆) (in the T-case except possibly for an eigenvalue ∞ of algebraic multiplicity
1) and Λ(M31, N31) ∩ Λ(M22, N22) = ∅.

Output: Ã, Q satisfying (17) with Λ(Ã31, Ã
⋆
13) = Λ(A13, A

⋆
31)

1: solve (37),(37) for Y, Z via Kronecker product formulation
2: solve (39),(40) for X via Kronecker product formulation
3: compute QR factorization (22)
4: compute (M̃, Ñ) = Q⋆(M, N)Q
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9 Numerical experiments

In the following, we provide examples indicating that the presented palindromic QR algorithm can
be both more accurate and more efficient than the standard QZ algorithm applied to the matrix
pair (A, A⋆). For the first example, we have used a straightforward Matlab implementation of
Algorithm 2.

Example 2 The following matrix is a variation of Rump’s example [22]

A =





1 −1 + ϕ 0
1− ϕ 1 ı

0 −ı 1



 , 0 < ϕ ≤ 1. (42)

A simple hand computation reveals that the eigenvalues of the matrix pair (A, AT ) are given by

λ1 = 1, λ2 =
1 +

√

2ϕ− ϕ2

1−
√

2ϕ− ϕ2
, λ3 =

1−
√

2ϕ− ϕ2

1 +
√

2ϕ− ϕ2
.

As ϕ → 0, the structured eigenvalue condition numbers tend to become significantly lower than
the unstructured ones, see Figure 1. (For computing the structured eigenvalue condition numbers,
we have used [15, Thm. 4.7].) Therefore, it can be expected that a structure-preserving method
delivers higher accuracy than the QZ algorithm. As shown in Figure 1, this expectation is met.
Note that we applied the palindromic QR algorithm with a single shift. In order to do so, we first
need to transform A to anti-Hessenberg form by anti-triangularizing the leading 2-by-2 principal
submatrix of A. �
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Figure 1: Rump’s example (42) with ϕ = 2−k for k = 1, . . . , 48. Left: Structured (dotted lines) and
unstructured eigenvalue condition numbers of Example 2. Being zero, the structured condition
numbers for λ1 = 1 are not displayed. Right: Absolute errors of eigenvalues computed by the
palindromic QR algorithm (dotted lines) and by the QZ algorithm (solid lines). Being zero, the
errors of λ1 = 1 computed by the palindromic QR algorithm are not displayed.

The second example aims at demonstrating the efficiency of Algorithm 2 compared to the
current LAPACK 3.1 implementation of the QZ algorithm. For this purpose, we have created
a prototype Fortran 77 implementation of the palindromic QR algorithm with a double shift
(Algorithm 2) that accepts and preserves real input matrices A, see http://www.math.ethz.ch/

~kressner/palindromic.php. To allow for a fair comparison, no aggressive early deflation or
multishift techniques have been used, as the LAPACK routine DHGEQZ has neither of them. The
tests were performed on an x86 Intel 1.2Ghz processor with 512 MByte RAM, using the Compaq
Visual Fortran compiler 6.5 with the Compaq Extended Math Library and optimization level 3.
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Example 3 Consider a linear discrete-time optimal control problem of the form

min

∞
∑

k=0

[

uk

xk

]T [
R ST

S Q

] [

uk

xk

]

, subject to (43)

Edxk+1 = Adxk + Bduk, x0 given, (44)

where Ed, Ad, Q ∈ Rn×n, R ∈ Rm×m, and B, S ∈ Rn×m. Under certain conditions, the solution
to this optimal control problem can obtained from the eigenvalues and deflating subspaces of the
palindromic matrix pair (A, AT ) with

A =





0 Bd Ad

0 R ST

ET
d S Q



 , (45)

see [26] for more details. In the case of a single-input system, it is possible to reduce A to
anti-Hessenberg-triangular form by computing the controller Hessenberg form of (44). One first
computes a Householder reflector Q0 such that Q0Bd = const · e1 and then applies a variant of
Hessenberg-triangular reduction to compute orthogonal matrices Q = diag(1, Q̃) and Z such that
(QT Q0EdZ, QT Q0AdZ) has Hessenberg-triangular form. Setting U = diag(Q0QF, 1, Z), with F
being the flip matrix, then gives an anti-Hessenberg-triangular matrix UT AU .

As a simple scalable example, we consider the discretized 1D-Laplace with boundary control

Ac =
1

h2













−2 1

1 −2
. . .

. . .
. . . 1
1 −2













, Bc =











1
0
...
0











, (46)

and h = 1/n. This is turned into a discrete-time problem by the Cayley transform:

Ed = In −Ac, Ad = In + Ac, Bd =
√

2Bc. (47)

The weighting matrices are simply chosen to be R = 1, S = 0, Q = In. Figure 2 shows the
execution times needed for solving the corresponding palindromic eigenvalue problem. It turns
out that the palindromic QR algorithm requires roughly between 10% and 25% of the time needed
by the QZ algorithm, depending on whether only the eigenvalues or the complete Schur form is
to be computed.

In general, however, the attainable reduction depends on the speed of convergence and hence
on the matrix entries. For example, when replacing (46) by the steel rail cooling problem from
LYAPACK [20] (order n = 821), the QZ algorithm requires 163 seconds while the palindromic QR
algorithm requires 136 seconds. This much less impressive reduction is due to the slow convergence
of the palindromic QR algorithm caused by the fact that the eigenvalues of the corresponding
palindromic matrix pair form a tight cluster around −1. �

10 Conclusions

We have developed variants of the implicit QR algorithm that preserve the structure of palindromic
and even pencils. Each of these starts bulges at both ends of the pencil, chases them towards each
other, and passes them through each other.

Although the palindromic QR algorithm solves a generalized eigenvalue problem, it has some
of the features of the standard QR algorithm: it operates on one n-by-n matrix only, and one
step costs the same as one step of the bidirectional QR algorithm. The flop count and memory
requirement of the even QR iteration is the same. Both are strongly backwards stable. Moreover,
modern techniques, such as multiple bulge chases and aggressive early deflation [2, 3] can be
adapted to these variants in a straightforward way. Thus, these are the methods of choice if the
problem is given in anti-Hessenberg form. Unfortunately, the reduction of a general palindromic
or even pencil to anti-Hessenberg form remains elusive.
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Figure 2: Execution times needed for solving the palindromic eigenvalue problem (45) with coef-
ficients (47). The figures do not include the time needed for reduction to Hessenberg-triangular
form. Note that A is (2n + 1) × (2n + 1). Left: The complete palindromic/generalized Schur
form of (A, AT ) is computed.
Right: Only the eigenvalues of (A, AT ) are computed.
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