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Abstract

Partial differential equations with nonnegative characteristic form arise in numerous mathe-
matical models in science. In problems of this kind, the exponential growth of computational
complexity as a function of the dimension d of the problem domain, the so-called “curse of
dimension”, is exacerbated by the fact that the problem may be transport-dominated. We
develop the numerical analysis of stabilized sparse tensor product finite element methods for
such high-dimensional, non-self-adjoint and possibly degenerate second-order partial differen-
tial equations, using piecewise polynomials of degree p ≥ 1. Our convergence analysis is based
on new high-dimensional approximation results in sparse tensor-product spaces. By tracking
the dependence of the various constants on the dimension d and the polynomial degree p, we
show in the case of elliptic transport-dominated diffusion problems that for p ≥ 1 the error-
constant exhibits exponential decay as d → ∞. In the general case when the characteristic
form of the partial differential equation is non-negative, under a mild condition relating p to
d, the error constant is shown to grow no faster than O(d2). In any case, the sparse stabilized
finite element method exhibits an optimal rate of convergence with respect to the mesh size
hL, up to a factor that is polylogarithmic in hL.
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1 Introduction

Suppose that Ω := (0, 1)d, d ≥ 2, and that a = (aij)di,j=1 is a symmetric positive semidefinite
matrix with entries aij ∈ R, i, j = 1, . . . , d. In other words,

a> = a and ξ>a ξ ≥ 0 ∀ξ ∈ Rd.

Suppose further that b ∈ Rd and c ∈ R, and let f ∈ L2(Ω). We shall consider the partial
differential equation

−a : ∇∇u+ b · ∇u+ cu = f(x), x ∈ Ω, (1.1)

subject to suitable boundary conditions on ∂Ω which will be stated below. Here ∇∇u is the
d × d Hessian matrix of u whose (i, j) entry is ∂2u/∂xi ∂xj , i, j = 1, . . . , d. For two d × d

matrices A and B, we define their scalar product A : B :=
∑d

i,j=1AijBij . The induced norm,
called the Frobenius norm, is defined by |A| = (A : A)1/2.

The real-valued polynomial α ∈ P2(Rd; R) of degree ≤ 2 defined by

ξ ∈ Rd 7→ α(ξ) = ξ>a ξ ∈ R

is called the characteristic polynomial or characteristic form of the differential operator

u 7→ Lu := −a : ∇∇u+ b · ∇u+ cu

featuring in (1.1) and, under our hypotheses on the matrix a, the equation (1.1) is referred to
as a partial differential equation with nonnegative characteristic form (cf. Olĕınik & Radkevič
[21]).

For the sake of simplicity of presentation we shall confine ourselves to differential operators
L with constant coefficients. In this case,

a : ∇∇u = ∇ · (a∇u) = ∇∇ : (au) and b · ∇u = ∇ · (bu).

At the expense of added technical difficulties most of our results can be extended to the case
of variable coefficients, where a = a(x), b = b(x) and c = c(x) for x ∈ Ω.

Partial differential equations with nonnegative characteristic form frequently arise as
mathematical models in physics and chemistry [15] (e.g. in the kinetic theory of polymers
[22]; see also [3], [4], [18]) and coagulation-fragmentation problems [17]), molecular biology [9],
and mathematical finance. Important special cases of these equations include the following:

(a) when the diffusion matrix a = a> is positive definite, (1.1) is an elliptic partial differ-
ential equation;

(b) when a ≡ 0 and the transport direction b 6= 0, the partial differential equation (1.1) is
a first-order hyperbolic equation;

(c) when

a =
(
α 0
0 0

)
,

where α is a (d−1)× (d−1) symmetric positive definite matrix and b = (0, . . . , 0, 1)> ∈
Rd, (1.1) is a parabolic partial differential equation, with time-like direction b.
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In addition to these classical types, the family of partial differential equations with nonneg-
ative characteristic form encompasses a range of other linear second-order partial differential
equations, such as degenerate elliptic equations and ultra-parabolic equations. According to
a result of Hörmander [12] (cf. Theorem 11.1.10 on p.67), second-order hypoelliptic operators
have non-negative characteristic form, after possible multiplication by −1, so they too fall
into this category.

For classical types of partial differential equations, such as those listed under (a), (b) and
(c) above, rich families of reliable, stable and highly accurate numerical techniques have been
developed. Yet, only isolated attempts have been made to explore computational aspects
of the class of partial differential equations with nonnegative characteristic form as a whole
(cf. [13] and [14]). In particular, there has been only a limited amount of research to date
on the numerical analysis of high-dimensional partial differential equations with nonnegative
characteristic form (cf. Süli [27], [28]).

The field of stochastic analysis is a particularly fertile source of equations of this kind
(see, for example, [5]): the progressive Kolmogorov equation satisfied by the probabil-
ity density function ψ(x1, . . . , xd, t) of a d-component vectorial stochastic process X(t) =
(X1(t), . . . , Xd(t))> which is the solution of a system of stochastic differential equations in-
cluding Brownian noise is a partial differential equation with nonnegative characteristic form
in the d + 1 variables (x, t) = (x1, . . . , xd, t). To be more precise, consider the stochastic
differential equation:

dX(t) = b(X(t)) dt+ σ(X(t)) dW (t), X(0) = X,

where W = (W1, . . . ,Wp)> is a p-dimensional Wiener process adapted to a filtration {Ft , t ≥
0}, b ∈ C1

b(Rd; Rd) is the drift vector, and σ ∈ C2
b(Rd,Rd×p) is the diffusion matrix. Here

Ck
b (Rn,Rm) denotes the space of bounded and continuous mappings from Rn into Rm, m,n ≥

1, all of whose partial derivatives of order k or less are bounded and continuous on Rn. When
the subscript b is absent, boundedness is not enforced.

Assuming that the random variable X(t) = (X1(t), . . . , Xd(t))> has a probability density
function ψ ∈ C2,1(Rd × [0,∞),R), then ψ is the solution of the initial-value problem

∂ψ

∂t
(x, t) = (Aψ)(x, t), x ∈ Rd, t > 0,

ψ(x, 0) = ψ0(x), x ∈ Rd,

where the differential operator A : C2(Rd; R) → C0(Rd; R) is defined by

Aψ := −
d∑
j=1

∂

∂xj
(bj(x)ψ) +

1
2

d∑
i,j=1

∂2

∂xi ∂xj
(aij(x)ψ) ,

with a(x) = σ(x)σ>(x) ≥ 0 (see Corollary 5.2.10 on p.135 in [16]). Thus, ψ is the solution of
the initial-value problem

∂ψ

∂t
+

d∑
j=1

∂

∂xj
(bj(x)ψ) =

1
2

d∑
i,j=1

∂2

∂xi ∂xj
(aij(x)ψ) , x ∈ Rd, t ≥ 0,

ψ(x, 0) = ψ0(x), x ∈ Rd,
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where, for each x ∈ Rd, a(x) is a d × d symmetric positive semidefinite matrix. The pro-
gressive Kolmogorov equation ∂ψ

∂t = Aψ is a partial differential equation with nonnegative
characteristic form, called a Fokker–Planck equation.

The operator A is generally nonsymmetric (since, typically, b 6= 0) and degenerate (since,
in general, a(x) = σ(x)σ>(x) has nontrivial kernel). In addition, since the (possibly large)
number d of equations in the system of stochastic differential equations is equal to the number
of components of the independent variable x of the probability density function ψ, the Fokker–
Planck equation may be high-dimensional.

The focus of the present paper is the construction and the analysis of finite element
approximations to high-dimensional partial differential equations with non-negative charac-
teristic form. Specifically, our aim is to extend the results from [27] and [28], developed for the
case of sparse tensor-product finite element spaces consisting of piecewise multilinear func-
tions, to polynomials of degree p ≥ 1. The paper is structured as follows. We shall state in
Section 2 the appropriate boundary conditions for the model equation (1.1), derive the weak
formulation of the resulting boundary value problem, and show the existence of a unique weak
solution. Section 3 is devoted to the construction of a hierarchical finite element space for
univariate functions. The tensorization of this space and the subsequent sparsification of the
resulting tensor-product space are described in Section 4; our chief objective is to reduce the
computational complexity of the discretization without adversely effecting the approximation
properties of the finite element space. In Sections 5 and 6 we build a stabilized finite element
method over the sparse tensor-product space, and we explore its stability and convergence.

The convergence analysis relies on new high-dimensional approximation results in sparsi-
fied tensor-product spaces, based on continuous piecewise polynomials of degree p ≥ 1, in the
L2 and H1 norms. We show that the error-constants in these approximation results exhibit
exponentially fast decay as functions of the dimension d. These bounds are related to those
in the recent work of Griebel [10], where similar decay of the error-constant as a function
of d was proved in the H1 seminorm in the special case of p = 1 for “energy-norm-based”
sparse-grid-spaces. Using these approximation results, we then show in the case of elliptic
transport-dominated diffusion problems that if p ≥ 1 then the error-constant exhibits ex-
ponential decay as d → ∞. In the general case when the characteristic form of the partial
differential equation is non-negative, and assuming that p ≥ 2, under a mild condition relat-
ing p to d the error-constant is shown to grow no faster than O(d2). In any case, the sparse
stabilized finite element method exhibits an optimal rate of convergence with respect to the
mesh size hL, up to a factor that is polylogarithmic in hL.

Our error analysis is fairly general, in the sense that only two generic structural properties
of the univariate finite element space are used in the subsequent analysis: namely, (1) that the
univariate finite element space can be written as a direct sum of so-called increment spaces,
and (2) that there exists a projector onto the univariate finite element space which exhibits
optimal approximation properties in the L2 and H1 norms. The specific choice of basis in the
finite element space does not explicitly enter into our error analysis, as it does not affect the
asymptotic rate of convergence. Of course, the implementation of the method will necessitate
that a choice of basis is made; indeed, the specific choice of basis will strongly influence the
sparsity structure and the conditioning of the matrix in the resulting linear system. These
questions are important and we shall briefly comment on them in the concluding section,
although, strictly speaking, they are beyond the scope of the present paper and will be
therefore considered in detail elsewhere.

The origins of sparse tensor-product constructions and hyperbolic cross spaces can be
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traced back to the works of Babenko [2] and Smolyak [26]; we refer to the papers of Temlyakov
[29], DeVore, Konyagin & Temlyakov [8] for the study of high-dimensional approximation
problems, to the works of Wasilkowski & Woźniakowski [30] and Novak & Ritter [19] for
high-dimensional integration problems and associated complexity questions, to the paper of
Zenger [31] for an early contribution to sparse tensor-product finite element methods, to the
articles by von Petersdorff & Schwab [23] and Hoang & Schwab [11] for the analysis of sparse-
grid methods for high-dimensional parabolic and elliptic multiscale problems, respectively,
and to the recent Acta Numerica article of Bungartz & Griebel [7] for a detailed survey of
the field of sparse-grid methods.

2 Boundary conditions and weak formulation

Before embarking on the construction of the numerical algorithm, we shall introduce the nec-
essary boundary conditions and the weak formulation of the model boundary-value problem
on Ω = (0, 1)d for the equation (1.1).

Let Γ denote the union of all (d − 1)-dimensional open faces of the domain Ω = (0, 1)d.
On recalling that, by hypothesis, a = a> and α(ξ) = ξ>a ξ ≥ 0 for all ξ ∈ Rd, we define the
subset Γ0 of Γ by

Γ0 := {x ∈ Γ : α(ν(x)) > 0} ;

here ν(x) denotes the unit normal vector to Γ at x ∈ Γ, pointing outward with respect to Ω.
The set Γ0 can be thought of as the elliptic part of Γ. The complement Γ\Γ0 of Γ0 is referred
to as the hyperbolic part of Γ. We note that, by definition, α = 0 on Γ \ Γ0.

On introducing the Fichera function

x ∈ Γ 7→ β(x) := b · ν(x) ∈ R

defined on Γ, we subdivide Γ\Γ0 as follows:

Γ− := {x ∈ Γ\Γ0 : β < 0} , Γ+ := {x ∈ Γ\Γ0 : β ≥ 0} ;

the sets Γ− and Γ+ are referred to as the (hyperbolic) inflow and outflow boundary, respec-
tively. Thereby, we obtain the following decomposition of Γ:

Γ = Γ0 ∪ Γ− ∪ Γ+.

Lemma 1 Each of the sets Γ0, Γ−, Γ+ is a union of (d − 1)-dimensional open faces of Ω.
Moreover, each pair of opposite (d − 1)-dimensional faces of Ω is contained either in the
elliptic part Γ0 of Γ or in its complement Γ \ Γ0 = Γ− ∪ Γ+, the hyperbolic part of Γ.

Proof Since a is a constant matrix and ν is a face-wise constant vector, Γ0 is a union of (disjoint)
(d − 1)-dimensional open faces of Γ. Indeed, if x ∈ Γ0 and y is any point that lies on the same
(d− 1)-dimensional open face of Ω as x, then ν(y) = ν(x) and therefore α(ν(y)) = α(ν(x)) > 0; hence
y ∈ Γ0 also.

A certain (d− 1)-dimensional open face ϕ of Ω is contained in Γ0 if, and only if, the opposite face
ϕ̂ is also contained in Γ0. To prove this, let ϕ ⊂ Γ0 and let x = (x1, . . . , xi, . . . , xd) ∈ ϕ, with Oxi

signifying the (unique) co-ordinate direction such that ν(x)‖Oxi; here O = (0, . . . , 0). In other words,
xi ∈ {0, 1}, and the (d − 1)-dimensional face ϕ to which x belongs is orthogonal to the co-ordinate
direction Oxi. Hence, the point x̂ = (x1, . . . , |xi− 1|, . . . , xd) lies on the (d− 1)-dimensional open face
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ϕ̂ of Ω that is opposite the face ϕ (i.e., ϕ̂‖ϕ), and ν(x̂) = −ν(x). As α is a homogeneous function of
degree 2 on Γ0, it follows that

α(ν(x̂)) = α(−ν(x)) = (−1)2 α(ν(x)) = α(ν(x)) > 0,

which implies that x̂ ∈ Γ0. By what we have shown before, we deduce that the entire face ϕ̂ is
contained in Γ0.

Similarly, since b is a constant vector, each of Γ− and Γ+ is a union of (d − 1)-dimensional open
faces of Γ. If a certain (d− 1)-dimensional open face ϕ is contained in Γ−, then the opposite face ϕ̂ is
contained in the set Γ+.

We note in passing, however, that if ϕ ⊂ Γ+ then the opposite face ϕ̂ need not be contained in
Γ−; indeed, if ϕ ⊂ Γ+ and β = 0 on ϕ then β = 0 on ϕ̂ also, so then both ϕ and the opposite face
ϕ̂ are contained in Γ+. Of course, if β > 0 on ϕ ⊂ Γ+, then β < 0 on the opposite face ϕ̂, and then
ϕ̂ ⊂ Γ−. �

Lemma 1 motivates the following definition.

Definition 1 For i ∈ {0, . . . , d}, a co-ordinate direction Oxi that is orthogonal to a pair
of faces of Ω = (0, 1)d which belong to Γ0 will be called an elliptic co-ordinate direction.
Otherwise, Oxi will be called a hyperbolic co-ordinate direction.

We consider the following boundary–value problem: find u such that

Lu := −a : ∇∇u+ b · ∇u+ cu = f in Ω, (2.1)
u = 0 on Γ0 ∪ Γ−. (2.2)

Before stating the variational formulation of (2.1), (2.2), we note the following simple
result from [14].

Lemma 2 Suppose that M ∈ Rd×d is a d × d symmetric positive semidefinite matrix. If
ξ ∈ Rd satisfies ξ>Mξ = 0, then Mξ = 0.

Since ν>aν = 0 on Γ\Γ0 and a ∈ Rd×d is a symmetric positive semidefinite matrix, we deduce
from Lemma 2 with M = a and ξ = ν that

aν = 0 on Γ \ Γ0. (2.3)

Let us suppose for a moment that (2.1), (2.2) has a solution u in H2(Ω). Thanks to our
assumption that a is a constant matrix, we have that

a : ∇∇u = ∇ · (a∇u).

Furthermore, a∇u ∈ [H1(Ω)]d, which implies that the normal trace γν,∂Ω(a∇u) of a∇u on ∂Ω
belongs to H

1
2 (∂Ω). By virtue of (2.3),

γν,∂Ω(a∇u)|Γ\Γ0
= 0.

Note also that measd−1(∂Ω \ Γ) = 0. Hence∫
∂Ω
γν,∂Ω(a∇u) · γ0,∂Ω(v) ds =

∫
Γ
γν,∂Ω(a∇u)|Γ · γ0,∂Ω(v)|Γ ds = 0 (2.4)
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for all v ∈ V, where
V =

{
v ∈ H1(Ω) : γ0,∂Ω(v)|Γ0 = 0

}
.

This observation will be of key importance. On multiplying the partial differential equa-
tion (2.1) by v ∈ V and integrating by parts, we find that

(a∇u,∇v)− (u,∇ · (bv)) + (cu, v) + 〈u, v〉Γ+ = (f, v) ∀v ∈ V, (2.5)

where (·, ·) denotes the L2 inner–product over Ω and

〈w, v〉Γ± =
∫

Γ±

|β|wv ds,

with β signifying the Fichera function b · ν, as before. We note that in the transition to (2.5)
the boundary integral term on Γ which arises in the course of partial integration from the
−∇ · (a∇u) term vanishes by virtue of (2.4), while the boundary integral term on Γ \ Γ+ =
Γ0 ∪ Γ− resulting from the b · ∇u term on partial integration disappears since u = 0 on this
set by (2.2).

The form of (2.5) serves as motivation for the statement of the weak formulation of (2.1),
(2.2) which is presented below. We consider the inner product (·, ·)H defined by

(w, v)H := (a∇w,∇v) + (w, v) + 〈w, v〉Γ−∪Γ+ ,

and denote by H the closure of the space V in the norm ‖ · ‖H defined by ‖w‖H := (w,w)
1
2
H.

Clearly, H is a Hilbert space. For w ∈ H and v ∈ V, we now consider the bilinear form
B(·, ·) : H× V → R defined by

B(w, v) := (a∇w,∇v)− (w,∇ · (bv)) + (cw, v) + 〈w, v〉Γ+ ,

and for v ∈ V we introduce the linear functional L : V → R by

L(v) := (f, v).

We shall say that u ∈ H is a weak solution to the boundary–value problem (2.1), (2.2) if

B(u, v) = L(v) ∀v ∈ V. (2.6)

The existence of a unique weak solution is guaranteed by the following theorem (cf. also
Theorem 1.4.1 on p.29 of [21]).

Theorem 3 Suppose that c ∈ R>0. For each f ∈ L2(Ω), there exists a unique u in a Hilbert
subspace Ĥ of H such that (2.6) holds.

Proof For v ∈ V fixed, we deduce by means of the Cauchy-Schwarz inequality that

B(w, v) ≤ K1‖w‖H‖v‖H1(Ω) ∀w ∈ H,

where we have used the trace theorem for H1(Ω). Thus B(·, v) is a bounded linear functional on the
Hilbert space H. By the Riesz representation theorem, there exists a unique element T (v) in H such
that

B(w, v) = (w, T (v))H ∀w ∈ H.
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Since B is bilinear, it follows that T : v → T (v) is a linear operator from V into H. Next we show
that T is injective. Note that

B(v, v) = (a∇v,∇v)− (v,∇ · (bv)) + (cv, v) + 〈v, v〉Γ+ ∀v ∈ V.

On integrating by parts in the second term on the right-hand side we deduce that

B(v, v) = (a∇v,∇v) + c‖v‖2L2(Ω) + 1
2 〈v, v〉Γ−∪Γ+

≥ K0‖v‖2H ∀v ∈ V,

where K0 = min(c, 1
2 ) > 0. Hence

(v, T (v))H ≥ K0‖v‖2H ∀v ∈ V. (2.7)

Consequently, T : v → T (v) is an injection from V onto the range R(T ) of T contained in H. Thus,
T : V → R(T ) is a bijection. Let S = T−1 : R(T ) → V, and let Ĥ denote the closure of R(T ) in
H. Since, by (2.7), ‖S(w)‖H ≤ (1/K0)‖w‖H for all w ∈ R(T ), it follows that S : R(T ) → V is a
continuous linear operator; therefore, it can be extended, from the dense subspace R(T ) of Ĥ to the
whole of Ĥ, as a continuous linear operator Ŝ : Ĥ → H. Furthermore, since

|L(v)| ≤ ‖f‖L2(Ω)‖v‖H ∀v ∈ H,

it follows that L ◦ Ŝ : v ∈ Ĥ 7→ L(Ŝ(v)) ∈ R is a continuous linear functional on Ĥ. Since Ĥ is closed
(by definition) in the norm of H, it is a Hilbert subspace of H. Hence, by the Riesz representation
theorem, there exists a unique u ∈ Ĥ such that

L(Ŝ(w)) = (u,w)H ∀w ∈ Ĥ.

Thus, by the definition of Ŝ, Ŝ(w) = S(w) for all w in R(T ); hence,

L(S(w)) = (u,w)H ∀w ∈ R(T ).

Equivalently, on writing v = S(w),

(u, T (v))H = L(v) ∀v ∈ V.

Thus we have shown the existence of a unique u ∈ Ĥ(⊂ H) such that

B(u, v) = (u, Tv)H = L(v) ∀v ∈ V,

which completes the proof. �

We note that the boundary condition u|Γ− = 0 on the inflow part Γ− of the hyperbolic
boundary Γ \ Γ0 = Γ− ∪ Γ+ is imposed weakly, through the definition of the bilinear form
B(·, ·), while the boundary condition u|Γ0 = 0 on the elliptic part Γ0 of Γ is imposed strongly,
through the choice of the function space H. Hence, we deduce from Lemma 1 that

d⊗
i=1

H1
(0)(0, 1) := H1

(0)(0, 1)⊗ · · · ⊗H1
(0)(0, 1) ⊂ H, (2.8)

where the ith component H1
(0)(0, 1) in the d-fold tensor-product on the left-hand side of the

inclusion is taken to be equal to H1
0(0, 1) if Oxi is an elliptic co-ordinate direction; otherwise

(i.e. when Oxi is a hyperbolic co-ordinate direction), it is chosen to be equal to H1(0, 1).
Next, we shall consider the discretization of the weak formulation (2.6). Motivated by the

tensor-product structure of the space on the left-hand side of the inclusion (2.8), we shall base
our Galerkin discretization on a finite-dimensional subspace of H which is the tensor-product
of finite-dimensional subspaces of H1

(0)(0, 1). Thus, we begin by setting up the necessary
notation in the case of the univariate space H1

(0)(0, 1).
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3 Univariate approximation results

Let I = (0, 1) and consider the sequence of partitions {T `}`≥0, where T 0 = {I} and where
the partition T `+1 is obtained from the previous partition

T ` := {I`j : j = 0, . . . , 2` − 1}

by halving each of the intervals I`j . The mesh-size in the partition T ` is h` := 2−`.
We consider the finite-dimensional linear subspace V`,p of H1(0, 1) consisting of all con-

tinuous piecewise polynomials of degree p ≥ 1 on the partition T `, ` ≥ 0. For ` ≥ 0 we also
consider the subspace V`,p0 of V`,p defined by V`,p0 := V`,p ∩C0[0, 1] ⊂ H1

0(0, 1) consisting of all
continuous piecewise polynomial functions on T ` of degree p that vanish at both endpoints
of the interval [0, 1].

Remark 1 When p = 1 the linear space V0,p
0 is trivial, that is V0,1

0 = {0}. �

Let us note that the families of spaces {V`,p0 }`≥0 and {V`,p}`≥0 are nested, i.e.

V0,p
0 ( V1,p

0 ( V2,p
0 ( · · · ( V`,p0 ( · · · ( H1

0(0, 1),

and
V0,p ( V1,p ( V2,p ( · · · ( V`,p ( · · · ( H1(0, 1),

each space in each of the two chains being a proper subspace of the next space in the same
chain. As in the previous section, we shall use H1

(0)(0, 1) to denote H1
0(0, 1) or H1(0, 1), as

the case may be; analogously, we shall use V`,p(0) to denote V`,p0 or V`,p. We shall adopt the
following hypothesis.

Hypothesis 1(0) Suppose that p ≥ 1. For each integer ` ≥ 0 there exists a projector (i.e., a
linear, idempotent, surjective mapping) P `,p(0) : H1

(0)(0, 1) → V`,p(0).

Under this hypothesis,

V`,p(0) = P `,p(0) H1
(0)(0, 1), ` ≥ 0, p ≥ 1.

Now, let

Q`,p(0) =

{
P `,p(0) − P `−1,p

(0) , ` ≥ 1,
P 0,p

(0) , ` = 0.

Thus, for any integer L ≥ 0,

PL,p(0) =
L∑
`=0

Q`,p(0).

We define the increment spaces W`,p
(0), ` = 0, 1, . . . , as follows:

W`,p
(0) := Q`,p(0) H1

(0)(0, 1).

Hence, for any pair of integers L ≥ 0 and p ≥ 1,

VL,p(0) = PL,p(0) H1
(0)(0, 1) =

(
L∑
`=0

Q`,p(0)

)
H1

(0)(0, 1) =
L∑
`=0

(
Q`,p(0) H1

(0)(0, 1)
)

=
L∑
`=0

W`,p
(0). (3.1)
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In fact, one can make a stronger statement: for any pair of integers L ≥ 0 and p ≥ 1, the
vector space VL,p(0) is the direct sum of the increment spaces W`,p

(0), ` = 0, . . . , L:

VL,p(0) =
L⊕
`=0

W`,p
(0). (3.2)

This is a consequence of the following result (see, for example, [6], Theorem 2.5).

Proposition 4 Let X be a vector space; then, there exist nontrivial subspaces X`, ` =
0, . . . , L, of X such that X =

⊕L
`=0X` if, and only if, there are nonzero linear mappings

p0, . . . , pL : X → X such that

(1)
∑L

`=0 p` = IdX ;

(2) p`1 ◦ p`2 = 0X for all `1, `2 ∈ {0, . . . , L}, `1 6= `2.

Moreover, each p` is necessarily a projector and X` = Im(p`), ` = 0, . . . , L.

To prove (3.2), we shall first suppose that p ≥ 2 and apply Proposition 4 with X = VL,p(0) ,

X` = W`,p
(0) and p` = Q`,p(0), ` = 0, . . . , L, and note that PL,p(0) =

∑L
`=0Q

`,p
(0) is the identity-map

in VL,p(0) and Q`1,p(0) ◦Q
`2,p
(0) is the zero-map in VL,p(0) for all `1, `2 ∈ {0, . . . , L}, `1 6= `2; then, (3.2)

follows from (3.1).
When p = 1 and X = VL,1 the argument is identical. When p = 1 and X = VL,10 ,

however, a small modification is required since then W0,1
0 = V0,1

0 = {0} and Q0,1
0 = P 0,1

0 = 0,
so Proposition 4 does not directly apply with ` = 0, . . . , L. Instead, we use Proposition 4
with X = VL,10 , X` = W`,1

0 and p` = Q`,10 , ` = 1, . . . , L, and note that PL,10 =
∑L

`=1Q
`,1
0 is

the identity-map in VL,10 and Q`1,10 ◦ Q`2,10 is the zero-map in VL,10 for all `1, `2 ∈ {1, . . . , L},
`1 6= `2, to deduce that VL,10 =

⊕L
`=1W

`,1
0 . On taking the direct sum of each side in the last

equality with W0,1
0 , (3.2) follows since W0,1

0 ⊕ VL,10 = VL,10 .
Thus we have shown that

VL,p(0) =
L⊕
`=0

W`,p
(0) = W0,p

(0) ⊕W
1,p
(0) ⊕ · · · ⊕W

L,p
(0) , L ≥ 0; (3.3)

in other words,
V`,p(0) = V`−1,p

(0) ⊕W`,p
(0), ` ≥ 1.

So far, the choice of the projectors P `,p(0) has been fairly arbitrary: the argument above only
made use of its algebraic properties stated in Hypothesis 1(0). Below, we shall be interested
in the convergence of certain tensor-products of the univariate projector. Specifically, we
shall investigate the dependence of the convergence rates on the dimension d of the domain
of definition Ω = (0, 1)d of the function u to be approximated as well as on the polynomial
degree p. To this end, we shall make a second assumption on the projectors.

Hypothesis 2(0) Let k ≥ 1 and p ≥ 1 be two integers, s ∈ {0, 1} and h` = 2−`, where
` ≥ 0 is an integer, and suppose that v ∈ Hk+1(0, 1) ∩ H1

(0)(0, 1). For any integer t such that
1 ≤ t ≤ min(p, k), there exists a positive constant cp(s, t), independent of v, such that

|v − P `,p(0)v|Hs(0,1) ≤ cp(s, t)ht+1−s
` |v|Ht+1(0,1). (3.4)
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In particular, Hypothesis 2(0) implies that v = lim`→∞ P `,p(0)v for all v ∈ H2(0, 1)∩H1
(0)(0, 1)

and all p ≥ 1, where the limit is considered in the Hs(0, 1)-seminorm for s ∈ {0, 1}, with the
convention that, for s = 0, | · |H0(0,1) = ‖ · ‖L2(0,1).

3.1 Examples of univariate projectors

We shall present examples of projectors P `,p0 and P `,p which satisfy our two hypotheses.
Consider the projector P `,p : H1(0, 1) → V`,p defined, for x ∈ [0, 1], by

(P `,pu)(x) := u(0) +
∫ x

0
(Π`,p−1u′)(ξ) dξ, ` ≥ 0, p ≥ 1,

where Π`,p−1 : L2(0, 1) → V`,p−1 is the L2(0, 1)-orthogonal projector onto V`,p−1.
Since u ∈ H1(0, 1) ⊂ C[0, 1], the projector is well-defined. If p = 1, the projection

Π`,p−1(u′) is a discontinuous, piecewise constant function of the elementwise mean values of
u′ over subintervals. Consequently, for p = 1 we have that P `,pu is equal to u at all nodes of
T `. More generally, (P `,pu)(1) = u(1) for all ` ≥ 0 and all p ≥ 1; furthermore,

P `,p|H1
0(0,1) = P `,p0 , where (P `,p0 u)(x) :=

∫ x

0
(Π`,p−1u′)(ξ) dξ for all ` ≥ 1.

(cf. Theorem 3.14 on p.73 in Schwab [25]).
In addition, the projector P `,p has the following approximation property (cf. inequalities

(3.3.29) and (3.3.30) in Schwab [25]): for any v in Hk+1(0, 1), k ≥ 1, we have that

|v − P `,pv|Hs(0,1) ≤
(
h`
2

)t+1−s 1
p1−s

√
(p− t)!
(p+ t)!

|v|Ht+1(0,1), 1 ≤ t ≤ min(p, k), (3.5)

where h` = 2−`, ` ≥ 0, p ≥ 1, s ∈ {0, 1}, t ∈ N, and N denotes the set of nonnegative integers.
An identical bound holds for any v in Hk+1(0, 1) ∩ H1

(0)(0, 1), k ≥ 1, with P `,pv replaced by

P `,p(0)v.

Thus we have shown that the family of finite element spaces {V`,p(0)}`≥0 ⊆ H1
(0)(0, 1) and

the associated projector P `,p(0) satisfy the approximation property

|v − P `,p(0)v|Hs(0,1) ≤ cp,s,t2−(t+1−s)(`+1)|v|Ht+1(0,1), (3.6)

for all v ∈ Hk+1(0, 1) ∩ H1
(0)(0, 1), k ≥ 1, ` ≥ 0, p ≥ 1, t ∈ N, 1 ≤ t ≤ min(p, k) and s ∈ {0, 1},

where

cp,s,t :=
1

p1−s

√
(p− t)!
(p+ t)!

. (3.7)

Consequently, Hypotheses 1(0) and 2(0) hold, inequality (3.4) being satisfied with

cp(s, t) := 2−(t+1−s)cp,s,t =
1

2t+1−sp1−s

√
(p− t)!
(p+ t)!

. (3.8)
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3.2 Bounds on the incremental projectors for p ≥ 1

Let us define, as above, the projection Q`,p(0) onto the increment of the hierarchical family

{V`,p(0)}`≥0 by

Q`,p(0) :=

{
P `,p(0) − P `−1,p

(0) , ` ≥ 1,
P 0,p

(0) , ` = 0,
(3.9)

where now P `,p(0) signifies the projector introduced in Section 3.1.

Suppose that v ∈ Hk+1(0, 1) ∩ H1
(0)(0, 1), k ≥ 1, p ≥ 1, t ∈ N, 1 ≤ t ≤ min(p, k) and

s ∈ {0, 1}.
(a) For ` ≥ 1, the triangle inequality and the approximation property (3.6) ensure that

|Q`,p(0)v|Hs(0,1) ≤ c̃p,s,t2−(t+1−s)`|v|Ht+1(0,1), ` ≥ 1, (3.10)

with

c̃p,s,t =
(

1 +
1

2t+1−s

)
cp,s,t. (3.11)

(b) For ` = 0 and s = 0, by Poincaré’s inequality,

‖Q0,p
(0)u‖L2(0,1) ≤ ‖u‖L2(0,1) + ‖u− P 0,p

(0) u‖L2(0,1)

≤ ‖u‖L2(0,1) +
1
π
|u− P 0,p

(0) u|H1(0,1)

= ‖u‖L2(0,1) +
1
π
‖u′ −Π0,p−1u′‖L2(0,1)

= ‖u‖L2(0,1) +
1
π

√
‖u′‖2

L2(0,1)
− ‖Π0,p−1u′‖2

L2(0,1)

= ‖u‖L2(0,1) +
1
π

√
‖u′‖2

L2(0,1)
− |P 0,p

(0) u|
2
H1(0,1)

= ‖u‖L2(0,1) +
1
π

√
|u|2

H1(0,1)
− |Q0,p

(0)u|
2
H1(0,1)

,

and therefore since, for a ≥ b ≥ 0, 1
π

√
a2 − b2 ≤ a− b

√
1− 1

π2 , we deduce that

‖Q0,p
(0)u‖L2(0,1) +

√
1− 1

π2
|Q0,p

(0)u|H1(0,1) ≤ ‖u‖L2(0,1) + |u|H1(0,1) =: ‖u‖H1
∗(0,1)

. (3.12)

(c) For ` = 0 and s = 1 on the other hand, we have that

|Q0,p
(0)u|H1(0,1) = |P 0,p

(0) u|H1(0,1) ≤ |u|H1(0,1). (3.13)

Also, (3.12) implies that

‖Q0,p
(0)u‖H1

∗(0,1)
≤ π√

π2 − 1
‖u‖H1

∗(0,1)
. (3.14)

(d) We note that when ` = 0, s ∈ {0, 1}, p = 1 and u ∈ H1
0(0, 1), then we have that

Q0,1
(0)u = P 0,1

(0) u = 0, and inequalities (3.12) and (3.13) are trivially satisfied.
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For ` = 0 we set
ĉp,0,(0) := ‖Q0,p

(0)‖B(H1
(0)

(0,1),L2(0,1)),

ĉp,1,(0) := ‖Q0,p
(0)‖B(H1

(0)
(0,1),H1

(0)
(0,1)),

(3.15)

with the convention that the norm in H1
0(0, 1) is the seminorm | · |H1(0,1) while the norm

in H1(0, 1) is ‖ · ‖H1
∗(0,1). It will be clear from the context whether we use zero or nonzero

boundary conditions in the spaces.

Example 1 If p ≥ 2 and ` = 0, then Q0,p
0 is, for u ∈ H1

0(0, 1), given by

(Q0,p
0 u)(x) =

∫ x

0
(Π0,p−1u′)(ξ) dξ

where Π0,p−1 denotes the L2(0, 1)-projection onto V0,p−1. Now, Q0,p
0 ∈ B(H1

0(0, 1),H1
0(0, 1))

with ĉp,1,0 = 1 and, as the embedding of H1
0(0, 1) into L2(0, 1) has norm 1/π by the Poincaré

inequality, ĉp,0,0 ≤ 1/π. More generally, inequality (3.12) still implies that ĉ0,0,(0) ≤ 1, with
H1(0, 1) equipped by the norm ‖ · ‖H1

∗(0,1)
. �

3.3 Refined bounds on the incremental projectors for p = 1

We shall now take a closer look at estimating |Q`,p(0)v|Hs(0,1) in the case of p = 1 and ` ≥ 1.

As in Section 3.2, Q`,p(0) is defined by (3.9) where P `,p(0) is the projector introduced in Section
3.1. Our objective is to sharpen our earlier expression (3.11) for the constant c̃p,s,t appearing
in the detail-size estimate (3.10) in the special case of p = 1 and s ∈ {0, 1} (note that we
necessarily have t = 1).

We use the following two simple auxiliary results, the first of which is a discrete version
of the Poincaré inequality.

Lemma 5 Suppose that v ∈ H1
0(0, 1) is piecewise linear on T 1 := {[0, 1

2 ], [12 , 1]}; then

‖v‖L2(0,1) ≤
1√
12
‖v′‖L2(0,1). (3.16)

Proof The result follows from a straightforward calculation with v taken to be the standard hat
function ϕ : x 7→ 1

2 (1− 2|x− 1
2 |)+ defined on [0, 1]. �

Lemma 6 Suppose that v ∈ H1(0, 1); then∣∣∣∣∣
∫ 1/2

0
v(t) dt−

∫ 1

1/2
v(t) dt

∣∣∣∣∣ ≤ 1√
12
‖v′‖L2(0,1). (3.17)

Proof Denoting, as in the proof Lemma 5, by ϕ the hat function on [0, 1] with ϕ( 1
2 ) = 1

2 , we note
that 1[0, 1

2 ]−1[ 12 ,1] = ϕ′. Then, we use partial integration and the Cauchy-Schwarz inequality to obtain∣∣∣∣∣
∫ 1/2

0

v(t) dt−
∫ 1

1/2

v(t) dt

∣∣∣∣∣ =
∣∣∣∣∫ 1

0

ϕ′(t)v(t) dt
∣∣∣∣ = ∣∣∣∣∫ 1

0

ϕ(t)v′(t) dt
∣∣∣∣

≤ ‖ϕ‖L2(0,1)‖v′‖L2(0,1) =
1√
12
‖v′‖L2(0,1). (3.18)

That completes the proof. �
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Remark 2 Rescaling Lemmas 5 and 6 above from [0, 1] to [0, h] with h > 0 we obtain the
following inequalities:

‖v‖L2(0,h) ≤
h√
12
‖v′‖L2(0,1) ∀v ∈ H1

0(0, h), piecewise linear on [0, h/2] ∪ [h/2, h]; (3.19)

and ∣∣∣∣∣
∫ h/2

0
v(t) dt−

∫ h

h/2
v(t) dt

∣∣∣∣∣ ≤ h
3
2

√
12
‖v′‖L2(0,h) ∀v ∈ H1(0, h). � (3.20)

Proposition 7 Suppose that the projectors P `,1(0) , ` = 0, 1, . . . , are given by

(P `,1(0)v)(x) = v(0) +
∫ x

0
Π`,0(v′)(ξ) dξ ∀v ∈ H1(0, 1), ` ≥ 0, (3.21)

then, for any v ∈ H2(0, 1), we have

‖Q`,1(0)v‖L2(0,1) ≤
1
3
2−2`‖v′′‖L2(0,1) and |Q`,1(0)v|H1(0,1) ≤

1√
3
2−`‖v′′‖L2(0,1) ∀` ≥ 1. (3.22)

Hence, for the constants c̃1,0,1 and c̃1,1,1 appearing in (3.10), we obtain the upper bounds

c̃1,0,1 ≤
1
3

and c̃1,1,1 ≤
1√
3
. (3.23)

Proof First note that, since the projector Π`,0 acts by averaging its argument function on each
subinterval of the mesh T `, the interpolant P `,1

0 in (3.21) is nodally exact, that is, P `,1
0 v equals v at

all nodes (including 0 and 1) of T `, for all ` ≥ 0.
Let us denote by I`

k, for 1 ≤ k ≤ 2`, the subintervals of T `, of length h` = 2−`. The nodal exactness
of P `,1

0 ensures that Q`,1
0 v |I`−1

k
∈ H1

0(I
`−1
k ) is a multiple of the standard hat function, rescaled to I`−1

k ,

for all ` ≥ 1 and 1 ≤ k ≤ 2`−1. Applying Lemma 5 (after rescaling to I`−1
k ), we obtain

‖Q`,1
0 v |I`−1

k
‖2
L2(I`−1

k )
≤ 1

12
(h`−1)2‖(Q`,1

0 v)′ |I`−1
k

‖2
L2(I`−1

k )
∀v ∈ H2(0, 1), ` ≥ 1. (3.24)

The definition (3.21) ensures that

(Q`,1
0 v)′ = Π`,0(v′)−Π`−1,0(v′)

so that (since I`−1
k = I`

2k−1 ∪ I`
2k)

(Q`,1
0 v)′ |I`−1

k
=

(
1
h`

∫
I`
2k−1

v′(t) dt

)
1I`

2k−1
+

(
1
h`

∫
I`
2k

v′(t) dt

)
1I`

2k
−

(
1

h`−1

∫
I`−1

k

v′(t) dt

)
1I`−1

k
.

Using h` = 2−` we obtain

‖(Q`,1
0 v)′ |I`−1

k
‖2
L2(I`−1

k )
=

1
4

(
1
h`

∫
I`
2k−1

v′(t) dt− 1
h`

∫
I`
2k

v′(t) dt

)2

‖1I`−1
k
‖2
L2(I`−1

k )

=
1

h`−1

(∫
I`
2k−1

v′(t) dt−
∫

I`
2k

v′(t) dt

)2

, (3.25)

from which we deduce using Lemma 6, rescaled to I`−1
k , that

‖(Q`,1
0 v)′ |I`−1

k
‖2
L2(I`−1

k )
≤ 1

12
(h`−1)2‖v′′‖2

L2(I`−1
k )

. (3.26)

Estimate (3.22) now follows from (3.24) and (3.26), upon summing over k from 1 to 2`−1. Finally,
(3.23) follows by comparing (3.10) and (3.22). �
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4 Sparse finite element discretization

We shall now use the finite-dimensional spaces VL,p and VL,p0 of univariate functions to con-
struct a tensor-product space of multivariate functions. We shall then sparsify the resulting
tensor-product space with the aim to reduce its dimension without significantly compromising
the approximation properties of the original tensor-product space.

4.1 Sparse tensor-product space

Let us first consider on Ω = (0, 1)d the finite-dimensional subspace V L,p
(0) of

⊗d
i=1 H1

(0)(0, 1)
defined by

V L,p
(0) :=

d⊗
i=1

VL,p(0) = VL,p(0) ⊗ · · · ⊗ V
L,p
(0) , (4.1)

where the ith component VL,p(0) in this tensor-product is chosen to be VL,p0 if Oxi is an elliptic

co-ordinate direction, and VL,p(0) is chosen as VL,p otherwise.

In particular, if a ≡ 0 and therefore Γ0 = ∅, then VL,p(0) = VL,p for each component in the

tensor-product. Conversely, if a is positive definite, then Γ0 = Γ and therefore VL,p(0) = VL,p0 for
each component of the tensor-product. In general, for a ≥ 0 that is neither identically zero
nor positive definite, VL,p(0) = VL,p0 for a certain number i of components in the tensor-product,

where 0 < i < d, and VL,p(0) = VL,p for the rest.

We denote by ` = (`1, . . . , `d) ∈ Nd a multi-index and by

|`|∞ := max{`i : 1 ≤ i ≤ d} and |`|1 := `1 + · · ·+ `d

its `∞ and `1 norms, respectively.
Using the hierarchical decomposition (3.3) we have that

V L,p
(0) =

⊕
|`|∞≤L

W`1,p
(0) ⊗ · · · ⊗W`d,p

(0) , ` = (`1, . . . , `d), (4.2)

with the convention that W`,p
(0) = W`,p

0 whenever Oxi is an elliptic co-ordinate direction, and

W`,p
(0) = W`,p otherwise.

For a fixed value of p ≥ 1, the space V L,p
(0) has O(2Ld) degrees of freedom, a number that

grows exponentially as a function of d.
In order to reduce the number of degrees of freedom, we shall replace V L,p

(0) with a lower-

dimensional subspace V̂ L,p
(0) defined as follows:

V̂ L,p
(0) :=

⊕
|`|1≤L

W`1,p
(0) ⊗ · · · ⊗W`d,p

(0) , ` = (`1, . . . , `d). (4.3)

The space V̂ L,p
(0) is called a sparse tensor-product space.

For a fixed value of p ≥ 1, the space V̂ L,p
(0) has O(2LLd−1) degrees of freedom, which is a

considerable reduction compared to the O(2Ld) degrees of freedom for the space V L,p
(0) .
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Let us consider the d-dimensional projector

PL,p(0) ⊗ · · · ⊗ PL,p(0) :
d⊗
i=1

H1
(0)(0, 1) →

d⊗
i=1

VL,p(0) = V L,p
(0) ,

where the ith component PL,p(0) is equal to PL,p0 if Oxi is an elliptic co-ordinate direction, and
equal to PL,p otherwise. Now, let us recall that

Q`,p =
{
P `,p − P `−1,p, ` ≥ 1,
P 0,p, ` = 0,

and

Q`,p0 =

{
P `,p0 − P `−1,p

0 , ` ≥ 1,
P 0,p

0 , ` = 0.

Thus,

PL,p(0) =
L∑
`=0

Q`,p(0),

where Q`,p(0) = Q`,p0 when P `,p(0) = P `,p0 and Q`,p(0) = Q`,p when P `,p(0) = P `,p. Hence,

PL,p(0) ⊗ · · · ⊗ PL,p(0) =
∑

|`|∞≤L

Q`1,p(0) ⊗ · · · ⊗Q`d,p(0) , ` = (`1, . . . , `d),

where Q`i,p(0) is equal to Q`i,p0 when Oxi is an elliptic co-ordinate direction, and equal to Q`i,p

otherwise.
The sparse counterpart P̂L,p(0) of the tensor-product projector PL,p(0) ⊗ · · · ⊗ PL,p(0) is defined

by truncating the index set {` : |`|∞ ≤ L} of the sum to {` : |`|1 ≤ L}:

P̂L,p(0) :=
∑
|`|1≤L

Q`1,p(0) ⊗ · · · ⊗Q`d,p(0) :
d⊗
i=1

H1
(0)(0, 1) → V̂ L,p

(0) , ` = (`1, . . . , `d),

where Q`i,p(0) is equal to Q`i,p0 when Oxi is an elliptic co-ordinate direction Oxi, and equal to
Q`i,p otherwise.

4.2 Sparse stabilized finite element method

Having defined the finite-dimensional space V̂ L,p
(0) in which the approximate solution will

be sought, we now introduce a stabilized Galerkin finite element method over this finite-
dimensional space. The main ingredients of the method are a bilinear form bδ(·, ·) which
approximates the bilinear form B(·, ·) from the weak formulation of the boundary value prob-
lem and a linear functional lδ(·) which approximates the linear functional L(·).

Let us consider the bilinear form

bδ(w, v) := B(w, v) + δL
∑
κ∈T L

(Lw, b · ∇v)κ.
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Here, in the light of the fact that in the transport-dominated case |a| � |b|, the second term
in the bilinear form bδ(·, ·) can be thought of as least-square stabilization in the direction of
subcharacteristics (‘streamlines’).

We also define the linear functional

lδ(v) := L(v) + δL
∑
κ∈T L

(f, b · ∇v)κ (= L(v) + δL(f, b · ∇v)) .

Here δL ∈ [0, 1/c] is a (‘streamline-diffusion’) parameter to be chosen below, and κ ∈ T L are
d-dimensional axiparallel cubic elements of edge-length hL in the partition of the computa-
tional domain Ω = (0, 1)d. As there are 2Ld such elements κ in T L, the computation of the
stabilization term δL

∑
κ∈T L(Lw, b ·∇v)κ in the definition of bδ(w, v) may seem intractable for

d� 1; however, it turns out that this is not so: the sum over the 2Ld terms in the stabilization
term can be rewritten as a sum over Ld+ 1

2d(d− 1) + 1 terms only; see Remark 13(c).
We consider the finite-dimensional problem: find uh ∈ V̂ L,p

(0) such that

bδ(uh, vh) = lδ(vh) ∀vh ∈ V̂ L,p
(0) . (4.4)

The idea behind the method (4.4) is to introduce mesh-dependent numerical diffusion into
the standard Galerkin finite element method along subcharacteristic directions, with the aim
to suppress maximum-principle-violating oscillations on the scale of the mesh, and let δL → 0
with hL → 0. For an analysis of the method in the case of standard finite element spaces and
(low-dimensional) elliptic transport-dominated diffusion equations we refer to the monograph
[24].

It would have been more accurate to write uhL
and vhL

instead of uh and vh in (4.4).
However, to avoid notational clutter, we shall refrain from doing so. Instead, we adopt the
convention that the dependence of h = hL on the index L will be implied, even when not
explicitly noted.

We begin with the stability-analysis of the method. First, we shall show that, with an
appropriate choice of the streamline-diffusion parameter δL, the bilinear form bδ(·, ·) is coercive
on V L,p

(0) × V L,p
(0) . To this end, we begin by noting that

bδ(vh, vh) = (a∇vh,∇vh)− (vh,∇ · (bvh)) + (cvh, vh) + 〈vh, vh〉Γ+ + δL
∑
κ∈T L

(Lvh, b · ∇vh)κ

= (a∇vh, vh) + c‖vh‖2
L2(Ω) + δL‖b · ∇vh‖2

L2(Ω)

+
1
2

∫
Γ−∪Γ+

|β| |vh|2 ds+
1
2
cδL

∫
Γ−∪Γ+

β|vh|2 ds

+ δL
∑
κ

(−a : ∇∇vh, b · ∇vh)κ

≥ ‖
√
a∇vh‖2

L2(Ω) + c‖vh‖2
L2(Ω) +

1
2
δL‖b · ∇vh‖2

L2(Ω)

+
1
2
(1 + cδL)

∫
Γ+

|β||v|2 ds+
1
2
(1− cδL)

∫
Γ−

|β||v|2 ds

− 1
2
δL
∑
κ

‖a : ∇∇vh‖2
L2(κ) ∀vh ∈ V L,p

(0) , (4.5)

where we have made use of the facts that β = −|β| on Γ− and vh|Γ0 = 0.
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In the case of p = 1, the last term in (4.5) is equal to zero, and therefore coercivity of
bδ(·, ·) in the streamline-diffusion norm ||| · |||SD, defined by

|||v|||2SD := ‖
√
a∇v‖2

L2(Ω) + c‖v‖2
L2(Ω) + δL‖b · ∇v‖2

L2(Ω) +
1
2
(1 + cδL)

∫
Γ+

|β||v|2 ds,

then follows immediately, provided that δL is chosen so that

0 ≤ δL ≤
1
c
.

Here
√
a ∈ Rd×d is the symmetric positive semidefinite square-root of the symmetric positive

semidefinite matrix a ∈ Rd×d.
In the case of p > 1, however, the final term in (4.5) is generally nonzero. Nevertheless,

we shall show that, with a somewhat more restrictive choice of δL, the extra term can be
absorbed into the first term on the right-hand side of (4.5). In order to avoid having to
distinguish between the cases p = 1 and p > 1, we shall assume henceforth that p ≥ 1, with
the understanding that in the case of p = 1 our results can be slightly sharpened in a manner
which we shall merely comment on.

To proceed with the case of a general p ≥ 1, we require the following inverse inequality
for a univariate function. For its proof, we refer to Schwab [25], p.148, Theorem 3.91.

Lemma 8 Let I = (a, b) ⊂ R, h = b− a and p ≥ 1. Then,

‖v′‖L2(I) ≤
√

12
p2

h
‖v‖L2(I) ∀v ∈ Pp(I),

where Pp(I) denotes the set of all polynomials of degree p or less defined on the closed interval
Ī = [a, b].

Now, letting wi := (a∇vh)i, we have that

‖a : ∇∇vh‖2
L2(κ) = ‖∇ · (a∇vh)‖2

L2(κ) =

∥∥∥∥∥
d∑
i=1

∂

∂xi
wi

∥∥∥∥∥
2

L2(κ)

≤

(
d∑
i=1

∥∥∥∥∂wi∂xi

∥∥∥∥
L2(κ)

)2

≤ d
d∑
i=1

∥∥∥∥∂wi∂xi

∥∥∥∥2

L2(κ)

≤ 12dp4

h2
L

d∑
i=1

‖wi‖2
L2(κ)

=
12dp4

h2
L

∫
κ

d∑
i=1

|wi|2 dx =
12dp4

h2
L

∫
κ
|w|2 dx =

12dp4

h2
L

∫
κ
|a∇vh|2 dx

=
12dp4

h2
L

∫
κ
|
√
a
√
a∇vh|2 dx ≤ 12dp4

h2
L

∫
κ
|
√
a |2 |

√
a∇vh|2 dx

= |
√
a |2 12dp4

h2
L

‖
√
a∇vh‖2

L2(κ),

where |w| denotes the `2 norm of w ∈ Rd and |
√
a | again denotes the Frobenius norm of the

symmetric positive semidefinite matrix
√
a ∈ Rd×d. Hence, after summation over all κ ∈ T L,∑

κ∈T L

‖a : ∇∇vh‖2
L2(κ) ≤ |

√
a |2 12dp4

h2
L

‖
√
a∇vh‖2

L2(Ω).
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Using this bound in (4.5) we deduce that

bδ(vh, vh) ≥
(

1− δL|
√
a |2 6dp4

h2
L

)
‖
√
a∇vh‖2

L2(Ω) + c‖vh‖2
L2(Ω) +

1
2
δL‖b · ∇vh‖2

L2(Ω)

+
1
2
(1 + cδL)

∫
Γ+

|β| |vh|2 ds+
1
2
(1− cδL)

∫
Γ−

|β| |vh|2 ds.

Let us suppose that

0 ≤ δL ≤ min
(

h2
L

12dp4|
√
a |2

,
1
c

)
.

Then,

bδ(vh, vh) ≥ 1
2
‖
√
a∇vh‖2

L2(Ω) + c‖vh‖2
L2(Ω) +

1
2
δL‖b · ∇vh‖2

L2(Ω)

+
1
2
(1 + cδL)

∫
Γ+

|β| |vh|2 ds+
1
2
(1− cδL)

∫
Γ−

|β| |vh|2 ds

≥ 1
2
|||vh|||2SD ∀vh ∈ V̂ L,p

(0) . (4.6)

Since (4.4) is a linear problem in a finite-dimensional linear space, the coercivity (4.6) of the
bilinear form bδ(·, ·) implies the existence and uniqueness of a solution uh to (4.4) in V̂ L,p

(0) .
Furthermore,

1
2
|||uh|||2SD ≤

(
1
c

+ δL

) 1
2

‖f‖L2(Ω) |||uh|||SD,

which, in turn, implies that

|||uh|||SD ≤ (8/c)
1
2 ‖f‖L2(Ω), (4.7)

and hence the stability of the method for all δL such that

0 ≤ δL ≤ min
(

h2
L

12dp4|
√
a |2

,
1
c

)
.

We note here that in the case of p = 1 the constant 1
2 in the coercivity result bδ(vh, vh) ≥

1
2 |||vh|||

2
SD stated in (4.6) can be replaced by 1, under the simpler condition 0 ≤ δL ≤ 1/c

which does not involve the matrix norm |
√
a | or the dimension d. Consequently, the constant

(8/c)
1
2 in the stability inequality (4.7) can then be improved to (2/c)

1
2 , under this same

condition on δL.
In Section 6 we shall consider the convergence analysis of the method (4.4); we shall

require there the following multiplicative trace inequality.

Lemma 9 (Multiplicative trace inequality) Let Ω = (0, 1)d where d ≥ 2 and suppose
that Γ+ is the hyperbolic outflow part of Γ. Then,∫

Γ+

|v|2 ds ≤ 4d‖v‖L2(Ω) ‖v‖H1(Ω) ∀v ∈ H1(Ω).
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Proof We shall prove the inequality for v ∈ C1(Ω̄). For v ∈ H1(Ω) the result follows from the density
of C1(Ω̄) in H1(Ω). As we have noted before, Γ+ is a union of (d − 1)-dimensional open faces of Ω.
Let us suppose without loss of generality that the face x1 = 0 of Ω belongs to Γ+. Then,

v2(0, x′) = v2(x1, x
′) +

∫ 0

x1

∂

∂x1
v2(ξ, x′) dξ, x′ = (x2, . . . , xn).

Hence, on integrating this over x = (x1, x
′) ∈ (0, 1)× (0, 1)d−1 = Ω,∫

x′∈(0,1)d−1
v2(0, x′) dx′ =

∫ 1

0

∫
x′∈(0,1)d−1

v2(x1, x
′) dx′ dx1

+ 2
∫ 1

0

∫
x′∈(0,1)d−1

∫ 0

x1

v(ξ, x′)
∂

∂x1
v(ξ, x′) dξ dx′ dx1

≤ ‖v‖2L2(Ω) + 2‖v‖ ‖vx1‖.

In the generic case when β > 0 on the whole of Γ+, the set Γ+ will contain at most d of the 2d
faces of Ω, — at most one complete face of Ω orthogonal to the ith co-ordinate direction, i = 1, . . . , d.
Otherwise, if β = 0 on certain faces that belong to Γ+, the set Γ+ may contain as many as 2d− 1 of
the 2d faces of Ω. Thus, in the worst case,∫

Γ+

|v|2 ds ≤ (2d− 1)‖v‖2L2(Ω) + 4‖v‖L2(Ω)

d∑
i=1

‖vxi
‖L2(Ω). (4.8)

Therefore, ∫
Γ+

|v|2 ds ≤ 2d
√

2 max
(

1,
2
d

1
2

)
‖v‖L2(Ω) ‖v‖H1(Ω) ≤ 4d‖v‖L2(Ω) ‖v‖H1(Ω).

Hence the required result. �

Remark 3 It follows from (4.8) that by altering the definition of the H1(Ω) norm in a similar
manner as in (3.12), the constant in Lemma 9 can be slightly improved:∫

Γ+

|v|2 ds ≤ 2d‖v‖L2(Ω) ‖v‖H1
∗(Ω), where ‖v‖H1

∗(Ω) := ‖v‖L2(Ω) +
d∑
i=1

‖vxi‖L2(Ω). �

5 Approximation from sparse finite element spaces

Our objective in Section 6 will be to establish the convergence of the stabilized sparse finite
element method. To this end, we first prove some combinatorial bounds on lattice sums
which will then be used for quantifying the error between a function and its projection onto
the sparsified finite element space. We shall also prove our key technical tool: a result on
linear operators, which are bounded in suitable semi-norms, on tensor-products of Hilbert
spaces. As before, N will denote the set of non-negative integers.

5.1 Combinatorial bounds on lattice sums

Lemma 10 For d ∈ N>0 and t > 1 we have that

sup
m∈N

∑
`∈Nd

|`|1=m

t|`|∞−m = d

(
1 +

1
t− 1

)d−1

. (5.1)
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Proof The case d = 1 being trivial, we assume without loss of generality that d ≥ 2. Let us denote
by A(m, t, d) the sum in (5.1) and rewrite it as

A(m, t, d) =
∞∑

k=0

∑
`∈Nd

|`|1=m, |`|∞=k

tk−m =
∞∑

k=0

|S(m, k, d)|tk−m, (5.2)

where the set S(m, k, d) is defined by

S(m, k, d) := {` ∈ Nd : |`|1 = m, |`|∞ = k}. (5.3)

We deduce from (5.9) in Lemma 11 below that

d
∑

m/2<k≤m

(
m− k + d− 2

d− 2

)
tk−m ≤ A(m, t, d) ≤ d

m∑
k=0

(
m− k + d− 2

d− 2

)
tk−m. (5.4)

The statement of the theorem will follow once we have shown that the suprema over m ∈ N of both
the lower and the upper bound in (5.4) are equal to the right-hand side of (5.1).

We start by considering the upper bound in (5.4), which can be written, after substituting k by
m− k, as

d
m∑

k=0

(
k + d− 2
d− 2

)(
1
t

)k

.

The supremum over m ∈ N is thus attained for m→∞ and equals

d

(
1

1− 1/t

)d−1

. (5.5)

Note that here we have used the identity

1
(1− x)n+1

=
∞∑

k=0

(
k + n

n

)
xk ∀n ∈ N, ∀x ∈ (−1, 1)

which follows by differentiating n times with respect to x the identity (1− x)−1 = 1 + x+ x2 + · · · .
Now we use a similar argument to compute the supremum over m ∈ N of the lower bound in (5.4),

which can be written, again after substituting k by m− k, as

d
∑

0≤k<m/2

(
k + d− 2
d− 2

)(
1
t

)k

.

The supremum over m ∈ N is attained again for m→∞ and equals (5.5). �

In particular, it is a simple consequence of this theorem that, for any d,m ∈ N>0 and
t > 1, we have that

d · tm ≤
∑
`∈Nd

|`|1=m

t|`|∞ ≤ d

(
1 +

1
t− 1

)d−1

· tm, (5.6)

the lower bound being trivial.
The next lemma summarizes some useful properties of the sets S(m, k, d) defined in (5.3)

above.

Lemma 11 Consider the sets S(m, k, d) defined, for d ∈ N>0 and m, k ∈ N, by

S(m, k, d) := {` ∈ Nd : |`|1 = m, |`|∞ = k};
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then
S(m, k, d) = ∅ ∀k > m, (5.7)

∞∑
k=0

|S(m, k, d)| =
(
m+ d− 1
d− 1

)
, (5.8)

|S(m, k, d)| ≤ d

(
m− k + d− 2

d− 2

)
∀d ≥ 2, (5.9)

with equality for k > m/2.

Proof We note that (5.7) is obvious, whereas (5.8) follows from the fact that for fixed m, d, the sets
(S(m, k, d))0≤k≤m are disjoint and

m⋃
k=0

S(m, k, d) = {` ∈ Nd : |`|1 = m}.

To prove (5.9), we consider for fixed k,m with 0 ≤ k ≤ m, the mapping

{1, 2, . . . , d} ×
k⋃

j=0

S(m− k, j, d− 1)
ϕ−→ S(m, k, d)

given by
ϕ(q, (l1, l2, . . . , ld−1)) = (l1, l2, . . . , lq−1, k, lq, . . . , ld−1).

Obviously, ϕ is surjective, so that we obtain, using (5.8),

|S(m, k, d)| ≤ |{1, 2, . . . , d}| ·
k∑

j=0

|S(m− k, j, d− 1)| (5.10)

≤ d

(
m− k + d− 2

d− 2

)
. (5.11)

For k > m/2 the mapping ϕ is also injective, which ensures equality in (5.10). Also (5.11) holds with
equality for k > m/2 due to (5.7) and (5.8). �

Remark 4 Of particular interest is the case t = 2, for which (5.1) becomes∑
`∈Nd

|`|1=m

2|`|∞−m ≤ d2d−1 ∀m ∈ N, ∀d ∈ N>0. � (5.12)

In the following we validate numerically the identity (5.1). The computation of the left-
hand side will be based on a recursive (in d) formula for |S(m, k, d)| via (5.2), which reads in
this case, ∑

`∈Nd

|`|1=m

2|`|∞−m =
m∑
k=0

|S(m, k, d)|2k−m. (5.13)

Lemma 12 Suppose that m, k, d ∈ N>0; then the following identity holds:

|S(m, k, d)| =
∑

1≤n≤m/k

(
d

n

) k−1∑
j=0

|S(m− nk, j, d− n)|.



22

Proof The formula follows by noting that, for ` ∈ S(m, k, d), the value k = |`|∞ can be attained n

times (that is, by n of the co-ordinates l1, l2, . . . , ld), with 1 ≤ n ≤ m/k. These n co-ordinates can
be chosen freely from {1, 2, . . . , d}, and the multi-index consisting of the remaining d− n co-ordinates
belongs to S(m− nk, j, d− n) for some 0 ≤ j ≤ k − 1. �

We shall also require the following lemma.

Lemma 13 Suppose that d ≥ 2, t > 0 and L ≥ 1; then,∑
`∈Nd : |`|1>L

2−t|`|1 = cd,t,L · 2−tL Ld−1,

where
cd,t,L :=

1
2t Ld−1 (d− 1)!

· (L+ d)!
(L+ 1)!

· 2F1(L+ d+ 1, 1;L+ 2, 2−t),

and 2F1(a, b; c; z) is the Gauss hypergeometric function. Furthermore:

(i) For any t > 0 and d ≥ 2 fixed,

cd,t,L ∼
1

(2t − 1) (d− 1)!
as L→∞.

(ii) For any t > 0 and L ≥ 1,

cd,t,L ∼
1

Ld−1

{
2tL
(

2t

2t − 1

)d
−
(
L+ d
d

)}
as d→∞.

In particular, for t > 0 and L ≥ 2t

2t−1 fixed, limd→∞ cd,t,L = 0.

(iii) For any t > 1 fixed,

cd,t,L ∼
2L−d√
π(2t − 2)

(
4

L1− 1
2d

)d
as L→∞ and d→∞, with L− d bounded,

and hence lim L→∞,d→∞
L−d bounded

cd,t,L = 0 for any t > 1 fixed.

Proof We begin by noting that∑
`∈Nd : |`|1>L

2−t|`|1 =
∞∑

m=L+1

∑
`∈Nd : |`|1=m

2−t|`|1 =
∞∑

m=L+1

∑
`∈Nd : |`|1=m

2−tm

=
∞∑

m=L+1

|{` ∈ Nd : |`|1 = m}| · 2−tm

=
∞∑

m=L+1

∞∑
k=0

|{` ∈ Nd : |`|1 = m, |`|∞ = k}| · 2−tm

=
∞∑

m=L+1

∞∑
k=0

|S(m, k, d)| 2−tm =
∞∑

m=L+1

(
m+ d− 1
d− 1

)
2−tm

=
1

(d− 1)!

∞∑
m=L+1

(m+ d− 1)!
m!

2−tm =
2−(L+1)t

(d− 1)!

∞∑
n=0

(L+ d+ n)!
(L+ 1 + n)!

2−tn

=
2−(L+1)t

(d− 1)!

∞∑
n=0

Γ(L+ d+ 1 + n) · Γ(1 + n)
Γ(L+ 2 + n)

· z
n

n!
,
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where z = 2−t, t > 0. We shall rewrite the right-hand side in terms of the Gauss hypergeometric
function

2F1(a, b; c; z) :=
Γ(c)

Γ(a) · Γ(b)

∞∑
n=0

Γ(a+ n) · Γ(b+ n)
Γ(c+ n)

· z
n

n!
,

the series being convergent in the unit disk in C. On taking a = L + d + 1, b = 1, c = L + 2, and
noting that Γ(1) = 1, we have that

∑
`∈Nd : |`|1>L

2−t|`|1 =
2−(L+1)t

(d− 1)!
· Γ(L+ d+ 1)

Γ(L+ 2)
· 2F1(L+ d+ 1, 1;L+ 2; 2−t).

We define

cd,t,L :=
1

2t (d− 1)!
· (L+ d)!
Ld−1 (L+ 1)!

· 2F1(L+ d+ 1, 1;L+ 2, 2−t). (5.14)

Thereby, ∑
`∈Nd : |`|1>L

2−t|`|1 = cd,t,L 2−tL Ld−1.

We continue by exploring the asymptotic properties of cd,t,L in three crucial instances.
(i) The case: L→∞, while d ≥ 2 and t > 0 are fixed. Using the identity1

2F1(L+ d+ 1, 1;L+ 2; z) = (1− z)−1 · 2F1(1− d, 1, L+ 2; z/(z − 1)),

we deduce that the first approximant of 2F1(L+ d+ 1, 1;L+ 2; z) is 1/(1− z); i.e.,

2F1(L+ d+ 1, 1;L+ 2; 2−t) ∼ 1
1− 2−t

as L→∞.

According to Stirling’s formula,

n! ∼
√

2π nn+ 1
2 e−n as n→∞.

Therefore,
(L+ d)!

Ld−1 (L+ 1)!
∼ 1 as L→∞,

and hence
cd,t,L ∼

1
(2t − 1) (d− 1)!

as L→∞.

(ii) The case: d → ∞, while L ≥ 1 and t > 0 are fixed. Using Kummer transformations2, we
deduce that

2F1(L+ d+ 1, 1;L+ 2; z) =
Γ(L+ 2) Γ(d)
Γ(L+ d+ 1)

z−L−1 (1− z)−d − L+ 1
d z

· 2F1(−L, 1; d+ 1; 1− 1
z
).

Therefore the first approximant of 2F1(L+ d+ 1, 1;L+ 2; z) is

Γ(L+ 2)Γ(d)
Γ(L+ d+ 1)

z−L−1 (1− z)−d − L+ 1
d z

.

1We use the minor symmetry 2F1(a, b; c, z) = 2F1(b, a; c, z) of the hypergeometric function and the Kummer
transformation formula 2F1(a, b; c; z) = (1−z)−a

2F1(a, c−b; c; z/(z−1)) (cf. 15.3.4 in Abramowitz and Stegun
[1]).

2We apply 15.3.3 and 15.3.9 in Abramowitz and Stegun [1], together with the identity 2F1(a, 0; c; z) = 1,
and use limz→d Γ(−z)/Γ(1− z) = −1/d.
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That is,

2F1(L+ d+ 1, 1;L+ 2; 2−t) ∼ Γ(L+ 2) Γ(d)
Γ(L+ d+ 1)

2t(L+1) (1− 2−t)−d − L+ 1
d

2t as d→∞.

This implies that

cd,t,L ∼
1

2t (d− 1)!
(L+ d)!

Ld−1 (L+ 1)!
·
{

(L+ 1)! (d− 1)!
(L+ d)!

2t(L+1) (1− 2−t)−d − L+ 1
d

2t

}
,

as d→∞, and hence

cd,t,L ∼
1

Ld−1

{
2tL

(
2t

2t − 1

)d

−
(
L+ d
d

)}
as d→∞.

By Stirling’s formula,

cd,t,L ∼ L 2tL

{
ed

“
ln 2t

2t−1
−ln L

”
− dL

(L! 2tL)Ld

}
as d→∞.

Let us observe that if L ≥ 2t

2t−1 (> 1), with t > 0, then

ln
2t

2t − 1
− lnL < 0 and lim

d→∞

dL

Ld
= 0.

Hence, limd→∞ cd,t,L = 0 for any L ≥ 2t

2t−1 and t > 0 fixed.
(iii) The case: L → ∞, d → ∞, with L − d bounded, while t > 1 is fixed. In this case one needs

a uniform approximation in terms of parabolic cylinder functions (see, Olde Daalhuis [20]); the first
approximant of 2F1(L+ d+ 1, 1;L+ 2; z) is

2d+L

√
π L

Γ(L+ 2) · Γ(d)
Γ(L+ d+ 1)

1
1− 2z

, |z| < 1
2
.

Hence,

2F1(L+ d+ 1, 1;L+ 2; 2−t) ∼ 2L+d

√
π L

Γ(L+ 2) · Γ(d)
Γ(L+ d+ 1)

2t

2t − 2
,

whereby

cd,t,L ∼
1

Ld−1
· 2L+d

√
π L

1
2t − 2

=
2L−d

√
π(2t − 2)

(
4

L1− 1
2d

)d

.

For L ≥ 7 and d ≥ 2 we have 4 < L1− 1
2d ; hence, lim L→∞,d→∞

L−d bounded

cd,t,L = 0 for any t > 1 fixed. �

The previous lemma shows that the asymptotic behaviour of cd,t,L is favourable, both
when d ≥ 2 is fixed and L � 1 as well as when L ≥ 1 is fixed and d � 1. This observation
then motivates the following lemma which provides a quantitative bound on∑

`∈Nd : |`|1>L

2−t|`|1

reflecting these features.

Lemma 14 The following inequalities hold for all d ≥ 2 and all L ≥ 1.
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(a) Suppose that t ≥ 1/(ln 2); then,

∑
`∈Nd : |`|1>L

2−t|`|1 ≤ 1√
2

[
1

2t(ln 2)
√

eπ

(
2e
L

)d− 1
2

+
(

4
tL ln 2

)d−1

+
4d−1

(d− 1)!

]
· 2−tL Ld−1.

In particular, if L ≥ 6 then the expression in the square bracket converges to 0 at an
exponential rate as d→∞. On the other hand, for d ≥ 2 fixed, in the limit of L→∞
the expression in the square bracket is bounded by 4d−1/(d−1)! which, in turn, is further
bounded above by (8πe)−

1
2 (4e/d)d−

1
2 .

(b) Suppose that t ≥ 1 and 0 ≤ s < t+ 1; then,∑
`∈Nd : |`|1>L

2s|`|∞−(t+1)|`|1 ≤ cd,s,t,L ·
{

2−(t+1)LLd−1 if s = 0,
2−tL if s = 1,

where,

cd,s,t,L =


1√
2

[
1

2(t+1)(ln 2)
√

eπ

(
2e
L

)d− 1
2 +

(
4

(t+1)L ln 2

)d−1
+ 4d−1

(d−1)!

]
if s = 0,

d 2d−1/(2t − 1) if s = 1.

(5.15)

Proof (a) As at the start of the proof of the previous lemma

∑
`∈Nd : |`|1>L

2−t|`|1 =
∞∑

m=L+1

(
m+ d− 1
d− 1

)
2−tm

≤ (d− 1)d− 1
2

(d− 1)!

∞∑
m=L+1

(
1
m

+
1

d− 1

)d− 1
2

md−12−tm

≤ (d− 1)d− 1
2

(d− 1)!
2d− 3

2

∞∑
m=L+1

[(
1
m

)d− 1
2

+
(

1
d− 1

)d− 1
2
]
md−12−tm.

Here, in the transition to line 2 we made use of the bound(
m+ d− 1
d− 1

)
=

(m+ d− 1)!
m!(d− 1)!

≤ (m+ d− 1)m+d−1+ 1
2 e−(d−1)

mm+ 1
2 (d− 1)!

≤ (d− 1)d− 1
2

(d− 1)!

(
1
m

+
1

d− 1

)d− 1
2

md−1,

which follows from the Stirling–Robbins inequality
√

2π nn+ 1
2 e−n+ 1

12n+1 < n! <
√

2π nn+ 1
2 e−n+ 1

12n

on noting that
1

12(m+ d− 1)
− 1

12m+ 1
≤ 0,

and in the transition to line 3 we applied the bound(
1
m

+
1

d− 1

)d− 1
2

≤ 2d− 3
2

[(
1
m

)d− 1
2

+
(

1
d− 1

)d− 1
2
]
,
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which follows from the elementary inequality (a+ b)p ≤ 2p−1(ap + bp), a, b ≥ 0, p ≥ 1.
Thereby, ∑

`∈Nd : |`|1>L

2−t|`|1 ≤ S1 + S2,

where, on applying the lower bound in the Stirling–Robbins inequality to (d− 1)!,

S1 =
1√
2π

ed−1 2d− 3
2

∞∑
m=L+1

1√
m

2−tm,

and

S2 =
1

(d− 1)!
2d− 3

2

∞∑
m=L+1

md−12−tm.

We start by bounding S1. Clearly,

S1 =
1√
2π

ed−1 2d− 3
2

∞∑
m=L+1

1√
m

e−(t ln 2)m =
1√
2π

ed−1 2d− 3
2

∞∑
m=L+1

f(m),

where x 7→ f(x) := 1√
x
e−(t ln 2)x; the function f is positive, continuous and strictly monotonic decreas-

ing on R>0.
Now, on performing the change of variable (t ln 2)x = y2,

∞∑
m=L+1

f(m) ≤
∫ ∞

L

f(x) dx =
∫ ∞

L

1√
x

e−(t ln 2)x dx =
2√
t ln 2

∫ ∞

√
(t ln 2)L

e−y2
dy

=
√

π

t ln 2
2√
π

∫ ∞

√
(t ln 2)L

e−y2
dy =

√
π

t ln 2
· erfc

(√
(t ln 2)L

)
.

We recall that,
2√
π
· e−x2

x+
√
x2 + 2

< erfc(x) ≤ 2√
π
· e−x2

x+
√
x2 + 4

π

, x > 0.

Hence,

S1 ≤ (2e)d−1√
2t(ln 2)

√
2
π

e−(t ln 2)L√
(t ln 2)L+

√
(t ln 2)L+ 4

π

≤ (2e)d−1

2(t ln 2)
√
π
L−

1
2 2−tL.

Next we bound S2. Let us consider the function x 7→ g(x) := xd−1e−(t ln 2)x; clearly, g is positive
on R>0 with global maximum at x0 = d−1

t ln 2 and turning points at x± = d−1±
√

d−1
t ln 2 . In particular, g is

monotonic decreasing for x ≥ x0, and therefore
∞∑

m=L+1

md−12−tm =
∞∑

m=L+1

md−1e−(t ln 2)m =
∞∑

m=L+1

g(m)

≤
∫ ∞

L

g(x) dx =
∫ ∞

L

xd−1e−(t ln 2)x dx, for L ≥ dx0e (≥ x0);

and similarly,
∞∑

m=L+1

md−12−tm =
∞∑

m=L+1

md−1e−(t ln 2)m =
∞∑

m=L+1

g(m)

≤ K(t, d)
∫ ∞

L

g(x) dx = K(t, d)
∫ ∞

L

xd−1e−(t ln 2)x dx, for L ≤ dx0e − 1,
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with

K(t, d) :=
2

min(dx0e, x+)−max(dx0e − 1, x−)
, x0 =

d− 1
t ln 2

,

where x 7→ dxe denotes the ceiling function, — the smallest integer ≥ x. We note that since
K(t, d) ≥ 2, and since max(dx0e − 1, x−) < x0 ≤ min(dx0e, x+), the real number K(t, d) is finite;
in fact, plotting d 7→ K(t, d) for t ≥ 1/ ln 2 reveals that 0 < K(t, d)/(t ln 2) ≤ 2 for all such t, with
K(1/ ln 2, d)/(t ln 2) = 2 for all d ≥ 2.

The inequality for L ≤ dx0e − 1 above follows by first observing that

g(dx0e) ≤ g(dx0e) + g(dx0e − 1) ≤ g(min(dx0e, x+)) + g(max(dx0e − 1, x−))

=
2

min(dx0e, x+)−max(dx0e − 1, x−)

×min(dx0e, x+)−max(dx0e − 1, x−)
2

(g(min(dx0e, x+)) + g(max(dx0e − 1, x−)))

≤ K(t, d)
∫ min(dx0e,x+)

max(dx0e−1,x−)

g(x) dx ≤ K(t, d)
∫ dx0e

dx0e−1

g(x) dx.

Therefore, if L = dx0e − 1, then

∞∑
m=L+1

g(m) = g(dx0e) +
∞∑

m=dx0e+1

g(m) ≤ K(t, d)
∫ L+1

L

g(x) dx+
∫ ∞

L+1

g(x) dx ≤ K(t, d)
∫ ∞

L

g(x) dx.

If L = dx0e − 2, then

∞∑
m=L+1

g(m) = g(dx0e − 1) + g(dx0e) +
∞∑

m=dx0e+1

g(m) ≤ K(t, d)
∫ L+2

L+1

g(x) dx+
∫ ∞

L+2

g(x) dx

≤ K(t, d)
∫ ∞

L+1

g(x) dx ≤ K(t, d)
∫ ∞

L

g(x) dx.

Finally, if L ≤ dx0e − 3, then

∞∑
m=L+1

g(m) =
dx0e−2∑
m=L+1

g(m) + g(dx0e − 1) + g(dx0e) +
∞∑

m=dx0e+1

g(m)

≤
∫ dx0e−1

L

g(x) dx+K(t, d)
∫ dx0e

dx0e−1

g(x) dx+
∫ ∞

dx0e
g(x) dx

≤ K(t, d)
∫ ∞

L

g(x) dx.

Thus, in any case,

∞∑
m=L+1

md−12−tm ≤ K(t, d)
∫ ∞

L

xd−1e−(t ln 2)x dx, for all L ≥ 1.

Let us perform the change of variable x = y + L. Then,∫ ∞

L

xd−1e−(t ln 2)x dx = e−tL(ln 2)

∫ ∞

0

(y + L)d−1e−(t ln 2)y dy.
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Now, (y + L)d−1 ≤ 2d−2(yd−1 + Ld−1), and therefore,∫ ∞

L

xd−1e−(t ln 2)x dx ≤ 2−tL2d−2

(∫ ∞

0

yd−1e−(t ln 2)y dy + Ld−1

∫ ∞

0

e−(t ln 2)y dy
)

= 2−tL2d−2

(
1

(t ln 2)d

∫ ∞

0

zd−1e−z dz +
Ld−1

t ln 2

∫ ∞

0

e−z dz
)

= 2−tL2d−2

(
(d− 1)!
(t ln 2)d

+
Ld−1

t ln 2

)
.

Hence,
∞∑

m=L+1

md−12−tm ≤ 2−tL2d−2K(t, d)
t ln 2

(
(d− 1)!

(t ln 2)d−1
+ Ld−1

)
.

Substituting this bound into the definition of S2 and noting that K(t,d)
t ln 2 ≤ 2 yields

S2 ≤ 1
(d− 1)!

2d− 3
2 2−tL 2d−1

(
(d− 1)!

(t ln 2)d−1
+ Ld−1

)
= 2−tLLd−1 1√

2

((
4

tL ln 2

)d−1

+
4d−1

(d− 1)!

)
.

Combining the bounds on S1 and S2 we deduce that∑
`∈Nd : |`|1>L

2−t|`|1 ≤ C0 2−tL Ld−1,

where

C0 =
1√
2

[
1

2t(ln 2)
√

eπ

(
2e
L

)d− 1
2

+
(

4
tL ln 2

)d−1

+
4d−1

(d− 1)!

]
.

In particular, if L ≥ 6 then the expression in the square bracket converges to 0 at an exponential rate
as d → ∞. On the other hand, for d ≥ 2 fixed, in the limit of L → ∞ the expression in the square
bracket is bounded by 4d−1/(d − 1)! which, in turn, is further bounded above by (8πe)−

1
2 (4e/d)d− 1

2

on applying to (d− 1)! the lower bound in the Stirling–Robbins inequality.
(b) For s = 0, the result follows from (a) with t replaced by t + 1. Since we assume that t ≥ 1,

trivially, t + 1 ≥ 2 > 1/(ln 2), we can apply part (a). Let us therefore suppose that 0 < s < t + 1.
Noting that for ` = (`1, . . . , `d) ∈ Nd, such that |`|1 = m,

2s|`|∞−(t+1)|`|1 = 2(s−(t+1))L+(s−(t+1))(m−L)+s(|`|∞−m),

we have that ∑
`∈Nd : |`|1>L

2s|`|∞−(t+1)|`|1 =
∞∑

m=L+1

∑
`∈Nd : |`|1=m

2s|`|∞−(t+1)|`|1

= 2(s−(t+1))L

( ∞∑
m=L+1

2(s−(t+1))(m−L)σm

)
,

where
σm =

∑
`∈Nd : |`|1=m

2s(|`|∞−m).

For s > 0, σm ≤ d
(
1 + 1

2s−1

)d−1

, independent of m, by Lemma 10. The final form of the inequality

under (b) for the case of s > 0 follows on observing that
∑∞

m=L+1 2(s−(t+1))(m−L)σm is bounded by

d
(
1 + 1

2s−1

)d−1

/(2t+1−s − 1), independent of L. �
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5.2 Tensorization of seminorms

Next we develop some auxiliary results concerning tensorization of seminorms. These results
will then be used in the derivation of the approximation property of the d-dimensional sparse
tensor-product built using the univariate finite element space scale {V`,p(0)}`≥0.

Let (H, 〈·, ·〉H) and (K, 〈·, ·〉K) be two Hilbert spaces and T ∈ B(H,K) a bounded linear
operator. Clearly,

|u|T := ‖Tu‖K, u ∈ H, (5.16)

defines a seminorm on H.
Considering now four Hilbert spaces (Hi, 〈·, ·〉Hi), (Ki, 〈·, ·〉Ki), i = 1, 2, as well as two

bounded linear operators Ti ∈ B(Hi,Ki), i = 1, 2, it is natural to define via

|u|T1⊗T2 := ‖(T1 ⊗ T2)u‖K1⊗K2 , u ∈ H1 ⊗H2,

a seminorm on the tensor-product H1 ⊗H2 of the spaces H1 and H2.
Next we define the bounded linear operators with respect to seminorms of the type (5.16)

and investigate their tensor-products.

Definition 2 Let (H, 〈·, ·〉H), (K, 〈·, ·〉K), (H̃, 〈·, ·〉H̃), (K̃, 〈·, ·〉K̃) be four Hilbert spaces and
consider the bounded linear operators T ∈ B(H,K), T̃ ∈ B(H̃, K̃) and Q ∈ B(H, H̃). We say
that Q is (T, T̃ )-bounded if there exists c ≥ 0 such that

|Qu|T̃ ≤ c|u|T ∀u ∈ H. (5.17)

We further denote by |Q|T,T̃ the infimum over all constants c ≥ 0 satisfying (5.17).

Example 2 We give some examples based on the bounds in Section 3.2.

(a) We use the terminology from Definition 2, with H := Ht+1(0, 1) ∩ H1
(0)(0, 1), and let

H̃ := Hs(0, 1), K = K̃ := L2(0, 1), T := ∂t+1, T̃ := ∂s, with t ≥ 1 and s ∈ {0, 1}. The
approximation property (3.6) shows that the linear operator IdH − P `,p(0) is (∂t+1, ∂s)-

bounded. Thus, by (3.10), the projector Q`,p(0) is also (∂t+1, ∂s)-bounded for all ` ≥ 1
and p ≥ 1 (with ∂0 := IdL2(0,1)).

(b) Trivially, on taking H = H̃ := H1
(0)(0, 1) and K = K̃ := L2(0, 1), the projector Q`,p(0) is

(∂1, ∂1)-bounded for all ` ≥ 0 and p ≥ 1.

(c) Finally, on taking H = K := H1
(0)(0, 1) (equipped with the norm ‖ · ‖H1

∗(0,1)
) and H̃ =

K̃ := L2(0, 1), we see that Q0,p
(0) is (IdH1

(0)
(0,1), IdL2(0,1))-bounded for all p ≥ 1.

In particular, on taking H := H1
0(0, 1), H̃ := L2(0, 1) and K = K̃ := L2(0, 1) we see that

Q0,p
0 is (∂1, IdL2(0,1))-bounded for all p ≥ 1. �

Proposition 15 Let (Hi, 〈·, ·〉Hi), (Ki, 〈·, ·〉Ki), (H̃i, 〈·, ·〉H̃i
), (K̃i, 〈·, ·〉K̃i

) for i = 1, 2 be sep-
arable Hilbert spaces. Let Ti ∈ B(Hi,Ki), T̃i ∈ B(H̃i, K̃i) and Qi ∈ B(Hi, H̃i) be bounded
linear operators, and assume that Qi is (Ti, T̃i)-bounded for i = 1, 2. Then Q1 ⊗ Q2 is
(T1 ⊗ T2, T̃1 ⊗ T̃2)-bounded, and

|Q1 ⊗Q2|T1⊗T2,T̃1⊗T̃2
≤ |Q1|T1,T̃1

|Q2|T2,T̃2
.
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In other words, if ‖T̃iQivi‖K̃i
≤ ci‖Tivi‖Ki for all vi ∈ Hi, i = 1, 2, then

‖(T̃1 ⊗ T̃2)(Q1 ⊗Q2)u‖K̃1⊗K̃2
≤ c1c2‖(T1 ⊗ T2)u‖K1⊗K2 ∀u ∈ H1 ⊗H2.

Proof For any u ∈ H1 ⊗H2 we have

|(Q1 ⊗Q2)u|T̃1⊗T̃2
= ‖(T̃1 ⊗ T̃2)(Q1 ⊗Q2)u‖K̃1⊗K̃2

= ‖(T̃1Q1 ⊗ IdK̃2
)(IdH1 ⊗ T̃2Q2)u‖K̃1⊗K̃2

. (5.18)

Denoting v := (IdH1 ⊗ T̃2Q2)u ∈ H1 ⊗ K̃2 and considering an orthonormal basis (ei)i∈I in K̃2, where
I ⊂ N is a countable index set, we expand v =

∑
i∈I vi ⊗ ei, so that

‖(T̃1Q1 ⊗ IdK̃2
)v‖2

K̃1⊗K̃2
=

∑
i∈I

‖T̃1Q1vi‖2K̃1

(5.17)

≤ c21
∑
i∈I

‖T1vi‖2K1

= c21‖(T1 ⊗ IdK̃2
)v‖2

K1⊗K̃2
, (5.19)

where c1 = |Q1|T1,T̃1
. We now note that

(T1 ⊗ IdK̃2
)v = (T1 ⊗ IdK̃2

)(IdH1 ⊗ T̃2Q2)u = (IdK1 ⊗ T̃2Q2)(T1 ⊗ IdH2)u,

so that defining w := (T1 ⊗ IdH2)u ∈ K1 ⊗ H2 and arguing as in (5.19) to estimate the norm of
(IdK1 ⊗ T̃2Q2)w, we obtain

‖(IdK1 ⊗ T̃2Q2)w‖K1⊗K̃2
≤ c2‖(IdK1 ⊗ T2)w‖K1⊗K2 = c2‖(T1 ⊗ T2)u‖K1⊗K2 , (5.20)

where c2 = |Q2|T2,T̃2
. From (5.18), (5.19), (5.20) we obtain

|(Q1 ⊗Q2)u|T̃1⊗T̃2
≤ c1c2‖(T1 ⊗ T2)u‖K1⊗K2 = c1c2|u|T1⊗T2 ,

and the desired result follows by recalling the definitions of the constants c1, c2. �

5.3 Approximation from sparse tensor-product spaces

We are now ready to embark on the study of the approximation properties of the sparse
tensor-product spaces. In order to track the dependence of the constants in the error bound
on the polynomial degree p, the Sobolev regularity t and the dimension d, we consider

Ω := (0, 1)d.

This domain has, for any d, Lebesgue measure 1.
To characterize the regularity of the function u to be approximated, we introduce, for

I ⊂ {1, 2, . . . , d} with |I| = k ≥ 1, I = {i1, i2, . . . , ik}, the notation Hα,β,I(Ω) for the tensor-
product space consisting of d factors, each of them being either Hα

(0)(0, 1) (in the j-th co-

ordinate, if j ∈ I), or Hβ
(0)(0, 1) (in the j-th co-ordinate, if j /∈ I).

Given I = {i1, i2, . . . , ik} ⊂ {1, 2, . . . , d}, let Ic = {j1, j2, . . . , jd−k} denote the (possibly
empty) complement of I with respect to {1, 2, . . . , d}; for non-negative integers α and β we
then denote by |u|Hα,β,I(Ω) the seminorm

∑
(α)1≤α1≤α

· · ·
∑

(α)k≤αk≤α

∑
(β)1≤β1≤β

· · ·
∑

(β)d−k≤βd−k≤β

∥∥∥∥∥∥
(
∂α1

∂xα1
i1

· · · ∂
αk

∂xαk
ik

) ∂β1

∂xβ1
j1

· · · ∂
βd−k

∂x
βd−k

jd−k

u
∥∥∥∥∥∥

L2(Ω)

,
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where, for i = 1, . . . , k,

(α)i =
{
α if Oxi is an elliptic co-ordinate direction,
0 if Oxi is a hyperbolic co-ordinate direction,

with analogous definition of (β)j , j = 1, . . . , d− k.

Theorem 16 Let Ω = (0, 1)d, s ∈ {0, 1}, k ≥ 1, and let a polynomial degree p ≥ 1 be given.
Let, further, C∞(0)(Ω̄) denote the set of all functions in C∞(Ω̄) that vanish on Γ0. Then, for
1 ≤ t ≤ p, there exist constants cp,t, κ(p, t, s, L) > 0, independent of d, and κ monotonic
decreasing in L ≥ 1, such that, for any u ∈ C∞(0)(Ω̄) and for any L ≥ 1 and any d ≥ 1, we
have

|u− P̂L,p(0) u|Hs(Ω) ≤ d1+ s
2 cp,t(κ(p, t, s, L))d−1+sLν(s)2−(t+1−s)L · max

1≤k≤d

 max
I⊆{1,2,...,d}

|I|=k

|u|Ht+1,s,I(Ω)


(5.21)

where, for s = 0, the seminorm | · |Hs(Ω) is understood to coincide with the L2(Ω)-norm and
ν(0) = d− 1, while for s = 1 the seminorm | · |Hs(Ω) is the H1(Ω)-seminorm and ν(1) = 0.

Proof For u ∈ C∞(0)(Ω̄) ⊂ H1
(0)(Ω), the following identity holds in H1(Ω):

u =
∑
`∈Nd

(
Q`1,p

(0) ⊗ · · · ⊗Q`d,p
(0)

)
u.

We estimate, for s ∈ {0, 1}, the approximation error as a sum of details, i.e.∣∣∣u− P̂L,p
(0) u

∣∣∣
Hs(Ω)

≤
∑
|`|1>L

∣∣∣(Q`1,p
(0) ⊗ · · · ⊗Q`d,p

(0)

)
u
∣∣∣
Hs(Ω)

(5.22)

provided that the right-hand side is finite. We discuss the two cases, s = 0 and s = 1, separately.
For s = 1 and any ` = (`1, `2, . . . , `d) ∈ Nd with supp(`) = I (that is, `j 6= 0 iff j ∈ I) and |I| = k,

we have to estimate the solution details∣∣∣(Q`1,p
(0) ⊗ · · · ⊗Q`d,p

(0)

)
u
∣∣∣2
H1(Ω)

=
d∑

j=1

∣∣∣(Q`1,p
(0) ⊗ · · · ⊗Q`d,p

(0)

)
u
∣∣∣2
H1,0,{j}(Ω)

=: (?)

for ` ∈ Nd.
Using Proposition 15 and the notation ∂ for the differentiation operator in dimension 1, we obtain

the following chain of inequalities:

(?) ≤
∑
j∈I

∏
j′∈I
j′ 6=j

|Q`j′ ,p

(0) |2(∂t+1,IdL2(0,1))
· |Q`j ,p

(0) |
2
(∂t+1,∂1)|Q

0,p
(0)|

2(d−k)
(IdH1

(0)(0,1),IdL2(0,1))
|u|2Ht+1,1,I(Ω)

+
∑
j /∈I

∏
j′∈I

|Q`j′ ,p

(0) |2(∂t+1,IdL2(0,1))
· |Q0,p

(0)|
2
(∂1,∂1)|Q

0,p
(0)|

2(d−k−1)
(IdH1

(0)(0,1),IdL2(0,1))
|u|2Ht+1,1,I(Ω)

≤
∑
j∈I

c̃
2(k−1)
p,0,t c̃2p,1,t4

−(t+1)|`|1+`j ĉ
2(d−k)
p,0,(0) |u|

2
Ht+1,1,I(Ω)

+
∑
j /∈I

c̃2k
p,0,t4

−(t+1)|`|1 ĉ2p,1,(0)ĉ
2(d−k−1)
p,0,(0) |u|2Ht+1,1,I(Ω).

≤ c̃
2(k−1)
p,0,t 4−(t+1)|`|1 ĉ

2(d−k−1)
p,0,(0) |u|2Ht+1,1,I(Ω)

c̃2p,1,tĉ
2
p,0,(0)

∑
j∈I

4`j + (d− k)c̃2p,0,tĉ
2
p,1,(0)


≤ dc̄p,tc̃

2(k−1)
p,0,t 4|`|∞−(t+1)|`|1 ĉ

2(d−k−1)
p,0,(0) |u|2Ht+1,1,I(Ω), (5.23)
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where
c̄p,t := max

(
c̃2p,1,tĉ

2
p,0,(0), c̃

2
p,0,tĉ

2
p,1,(0)

)
(5.24)

with c̃p,s,t defined in (3.7), (3.11) and ĉp,s,(0) defined in (3.15).
We note in passing that in the (important) special case when Γ = Γ0, and thereby H1

(0)(0, 1) =

H1
0(0, 1) in each of the d co-ordinate directions, the factor |Q0,p

(0)|(IdH1
(0)(0,1),IdL2(0,1))

in the first two lines

of (5.23) above can be replaced by |Q0,p
(0)|(∂1,IdL2(0,1))

.
We thus have,

∑
`∈Nd, |`|1>L

supp(`)=I

∣∣∣(Q`1,p
(0) ⊗ · · · ⊗Q`d,p

(0)

)
u
∣∣∣
H1(Ω)

≤
√
dc̄p,tc̃

k−1
p,0,tĉ

d−k−1
p,0,(0)

∑
`∈Nd, |`|1>L

supp(`)=I

2|`|∞−(t+1)|`|1 |u|Ht+1,1,I(Ω)

≤
√
dc̄p,tc̃

k−1
p,0,tĉ

d−k−1
p,0,(0)

∑
`∈Nk, |`|1>L

2|`|∞−(t+1)|`|1 |u|Ht+1,1,I(Ω) .

In passing from the second to the third line in the estimate above we have dropped all d − k trivial
entries from the indexing of `.

We now use, with arbitrary l > L, the estimate
∑

`∈Nk, |`|1=l 2
|`|∞ ≤ k2k−1+l and obtain

∑
`∈Nd,|`|1>L

supp(`)=I

∣∣∣(Q`1,p
(0) ⊗ · · · ⊗Q`d,p

(0)

)
u
∣∣∣
H1(Ω)

≤ k
√
dc̄p,tc̃

k−1
p,0,tĉ

d−k−1
p,0,(0) 2k−1

(∑
l>L

2−tl

)
|u|Ht+1,1,I(Ω)

= k
√
dc̄p,t(1− 2−t)−1c̃k−1

p,0,tĉ
d−k−1
p,0,(0) 2k−12−t(L+1)|u|Ht+1,1,I(Ω)

= d
1
2 cp,tk(2c̃p,0,t)k ĉd−k

p,0,(0)2
−tL|u|Ht+1,1,I(Ω), (5.25)

where

cp,t :=
1
2
√
c̄p,t((2t − 1)c̃p,0,tĉp,0,(0))−1. (5.26)

Now, summing (5.25) over I ⊆ {1, 2, . . . , d} we deduce that

d∑
k=1

∑
I⊆{1,2,...,d}

|I|=k

∑
`∈Nd,|`|1>L

supp(`)=I

∣∣∣(Q`1,p
(0) ⊗ · · · ⊗Q`d,p

(0)

)
u
∣∣∣
H1(Ω)

≤ d
1
2 cp,t2

−tL
d∑

k=1

(
d

k

)
(2c̃p,0,t)k ĉd−k

p,0,(0) · k max
I⊆{1,2,...,d}

|I|=k

|u|Ht+1,1,I(Ω)

≤ d
1
2 cp,t(κ(p, t, 1, L))d2−tL · max

1≤k≤d

(
k max

I⊆{1,2,...,d}
|I|=k

|u|Ht+1,1,I(Ω)

)
, (5.27)

where
κ(p, t, 1, L) := 2c̃p,0,t + ĉp,0,(0), p ≥ 1, 1 ≤ t ≤ p, L ≥ 1. (5.28)

This completes the proof in the case of s = 1.
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For s = 0, we write the bound (5.22) as a sum of details as follows:

‖u− P̂L,p
(0) u‖L2(Ω) ≤

∑
|`|1>L

∥∥∥(Q`1,p
(0) ⊗ · · · ⊗Q`d,p

(0)

)
u
∥∥∥

L2(Ω)

=
d∑

k=1

∑
I⊂{1,2,...,d}

|I|=k

∑
`∈Nd

supp(`)=I

∥∥∥(Q`1,p
(0) ⊗ · · · ⊗Q`d,p

(0)

)
u
∥∥∥

L2(Ω)

We estimate the size of the detail with multi-index ` ∈ Nd in the above sum, i.e.

(?) =
∥∥∥(Q`1,p

(0) ⊗ · · · ⊗Q`d,p
(0)

)
u
∥∥∥2

L2(Ω)
.

Using I = supp(`) and that |I| = k, we get

(?) ≤

∏
j∈I

|Q`j ,p

(0) |
2
(∂t+1,IdL2(0,1))

 |Q0,p
(0)|

2(d−k)
(IdH1

(0)(0,1),IdL2(0,1))
|u|2Ht+1,0,I(Ω)

= c̃2k
p,0,tĉ

2(d−k)
p,0,(0) 2−2(t+1)|`|1 |u|2Ht+1,0,I(Ω).

Summing this bound over all I ⊂ {1, 2, . . . , d} with |I| = k implies

‖u− P̂L,p
0 u‖L2(Ω) ≤

d∑
k=1

(
d

k

)
c̃kp,0,tĉ

d−k
p,0,(0)


∑
`∈Nk

|`|1>L

2−(t+1)|`|1

 max
1≤k≤d

(
max

I⊂{1,2,...,d}
|I|=k

|u|Ht+1,0,I(Ω)

)
.

Now, according to part (b) of Lemma 14 with s = 0, for k ≥ 2, any L ≥ 1 and any t ≥ 1, we have∑
`∈Nk

|`|1>L

2−(t+1)|`|1 ≤ ak · 2−(t+1)LLk−1, (5.29)

where a = at,L ∈ R>0, is independent of k, and such that

1√
2

[
1

2(t+ 1)(ln 2)
√

eπ

(
2e
L

)k− 1
2

+
(

4
(t+ 1)L ln 2

)k−1

+
4k−1

(k − 1)!

]
≤ kak−1

for all k = 1, 2, . . . . It follows from the structure of the expression in the square bracket that such a
number a always exists: we define a = at,L as the supremum, over all k ≥ 1, of the (k − 1)st root of
the left-hand side of the last inequality divided by k. Clearly, at,L is a monotonic decreasing function
of both t ≥ 1 and L ≥ 1.

The values of a = at,L computed for the (most pessimistic) choice of t = 1, as well as for t =
10, 100, 1000, and the range L = 1, . . . , 10, are shown in Table 1. For t > 1, we see that at,L is bounded
above by a1,L for all L ≥ 1; in particular, a1,1 = 5.30, rounded (up) to two decimal digits, represents
an upper bound for at,L for any t ≥ 1 and L ≥ 1; i.e. at,L ≤ 5.30, for all t ≥ 1 and all L ≥ 1. It
is interesting to note that a1,L = 1.19, rounded (up) to two decimal digits, for all L ≥ 5; therefore
at,L ≤ a1,L = 1.19 for all L ≥ 5 and all t ≥ 1. In particular,

lim
t→∞,L→∞

at,L = sup
k≥1

4
(
√

2(k − 1)!)1/(k−1)
= 1.1718.
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L 1 2 3 4 5 6 7 8 9 10
a1,L 5.30 2.66 1.77 1.33 1.19 1.19 1.19 1.19 1.19 1.19
a10,L 5.28 2.65 1.77 1.33 1.19 1.19 1.19 1.19 1.19 1.19
a100,L 5.25 2.63 1.76 1.32 1.18 1.18 1.18 1.18 1.18 1.18
a1000,L 5.19 2.62 1.75 1.32 1.18 1.18 1.18 1.18 1.18 1.18

Table 1: Values of a = at,L, rounded (up) to two decimal digits, for t = 1, 10, 100, 1000 and
L = 1, . . . , 10. The numbers in the table show insensitivity of at,L with respect to the choice
of t, with a1,L being an accurate approximation to at,L for all values of t of practical interest.

Now we are ready to continue our argument in the case of s = 0. We see that

‖u− P̂L,p
(0) u‖L2(Ω) ≤

c̃p,0,t

ĉp,0,(0)

{
d∑

k=1

(
d

k

)
c̃k−1
p,0,tĉ

d−k+1
p,0,(0) k a

k−1
t,L Lk−1

}
2−(t+1)L

× max
1≤k≤d

(
max

I⊂{1,2,...,d}
|I|=k

|u|Ht+1,0,I(Ω)

)

=
c̃p,0,t

ĉp,0,(0)

{
d−1∑
k=0

(
d

k + 1

)
c̃kp,0,tĉ

d−k
p,0,(0) (k + 1) ak

t,LL
k

}
2−(t+1)L max

1≤k≤d

(
max

I⊂{1,2,...,d}
|I|=k

|u|Ht+1,0,I(Ω)

)

= d
c̃p,0,t

ĉp,0,(0)

{
d−1∑
k=0

(
d− 1
k

)
c̃kp,0,tĉ

d−k
p,0,(0)a

k
t,LL

k

}
2−(t+1)L max

1≤k≤d

(
max

I⊂{1,2,...,d}
|I|=k

|u|Ht+1,0,I(Ω)

)
.

Therefore,

‖u− P̂L,p
(0) u‖L2(Ω) ≤ c̃d(at,Lc̃p,0,tL+ ĉp,0,(0))d−12−(t+1)L max

1≤k≤d

(
max

I⊂{1,2,...,d}
|I|=k

|u|Ht+1,0,I(Ω)

)
(5.30)

≤ c̃d(at,Lc̃p,0,t + ĉp,0,(0)/L)d−1Ld−12−(t+1)L max
1≤k≤d

(
max

I⊂{1,2,...,d}
|I|=k

|u|Ht+1,0,I(Ω)

)
, (5.31)

where c̃ = c̃(p, t). Defining

κ(p, t, 0, L) := at,Lc̃p,0,t + ĉp,0,(0)/L, p ≥ 1, 1 ≤ t ≤ p, L ≥ 1, (5.32)

we obtain

‖u− P̂L,p
(0) u‖L2(Ω) ≤ c̃d(κ(p, t, 0, L))d−1Ld−12−(t+1)L max

1≤k≤d

(
max

I⊂{1,2,...,d}
|I|=k

|u|Ht+1,0,I(Ω)

)
. (5.33)

That completes the proof. �

In the error bound (5.21), the exponential dependence of the constant on the dimension
d enters through κ(p, s, t, L) defined in (5.28), (5.32). Next we discuss sufficient conditions
under which this constant is less than 1.

Remark 5 Note that the factor κ(p, t, s, L)d−1+s appearing in the bound (5.21), with
κ(p, t, s, L) defined in (5.28) and (5.32) for s = 1 and s = 0, respectively, decreases expo-
nentially with d→∞, if

ĉp,0,(0)

L
< 1 when s = 0 and ĉp,0,(0) < 1 when s = 1,
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and

c̃p,0,t ≤
1− (ĉp,0,(0)/L)

at,L
when s = 0 and c̃p,0,t ≤

1− ĉp,0,(0)

2
when s = 1.

For the projector considered in Example 1 the latter pair of inequalities is equivalent to(
1 +

1
2t+1−s

)
1
p

√
(p− t)!
(p+ t)!

≤
{

(1− (ĉp,0,0/L))/at,L when s = 0,
(1− ĉp,0,0)/2 when s = 1,

(5.34)

while, at least in the case of a homogeneous Dirichlet boundary condition on the whole of Γ
(viz. Γ = Γ0 by virtue of a = (aij)di,j=1 being positive definite), when H1

(0)(Ω) = H1
0(Ω), the

first pair of inequalities holds trivially for all L ≥ 1 since ĉp,0,(0) = ĉp,0,0 ≤ 1/π (< 1).
By scanning the range of validity of (5.34), we then deduce that, with the projector defined

in Example 1, in the case of a homogeneous Dirichlet boundary condition on the whole Γ (viz.
Γ = Γ0), we have

κ(p, p, s, L) < 1 ∀p ≥ 2, s ∈ {0, 1}, L ≥ 1,

thus ensuring exponential decay of the term κ(p, p, s, L)d−1+s in (5.21) with d → ∞, for all
p ≥ 2, s ∈ {0, 1} and L ≥ 1. �

Remark 6 For p = 1 and if Γ = Γ0 (i.e. the hyperbolic part Γ− ∪ Γ+ of the boundary is
empty), condition (5.34) (which is sharp as p→∞) is also applicable but is overly conserva-
tive. Using in (5.32), (5.28) the bounds (3.23), we obtain, for s = 1, that

κ(1, 1, 1, L) ≤ 2
3

+
1
π
≤ 0.985 ∀L ≥ 1, (5.35)

and, for s = 0, based on Table 1 that

κ(1, 1, 0, L) = a1,Lc̃1,0,1 + ĉ1,0,0/L ≤ 1.77/3 + 1/(πL) ≤ 0.7, (5.36)

for all L ≥ 3.

Remark 7 A result analogous to that contained in (5.21), in the special case of s = 1 and
p = 1, and with κ < 1 was stated in Theorem 2 in [10]. There, however, an “energy-norm-
based” sparse-grid-space was use that is strictly included in V̂ L

0 . As a matter of fact, unlike
(5.21), the result contained in [10] is restricted to the case of s = 1 and p = 1 and does not
cover either s = 0 or p ≥ 2. �

Remark 8 If Γ0 ( Γ (i.e. the hyperbolic part Γ− ∪ Γ+ of the boundary Γ is nonempty),
and therefore H1

0(Ω) ( H1
(0)(Ω), then we still have ĉp,0,(0) ≤ 1 by (3.12) and consequently

ĉp,0,(0)/L < 1 for all p ≥ 2 and all L ≥ 2, whereby (now, corresponding to the case s = 0
only)

κ(p, p, 0, L) < 1 ∀p ≥ 2, L ≥ 2.

Concerning the case of s = 1, if (
1 +

1
2p

)
1
p

√
1

(2p)!
≤ 1
d
, (5.37)



36

which is a very mild condition on the minimum size of p in terms of d, then we have that

(κ(p, p, 1, L))d ≤
(

1 +
2
d

)d
≤ e2,

which, in turn, ensures that (κ(p, p, 1, L))d remains uniformly bounded for d� 1. For exam-
ple, for d ≤ 7 the condition (5.37) requires p = 2, for 8 ≤ d ≤ 71 taking p = 3 will suffice,
while for for 71 ≤ d ≤ 755 taking p = 4 will be sufficient.

The discussion in the previous paragraph presupposed that the number of hyperbolic co-
ordinate directions is equal to, or is very close to, d. If, however, the number of such directions
is small relative to d, and can be regarded as being bounded as d→∞, then we expect that the
factor (κ(p, p, 1, L))d will exhibit exponential decay as d → ∞ without the extra hypothesis
(5.37), just as in the case when Γ = Γ0. The proof of this would require a selective treatment
of the constant ĉp,0,(0) in the proof of Theorem 16 when s = 1, to monitor whether a particular
factor of ĉp,0,(0) in lines 3 and 4 of (5.23) arises from a univariate bound on Q0,p

(0) in an elliptic
or in a hyperbolic co-ordinate direction. An altogether different approach to removing the
condition (5.37) in the case of Γ0 ( Γ and s = 1 would be to show that ĉp,0,(0) < 1, uniformly
in p. These lines of investigation are, however, beyond the scope of the present paper. �

Remark 9 In the error bound (5.21) for s = 0, i.e. for the error in L2(Ω), we obtain for
t = p the optimal convergence rate hp+1

L up to the polylogarithmic term | log2 hL|d−1. It is by
now well accepted by sparse-grid practitioners that in very high dimensions, where necessarily
L < d, such polylogarithmic terms dominate the convergence behaviour. However, at least in
the case of Γ = Γ0, the situation for p ≥ 2 is much more favourable in this respect than for
p = 1. This somewhat surprising phenomenon is discussed below.

As is evident from (5.30), the factor Ld−1, which is the source of the polylogarithmic term
| log2 hL|d−1, can be absorbed into the factor (κ(p, t, 0, L))d−1 if the definition (5.32) of (the
dimension-independent constant) κ(p, t, 0, L) in (5.33) is changed to

at,Lc̃p,0,tL+ ĉp,0,0, (5.38)

which is, again, independent of d.
Based on the explicit expression for c̃p,s,t, in (5.32), (5.28), we can still ensure that

at,Lc̃p,0,tL+ ĉp,0,0 < 1,

provided that the following mild extra condition relating hL and p, which does not depend
on the dimension d, holds: analogously to (5.34), we require for L = | log2 hL| that

L

(
1 +

1
2t+1

)
1
p

√
(p− t)!
(p+ t)!

≤ 1− ĉp,0,0
at,L

. (5.39)

This holds with t = p and with ĉp,0,0 = 1/π for example if:

p = 2 and L ≤ 5, p = 3 and L ≤ 29, p ≥ 4 and L ≤ 397. � (5.40)

Remark 10 In stark contrast with the case of p ≥ 2, for t = p = 1 there is no value of L ≥ 1
for which (5.39) holds. Thus, in the case of p = 1 there is no L ≥ 1 for which the factor
Ld−1 may be absorbed into the exponentially decreasing term (κ(p, p, 0, L))d−1 in a way that
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would ensure that the resulting term still decreases exponentially as d → ∞. For p = 1 we
expect the impact of the polylogarithmic factor | log hL|d−1 on the approximation error to be
much more prominent for large d than for p ≥ 2: as we can see from (5.40), for p ≥ 2 the
polylogarithmic factor | log hL|d−1 can be completely suppressed for d large in the, practically
relevant, preasymptotic range of L. �

Remark 11 When Γ0 = Γ, the function u to be approximated enters into the right-hand
side of the estimate (5.21) in a nonstandard, yet favourable manner: through the L2 norm of
exactly one mixed derivative, — rather than through a sum of L2 norms of mixed derivatives
as would have been the case had we used a more conventional seminorm on the space of
functions with square-integrable highest mixed derivatives. �

6 Convergence of the sparse stabilized method

Our goal in this section is to estimate the size of the error between the analytical solution
u ∈ H and its approximation uh ∈ V̂ L,p

(0) . We shall assume throughout that f ∈ L2(Ω)

and the corresponding solution u ∈ Hk+1(Ω) ∩ H2(Ω) ∩
⊗d

i=1 H1
(0)(0, 1) ⊂ H, k ≥ 1 and

1 ≤ t ≤ min(p, k). Clearly,

bδ(u− uh, vh) = B(u, vh)− L(vh) + δL
∑
κ∈T L

(Lu− f, b · ∇vh)κ

for all vh ∈ V̂ L,p
(0) ⊂ V. Hence we deduce from (2.6) the following Galerkin orthogonality

property:
bδ(u− uh, vh) = 0 ∀vh ∈ V̂ L,p

(0) . (6.1)

Let us decompose the error u− uh as follows:

u− uh = (u− P̂L,p(0) u) + (P̂L,p(0) u− uh) = η + ξ,

where η := u− P̂L,p(0) u and ξ := P̂L,p(0) u− uh. By the triangle inequality,

|||u− uh|||SD ≤ |||η|||SD + |||ξ|||SD. (6.2)

We begin by bounding |||ξ|||SD. By (4.6) and (6.1), we have that

|||ξ|||2SD ≤ bδ(ξ, ξ) = bδ(u− uh, ξ)− bδ(η, ξ) = −bδ(η, ξ).

Therefore,
|||ξ|||2SD ≤ |bδ(η, ξ)|. (6.3)

Now,

bδ(η, ξ) = (a∇η,∇ξ)− (η, b · ∇ξ) + (cη, ξ) +
∫

Γ+

|β|ηξ ds

+δL
∑
κ∈T L

(−a : ∇∇η + b · ∇η + cη, b · ∇ξ)κ

= I + II + III + IV + (V + VI + VII) .
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For the terms I to VII we have:

I ≤
(
|
√
a | ‖∇η‖L2(Ω)

)
|||ξ|||SD,

II ≤
(
δ
− 1

2
L ‖η‖L2(Ω)

)
|||ξ|||SD,

III ≤
(
c

1
2 ‖η‖L2(Ω)

)
|||ξ|||SD,

V ≤

δ 1
2
L |a|

∑
κ∈T L

|η|2H2(κ)

 1
2

 |||ξ|||SD,

VI ≤
(
δ

1
2
L |b| ‖∇η‖L2(Ω)

)
|||ξ|||SD,

VII ≤
(
cδ

1
2
L‖η‖L2(Ω)

)
|||ξ|||SD.

Here |a| is the Frobenius norm of the matrix a and |b| is the Euclidean norm of the vector b.
It remains to estimate IV:

IV ≤
(

2|b|
1 + cδL

) 1
2
(∫

Γ+

|η|2 ds
) 1

2

|||ξ|||SD

≤ (2|b|)
1
2 (4d)

1
2 ‖η‖

1
2

L2(Ω)
‖η‖

1
2

H1(Ω)
|||ξ|||SD,

where in the transition to the last line we used the multiplicative trace inequality from Lemma
9. Hence, by (6.3),

|||ξ|||SD ≤ |
√
a | ‖∇η‖L2(Ω)+δ

− 1
2

L ‖η‖L2(Ω)+
√
c ‖η‖L2(Ω)+

√
8d|b| ‖η‖

1
2

L2(Ω)
‖η‖

1
2

H1(Ω)

+δ
1
2
L |
√
a |2
∑
κ∈T L

|η|2H2(κ)

 1
2

+ δ
1
2
L |b| ‖∇η‖L2(Ω) + cδ

1
2
L‖η‖L2(Ω). (6.4)

The bounds on ‖η‖L2(Ω) and ‖∇η‖L2(Ω) will follow from Theorem 16. However, the fifth
term in the sum on the right-hand side of (6.4) is nonstandard and needs to be bounded
separately (except in the case of p = 1 when this term is equal to δ1/2L |a||u|H2(Ω) and requires
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no further estimation). Let us now suppose therefore that p ≥ 2, and note that

∑
κ∈T L

|η|2H2(κ) =
d∑

i,j=1

∑
κ∈T L

∫
κ

∣∣∣∣ ∂2η

∂xi∂xj

∣∣∣∣2 dx

=
d∑
i=1

∑
κ∈T L

∫
κ

∣∣∣∣∂2η

∂x2
i

∣∣∣∣2 dx+
d∑

i,j=1

i6=j

∑
κ∈T L

∫
κ

∣∣∣∣ ∂2η

∂xi∂xj

∣∣∣∣2 dx

=
d∑
i=1

∑
κ∈T L

|η|2
H2,0,{i}(κ) +

d∑
i,j=1

i6=j

|η|2
H1,0,{i,j}(Ω)

=: A2 + B2,

Here, we made use of the fact that

∂2η

∂xi∂xj
∈ L2(Ω) ∀i, j ∈ {1, 2, . . . , d}, i 6= j.

Let us first estimate

A2 =
d∑
i=1

∑
κ∈T L

|η|2
H2,0,{i}(κ) =

d∑
i=1

∑
κ∈T L

∫
κ

∣∣∣∣∂2η

∂x2
i

∣∣∣∣2 dx =
d∑
i=1

L∑
j=1

|η|2
H2,0,{i}(Ki

j)
,

where Ki
j denotes the d-dimensional slab

Ki
j = (0, 1)× · · · × (0, 1)× (ξj−1, ξj)× (0, 1)× · · · × (0, 1) (6.5)

where the interval (ξj−1, ξj) enters at position i. The reason for agglomerating the elements
κ ∈ T L into the slabs Ki

j , j = 1, . . . , L, in this way is that the function ∂2η/∂x2
i involves no

derivatives is the co-ordinate directions Oxk for k 6= i. In other words, it only needs to be
considered piecewise in the ith co-ordinate direction; in the other d− 1 co-ordinate directions
it is defined on the whole of (0, 1)d−1 as an H1 function.

Let us define the seminorms ||| · |||2,i, i = 1, . . . , d, and ||| · |||2,∗, by

|||v|||22,i =
L∑
j=1

|v|2
H2,0,{i}(Ki

j)
and |||v|||22,∗ =

d∑
i=1

|||v|||22,i.

With this notation, we have that

A2 = |||η|||22,∗ =
d∑
i=1

|||η|||22,i.

In order to bound A, we first observe that, as a consequence of Lemma 8,

|v|H2(I) ≤
√

12 (p2/h)|v|H1(I) ∀v ∈ Pp(I). (6.6)

Hence, on recalling that

η = u− P̂L,p(0) u =
∑

`∈Nd : |`|1>L

(
Q`1,p(0) ⊗ · · · ⊗Q`d,p(0)

)
u, (6.7)
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for a fixed i ∈ {1, 2, . . . , d} we deduce from (6.6) with h = hL = 2−L that∣∣∣(Q`1,p(0) ⊗ · · · ⊗Q`d,p(0)

)
u
∣∣∣
H2,0,{i}(κ)

≤
√

12 p2 2L
∣∣∣(Q`1,p(0) ⊗ · · · ⊗Q`d,p(0)

)
u
∣∣∣
H1,0,{i}(κ)

.

Now, we square the last bound, and sum over all elements κ ∈ T L that are contained in the
d-dimensional slab Ki

j defined in (6.5) to deduce that∣∣∣(Q`1,p(0) ⊗ · · · ⊗Q`d,p(0)

)
u
∣∣∣2
H2,0,{i}(Ki

j)
≤ 12 p4 22L

∣∣∣(Q`1,p(0) ⊗ · · · ⊗Q`d,p(0)

)
u
∣∣∣2
H1,0,{i}(Ki

j)
.

Hence,

L∑
j=1

∣∣∣(Q`1,p(0) ⊗ · · · ⊗Q`d,p(0)

)
u
∣∣∣2
H2,0,{i}(Ki

j)
≤ 12 p4 22L

L∑
j=1

∣∣∣(Q`1,p(0) ⊗ · · · ⊗Q`d,p(0)

)
u
∣∣∣2
H1,0,{i}(Ki

j)

= 12 p4 22L
∣∣∣(Q`1,p(0) ⊗ · · · ⊗Q`d,p(0)

)
u
∣∣∣2
H1,0,{i}(Ω)

.

This implies that∣∣∣∣∣∣∣∣∣(Q`1,p(0) ⊗ · · · ⊗Q`d,p(0)

)
u
∣∣∣∣∣∣∣∣∣2

2,i
≤ 12 p4 22L

∣∣∣(Q`1,p(0) ⊗ · · · ⊗Q`d,p(0)

)
u
∣∣∣2
H1,0,{i}(Ω)

,

and, on summing over i = 1, . . . , d, and taking square-root,

∣∣∣∣∣∣∣∣∣(Q`1,p(0) ⊗ · · · ⊗Q`d,p(0)

)
u
∣∣∣∣∣∣∣∣∣

2,∗
≤

√
12 p2 2L

(
d∑
i=1

∣∣∣(Q`1,p(0) ⊗ · · · ⊗Q`d,p(0)

)
u
∣∣∣2
H1,0,{i}(Ω)

) 1
2

=
√

12 p2 2L
∣∣∣(Q`1,p(0) ⊗ · · · ⊗Q`d,p(0)

)
u
∣∣∣
H1(Ω)

.

Hence, by (6.7) and the proof of (5.21) in the case of s = 1,

A = |||η|||2,∗ ≤
∑
|`|1>L

∣∣∣∣∣∣∣∣∣(Q`1,p(0) ⊗ · · · ⊗Q`d,p(0)

)
u
∣∣∣∣∣∣∣∣∣

2,∗

≤
√

12 p2 2L
∑
|`|1>L

∣∣∣(Q`1,p(0) ⊗ · · · ⊗Q`d,p(0)

)
u
∣∣∣
H1(Ω)

≤
√

12 p2 2Ld
3
2 cp,t (κ(p, t, 1, L))d 2−tL · max

1≤k≤d

 max
I⊂{1,2,...,d}
|I|=k

|u|Ht+1,1,I(Ω)

 .

Thus we have shown that

A ≤
√

12 p2 d
3
2 cp,t (κ(p, t, 1, L))d 2−(t−1)L · max

1≤k≤d

 max
I⊂{1,2,...,d}
|I|=k

|u|Ht+1,1,I(Ω)

 (6.8)

for 1 ≤ t ≤ min(p, k).
Now, let us bound

B2 =
d∑

i,j=1

i6=j

|η|2
H1,0,{i,j}(Ω)

.
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We define the seminorm ||| · |||2,∗∗ by

|||v|||22,∗∗ =
d∑

i,j=1

i6=j

|v|2
H1,0,{i,j}(Ω)

;

then,

B2 = |||η|||22,∗∗.

Now, since

η = u− P̂L,p0 u =
∑
|`|1>L

(
Q`1,p(0) ⊗ · · · ⊗Q`d,p(0)

)
u,

it follows that

|||η|||2,∗∗ ≤
∑
|`|1>L

∣∣∣∣∣∣∣∣∣(Q`1,p(0) ⊗ · · · ⊗Q`d,p(0)

)
u
∣∣∣∣∣∣∣∣∣

2,∗∗
.

Given ` = (`1, `2, . . . , `d) ∈ Nd with supp(`) = I (that is, `j 6= 0 iff j ∈ I) and |I| = k, we
have to estimate

∣∣∣∣∣∣∣∣∣(Q`1,p(0) ⊗ · · · ⊗Q`d,p(0)

)
u
∣∣∣∣∣∣∣∣∣2

2,∗∗
=

d∑
i,j=1

i6=j

∣∣∣(Q`1,p(0) ⊗ · · · ⊗Q`d,p(0)

)
u
∣∣∣2
H1,0,{i,j}(Ω)

=: (??).

Using Proposition 15 and the notation ∂ for the univariate differentiation operator, we obtain
the following inequality:

(??) ≤
∑
i,j∈I

i6=j

∏
j′∈I

j′ /∈{i,j}

|Q`j′ ,p(0) |
2
(∂t+1,IdL2(0,1))

·|Q`i,p(0) |
2
(∂t+1,∂1)|Q

`j ,p

(0) |
2
(∂t+1,∂1)|Q

0,p
(0)|

2(d−k)
(Id

H1
(0)

(0,1)
,IdL2(0,1))

|u|2Ht+1,1,I(Ω)

+
∑
i∈I

∑
j /∈I

∏
j′∈I
j′ 6=i

|Q`j′ ,p(0) |
2
(∂t+1,IdL2(0,1))

·|Q`i,p(0) |
2
(∂t+1,∂1)|Q

0,p
(0)|

2
(∂1,∂1)|Q

0,p
(0)|

2(d−k−1)
(Id

H1
(0)

(0,1)
,IdL2(0,1))

|u|2Ht+1,1,I(Ω)

+
∑
i/∈I

∑
j∈I

∏
j′∈I
j′ 6=j

|Q`j′ ,p(0) |
2
(∂t+1,IdL2(0,1))

·|Q0,p
(0)|

2
(∂1,∂1)|Q

`j ,p

(0) |
2
(∂t+1,∂1)|Q

0,p
(0)|

2(d−k−1)
(Id

H1
(0)

(0,1)
,IdL2(0,1))

|u|2Ht+1,1,I(Ω)

+
∑
i,j /∈I
i6=j

∏
j′∈I

|Q`j′ ,p(0) |
2
(∂t+1,IdL2(0,1))

·|Q0,p
(0)|

2
(∂1,∂1)|Q

0,p
(0)|

2
(∂1,∂1)|Q

0,p
(0)|

2(d−k−2)
(Id

H1
(0)

(0,1)
,IdL2(0,1))

|u|2Ht+1,1,I(Ω). (6.9)
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Hence,

(??) ≤
∑
i,j∈I
i6=j

c̃
2(k−2)
p,0,t 4`i+`j−(t+1)|`|1 c̃2p,1,tc̃

2
p,1,tĉ

2(d−k)
p,0,(0) |u|

2
Ht+1,1,I(Ω)

+
∑
i∈I

∑
j /∈I

c̃
2(k−1)
p,0,t 4`i−(t+1)|`|1 c̃2p,1,tĉ

2
p,1,(0)ĉ

2(d−k−1)
p,0,(0) |u|2Ht+1,1,I(Ω)

+
∑
i/∈I

∑
j∈I

c̃
2(k−1)
p,0,t 4`j−(t+1)|`|1 ĉ2p,1,(0)c̃

2
p,1,tĉ

2(d−k−1)
p,0,(0) |u|2Ht+1,1,I(Ω)

+
∑
i,j /∈I
i6=j

c̃2kp,0,t4
−(t+1)|`|1 ĉ2p,1,(0)ĉ

2
p,1,(0)ĉ

2(d−k−2)
p,0,(0) |u|2Ht+1,1,I(Ω). (6.10)

Thus we deduce that

(??) ≤ c̃
2(k−2)
p,0,t ĉ

2(d−k−2)
p,0,(0) · 4−(t+1)|`|1 |u|2Ht+1,1,I(Ω)

×

c̃4p,1,tĉ4p,0,(0)

∑
i,j∈I
i6=j

4`i+`j + 2c̃2p,1,tĉ
2
p,0,(0)c̃

2
p,0,tĉ

2
p,1,(0)

∑
i∈I,j /∈I

4`i + c̃4p,0,tĉ
4
p,1,(0)

∑
i,j /∈I
i6=j

1


≤ c̃

2(k−2)
p,0,t ĉ

2(d−k−2)
p,0,(0) · 4−(t+1)|`|1 |u|2Ht+1,1,I(Ω)

×
(
c̃4p,1,tĉ

4
p,0,(0)k

24|`|1 + 2c̃2p,1,tĉ
2
p,0,(0)c̃

2
p,0,tĉ

2
p,1,(0)k(d− k)4|`|1

+c̃4p,0,tĉ
4
p,1,(0)[(d− k)2 − (d− k)]

)
≤ d2¯̄cp,tc̃

2(k−2)
p,0,t ĉ

2(d−k−2)
p,0,(0) · 4−t|`|1 |u|2Ht+1,1,I(Ω),

where
¯̄cp,t := max

(
c̃4p,1,tĉ

4
p,0,(0), c̃

2
p,1,tĉ

2
p,0,(0)c̃

2
p,0,tĉ

2
p,1,(0), c̃

4
p,0,tĉ

4
p,1,(0)

)
.

Therefore, we have that∑
`∈Nd : |`|1>L

supp(`)=I

∣∣∣∣∣∣∣∣∣(Q`1,p(0) ⊗ · · · ⊗Q`d,p(0)

)
u
∣∣∣∣∣∣∣∣∣

2,∗∗

≤ d
√

¯̄cp,t c̃k−2
p,0,t ĉ

d−k−2
p,0,(0) ·

∑
`∈Nd : |`|1>L

supp(`)=I

2−t|`|1 |u|Ht+1,1,I(Ω)

≤ d
√

¯̄cp,t c̃k−2
p,0,t ĉ

d−k−2
p,0,(0) ·

 ∑
`∈Nk : |`|1>L

2−t|`|1

 |u|Ht+1,1,I(Ω).

Once again, we note in passing that in the (important) special case when Γ = Γ0, and thereby
H1

(0)(0, 1) = H1
0(0, 1) in each of the d co-ordinate directions, the factor |Q0,p

(0)|(IdH1
(0)

(0,1)
,IdL2(0,1))

in the lines above can be replaced by |Q0,p
(0)|(∂1,IdL2(0,1))

.
By applying Lemma 14(a) with t ≥ 1/(ln 2), we have that

∑
`∈Nk : |`|1>L

2−t|`|1 ≤ 1√
2

[
1

2t(ln 2)
√

eπ

(
2e
L

)k− 1
2

+
(

4
tL ln 2

)k−1

+
4k−1

(k − 1)!

]
· 2−tL Lk−1.
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Let b = bt,L > 0 be a positive real number, independent of k, such that

1√
2

[
1

2t(ln 2)
√

eπ

(
2e
L

)k− 1
2

+
(

4
tL ln 2

)k−1

+
4k−1

(k − 1)!

]
· 2−tL Lk−1 ≤ kbk−1, k = 1, 2, . . . .

Hence,

d∑
k=1

∑
I⊂{1,2,...,d}

|I|=k

∑
`∈Nd : |`|1>L

supp(`)=I

∣∣∣∣∣∣∣∣∣(Q`1,p(0) ⊗ · · · ⊗Q`d,p(0)

)
u
∣∣∣∣∣∣∣∣∣

2,∗∗

≤ d
√

¯̄cp,t
d∑

k=1

(
d
k

)
c̃k−2
p,0,t ĉ

d−k−2
p,0,(0) k b

k
t,L 2−tLLk−1 max

1≤k≤d

 max
I⊂{1,2,...,d}

|I|=k

|u|Ht+1,1,I(Ω)


=

d2
√

¯̄cp,t
c̃p,0,t ĉ2p,0,(0)

(
bt,Lc̃p,0,t +

ĉp,0,(0)

L

)d−1

Ld−12−tL max
1≤k≤d

 max
I⊂{1,2,...,d}

|I|=k

|u|Ht+1,1,I(Ω)

 .

Upon redefining κ(p, t, 0, L) as

κ(p, t, 0, L) := max(at,L, bt,L) c̃p,0,t +
ĉp,0,(0)

L
,

we deduce that

B ≤ d2c
p,t

(κ(p, t, 0, L))d−1Ld−12−tL max
1≤k≤d

 max
I⊂{1,2,...,d}

|I|=k

|u|Ht+1,1,I(Ω)

 , (6.11)

where

c
p,t

:=

√
¯̄cp,t

c̃p,0,t ĉ2p,0,(0)
.

Combining the bound (6.8) on A with the bound (6.11) on B yields∑
κ∈T L

|η|2H2(κ)

 1
2

≤
(√

12 p2 d
3
2 cp,t(κ(p, t, 1, L))d + d2c

p,t
(κ(p, t, 0, L))d−1| log2 hL|d−1hL

)

×ht−1
L · max

1≤k≤d

 max
I⊂{1,2,...,d}
|I|=k

|u|Ht+1,1,I(Ω)

 , (6.12)

for 1/(ln 2) ≤ t ≤ min(p, k), p ≥ 2, k ≥ 2.
We also know from Theorem 16 that, for 1 ≤ t ≤ min(p, k), p ≥ 1, k ≥ 1,

‖η‖L2(Ω) ≤ dcp,t(κ(p, t, 0, L))d−1ht+1
L | log2 hL|d−1 · max

1≤k≤d

 max
I⊆{1,2,...,d}

|I|=k

|u|Ht+1,0,I(Ω)

 , (6.13)

|η|H1(Ω) ≤ d
3
2 cp,t(κ(p, t, 1, L))dhtL · max

1≤k≤d

 max
I⊆{1,2,...,d}

|I|=k

|u|Ht+1,1,I(Ω)

 . (6.14)
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Let Ht+1(Ω) denote the closure of C∞(0)(Ω̄) in the seminorm | · |Ht+1(Ω) defined by

|u|Ht+1(Ω) := max
s∈{0,1}

max
1≤k≤d

 max
I⊆{1,2,...,d}

|I|=k

|u|Ht+1,s,I(Ω)

 ,

introduce, for ease of writing, the notation

κ0 := κ(p, t, 0, L) and κ1 := κ(p, t, 1, L),

and absorb all constants that depend on p and t only into a generic constant Cp,t. In particular,
Cp,t is independent of d and L and the coefficients a, b, c and the right-hand side f of the
partial differential equation.

Remark 12 Since (6.12), (6.13), (6.14) and all of our earlier bounds are completely explicit
in p and t (as well as in d and L), one could track the actual value of Cp,t in our argument
below. For clarity of presentation we shall however refrain from doing so, particularly since
the emphasis here is on h-version rather than p- or hp-version finite element methods. �

With these notational conventions, (6.13), (6.14) and (6.12) become:

‖η‖L2(Ω) ≤ Cp,t d κ
d−1
0 ht+1

L | log2 hL|d−1|u|Ht+1(Ω), (6.15)

|η|H1(Ω) ≤ Cp,t d
3
2κd1 h

t
L|u|Ht+1(Ω), (6.16)∑

κ∈T L

|η|2H2(κ)

 1
2

≤ Cp,t

(
d

3
2κd1 + d2κd−1

0 | log2 hL|d−1hL

)
ht−1
L |u|Ht+1(Ω). (6.17)

Using (6.15), (6.16) and (6.17) in (6.4) and selecting

δL := Kδ min

(
h2
L

12dp4|
√
a|2(1 + hL| log2 hL|d−1)2

,
hL| log2 hL|

d−1
2

|b|
,
1
c

)
, (6.18)

with Kδ ∈ R>0 a constant, independent of hL and d, we then deduce that

|||ξ|||2SD ≤ Cp,td
4(κ∗(p, t, L))2(d−1)|u|2Ht+1(Ω)

×
(
|
√
a|2h2t

L + |b|h2t+1
L | log2 hL|d−1 + ch

2(t+1)
L | log2 hL|2(d−1) + h

2(t+1)
L | log2 hL|2(d−1)λL

)
,

where

λL := max
(
|
√
a|2(1 + hL| log2 hL|d−1)2

h2
L

,
|b|

hL| log2 hL|d−1
, c

)
, (6.19)

κ∗(p, t, L) = max(κ(p, t, 0, L), κ(p, t, 1, L)), (6.20)

and 1/(ln 2) ≤ t ≤ min(p, k), p ≥ 2, k ≥ 2. An identical bound holds for |||η|||2SD.
In the case of p = 1 the bounds on A and B are redundant, and this simplifies the argument

considerably, though ultimately we arrive at identical bounds on |||ξ|||SD and |||η|||SD, only
with t = p = 1, and with the factor (1 + hL| log2 hL|d−1)2 replaced by 1 in the definitions of
δL and λL.

Inserting the bounds on |||ξ|||SD and |||η|||SD in the right-hand side of the triangle inequal-
ity (6.2), we deduce the following theorem.
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Theorem 17 Suppose that f ∈ L2(Ω) in Ω = (0, 1)d, that c > 0 and assume the regularity
u ∈ Hk+1(Ω) ∩H2(Ω) ∩

⊗d
i=1 H1

(0)(0, 1), k ≥ 1.
Then, for p ≥ 2 and 1/(ln 2) ≤ t ≤ min(p, k), the following bound holds for the error

u− uh between the analytical solution u of (2.6) and its sparse finite element approximation
uh ∈ V̂ L,p

(0) defined by (4.4), with L ≥ 1 and h = hL = 2−L:

|||u− uh|||SD ≤ Cp,td
2κ∗(p, t, L)d−1|u|Ht+1(Ω)h

t
L

×
(
|
√
a|+

√
|b|h

1
2
L| log2 hL|

d−1
2 +

√
chL| log2 hL|d−1 + hL| log2 hL|d−1λ

1
2
L

)
, (6.21)

where λL and κ∗(p, t, L) are defined by (6.19) and (6.20), respectively, and the stabilization
parameter δL is given by (6.18). For p = 1 an identical bound holds with k = t = p = 1, and
with the factor (1 + hL| log2 hL|d−1)2 replaced by 1 in the definitions of δL and λL.

Remark 13 We close with some remarks on Theorem 17 and on possible extensions of the
results presented here. We begin by noting that, save for the polylogarithmic factors, the
definition of δL and the structure of the error bound in the ||| · |||SD norm are exactly the same
as if had we used the full tensor-product finite element space V L,p

(0) instead of the sparse tensor-

product space V̂ L,p
(0) (cf. Houston & Süli [14]). On the other hand, as we have commented

earlier, through the use of the sparse space V̂ L,p
(0) , (discounting the effect of p ≥ 1 on the com-

putational cost, since we are interested in h-version methods here with p fixed at a relatively
low value) computational complexity has been reduced from O(2Ld) to O(2L(log2 2L)d−1).
Hence, in comparison with a streamline-diffusion method based on the full tensor-product
space, a substantial computational saving has been achieved at the cost of only a marginal
loss in accuracy.

a) In the diffusion-dominated case, that is when |a| ≈ 1 and |b| ≈ 0, we see from Theorem
17 that the error, in the streamline-diffusion norm ||| · |||SD, is O(hpL| log2 hL|d−1) as hL
tends to zero, provided that the streamline-diffusion parameter is chosen as

δL = Kδ
h2
L

12dp4|
√
a|2(1 + hL| log2 hL|d−1)2

when p ≥ 2,

and with an analogous definition of δL, but with the factor (1+hL| log2 hL|d−1)2 replaced
by 1, when p = 1. This asymptotic convergence rate, as hL → 0, is slower, by the
polylogarithmic factor | log2 hL|d−1, than the optimal O(hpL) bound on the ‖ · ‖H1(Ω)

norm of the error in a standard sparse Galerkin finite element approximation of Poisson’s
equation on Ω = (0, 1)d with continuous piecewise polynomials of degree p.

b) In the transport-dominated case, that is when |a| ≈ 0 and |b| ≈ 1, we select

δL = Kδ
hL| log2 hL|

d−1
2

|b|
,

so the error of the method, measured in the streamline-diffusion norm, is

O(h
p+ 1

2
L | log2 hL|

d−1
2 ) when the diffusivity matrix a degenerates to zero, — thus we

see a loss of the size O(| log2 hL|
d−1
2 ) in comparison with the optimal O(h

p+ 1
2

L ) accuracy
of the a classical streamline diffusion finite element approximation of a first-order scalar
linear hyperbolic problem with continuous piecewise polynomials of degree p.
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c) For the sake of simplicity, we have restricted ourselves to uniform tensor-product parti-
tions of [0, 1]d. Numerical experiments indicate that, in the presence of boundary-layers,
the accuracy of the proposed sparse streamline-diffusion method can be improved by
using high-dimensional versions of Shishkin-type boundary-layer-fitted tensor-product
nonuniform partitions.

d) When the matrix a = (aij)di,j=1 is positive definite, we have that Γ0 = Γ and therefore
u ∈ H1

(0)(Ω) = H1
0(Ω). Thus, in this case, κ∗(p, p, L) < 1 for all p ≥ 1, L ≥ 1.

The constant (κ∗(p, p, L))d−1 appearing in (6.21) then converges to zero as d → ∞ for
all p ≥ 1 and all L ≥ 1. As long as the basis of the univariate space from which the
sparse finite element space is constructed is a hierarchical basis on a uniform mesh, its
specific choice (viz. whether it is a wavelet basis as in [23], or a standard hierarchical
finite element basis) does not affect our final result. Thus we believe that the presence of
the exponentially decreasing factor (κ∗(p, p, L))d−1 is generic, and will be observed for
error bounds in various norms. Note that the smallness of κ∗(p, p, L) does not require
particularly high regularity of u as expressed by the parameter t = p; in particular
κ∗(p, p, L) < 1 for all L ≥ 1, once p ≥ 2 and, by (6.20), (5.35) and (5.36), also for p = 1
and L ≥ 3.

e) It is important to note that the stabilization term

δL
∑
κ∈T L

(Lw, b · ∇v)κ

in the definition of the bilinear form bδ(w, v) can be rewritten as

δL

d∑
i=1

L∑
j=1

(
aii
∂2w

∂x2
i

, b · ∇v
)
Ki

j

+ δL

d∑
i=1,j=1

i6=j

(
aij

∂2w

∂xi∂xj
, b · ∇v

)
+ δL(b · ∇w + cw, b · ∇v).

Here Ki
j , i = 1, . . . , d, j = 1, . . . , L, are the d-dimensional slabs defined in (6.5). Thus,

instead of summing over |T L| = 2Ld entries we can realize the computation of the
stabilization term by summing over Ld+ 1

2d(d− 1) + 1 terms only.

f) For technical details concerning the efficient implementation of sparse-grid finite element
methods, we refer to Zumbusch [32] and Bungartz & Griebel [7].
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