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1 Introduction

This paper addresses the pricing of derivative contractsaskets of/ > 1 assets whose prices
are modelled by Lévy processes with particular attentiomodelling the dependences in prices’
jump structure.

Arbitrage-free values(z, T') of contingent claims on baskets @éfassets whose log-returns are
modelled by a Lévy process or, more generally, a strong MapgcocessX with state space
R? and X, = z, can be expressed as expected payoffs at matiiribyer all price histories
(X¢t)o<t<r conditional toX, = = (see [10]),

v(z, T) = E*(g(X1)), (1.1)

where the expectation is taken with respect to a chosennmgalé measure equivalent to the
historical measure (for measure selection criteria we tefgl1, 12] and the references therein).

Deterministic methods to comput¢z, 7°) are based on the semigro(ifi );>o of X; defined by
v(z,t) = (Tig)(x) = E*(9(X4)), >0 (1.2)

or, more precisely, on the solution of the backward Kolmogarquation
v+ Av =0, V=1 = g. (1.3)

Here theinfinitesimal generatotd with domainD(.A) of the processX, (resp. of the semi-
group(73):>o) is defined by the strong limit

o1
Au = tlir(g - (T — u) (1.4)
on all functionsu € D(A) C Cy(R) for which the limit (1.4) exists w.r. to the sup-norm.
(A, D(A)) is called aFeller generatorof X .

In the classical setting of Black-Scholes,is a geometric Brownian Motion and is a diffusion
operator so that closed form solution of (1.3) for plain Yantontracts is possible in certain
cases. For more general jump-diffusion or Lévy price psseeX, A is in general a pseudo-
differential operator with symbaby, i.e. (e.g. [21, 22])

(Au)(z) = (¥x(D)u)(z) = FL, (0x(&)u(€)) = (2m) " /R Tk (Qu(g)de (1.5)
whereu(§) = (F,—¢u)(§) denotes the Fourier transform afz). For exotic contracts, the
Cauchy problem (1.3) is replaced by an initial boundary @gduwblem (for barrier contracts)
or by a variational inequality (arising from stoppidg in American style contracts) or even
a Hamilton-Jacobi-Bellmann Quasi-Variational inequa{fior problems in portfolio optimiza-
tion). Then numerical solutions are necessary which reggfficient discretizations of the gen-
eratorA.



Numerical pricing of derivative contracts can be achieviedee by stochastic, Monte-Carlo
(MC) based methods or by so-called “PDE”, or “mesh-basedthods. The latter deliver, if
applicable, accurate solutions of derivative pricing peafs not only in the Black-Scholes set-
ting, but also for much more general stochastic processekeltimay the dynamics of the risky
asset. A general programme for the deterministic solutioth® Kolmogoroff equation (1.3)
involves time-stepping and space discretization of theitesimal generatod of X;. We re-
fer to [25] for wavelet discretization of (1.3) in the uniiate Lévy case with the so-callet
time-stepping scheme, and to [27, 28] for numerical resuit$ error analysis for an exponen-
tially convergent time-stepping procedure which expldiestime-analyticity o{ 73 )~ in (1.2).
For optimal stopping problems arising in conjunction witmgérican put style contracts in this
setting, we refer to [26].

All these results are for contracts on single risky undedgi For contracts on large baskets
of risky assets in a Black-Scholes setting in [31] waveletdoadeterministic solution methods
for (1.3) have been analyzed and implemented, and in [2@hsistic volatility models with
OU models have been treated with these methods. In pamidhk wavelet based solution
methods allow to reduce the computational complexity iredidue to the high-dimension of
the computational domain for the pricing problem.

To employ these methods for pricing derivative contractbaskets of risky assets in a Lévy set-
ting, the correlation in the marginals’ jump structure mbé modeled parametrically. One way
to do this is by so-called Lévy copulas introduced in [37] developed in [24]. For FE based so-
lution methods of the pricing equation corresponding te¢#models, the generatdtd, D(.A))

of (T})+>o for the associated Lévy copula processnust be identified with appropriate function
spaces, multilevel norm equivalences must be proved iretbgaces and time-analyticity of the
associated semigroufs: ):>o in (1.2) must be established.

For example, forn-stable processes iR¢, the jump measure(dz) of X is homogeneous of
order—d — o, i.e. v(Adx) = A~y (dz) for all A > 0 and somé < a < 2, and the domain

D(A) corresponds to certain fractional order Sobolev spatgsR?) (e.g. [21, 22]). Assuming

the same jump intensity for each component process, hoysveot realistic in practice [7],

and copula constructions which blend univariate Lévy psses with different jump intensities
should be considered [2].

The identification of the generato(si, D(.A)) for Lévy copula processes of tempered stable
marginal processes and the establishment of the aboves@gith form the basis of efficient,
wavelet-based deterministic solution methods for themgiequation (1.3) is the purpose of the
present paper.

The outline of the paper is as follows.

To make this work as much as possible self contained in thesestion we recall some basic
facts on Lévy processes, define Lévy copulas and chaizetat R:-valued Lévy processe¥
whose components are equal in lawdaunivariate Lévy processes, ..., Y,;. We conclude
this preliminary section with fundamentals on generataord Ririchlet forms of Lévy copula



processes.

Assuming that each marginal Lévy procésss tempered stable with &parameter density of
tempered stable type, we show in Section 3 that the domaigerdrators of 1-homogeneous
Lévy copula processes are certain classes of anisotropial&s spaces. For an example of tem-
pered stable processes that generalizes the variance gprooess by adding a new parameter
in the Lévy density that allows the Lévy process to havdbioiite or infinite activity and finite
or infinite variation we refer to [7] and the references tirere

The determination of these domains of generators (of 1-lggmeous Lévy copula processes) is
done in two major steps.

Initially, we focus on 1-homogeneous Lévy copulasae$table marginals and determine the
generators’ domains, whereis a vector(ay, ..., ay).

Then, exponential tail decay of the marginal densitiestidduced and it is shown that the do-
mains of the generators and of the Dirichlet forms for theseadled tempered anisotropic stable
Lévy processes coincide locally with those of the unterageersions.

Section 4 is devoted to aspects of the numerical solutioheoKblmogoroff equation (1.3) using

the methods developed in [25, 26, 27, 28]. We propose a walvaked dimension independent
tensor product discretization of the integro-differehgi@nerator of the anisotropic stable Lévy
copula process. Unlike the Fourier transform, waveletswak localized also in price space

which allows to treat barrier and American contracts aldrglines of [26, 28]. We conclude the
paper with some remarks on possible extensions and gezatraiis.

2 Preliminaries

2.1 Lévy Processes

We start recalling definitions and basic properties of Lpkycesses as presented e.g. in [3, 32].

A stochastic processX;):>o onR¢ with X, = 0 a.s. is a Lévy process if it has independent
increments, is temporally homogeneous and stochasticatiinuous.

For¢ € RY, define the characteristic functidn, and the characteristic exponeint of X by

D (€) = exp(—tx (§) = Elexp(ilé, X)) € €RY, >0,

For a Lévy process(, the characteristic exponent (¢) is also called_évy symbol It admits
the Lévy-Khinchin representation

ox(© =it + QO + [ -t by, 1)

where Q(¢) denotes the quadratic forr%fTQg with a symmetric, nonnegative definite ma-



trix Q = (¢ij)1<i j<a, @ drift vectory € R? and the Lévy measungdy) which satisfies

/Rd(l A ly|?)v(dy) < oo. (2.2)

Functionsy of the form (2.1) are callediegative definitdunctions. The Lévy proces¥ is
completely determined by theharacteristic triple(Q,~, v) in (2.1). If Q in (2.1) vanishes,
thenX is called apure jumpprocess.

The Lévy-Khinchin formula (2.1) for the characteristiafttion x corresponds to thieévy-1H
decompositiof X

Xt = EBt+tE Xt_ Nl ',d Nt ',d —tv(d Nt ‘,d
( /W”“" ( ’“))+/x<f”’< (- dz) “C)”/W”” (- dz)
2.3)

|lz|<1 0<s<t

Remark 2.1. The Lévy-Khinchin formula (2.1) and the Lévy-1td decoostion (2.3) for the
Lévy processX; decomposeX, into three pieces: a diffusion without drift; = X B, where
Y2 = Q, a (deterministic) drift pard, = vt and a quadratic, pure jump part

Ji = / (N dz) — tr(da) + 3 AX,Lgax, 1.
|z| <1

0<s<t

These three pieces correspond to a decomposition of thaatkastic exponentx and the
infinitesimal generatad x of X into three characteristic exponents and generators,, @She
three component processesfaccording to

Yx = hw + s + vy, (2.4)
Ax =Aw + As + A;. (2.5)

Foryx as well asdy each of the three elements in their representations is @iaiplcharac-
terized by one component of the characteristic trigde~, v).

Remark 2.2. A key issue in the construction &f“-valued Lévy processes is the parametrization
of correlations between thé univariate Lévy “driving” processes taking valuesin As the
drift ¢ is deterministic, dependence modeling enters in the diffuand the quadratic, pure
jump part of the procesX . In the diffusion part, dependence betweendheivariate driving
Brownian Motions is parametrized by the so-called “voigticorrelation matrix”,>. In the
jump-partJ of the process(, however, the dependence betweendthévy measures;(dy;) on

R of the driving Lévy processes enters into the construaticthe jump-measure of. One way

to parametrize dependence in the jump structur& afre so-called.évy copulas



2.2 Lévy copulas

Here we recall the definition of Lévy copulas and presernit thnin properties, following [37,

24]. We start with some notation. Dende:= (—oo, 00|, and, fora,b € R” such that < b
componentwise, we define the half-open intervals

(a,b] := (a1,b1] x ... X (ag, byl.
For a functionF : S — R defined on some subs8tC R”, the F-volume of(a, ] is defined by
Vr((a,b]) := >, (=) F(u)
u€{ai,b1}x...x{aq,bq}

whereN (u) = [{k : ux = ax}|. Note that forF'(u) = ujus...uq, Vr((a, b]) equals the Lebesgue
measure ofa, b] C R”. The functionF : S — R is calledd-increasingif Vi-((a,b]) > 0 for all
a,b € S such thate < band(a,b] C S. Examples ofi-increasing functions relevant to us are
furnished by distribution functions of random vectdfsc R¢ via

F(x1,....,mq) = P[X; < 21, ..., Xg < 24].

In dependence modelling, an important role is played by margf multivariate distributions.

To define them, lef” : R? — R bed-increasing and such that(ur, ..., ug) = 0 if u; = 0 for at
leastond < i < d. Letfurther/ C {1, ...,d} be anonempty index set of cardinaljtyy < 4 and

denote byl® := {1, ..., d}\[ its complement of cardinality — |1|. Foru € R", defineu’ € R
to be the vectofu,);c;-

Then thel/-marginof F is the functionF” : R' — R defined by

Fl((u')ier) == lim Y (Wjeresgnuy) Flug, ..., tq)

e ul®e{—c,00}1¢
where sgn = 1 for x > 0 and—1 otherwise.

After these preparations, we may define Lévy copulas.

Definition 2.3. F : R® — R is a Levy-copula if

1. F(uy,...,uq) # oo for (uy, ...,uq) # (00, ...,00),
2. F(uy,...,uq) = 0if u; = 0 for atleast one € {1, ..., d},
3. Fisd-increasing,

4, FUt(u) =uforanyi € {1,...,d},u € R.



Lévy copulas are Lipschitz in the sense that

d
|F(us, ..o tq) — Fvr, v)] < Jug — vil. (2.6)
=1

We also need tail integrals of Lévy processes.

Definition 2.4. Let X ¢ R be a Levy process with&vy measure. Thetail integral of X is the
functionU : R¥\ {0} — R given by

U(xh HS) .de) = H?:lsgr(xl)y(H?:11-<xj))
whereZ(z) := (z,00) if x > 0 andZ(z) := (—o0, z| otherwise.

Let further/ C {1,2,...,d} be an index set with/| > 0 indices. Therthe I - marginal tail
integralU’ of X is the tail integral of the proces¥’ := (X;)ic; € RV If I = {i}, we write
Uy .= U = Ut

The next result due to Kallsen and Tankov [24] will play a kelerin our considerations.

Theorem 2.5. (Sklar's Theorem for &vy copulas)
1. For any Levy process( € R? exists a [evy copulaF such that the tail integrals ok satisfy

U'(zi)ier) = F'((Ui(x:))ier) (2.7)
foranyl C {1,...,d} and any{z;};c; € R\{0}. The Levy copula is unique oA¢_, RangeU;.

2. LetF' be ad-dimensional Evy copula and/; the tail integrals of univariate Levy processes.
Then there exists advy processt € R? such that its components have tail integrélsand its
marginal tail integrals satisf§2.7)

The purpose of copulas is parametric modelling of deperalegrihie jump structure of multivari-
ate Lévy processe¥ = (X!, .., X9) € R By the Lévy-Itd decomposition (2.3), correlation
in the diffusion part is accounted for in the volatility matd:, so that the main objective of
Lévy copulas is the parametric construction of the muitata jump measure(dz) out of jump
measures of the component processes.

The extreme cases complete dependence and complete idéeperamong jumps of the com-
ponents ofX are characterized as follows.

Proposition 2.6. (Independenceévy copula)
LetX = (X!, .., X9) € RY be a Levy process. Its components are independent if and only if
their Brownian parts are independent andXifhas a levy copula of the form

d
FJ_(ZCl, vy .CCd) = szH];ﬁll{oo}<xj)
i=1

8



To address the other extreme, namely complete dependemceydhe jumps of the components
X', we observe that elements of a strictly orderedsset R¢ are completely determined by one
coordinate only. Hence we have

Definition 2.7. Let X € R? be a Levy process. The jumps &fare completely dependewt co-
monotonidf there exists a strictly ordered subsetC K := {z € R?: sgnz;) = ... = sgn(zq)}
such that for allt > 0 holdsAX,; := X; — X, € S almost sure. Equivalently, the jumps.of
are completely dependent if there exists a strictly ordsrgasetS ¢ K such that/(R4\S) = 0
wherer denotes the évy measure ok'.

Complete dependence among the components’ jumpsiafterms of Lévy copulas is provided
by

Proposition 2.8. (Complete dependencéwy copula)
Let X € R? be a levy process withé&vy measure supported by an ordered s6tC K. Then
thecomplete dependence Lévy copula

(w1, ooy 2q) = min{[@1], oo, |24 M (1, .., 20) I SO(;) (2.8)
is a Levy copula ofX.

Vice versa, ifFj in (2.8)is a Levy copula ofX, then the Evy measure ok is supported on
an ordered subset oK. If, in addition, the tail integrald/; of X* are continuous and satisfy
lim, o U;(z) = oo fori = 1, ..., d, then the jumps ok are completely dependent.

2.3 Generators and Dirichlet forms of Levy copula processes

Recall that a Dirichlet space (d& for simplicity) is a pair(F, £) consisting of a space of real-
valued functions¥ C L*(R?) and a symmetric quadratic foréh: F x F — R which is closed,
densely defined, non-negative, and satisfies the followamgraction condition:

if weF then v:=0VuAleF and E(v,v) < E(u,u).

All translation invariant (symmetric) Dirichlet forms (d&r') are given by

(©)d¢, u,ve SRY),

<)

£u) = [ o(©)(e)

wheres : R? — R is a continuous negative definite function. The don&inof £2 is then given
by

F¢ = H*Y(RY) = {u c L*(RY) : /Rd(l + o(E)|Uu(é)|* d¢ < oo} : (2.9)



It is well known that one can associate witl{or with (F¢, £¢)) the operator semigrouf?;);>o
on L?(R%) defined by

Tou(x) = (2m) 4" / 67 19O G(¢) de = / w(z — ) puldy),

where(u; )+~ is a vaguely continuous semigroup of sub-probability messanR¢ with Fourier
transformjz, = (2m)~4/2 e~#(),

Note that the measurgs are also the transition probabilities for a Lévy procéss);-, and

therefore we have
E (¢5€) = ¢7t9(©),

Thus¢ is also a characteristic exponent of a Lévy process.

The generatofA, D(.A)) of the semigrougZ} ).~ is given by
Aula) = =6(D)ulz) = ~(2m) " [ o) a(€) de
with domain
oty fue PR s [ @+ o@P IOk de < oo} (2.10

Remark 2.9. In fact the space&*2(R?) =: HJ*(R?) are part of the scale of Bessel potential
spaces*(R?), s € R, 1 < p < oo for which S(R?) is a dense subset with respect to a norm
defined generalizing (2.10). These spaces appear as geatoals of the cIasseH;fv2 which

are domains of generators fdr,-sub-Markovian semigroups associated with the real valued
continuous negative definite functign These spaces were extensively investigated in [17] and
[18] and we do not go into further details here since for ouppees it will be sufficient to
consider the case= 2.

The function spaces of typH¢! and H*? we are interested in, appeared in their generality
for the first time in the work of A. Beurling and J. Deny [4, S5gesalso [13], on Dirichlet
spaces. In general they are contained neither in the BeSpy-or Triebel - Lizorkin- F
scales nor in the anisotropic classes of function spacesidemred so far. They are so- called
function spaces of generalized smoothness, because tlugrsmes properties are related to the
function¢. Function spaces of generalized smoothness have beedun&td and considered by
several authors, in particular since the middle of the seemith different starting points and
in different contexts. In [19] it was given an overview on #ggroaches known in the literature
up to that moment.

Let X € R be a Lévy process with characteristic trig®, v, v) = (X%, v, v) as in (2.3) and
with associated semigroufi;).>o as in (1.2) with infinitesimal generatot. The Lévy symbol
1x of X given by (2.1) is a continuous, negative definite functiod e symbol of the generator
Aof X asin (1.5).
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Given the generatad = ¢ x (D), its Dirichlet bilinear form&(-, -) of A given by
E(u,v) = —(u, Av), u,v € S(RY)

is crucial for variational formulation and the numericaligmn of the pricing problem (1.3).

We identify generator$.A, D(.A)) and Dirichlet forms(E, D(E)) of certain Lévy copula pro-
cessesX modelling dynamics of baskets of risky assets whose pricesiaivariate, so-called
regular Levy processes of exponential typlkich have been found useful in financial modelling
(e.q. [14, 15, 6, 7).

A first example is furnished by-stable processes € R¢ as proved in [24, Theorem 4.8].

Proposition 2.10. Let X € R? be a Lévy process and € (0,2). ThenX is a-stable if and
only if its componentX; € R are a-stable and ifX has a levy copula that is homogeneous of
order1, i.e.

F(r&y,...,r€) =rF(&,...,&) forall &= (&,....&) eR? andall r>0. (2.11)

The next example is taken from [24, Example 5.2] .

Example 2.11.Letd > 2. The functiont’ defined as

d -1/6
F(ul, ey ud) = 22id (Z ‘UJ‘9> (nl{uludzo} — (1 — n)l{ul---ud<0})

Jj=1

defines a two parameter family oély copulas which resembles the Clayton family of ordinary
copulas. Itis in fact a vy copula homogeneous of order 1, for @y 0 and anyn € [0, 1].

3 Domains of generators of [evy copula processes

As we indicated in Remark 2.1, the infinitesimal generadar and the Dirichlet formEx (-, -)
of the Lévy process( each are the sum (2.5) of diffusid#r, drift 6 and quadratic, pure jump
part.J in the Lévy-1td decomposition (2.3) of . Therefore, the domaing(.Ax) andD(Ex) are
intersections of the corresponding domains:

D(A) = D(Aw) N D(A;) N D(Ay),  D(€) = D(Ew) N D(&)NDEy).  (3B1)

The structure of the domair3(Ey ), D(&;) is known, see e.g. [18, Remark 2.1.7], therefore we
focus in the present section on the structure of the domaipé;) andD (&), or, equivalently,
of D(Ax) under the assumption that the Lévy-1td decomposition (2.3) of it holds

W =4 =0. (3.2)

11



By [37, Remark 3.2] we know that if the tail integrals given({&y7) are absolutely continuous,
we can compute the Lévy density of the Lévy copula procgddifterentiation as follows:

I/(dl‘l, ...,dxd) = 81...6dF |§1:U1(ml) 77777 Ea=Uq(z4q) l/l(dxl)...l/d(dl‘d)

wherev, (dxy), ...,v4(dx4) are marginal Lévy densities.

Let0 < ay,...,aq < 2 and let real numbersy, ..., 3, > 0 governing the Lévy densities’ tail
behavior be given.

Writing for eachy = 1, ..., d: v;(dx;) = kfj(xj)dxj with densitieslcfj : R\ {0} — R ofthe
jump measures’ in the coordinates given by

8; e_ﬁj‘xj‘
ki (25) = Cj ey (3.3)
||+
for some constant’; > 0, we get
v(dzy, ...,dxg) = 0y...04F |§1:Uf1(x1) _____ €0t (e kP (1) K2 (2g) doy ...dg (3.4)
and this can be written as
v(dey, ..., deg) = kP (x4, ..., 24) doy...dxg (3.5)

for someg = (4, ..., Ba)-

3.1 Homogeneous marginal densities and anisotropic stablegvy copula
processes

3.1.1 Definition and preliminaries

This subsection is dedicated to the treatment of the casdiichvthe marginal densities in (3.3)
are given with parametersy = O forall j = 1, ..., d. Then each of the functior‘lﬁJ (G=1,..,4d)
(corresponding t@; = 0) is homogeneous of degred — «;.

More specifically, we will work under the following assungpti

Assumption 3.1. The functionF : R’ ~Risa homogeneousavy copula of order 1 such that
01...0,F : R* — R exists.

The numbers, ..., oy are in (0, 2) and the functions!, ..., k%, as marginal densities of univari-
ate Levy processes, are homogeneous of order aq,...,—1 — ay, respectively, i.e.

k) (ra;) =r "% k)(z;) forall r>0, andall z; € R\ {0},

foranyj =1,...,d.

12



Note that under the above assumption, the tail intedréls.., U9 : R\ {0} — R, of the univari-
ate Léevy processes, with marginal densiti€s..., k9, are homogeneous of orderay,...,—ay,
respectively, i.e.

Ul(ra;) =r~* Uj(z;) forall r>0, andall z; €R\{0},

foranyj =1, ...,d. In order to see this, one has only to recall Definition 2.4eftail integrals:
UL () = vy(x5,00) if 2; > 0 andU?(z;) = v;((—o0,z]) if z; < 0 where herey;(dz;) =
]{ng(ﬂfj)dﬂfj

We now introduce the anisotropic stable Lévy copula preess
Definition 3.2. Let F : R — R be a homogeneousgky copula of order 1 such thé...9,F
R? — R exists and lek?, ..., kY be marginal densities of univariatetlzy processes which are

homogeneous of order1 — ay,...,—1 — g, respectively, wheray, ..., oy € (0,2); let U, ..., U?
be the corresponding tail integrals.

By Sklar’'s theorem forévy copulas, Theoreth5, there exists a&vy procesX = (X7, ..., Xy) €
R? such that its components have tail integrél$ i = 1, ..., d.

We call this process an-stable levy copula process, where = (ay, ..., ), Or simply an
anisotropic stable vy copula process if it will be clear from the context to whanisotropy
parametersyy, ...,ay we will refer.

As already announced we are able to determine the dotainof the Dirichlet form associated
to the generator of the-stable Lévy copula process associated'tand to prescribed marginals
vy, ..ol

3.1.2 Anisotropic homogeneity of the levy symbol

We will start proving an anisotropic homogeneity propeftthe Lévy densityt?, corresponding
to the case wheneagh =0, =1, ..., d.

Theorem 3.3. Let the copular’, the numbersyy, ..., ay, and let the marginal densitigg), ..., k9
be as in AssumptioB.1 LetU?, ..., U? denote the corresponding marginal tail integrals. Then
the functiork?, defined by

.....

compare(3.4) and(3.5), satisfies
]{ZO (tfa_llxl, ...,t_a_ld.rd> = t1+a_11+m+$ ]{ZO(.Tl, ...,.I‘d)

forallt > 0and allz = (21, ..., z4) € REwithzy, ..., 24 # 0.
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Proof. Stepl. The functioro,...0,F is homogeneous of ordér— d, i.e.

61...6dF(T§1, ...,ng) = Tl_d F(gl, ...,fd),

forallr > 0 and all¢ = (&4, ..., &) € R4, since one has only to take partial derivatives in (2.11)
and to use definition of homogeneity.

Step2. LetF, 0 < ay,...,aq < 2, andU?, ..., U as above. Using step 1, we get by a direct

d
computation thad;...0,F o (U7, ..., U9) : R4\ | {z; = 0} — R satisfies
j=1

[al---adFo (UgvaUa(l))] (tiaillxlv'--at_ixd> = tlid [31...&1170 (U{)7 7Uc(l])j| (.Tl, ...7I'd)

forallt > 0,and allz; e R\ {0}, =1,....d.

Step3. LetF, 0 < ay,...,aq < 2,U7,...,UY, andk}, ..., k% as above. Then for,, ..., z4 # 0 we
have

0 (.
k° (¢ 1$1,...,t aTq

_a _
= O1---0qF | 1 1 KY (t o x1> kY (t “dfcd>

E=Ut T x1),...,64=U%(t “dzq)

1\ lra ~A\ Tl
= 17000 OuF e, _u0(an).tam () (t al) kl(xl)"'(t ad) ka(a)

R TR

=t ad KOz, , 1q)

and this completes the proof. |

By Definition 3.2, the so-called-stable Lévy copula process, denote it Ky is itself a Lévy
process. Its Lévy density is given &y, as in Theorem 3.3. The corresponding Lévy symbol
Yy : R — C of X obtained from (2.1) is a continuous negative definite fuorcti

Below we will see that the domain of the Dirichlet form assbed toX can be completely
characterized by the real paRi)y of ¢x. Therefore, we will complement now Theorem 3.3
with a result concerning the anisotropic homogeneity oféa part of the jump pafiy; of the
Lévy symbolyx. As in (2.4), by the Lévy-Khinchin formula (2.1) we have

_ _ e i€, x) 0\
@)= [ 0= R (356)

Theorem 3.4. Under the assumptions of Theorem 3.3, let they_kernelk®(zy, ..., z4) be as
above. Then real part of theglvy symbol); : R — C of the pure jump part of the-Lévy copula
processX with densityk? is an anisotropic homogeneous function of typéo, ..., 1/a,4) and
order 1, i.e. it satisfies

Repy(tH gy, . tHoag)) =t Rapy (€, ..., &) forall t>0 andall &= (&,.., &) € RE
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Proof. Since the Lévy symboly of X is a continuous negative definite function, alge
and henceRy; are continuous negative definite. Hendg); : R? — R can be regarded as
the symbol of a pure jump process with Lévy dengity Thus, by [21, Corollary 3.7.9] the
Lévy-Khinchin formula (3.6) can be simplified to

GEY s (oS PR (3.7)

With this connection ofy; andk?, Theorem 3.3 yields for any> 0 and¢ = (&4, ..., &) € RY,
d
§R¢J(t1/“1§1, - tl/“‘igd) = / (1 — cos (Z xitl/“i&))ko(x)dx
R4\ {0} i=1
= / (1 — cos(¢, z))ko(t_l/alzl, s t_l/adzd)t_(“1+"'+ad)dz
R\ {0}

:/ (1= cos(€, )R (21, ... za)d
R4\ {0}
= tRY;(8),

where we have used the change of variables t /2, i =1, ..., d. [ |

3.1.3 The domain of the generator as an anisotropic Soboleypace

We will now identify the domains of generators of anisotmpi-stable Lévy processes. As
indicated before, we focus af(&;), i.e. on the pure jump part of the process and assume (3.2)
throughout. As we will se€; coincides with Bessel potential spaces resp. with Sobg@aves

of mixed smoothness. We start by recapitulating basic fant@nisotropic Bessel potential
spaces.

If (s1,...,54) IS ad- tuple of natural numbers then

< o0
L2(R4)

0% f
ox’?

J

is the classical anisotropic Sobolev spacelsh In contrast to the usual (isotropic) Sobolev
space §; = --- = s4) the smoothness properties of an element fiitit-*2) (R?) depend on
the chosen direction iR“.

These spaces are generalized in a natural way: given, s; € R one can define anisotropic
Bessel potential spaces, or fractional Sobolev spaces,

d
> 1+ f?)sf'/zf‘

<oop. (3.8

L2(R4)
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Similar to the isotropic case, the study of anisotropic Beg®tential spaces is a part of the
more general theory of anisotropic spaces of Besov and dlriahorkin type. However for our
purposes it will be enough to restrict ourselves to the albtasses of anisotropic Bessel potential
spaces.

It turns out that it is very useful to remark that giver R andj = 1, ..., d, denoting

oo} (3.9
L2(Rd)

H3(RY) = H (1+&) 3/2]?'

Hi® = {7 € S®Y) - 11

by [29, Section 9.2] we have (in the sense of equivalent nprms

d 1
HE5a)(RY) = ﬂ HP(RY) and || f]| v ey = (Z ||f||Hy Rd) - (310
Henceforth, we will use the notation= (s, ...sq).

In the analysis of anisotropic spaces, following [36] an amant tool are so-called anisotropic
distance functions.

Letd > 2 and leta = (a4, ..., ag) @ given anisotropy, that is a fixe tuple of positive numbers.
The case:r = (1, ..., 1) is usually known as the "isotropic case”.

Definition 3.5. Leta = (ay, ..., a4) @ given anisotropy. An anisotropic distance function (with
respect taz) is a continuous functiop : R¢ — R with the properties(z) > 0 if z # 0 and

o(t™xy, ..., t%xy) =to(x) forall ¢t>0 andall z<cR”%

It is easy to see that, : R? — R defined by

J 1/
ox(z) = (an/ai) (3.11)

i=1

is an anisotropic distance function for evéry< \ < oco. Remark that for appropriate values
of A we can obtain arbitrary (finite) smoothness of the functigrintroduced above, cf. [9,
Lemma 2.2].

The next result essentially goes back to E. M. Stein and Sniéaj see [36]. A nice and very
detailed exposition can be found in the thesis of H. Dappa[%e Together with the example
from (3.11) it will play a key role in our further consideratis so that we state it separately.

Lemma 3.6. Leta = (ay,...,aq) @ given anisotropy ang and ¢’ two anisotropic distance
functions. Then they are equivalent in the sense that thégt eonstants:, ¢ > 0 such that
co(z) < o (z) < o(z) forall z € RY.
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Now we are ready to identify the domain of the Dirichlet foéif, -) of an anisotropic stable
Lévy copula process as an anisotropic Bessel potentiakspa

Theorem 3.7. Let the copulaF’, the numbersy, ..., ay, the marginal densities?!, ..., £J, and
the tail integralsU?, ..., U?, as in AssumptioB.1 Then the domai®(€) of the Dirichlet form
associated to the generator of thestable Levy copula process associatedfaand U7, ..., UY,
is the anisotropic Bessel potential space

Hg/2(Rd> — H(a1/2,--- ,aq/2) (Rd),
compare(3.8).
Proof. Asin Theorem 3.4, we denote by the a-Lévy copula process. Its characteristic triple
is denoted by(A, v,v) = (27X, v,v) as in (2.3) and denote its associated semigr@yp-, as

in (1.2) with infinitesimal generated. Also as in Theorem 3.4, the Lévy symhp} : R? — C
of X is a continuous, negative definite function.

Since X is a Lévy processA is translation invariant and its Dirichlet bilinear foré{-, -) is
given by

E(u,v) = —(u, Av), u,v € S(RY),
Since it is a translation invariant Dirichlet form dif(R?; R), it can be expressed in terms of the
characteristic functionx () of X by

E(w,v) = | ux(©EE)de. (3.12)
We know by [21, Example 4.7.32] that for such forms, therstsxi > 0 such that
SYx(©)] <c(1+Ryx(€)  forall ¢eRY, (3.13)

and that the domain &, denotedD(€), is a Sobolev space of generalized smoothness
D(&) = HWXI(RER).

Let us specify this in the context efstable processes. By hypothesis (3.2) there hidldg =
R, wherey; denotes the Lévy symbol of the jump part &fas in formula (3.6). By The-
orem 3.4 the functioyy = R, is an anisotropic distance function with respect to the

anisotropy

1 1
A = —, " ,04 = —.
(€3] g

ConsequenthRy x is equivalent to any of the anisotropic distance functigndefined in (3.11),
in particular forA = 1 or A = 2 we get

R () ~ (6] + - &l ~ (&P + -+ + &)
From the last characterization, using (3.9) and (3.10), w& get that the spac&™¥x:}(R?)

proof. |
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3.1.4 Analyticity of the associated semigroup of operators

We start recalling some basic facts on analytic semigrofipperators and on Garding inequali-
ties. Recall a semigroufd;);>o of operators between Banach spaces is caltedyticif ¢ — T;u
admits an analytic extension— 7,u to some sectofy 4, := {z € C : arg(z — dy) < 6}.

A sufficient condition for the semigrou(¥;);>o to be analytic is a Garding inequality for its
infinitesimal generataA in (1.4).

The Garding inequality can be stated also in terms of theBlat form& (-, -) associated wittd
(compare [35]): letd : V — V*and&(-,-) : V x V — R be continuous, wher&™* is the dual
space ofl” with respect to a pivot spadé so that

V— H~ H"— V* with dense injections;

the semigroudT});>o with generatorA is analytic, if £(-,-) satisfies the Garding inequality:
there arey > 0 andC > 0 such that

YweV: REW,v)>v|vly — Clv|%. (3.14)

If (3.14) holds, then the Kolmogoroff equation (1.3) is, foe H, well-posed inL?([0,7]; V) N
(0, T); H) (.g., [1)).

We note that (3.14) implies apart from analyticity also tkpanential convergence of a suitable
high order time-stepping scheme of discontinuous Galdyka for the numerical integration of
the Kolmogoroff equation (1.3) (e,g. [31] and the referexiteere).

Remark 3.8. With the substitutionv = exp(At)u, for sufficiently large\ > 0, we can change
the backward Kolmogoroff equation (1.3) so that a strongenfof (3.14) holds:

YweV: REW,v) >y |v|?

with a positive constant; > 0.

We next establish Garding inequalities for generators-sfable processes. The case of tempered
a-stable processes will be treated later.

Theorem 3.9.The Dirichlet form induced by the generatdrof the copula oft = (a1, as, ..., ag)-
stable marginals satisfying Assumpti®d and (3.2) satisfies a&ding inequality in the anisotropic
spaceH2/2(R%): there exist constantg > 0 andC' > 0 such that

R E(u,u) > 7 [|ull oz, — C lulZage, forall ue Co(RY. (3.15)
Moreover, the Dirichlet forn€ (-, -) is continuous inf2/2(R%), i.e.

1E(u,v)| < callull garzwey [|V]| arzmay  forall w,v e He2(RY). (3.16)
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Proof. Based on (2.9) and (3.2), and using Theorem 3.7 we have
HQ/Q(Rd) — H?R‘I/X,l(Rd; R)
= {ue @Y ¢ fulfu = [ 1+ RESO) HOP de < 00} @17
R4

Based on the definition (3.12) of the Dirichlet form inducedthe generatortd of ana =
(o, g, ..., g )-Stable Lévy copula process, with marginals satisfyinguksption 3.1, we know

RE(uw) = | RUx(©)a(6) de
so that the Garding inequality (3.15) holds in this caséwit= C = 1.
To prove the continuity of in the anisotropic spadég2/2(R?), we use the characterization (3.17)
and the fact that the imaginary part©f is controlled by its real part, i.e. (3.13), to infer (3.16).
[

3.2 Tempered stable levy copula processes

In this subsection we introduce temperedtable Lévy copula processes and obtain a counter-
part of the Garding inequality Theorem 3.7 for these preess

Definition 3.10. Assume that the copula functiénh: R’ - Risa homogeneousEvy copula of
order 1 such that),...0,F : R? — R exists.

Letay, ..., aq € (0,2) and the marginal densities be of tempered stable (also kresiG@GMY’,
[6] and the references there) type, i.e. (3.3) holds for s6me 0, 3; > 0.

Then the correspondingévy copula proces(st)tZO € R9, which exists according to Theo-
rem2.5, is called a temperedy-stable levy copula process.

Obviously, tempered stable Lévy copula processes indloele-stable ones (compare Defini-
tion 3.2) as special cases;(= ... = (5 = 0). We show next that the infinitesimal genera-
tor A° of the quadratic, pure jump temperegstable procesgff satisfies, for any choice of

Bi, ..., B > 0, a Garding inequality (3.14) in the anisotropic Soboleas) = H*/2(RY) and

H = L?(R%).

We start with a lemma which will be useful later.

Lemma 3.11. Under the above assumptions for any= 1, ..., d there exist constants, ¢; > 0

such that
K7 () — K2 ()] < e |y |29
and
U () = UP ()] < &l |7t (3.18)

J
for anyz; € Rwith0 < |z;| < 1.
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Proof. The first inequality follows easy using the Taylor expans¥naxp(—¢) around( = 0.
The second inequality follows immediately. |

Remark 3.12. As a direct consequence of (3.3) it follows that for every 1, ..., d there are
constant$) < ¢; < ¢y < oo such that

0<e < || kY (@) Ses<oo 0<e < |ay[|U (1)) Sz <00 (3.19)
for anyz; € Rwith 0 < |z;| < 1.
Let us denote by} (z) = [*_K(€)d¢, j = 1,...,d and writeU” (z) = (U}", ..., U}*). For a
1-homogeneous copula Lévy copula functiBnwe denote

(FoUP)(xy, ..., 2q) = F(U(21), ..., U (24)).
Applying the chain rule we immediately get
Ay..04(F o UP) (1, ... xq) = ((8y...04F) 0 UP) (1, ..., xq) k¥ (7). k" (24)

which implies that the density of the temperedstable, Lévy copula process from Defini-
tion 3.10 is given by

K2 (21, ooy a) = O 0a(F 0 UP) (1, ooy wg) = (01.--04F) 0 UP) (w1, oo ) 1 K ().

In the special case when &l = 0, j = 1, ..., d, we recover the density of the-stable Lévy
copula process, i.e.

K1, e 20) = OheBaF 0 UP) (21, oy 20) = ((91.0-0aF) 0 U) (a1, o) 12 k().

Denote bye”(-, -) and by&°(-, -) the corresponding Dirichlet forms which are given by, cf1&3

EP(u,v) = » VP (€)a(§)o(8)de.

Analogously&°(-, ) is defined. Here)” andq)® are the characteristic functions of the tempered
a-stable, resp.a-stable processes. They are given by the Lévy-Khinchimiéda (2.1) with
v(dz) = kP(z)dz, resp.v(dr) = k°(z)dz.

We estimate, for, € C§°(R?),
REL (u,u) > RE(u,u) — |C(u,u)|
where the fornC(-, ) := (€7 — £°)(-, -) is expressed in terms of the characteristic functions by

Cluv) = [ (07O~ @UTOE, w0 € CFR).

To establish the Garding inequality (3.14) (-, -), we use foi£’(-, -) the Theorem 3.9 for the
a-homogeneous case. For the tempered stable case (i/@#a), we have:
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Proposition 3.13.For any K cc R? and any choice of,, ..., 3; > 0, the formC(-, -) is compact
onV = Huro(K).

Proof. By Theorem 3.10.5 in [21] in order to prove the compactnes§(af) it suffices to

verify that
[¥7(§) —¥°(9)]
|0(8)]
Since the Lévy densitidg’, k° of thea-stable copula processes are smoothfo# 0, the decay

for || — oo of the characteristic functiong®(¢) andv°(¢) as|¢| — oo is determined by the
singularities of the densitié’ (x4, ..., 74), k°(z1, ..., 74) at zero.

By substitutingk” = 9,...04(F o U”) andk® = 0,...9;(F o U") in the Lévy-Khinchin for-
mula (2.1) one obtains,

—0 as [¢| — oc. (3.20)

°) = 1= it 4 HEY 5 o (F o U (y)dy.
CO= [ (1= TR0, 0 (F oL )y

and

B _ 1,0 _ _ iew i€, y) olUPY — (Foll®
W =@ = [ (= R0, 0 (F o) (F L))y

Using integration by parts we have

1/}0(&) — /Rd\{o} (8y1...8yd(1 — &y + i<§7y> )) (F OQO)(y)dy,

L+ Jyf?
and
B 0 _ _ ilew) i y) ol/PY — (Foll®
W =€) = [ (B2 T (o) = (o 07 )

To establish (3.20) it therefore suffices to investigatesihgularities of (F o U?) — (F o U")]()
and of (F' o U°)(x) atz = 0.

Since the copula functiof' in Definition 3.10 isl-homogeneous and Lipschitz (recall (2.6)), we
estimate using (3.18)

d d
[FoU? = Foll(x)| <Y U () = Uf(x;)| < O Jay =+
7j=1

j=1

On the other hand, by thehomogeneity of the copula functian we can write forg £ 0

Pl =P (el ) =k P (o )
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and using (3.19) we find that there ig & 0 such that
d
(FoU%) (@) 2 e |a| ™.
j=1

Consequently we obtain that the leading singularityFob U° at = = 0 is cancelled in the
difference[F o U’ — F o U"](z) whence the growth ap?(¢) —4°(¢) as|¢| — oo is slower than
that of¢°(¢) which proves (3.20).

This completes the proof of Proposition 3.13. |

4 Numerical Solution of the Kolmogoroff Equation

Here, we address the evaluation of the expectation (1.1héyumerical solution of the Kol-
mogoroff equation (1.3) for tempereg;stable Lévy copula processas’.

Throughout, we continue to work under the hypothesis (3.2),that the Lévy proces¥” is
qguadratic, pure jump. Note that if the driftless diffusidn # 0 and, more precisely; in the
Lévy-Itd decomposition (2.3) ok is non-singular, the domain ofy, in the decomposition (2.5)
is H*(R4). Hence, because of the intersection structur® @fl x ) described in (3.1), the domain
of the generator oK is given byD(Ax) = D(Aw) = H'(R?) as in the classical Black-Scholes
setting.

Remark 4.1. To obtain arbitrage free prices of derivative contracts athmematical models one
requires the stochastic process driving the underlyingtage be a martingale under some suit-
able equivalent martingale measure. As described in e]grd@uiring this martingale property
determines the drift part of the driving process{. In one dimension this drift part can easily
be calculated in closed form (see e.g. [8, Proposition 8i@0ihe case of exponential Lévy
processes). Since for a Lévy measuref a Copula process there holds for ang {1, ...,d}
andf € C(R),

/ f(z;)v(dx) :/ f(z)v(dxy), (4.2)

R\{0} R\{0}

where; denotes the-th marginal measure (cf. [24]), the required drift vectore R¢ of
the multivariate copula process comprises of the one-déineal driftsy; € R, i = 1,...,d,
corresponding to each marginal process being a martingale.

Nevertheless, one may see that hypothesis (3.2) does ninadmb these considerations as fol-
lows: In case the driftless diffusion pdit of X does not vanish (anil is non-singular) the
domain of the generator of is independent of as indicated above. Therefore one may assume
~ = 0 without loss of generality.

If W vanishes and the drift vectore R? is fixed by the martingale condition one may perform a
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“removal of drift”, i.e. a suitable transformation, to obtaanishing drift again. Thus, one may
assumey = 0 as in (3.2). In the one dimensional case the “removal of'dgftlescribed in [25,
Section 4.4]. This procedure can be adapted to multivacgpela processes using the marginal
preserving property of the Lévy copula.

4.1 Localization

For the numerical solution of (1.3), we localize this eqotiromRR? to the bounded computa-
tional domainD = (0, 1)%; this setting arises, for example, when pricing barriertasts or in
the case of first passage times frdm We start by defining anisotropic Bessel spaceBin

Foru € C3°(D), defineu to be the zero extension ofto all of RY. Then we define fos; > 0,
i =1, ..., d the vector of smoothness indices- (s, ..., s¢) and

H*(D) := {alu € C(D)}
where the closure is taken w.r. to the normin(RR?), defined in (3.10).

By definition, for allu € H(D) it holds thata € H:, . (RY). For the parabolic setting of the

Kolmogoroff equation (1.3), we repla¢dy —t and obtain for(t) = v(—t)
Uy = Au in (O, T), ’U,|t:0 =4d. (42)

V =H**D), H=1L*D), Vy:=V"V)pa 0<6<1

where we used the real method of interpolation. Finally, @galize the Dirichlet forn€” to D
by
EV(u,v) = E%u,v),  u,v e HY*(D).

The compactness result Proposition 3.13 allows to statartakg of Theorem 3.9 for tempered
stable Lévy copula processes.

Theorem 4.2. For any bounded domai® c R¢ and any vectog in R?, there exists a constant
v > 0 (depending orD and3) and a compact bilinear forré(-, -) : H*/>(D) x H*/*>(D) — R
such that B

Vue H2(D): Ep(u,u) = 7 [ul sz p) — Clu,u) (4.3)

and that for allu, v € H*/?(D) it holds

1€ (u,0)| = 1€7(a,0)] < esllit] porzpa) 0] ey = callull om0 arzpy — (44)
Therefore, the forng (-, -) is continuous and coercive dnx V' — C. Henceforth, we omit the
subscriptD on 55 with the understanding that it will be considered onlyon

As already indicated above, in case of non-singilgjand thus non-vanishing diffusion part
W of X?) the domain of the generatot), that canonically corresponds &,(, -) is given by
H'(D) = H}(D) and in particular Theorem 4.2 also holds in this case.
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By (4.3) and (4.4) the Kolmogoroff Equation (1.3) for the fgened,«-stable Lévy copula pro-
cessX?’, i.e. (4.2), is well-posed and admits a unique solutian L2(0, T; V) N C°([0, T]; H).

4.2 Space Discretization
We address the space discretization of (1.3Pin= (0,1)?. We consider only the case when

(viz. temperedy;-stable) marginals satisfying Assumption 3.1.
We consider discretization of the Dirichlet foré(-, -) by Galerkin projection onto finite di-
mensional subspacés; = span{b; : j = 1,..., N} of V = H*/2(D).

To realize the Galerkin Finite Element discretization @ ithfinitesimal generatoA, its Dirichlet
form £(-,-) given in (3.12) must be evaluated on the basis function¥af resulting in the
generator’s moment (or stiffness) matAxgiven by

A= E(bybi), i,j=1,...,N.

More specifically, based on the Lévy-Khinchin formula {2.4n the pseudodifferential repre-
sentation (1.5) of4 and on (3.12), we find for the representation

E(u,v) = D(u,v) + J(u,v)
where thgump-diffusion partD(u, v) of £(-,-) is given by

d

ou d Ju Ov
D(u,v) = /Rd Zv(az)%a—xid:c + /Rd Z qijga—xjdx vV ou,v € S(RY)

i=1 i,j=1

and the jump-parf (u, v) of £(-, -) is given by

J(u,v) = %/@Rd /ERd(u(a:—i—y) —u(z))(v(z+y) —v(@))v(dy)dr ¥V u,v e SR?). (4.5)

Using hypothesis (3.2) we sét(u, v) = 0 in the remainder of this paper. By the considerations
we made at the beginning of Section 4 and since numericadlyfdirm D(-, -) can be treated
separately from/(-, -) this is no real restriction of the following considerations

Remark 4.3. If the marginals’ densities; (x;) are symmetric about; = 0, as, e.g. the densities
in (3.3), the density” (i1, ..., yq) is symmetric with respect to each coordinate axis and aleo th
copula’s Llevy measure(dy). We emphasize, however, théwy densities which are successful
in financial modelling as, e.g. the tempered stable derssjie 7] have densitieg;(xz;) of the
form

o Py 1741

et <0

B, 1+ x] 9

k7 (z;) = C; I:ﬂﬁjzj (4.6)
o >0,
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for someC; > 0,0 < o; < 2, ﬁji > 0. Here, the singular part of the density neay = 0
is symmetric and, hence, the principal part of the generatpis self-adjoint, whereas the tails
(describing the probability of large jumps) are asymmetifi¢y,” # Bj.

For Lévy processeX with infinite intensity of small jumps, the Lévy measwely) = k(y)dy
has a densit¥(-) which is nonintegrable with respect to the Lebesgue measar) = 0. This
causes difficulties in various discretizations of the jurapt |¢4.5) of.A due to the appearance of
divergent integrals. The variational representation)(4qbwever, ensures that in Galerkin dis-
cretizations, no divergent integrals will appgaovidedthe basis functiong;(x) of the subspace
Vy satisfy some minimal smoothness.

Proposition 4.4. Assume that:, v in (4.5) have compact support and satisfy a Lipschitz condi-
tion. Then|J(u,v)| < co.

Proof. The assertion follows from representation (4.5), sinceLipschitz condition foru and
v impliesin (4.5) with (2.2)

o)< [ [ o) = u@lta ) —v@idnie <© [ juPuay) <o

whereC' depends on the supportofv and on the respective Lipschitz constants. |

It remains to choose a particular basjsz) of /y. Based on the tensor product nature of the
domainD, the Lipschitz condition required to cancel the singweot the jump measure near
zero, and the fact that the order of the generatarever exceeds two, we build subspatgs
out of univariate spaces of continuous piecewise polyntmoifdegreer > 1.

4.2.1 Spline Wavelets iR

In the intervall = (0, 1), we define the mesh* given by the nodeg2—*¢, j = 0,. .., 2, with the
meshwidthh, = 2=°. We define)’ as the space of piecewise polynomials of degreel on the
mesh7* which are inC? ([0, 1]) with 1 < p’ < p and vanish at the endpoirisl. We write
N¢ = dim V!, M* .= N* — N1, N1 .= 0; thenN* = O(2%), ¢ = 0,1,2,.... We employ a
wavelet basig)f, j = 1,...,M* ¢ =0,1,2,... of V' with the properties:

Vi =span{yf|0< (< L; 1 <j< M}, diam (suppy) < C27°.

Any functionv € V' has the representation



with vf = (v, Jf) where%‘f are the so-called dual wavelets. ko€ V' one obtains the series

oo M?

b= 3t (4.7)

=0 j=1
which converges irL?(7) and inH} (I). Moreover, there holds the norm equivalence

00 M?

alvli, <> D WiP2* < clloflf,, 0<6<1 (4.8)

=0 j=1
whereH, = (L*(I), H{(I))go = H?(I) for 0 < 6 < 1.
Forv € L*(I) we can define a projectioR;, : L*(I) — VL by truncating (4.7):

L M
Ppo=> Y vyl Poy:=0.
=0 j=1

This projection satisfies the approximation property
Ju — Prullm, < c2” 8 gy, 0<0<1, 6 <t<p+1. (4.9)
The Increment or detail spacks’ are defined by
W= span{@bf 1< j< MY, 0=1,2,3,...
Wl .= Yo,
Then
V=Vl ogWifore>1, andV=W'q---a W, (>0. (4.10)
andQ, := P, — P,_, is a projection fromZ?(I) to W*.

4.2.2 Examples of wavelets

We give an example fgs = p’ = 1, i.e., for piecewise linear continuous functions[onl| van-

ishing at the endpoint$, 1. Since there is no nonzero function which vanishes at theants

and which is linear on the whole interal 1] we now define the mesh* for ¢ > 0 by the nodes
zf =27 withj =0,...,2". We haveN, = 2! — 1 andM, = 2°.

We define the Wavelet$§ forlevel?/ = 0,1,2,...,5 =1,...,M,: for { = 0 we haveN, =
M, = 1 andv is the function with value, atz? =

N [—=

For ¢ > 1 we haveN, = 2“1 — 1. and we lete, := 242, ¢ = 0,1,.... Then the wavelet

Yf has values){(zf) = 2¢, ¢{(25) = —c, and zero at all other nodes. The wavelgf, has
valuesyy,, (zly,) = 2¢, ¥y, (24, ) = —c, and zero at all other nodes. The wavelétwith

1 <dj < M, has values){(zh; ,) = —cp, ¥5(ah;_,) = 2¢, i(2;) = —c, and zero at all other
nodes.
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4.2.3 Sparse tensor product spaces and approximation rates

In Q = I = (0,1)4, d > 1 we define the subspadé’ as the tensor product of the one-
dimensional spaces:
VE=Vi®. ...Vt (4.11)

which can be written using (4.10) as

> Whe. oW

0<4;<L

The spacé/L hasO(2‘)) degrees of freedom and is too costlylifs large. We shall use the
sparse tensor product space

Vi o= span{wfi(m)--wfj(xd) 1< ji S MY b+ 44y SL}
= Z Wh .. @ W,

0<l14++L4<L

(4.12)

As L — oo, we haveN := dim(VE) = O(2¢4), and N, := dim(VE) = O(L412F), i.e. the
spaceS7L have considerably smaller dimension tAéh On the other hand, they do have similar
approximation properties as", provided the function to be approximated is sufficientlyosi:

To characterize the smoothness we introduce the spgtesith square integrable mixek-th
derivatives: LetH" := L*(Q), and define for integel > 1

HY = {uc H}Q) | Duec L*(N), 0<a; <k}

equipped with the norm

1
[l == 1Dl fay ) "
)

0<a; <k
1<i<d

We then defing<® for arbitrarys > 0 by interpolation.

For a functionv € L*(2) we have as a consequence of (4.7), (4.11)

= D> wd () (), (4.13)

0,,04>0 1<j,<ng,

Gody _ g0 T T
wherev; 1 = (v, ;) ... P)).

We then define the sparse projection operdtér L2()) — V% by truncating the wavelet ex-
pansion:

(Po)(@) = > o). (). (4.14)

0<ly +-4Lg<L
1< < k=1,...,d
SipSne s yeee
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The projectionﬁL can be represented in terms of the projectiQuss follows,

Po= )  Que-2Q, (4.15)

0<l1+-+L4<L

The projectionﬁL: V — VL is stable in the anisotropic, fractional order Sobolev spac

Proposition 4.5. (Stability of P,) For0 < 6 < 1,0 < o; < 2,andv € Hy := (L*(D), H*/*(D)).
we have R
1PLvllr, < Cllolla, - (4.16)

Proof. Ford = 0, we have with

ol = Zj >

£, =0 1<jk<npk
k=1,....d

2
plr-La
J1---Jd

that R R
1Peoll, < € ||Puv| < Cullvl < G lollz

We also have from the norm equivalence (4.8) and the chaizatien (3.10) that for every
v e HY2(D):

1011 ~ 0] a2y ~ ijz

£,=0 1<jr<ny,

e zd
]1 Jd

(1420 4 oo 20aba) = o> . (4.17)

k=1,...,d
It follows R R
1Peollarey < Cs | Pevf| < Colloly < Calloll ey
Interpolation gives (4.16). |

Let us denote in what follows by = max{«a; : i =1,...,d} € [0, 2].

Proposition 4.6. (Approximation property oﬁL)
Assume that the component spatésof VL have the approximation propert4.9). Then for
0<a/2<p+sanda/2<t<p+1

Chr log A2 ||uljypnif @ = 0andt = p+ 1

u— Pru a < _
” Lllizeraie) < {Cht—“/Q||u||Htotherwise.
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4.3 Time-stepping
4.3.1 Time Discretization

Under hypothesis (3.2) the Kolmogoroff equation (1.3) isypalic, a stable discretization scheme
for its numerical solution is the implicit Euler Scheme: &fide it, subdivide the interval, T")

into M subintervals of lengtth = T'/M. We approximate the time derivative att,, = mk

by the difference quotier(t:(t,.+1) — u(t))/k and define a sequence of functiorig € V-,

m = 0,1, ..., M approximatingu(t,,) as solutions of a sequence of stationary elliptic problems.
We initialize them by projection of the datginto the sparse tensor product sp&te

U%ZPLQEVL

and obtain the approximationg® € VL form = 1,2, 3, ... as solutions of the stationary elliptic
problems

Yoe VE: (v, u™) + kE (v, u ™) = (v,uf), m=0,1,..M—1 (4.18)

Note that we use the sparse tensor product space (4.12)e luabelet basis, eaali’ has the
representation (4.13), and we denote the coefficient vegtat’. Then the sequence of problems
(4.18) is equivalent to the matrix equations

Bu™"! = (M + kA)u™*! = u™ (4.19)

whereM denotes the mass-matrix aAdthe stiffness matrix with respect to the wavelet basis of
Ve

4.3.2 Multilevel Preconditioning

For iterative solution of the linear systems (4.19), we usstiftevel preconditioning. In or-
der to obtain robust algorithms, a unifying preconditianapproach which is effective in the
anisotropic spaceH /(D) will be developed. Here, the wavelet basis is essential.

The norm equivalence (4.17) with = 0 implies for everyv € VL of the form (4.13) with
coefficient vectow = (v})

4 ||v||2 <vliMv < C, ||v||2 (4.20)

with constantg’;, C, independent of.. Let D 4 denote the diagonal matrix with entrigs !t +
-+ 4 2%dla for an index corresponding to levéh, ..., l;). Then (3.15), (3.16) and (4.8) with
0 = 1 imply that

CviD v < v AV < CovPD 4v (4.21)

with constants”;, C5 independent of..
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Let ||W||DA = (WD, w)/2,

vandf e (VL)* with coefficient vectof we then have

w|p-1 = (WHD3'w)/2. Forv e VX with coefficient vector
D; A

[vlly ~ vl /]

where the norm equivalences hold with constants indepemdédn

v~ [Ellp

We now define for preconditioning the diagonal masiand the scaled matri8 as
1/2 .
S = (I n k:DA> . B:=S'BS (4.22)

The next result shows that the linear system with the pretionéd matrixB can be solved with
GMRES in a number of steps which is independent of the meshwid

Lemma 4.7. For the linear systerBx = b let x; denote the iterates obtained by the restarted
GMRES({n) method with initial guesg,. Then there i$ < ¢ < 1 independent of. andk such
that

HE) — ij <O

b— BXOH (4.23)

Proof. SinceR(x"iJ(\)Mx) = 0 we obtain from (4.20), (4.21) that

R(x"Bx) > Cx78>x vx € RV

implying withy = Sx )
R(y"By) > G lylI” vy e R™-. (4.24)

|

We have
x"By| = [x"My| + k [x" Aly| < O x| ]| + Ok [ D}

Py

With D :=1+ kD4 we get

x"By| < C(x"Dx)"*(y"Dy)"”
Using the definition o8, we obtain

x"By| < C(x"8%x)"*(y"S%y)"/?

or
x"By| < Gy x|l Iy - (4.25)

Inequalities (4.24) and (4.25) can be stated as
Moin(B+B7)2) =, |B| <
According to [16] the non-restarted GMRES method for therindB yields iteratesk,, and

residuals,,, satisfying
032 m/2
el < (1= 25)"" vl

Ci
which shows (4.23). |
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4.3.3 Convergence and Complexity

The implicit time stepping scheme (4.18) yields a sequenéel_, C VL of approximate
solutions which approximates the exact solutigm, t) for 0 <t < T'andx € D.

Using the standard error analysis for the backward Eulezrseh as e.g. in Theorem 5.4 of [30]
(assuming that thexactstiffness matrixA in (4.19) is available, i.ewithoutthe effect of matrix
compression or numerical integration considered in [38@f)d assuming full regularity of the
exact solution(z, t), we get the following error bound.

Proposition 4.8. The sequencéu}Y_, C VL of approximate solutions obtained from the time
stepping schem@.18)with exact solutlons of the linear systefdsl19)in each timestep satisfy
the error estimate

M T
EY e —uplz < ChQ(p“C“/Q){maX [u(®)]] +1+/0 [(5)][541—p 25 } (4.26)
m=1

o<t<T
T
+ Ckz/ ii(s)||%ds (4.27)
t=0
= O(K?) 4+ O(n¥PH1-a/2)) (4.28)

whereu™ := u(-,t,,) € H%?>(D) denotes the exact solution at timg = mk, m = 1, ..., M,
k=T/Manda = max{a; : i = 1,...,d} € [0,2]. denotes the natural norm
associated with the bilinear ford(-, -). It is defined by|u||2 = & (u, u).

Moreover, if the linear systentd.19)are solved in each time step approximateI)CIt(yog(]VL))
steps of GMRES iteration with preconditiongrdefined in(4.22) the resulting approximate
solutionsu}* €C VL satisfy ¢.26)and the overall work for generatlng the sequehag }

V'L still satisfying the error boun¢4.26)is bounded b@(MN2 (log(NL) )) operations for some
c>0.

We conclude by several remarks on possible extensions aretaiations.

Remark 4.9. In Proposition 4.8 we considered only the backward Euleest@pping proce-
dure (4.18) with uniform timestep. Likewise, thescheme could be analyzed, along the lines of
[30]. All these results assume maximal time regularity andiasm time steps.

The time analyticity of the semigroufd;);>o can be exploited also for aexponentially con-
vergent timestepping scheraediscontinuous Galerkin type. It would retain the erroubds

in Proposition 4.8 with onlyO(log N;,) many timesteps; see [35] for analytic time regularity
as well as for details on the dG time stepping scheme. A mairmulation of this scheme is
available in [31], for example; it applies also in the prassse, once the stiffness matdxfor
the diffusion operator in [31] is exchanged for the mathixof the Dirichlet form&(-, -) of the
Lévy copula’s generataA.
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Remark 4.10. The complexity bound) (M N2 (log(N,)¢)) operations in Proposition 4.8 is sub-
optimal for two reasons: first, as mentioned before, the -‘@malyticity of the copula’s semi-
group 7; is not exploited by the backward Euler timestepping sche#8j; this could be
remedied by théip dG timestepping procedure from [35, 31]. A second, morergeseurce
of nonoptimality is the fact that the stiffness matAxof A in thesparse tensor produetavelet
basis ofl/L in (4.12) is fully populated, so that each matrix vector riplitation requires) (N?)
many operations. As is well known (e.g [33]), generatorssofropic a-stable processes have
Calderdon Zygmund kernels whose Galerkin discretizatiatrizes infull tensor product wavelet
bases can be compressed frathto O( Ny log N1,) many nonzero entries without compromising
accuracy.

Remark 4.11. So far, we discussed only European style contracts withaorlyt exercise features.
For American style contracts, arbitrage-free prices aggatterized as (viscosity) solutions of
parabolic variational inequalities. Their numerical $mn, however, can be achieved along the
lines of [26], based on the norm equivalence (4.17) whichliespalso optimal preconditioning
of the linear complementarity solver in [26] appliedX& and A in (4.19), using (4.20) and
(4.21).
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