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Gårding inequality forA.
We design a wavelet-based dimension-independent tensor product discretization for the effi-
cient numerical solution of the parabolic Kolmogoroff equation ut + Au = 0 arising in val-
uation of derivative contracts under possibly stopped Lévy copula processes. In the wavelet
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1 Introduction

This paper addresses the pricing of derivative contracts onbaskets ofd ≥ 1 assets whose prices
are modelled by Lévy processes with particular attention on modelling the dependences in prices’
jump structure.

Arbitrage-free valuesv(x, T ) of contingent claims on baskets ofd assets whose log-returns are
modelled by a Lévy process or, more generally, a strong Markov processX with state space
Rd andX0 = x, can be expressed as expected payoffs at maturityT over all price histories
(Xt)0≤t≤T conditional toX0 = x (see [10]),

v(x, T ) = E
x(g(XT )), (1.1)

where the expectation is taken with respect to a chosen martingale measure equivalent to the
historical measure (for measure selection criteria we refer to [11, 12] and the references therein).

Deterministic methods to computev(x, T ) are based on the semigroup(Tt)t≥0 of Xt defined by

v(x, t) = (Ttg)(x) = E
x(g(Xt)), t > 0 (1.2)

or, more precisely, on the solution of the backward Kolmogoroff equation

vt + Av = 0, v|t=T = g. (1.3)

Here theinfinitesimal generatorA with domainD(A) of the processXt (resp. of the semi-
group(Tt)t≥0) is defined by the strong limit

Au := lim
t→0+

1

t
(Ttu− u) (1.4)

on all functionsu ∈ D(A) ⊂ C0(R) for which the limit (1.4) exists w.r. to the sup-norm.
(A,D(A)) is called aFeller generatorof X.

In the classical setting of Black-Scholes,X is a geometric Brownian Motion andA is a diffusion
operator so that closed form solution of (1.3) for plain vanilla contracts is possible in certain
cases. For more general jump-diffusion or Lévy price processesX, A is in general a pseudo-
differential operator with symbolψX , i.e. (e.g. [21, 22])

(Au)(x) = (ψX(D)u)(x) = F−1
ξ→x (ψX(ξ)û(ξ)) = (2π)−d/2

∫

Rd

eiξ·xψX(ξ)û(ξ)dξ (1.5)

where û(ξ) = (Fx→ξu)(ξ) denotes the Fourier transform ofu(x). For exotic contracts, the
Cauchy problem (1.3) is replaced by an initial boundary value problem (for barrier contracts)
or by a variational inequality (arising from stoppingX in American style contracts) or even
a Hamilton-Jacobi-Bellmann Quasi-Variational inequality (for problems in portfolio optimiza-
tion). Then numerical solutions are necessary which require efficient discretizations of the gen-
eratorA.
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Numerical pricing of derivative contracts can be achieved either by stochastic, Monte-Carlo
(MC) based methods or by so-called “PDE”, or “mesh-based” methods. The latter deliver, if
applicable, accurate solutions of derivative pricing problems not only in the Black-Scholes set-
ting, but also for much more general stochastic processes modelling the dynamics of the risky
asset. A general programme for the deterministic solution of the Kolmogoroff equation (1.3)
involves time-stepping and space discretization of the infinitesimal generatorA of Xt. We re-
fer to [25] for wavelet discretization of (1.3) in the univariate Lévy case with the so-calledθ
time-stepping scheme, and to [27, 28] for numerical resultsand error analysis for an exponen-
tially convergent time-stepping procedure which exploitsthe time-analyticity of(Tt)t≥0 in (1.2).
For optimal stopping problems arising in conjunction with American put style contracts in this
setting, we refer to [26].

All these results are for contracts on single risky underlyings. For contracts on large baskets
of risky assets in a Black-Scholes setting in [31] wavelet based deterministic solution methods
for (1.3) have been analyzed and implemented, and in [20] stochastic volatility models with
OU models have been treated with these methods. In particular, the wavelet based solution
methods allow to reduce the computational complexity incurred due to the high-dimension of
the computational domain for the pricing problem.

To employ these methods for pricing derivative contracts onbaskets of risky assets in a Lévy set-
ting, the correlation in the marginals’ jump structure has to be modeled parametrically. One way
to do this is by so-called Lévy copulas introduced in [37] and developed in [24]. For FE based so-
lution methods of the pricing equation corresponding to these models, the generators(A,D(A))
of (Tt)t≥0 for the associated Lévy copula processX must be identified with appropriate function
spaces, multilevel norm equivalences must be proved in these spaces and time-analyticity of the
associated semigroup(Tt)t≥0 in (1.2) must be established.

For example, forα-stable processes inRd, the jump measureν(dx) of X is homogeneous of
order−d − α, i.e. ν(λdx) = λ−d−αν(dx) for all λ > 0 and some0 < α < 2, and the domain
D(A) corresponds to certain fractional order Sobolev spacesHα

loc(R
d) (e.g. [21, 22]). Assuming

the same jump intensity for each component process, however, is not realistic in practice [7],
and copula constructions which blend univariate Lévy processes with different jump intensities
should be considered [2].

The identification of the generators(A,D(A)) for Lévy copula processes of tempered stable
marginal processes and the establishment of the above results which form the basis of efficient,
wavelet-based deterministic solution methods for the pricing equation (1.3) is the purpose of the
present paper.

The outline of the paper is as follows.

To make this work as much as possible self contained in the next section we recall some basic
facts on Lévy processes, define Lévy copulas and characterize all Rd-valued Lévy processesX
whose components are equal in law tod univariate Lévy processesY1, ..., Yd. We conclude
this preliminary section with fundamentals on generators and Dirichlet forms of Lévy copula
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processes.

Assuming that each marginal Lévy processYi is tempered stable with a4-parameter density of
tempered stable type, we show in Section 3 that the domains ofgenerators of 1-homogeneous
Lévy copula processes are certain classes of anisotropic Sobolev spaces. For an example of tem-
pered stable processes that generalizes the variance gammaprocess by adding a new parameter
in the Lévy density that allows the Lévy process to have both finite or infinite activity and finite
or infinite variation we refer to [7] and the references therein.
The determination of these domains of generators (of 1-homogeneous Lévy copula processes) is
done in two major steps.
Initially, we focus on 1-homogeneous Lévy copulas ofα-stable marginals and determine the
generators’ domains, whereα is a vector(α1, ..., αd).
Then, exponential tail decay of the marginal densities is introduced and it is shown that the do-
mains of the generators and of the Dirichlet forms for these so-called tempered anisotropic stable
Lévy processes coincide locally with those of the untempered versions.

Section 4 is devoted to aspects of the numerical solution of the Kolmogoroff equation (1.3) using
the methods developed in [25, 26, 27, 28]. We propose a wavelet-based dimension independent
tensor product discretization of the integro-differential generator of the anisotropic stable Lévy
copula process. Unlike the Fourier transform, wavelets arewell localized also in price space
which allows to treat barrier and American contracts along the lines of [26, 28]. We conclude the
paper with some remarks on possible extensions and generalizations.

2 Preliminaries

2.1 Lévy Processes

We start recalling definitions and basic properties of Lévyprocesses as presented e.g. in [3, 32].

A stochastic process(Xt)t≥0 on Rd with X0 = 0 a.s. is a Lévy process if it has independent
increments, is temporally homogeneous and stochasticallycontinuous.

For ξ ∈ Rd, define the characteristic functionΦX and the characteristic exponentψX of X by

ΦX(ξ) = exp(−tψX(ξ)) = E(exp(i〈ξ,Xt〉)) ξ ∈ R
d, t > 0.

For a Lévy processX, the characteristic exponentψX(ξ) is also calledLévy symbol. It admits
theLévy-Khinchin representation

ψX(ξ) = i〈γ, ξ〉 +Q(ξ) +

∫

y∈Rd

(1 − ei〈ξ,y〉 +
i〈ξ, y〉

1 + |y|2
)ν(dy), (2.1)

whereQ(ξ) denotes the quadratic form1
2
ξ>Qξ with a symmetric, nonnegative definite ma-
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trix Q = (qij)1≤i,j≤d, a drift vectorγ ∈ Rd and the Lévy measureν(dy) which satisfies
∫

Rd

(1 ∧ |y|2)ν(dy) <∞. (2.2)

Functionsψ of the form (2.1) are callednegative definitefunctions. The Lévy processX is
completely determined by thecharacteristic triple(Q, γ, ν) in (2.1). If Q in (2.1) vanishes,
thenX is called apure jumpprocess.

The Lévy-Khinchin formula (2.1) for the characteristic functionψX corresponds to theLévy-It̂o
decompositionof X

Xt = ΣBt + tE

(
Xt −

∫

|x|≥1

xN1(·, dx)

)
+

∫

|x|<1

x(Nt(·, dx) − tν(dx)) +

∫

|x|≥1

xNt(·, dx)

(2.3)

= ΣBt + γt+

∫

|x|<1

x(Nt(·, dx) − tν(dx)) +
∑

0<s≤t

∆Xs1{|∆Xs|≥1}.

Remark 2.1. The Lévy-Khinchin formula (2.1) and the Lévy-Itô decomposition (2.3) for the
Lévy processXt decomposeXt into three pieces: a diffusion without driftWt = ΣBt where
ΣΣ> = Q, a (deterministic) drift partδt = γt and a quadratic, pure jump part

Jt =

∫

|x|<1

x(Nt(·, dx) − tν(dx)) +
∑

0<s≤t

∆Xs1{|∆Xs|≥1}.

These three pieces correspond to a decomposition of the characteristic exponentψX and the
infinitesimal generatorAX of X into three characteristic exponents and generators, resp., of the
three component processes ofX according to

ψX = ψW + ψδ + ψJ , (2.4)

AX = AW + Aδ + AJ . (2.5)

ForψX as well asAX each of the three elements in their representations is completely charac-
terized by one component of the characteristic triple(Q, γ, ν).

Remark 2.2. A key issue in the construction ofRd-valued Lévy processes is the parametrization
of correlations between thed univariate Lévy “driving” processes taking values inR. As the
drift δ is deterministic, dependence modeling enters in the diffusion and the quadratic, pure
jump part of the processX. In the diffusion part, dependence between thed univariate driving
Brownian Motions is parametrized by the so-called “volatility correlation matrix”,Σ. In the
jump-partJ of the processX, however, the dependence between thed Lévy measuresνi(dyi) on
R of the driving Lévy processes enters into the constructionof the jump-measure ofJ . One way
to parametrize dependence in the jump structure ofX are so-calledLévy copulas.
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2.2 Lévy copulas

Here we recall the definition of Lévy copulas and present their main properties, following [37,
24]. We start with some notation. DenoteR := (−∞,∞], and, fora, b ∈ R

d
such thata ≤ b

componentwise, we define the half-open intervals

(a, b] := (a1, b1] × ...× (ad, bd].

For a functionF : S → R defined on some subsetS ⊆ R
d
, theF -volume of(a, b] is defined by

VF ((a, b]) :=
∑

u∈{a1,b1}×...×{ad,bd}

(−1)N(u)F (u)

whereN(u) = |{k : uk = ak}|. Note that forF (u) = u1u2...ud, VF ((a, b]) equals the Lebesgue

measure of(a, b] ⊆ R
d
. The functionF : S → R is calledd-increasingif VF ((a, b]) ≥ 0 for all

a, b ∈ S such thata ≤ b and(a, b] ⊂ S. Examples ofd-increasing functions relevant to us are
furnished by distribution functions of random vectorsX ∈ Rd via

F (x1, ..., xd) = P [X1 ≤ x1, ..., Xd ≤ xd].

In dependence modelling, an important role is played by margins of multivariate distributions.
To define them, letF : R

d
→ R bed-increasing and such thatF (u1, ..., ud) = 0 if ui = 0 for at

least one1 ≤ i ≤ d. Let furtherI ⊂ {1, ..., d} be a nonempty index set of cardinality|I| ≤ d and

denote byIc := {1, ..., d}\I its complement of cardinalityd− |I|. Foru ∈ R
d
, defineuI ∈ R

|I|

to be the vector(ui)i∈I .

Then theI-marginof F is the functionF I : R
I
→ R defined by

F I((uI)i∈I) := lim
c→∞

∑

uIc∈{−c,∞}Ic

(Πj∈Icsgnuj)F (u1, ..., ud)

where sgnx = 1 for x ≥ 0 and−1 otherwise.

After these preparations, we may define Lévy copulas.

Definition 2.3. F : R
d
→ R is a Lévy-copula if

1. F (u1, ..., ud) 6= ∞ for (u1, ..., ud) 6= (∞, ...,∞),

2. F (u1, ..., ud) = 0 if ui = 0 for at least onei ∈ {1, ..., d},

3. F is d-increasing,

4. F {i}(u) = u for anyi ∈ {1, ..., d}, u ∈ R.
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Lévy copulas are Lipschitz in the sense that

|F (u1, ..., ud) − F (v1, ..., vd)| ≤

d∑

i=1

|ui − vi|. (2.6)

We also need tail integrals of Lévy processes.

Definition 2.4. LetX ∈ Rd be a Ĺevy process with Ĺevy measureν. Thetail integral ofX is the
functionU : Rd\{0} → R given by

U(x1, ..., xd) := Πd
i=1sgn(xi)ν(Π

d
j=1I(xj))

whereI(x) := (x,∞) if x ≥ 0 andI(x) := (−∞, x] otherwise.

Let furtherI ⊆ {1, 2, ..., d} be an index set with|I| > 0 indices. Thenthe I - marginal tail
integralU I of X is the tail integral of the processXI := (Xi)i∈I ∈ R|I|. If I = {i}, we write
Ui := U I = U{i}.

The next result due to Kallsen and Tankov [24] will play a key role in our considerations.

Theorem 2.5. (Sklar’s Theorem for Ĺevy copulas)
1. For any Ĺevy processX ∈ Rd exists a Ĺevy copulaF such that the tail integrals ofX satisfy

U I((xi)i∈I) = F I((Ui(xi))i∈I) (2.7)

for anyI ⊆ {1, ..., d} and any{xi}i∈I ∈ R|I|\{0}. The Ĺevy copula is unique onΠd
i=1RangeUi.

2. LetF be ad-dimensional Ĺevy copula andUi the tail integrals of univariate Levy processes.
Then there exists a Lévy processX ∈ Rd such that its components have tail integralsUi and its
marginal tail integrals satisfy(2.7)

The purpose of copulas is parametric modelling of dependence in the jump structure of multivari-
ate Lévy processesX = (X1, ..., Xd) ∈ Rd. By the Lévy-Itô decomposition (2.3), correlation
in the diffusion part is accounted for in the volatility matrix Σ, so that the main objective of
Lévy copulas is the parametric construction of the multivariate jump measureν(dx) out of jump
measures of the component processes.

The extreme cases complete dependence and complete independence among jumps of the com-
ponents ofX are characterized as follows.

Proposition 2.6. (Independence Ĺevy copula)
LetX = (X1, ..., Xd) ∈ Rd be a Ĺevy process. Its componentsX i are independent if and only if
their Brownian parts are independent and ifX has a Ĺevy copula of the form

F⊥(x1, ..., xd) :=

d∑

i=1

xiΠj 6=i1{∞}(xj)
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To address the other extreme, namely complete dependence among the jumps of the components
X i, we observe that elements of a strictly ordered setS ⊂ Rd are completely determined by one
coordinate only. Hence we have

Definition 2.7. LetX ∈ Rd be a Ĺevy process. The jumps ofX arecompletely dependentor co-
monotonicif there exists a strictly ordered subsetS ⊂ K := {x ∈ Rd : sgn(x1) = ... = sgn(xd)}
such that for allt > 0 holds∆Xt := Xt −Xt− ∈ S almost sure. Equivalently, the jumps ofX
are completely dependent if there exists a strictly orderedsubsetS ⊂ K such thatν(Rd\S) = 0
whereν denotes the Ĺevy measure ofX.

Complete dependence among the components’ jumps ofX in terms of Lévy copulas is provided
by

Proposition 2.8. (Complete dependence Lévy copula)
LetX ∈ Rd be a Ĺevy process with Ĺevy measureν supported by an ordered setS ⊂ K. Then
thecomplete dependence Lévy copula

F||(x1, ..., xd) := min{|x1|, ..., |xd|}1K(x1, ..., xd)Π
d
i=1sgn(xi) (2.8)

is a Lévy copula ofX.

Vice versa, ifF|| in (2.8) is a Lévy copula ofX, then the Ĺevy measure ofX is supported on
an ordered subset ofK. If, in addition, the tail integralsUi of X i are continuous and satisfy
limx→0 Ui(x) = ∞ for i = 1, ..., d, then the jumps ofX are completely dependent.

2.3 Generators and Dirichlet forms of Lévy copula processes

Recall that a Dirichlet space (onRd for simplicity) is a pair(F , E) consisting of a space of real-
valued functionsF ⊂ L2(Rd) and a symmetric quadratic formE : F ×F → R which is closed,
densely defined, non-negative, and satisfies the following contraction condition:

if u ∈ F then v := (0 ∨ u) ∧ 1 ∈ F and E(v, v) ≤ E(u, u).

All translation invariant (symmetric) Dirichlet forms (onRd) are given by

Eφ(u, v) =

∫

Rd

φ(ξ) û(ξ) v̂(ξ) dξ, u, v ∈ S(Rd),

whereφ : Rd → R is a continuous negative definite function. The domainFφ of Eφ is then given
by

Fφ = Hφ,1(Rd) :=

{
u ∈ L2(Rd) :

∫

Rd

(1 + φ(ξ))|û(ξ)|2 dξ <∞

}
. (2.9)
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It is well known that one can associate withφ (or with (Fφ, Eφ)) the operator semigroup(Tt)t≥0

onL2(Rd) defined by

Ttu(x) = (2π)−d/2
∫

Rd

eix·ξ e−tφ(ξ) û(ξ) dξ =

∫

Rd

u(x− y)µt(dy),

where(µt)t≥0 is a vaguely continuous semigroup of sub-probability measures onRd with Fourier
transformµ̂t = (2π)−d/2 e−tφ(ξ).

Note that the measuresµt are also the transition probabilities for a Lévy process(Xt)t≥0 and
therefore we have

E
(
eiXtξ

)
= e−tφ(ξ).

Thusφ is also a characteristic exponent of a Lévy process.

The generator(A, D(A)) of the semigroup(Tt)t≥0 is given by

Au(x) = −φ(D)u(x) = −(2π)−d/2
∫

Rd

eix·ξ φ(ξ) û(ξ) dξ

with domain

Hφ,2(Rd) :=

{
u ∈ L2(Rd) :

∫

Rd

(1 + φ(ξ))2 |û(ξ)|2 dξ <∞

}
. (2.10)

Remark 2.9. In fact the spacesHφ,2(Rd) =: Hφ,2
2 (Rd) are part of the scale of Bessel potential

spacesHφ,s
p (Rd), s ∈ R, 1 < p < ∞ for whichS(Rd) is a dense subset with respect to a norm

defined generalizing (2.10). These spaces appear as generalizations of the classesHφ,2
p which

are domains of generators forLp-sub-Markovian semigroups associated with the real valued
continuous negative definite functionψ. These spaces were extensively investigated in [17] and
[18] and we do not go into further details here since for our purposes it will be sufficient to
consider the casep = 2.

The function spaces of typeHφ,1 andHφ,2 we are interested in, appeared in their generality
for the first time in the work of A. Beurling and J. Deny [4, 5], see also [13], on Dirichlet
spaces. In general they are contained neither in the Besov-Bs

p,q or Triebel - Lizorkin-F s
p,q

scales nor in the anisotropic classes of function spaces considered so far. They are so-called
function spaces of generalized smoothness, because the smoothness properties are related to the
functionφ. Function spaces of generalized smoothness have been introduced and considered by
several authors, in particular since the middle of the seventies with different starting points and
in different contexts. In [19] it was given an overview on theapproaches known in the literature
up to that moment.

LetX ∈ Rd be a Lévy process with characteristic triple(Q, γ, ν) = (Σ>Σ, γ, ν) as in (2.3) and
with associated semigroup(Tt)t≥0 as in (1.2) with infinitesimal generatorA. The Lévy symbol
ψX ofX given by (2.1) is a continuous, negative definite function and the symbol of the generator
A of X as in (1.5).
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Given the generatorA = ψX(D), its Dirichlet bilinear formE(·, ·) of A given by

E(u, v) = −(u,Av), u, v ∈ S(Rd)

is crucial for variational formulation and the numerical solution of the pricing problem (1.3).

We identify generators(A,D(A)) and Dirichlet forms(E ,D(E)) of certain Lévy copula pro-
cessesX modelling dynamics of baskets of risky assets whose prices are univariate, so-called
regular Lévy processes of exponential typewhich have been found useful in financial modelling
(e.g. [14, 15, 6, 7]).

A first example is furnished byα-stable processesX ∈ Rd as proved in [24, Theorem 4.8].

Proposition 2.10. LetX ∈ Rd be a Ĺevy process andα ∈ (0, 2). ThenX is α-stable if and
only if its componentsXi ∈ R areα-stable and ifX has a Ĺevy copula that is homogeneous of
order1, i.e.

F (rξ1, ..., rξd) = r F (ξ1, ..., ξd) for all ξ = (ξ1, ..., ξd) ∈ R
d, and all r > 0. (2.11)

The next example is taken from [24, Example 5.2] .

Example 2.11.Letd ≥ 2. The functionF defined as

F (u1, ..., ud) = 22−d

(
d∑

j=1

|uj|
−θ

)−1/θ
(
η1{u1···ud≥0} − (1 − η)1{u1···ud<0}

)

defines a two parameter family of Lévy copulas which resembles the Clayton family of ordinary
copulas. It is in fact a Ĺevy copula homogeneous of order 1, for anyθ > 0 and anyη ∈ [0, 1].

3 Domains of generators of Ĺevy copula processes

As we indicated in Remark 2.1, the infinitesimal generatorAX and the Dirichlet formEX(·, ·)
of the Lévy processX each are the sum (2.5) of diffusionW , drift δ and quadratic, pure jump
partJ in the Lévy-Itô decomposition (2.3) ofX. Therefore, the domainsD(AX) andD(EX) are
intersections of the corresponding domains:

D(A) = D(AW ) ∩D(Aδ) ∩D(AJ), D(E) = D(EW ) ∩D(Eδ) ∩D(EJ). (3.1)

The structure of the domainsD(EW ),D(Eδ) is known, see e.g. [18, Remark 2.1.7], therefore we
focus in the present section on the structure of the domainsD(AJ) andD(EJ), or, equivalently,
of D(AX) under the assumption thatin the Lévy-Itô decomposition (2.3) ofX it holds

W = δ = 0. (3.2)
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By [37, Remark 3.2] we know that if the tail integrals given by(2.7) are absolutely continuous,
we can compute the Lévy density of the Lévy copula process by differentiation as follows:

ν(dx1, ..., dxd) = ∂1...∂dF |ξ1=U1(x1),...,ξd=Ud(xd) ν1(dx1)...νd(dxd)

whereν1(dx1), ...,νd(dxd) are marginal Lévy densities.

Let 0 < α1, ..., αd < 2 and let real numbersβ1, ..., βd ≥ 0 governing the Lévy densities’ tail
behavior be given.

Writing for eachj = 1, ..., d: νj(dxj) = k
βj

j (xj) dxj with densitieskβj

j : R \ {0} → R of the
jump measures’ in the coordinates given by

k
βj

j (xj) = Cj
e−βj |xj |

|xj |1+αj
(3.3)

for some constantCj > 0, we get

ν(dx1, ..., dxd) = ∂1...∂dF |
ξ1=U

β1
1 (x1),...,ξd=U

βd
d (ξd)

kβ1

1 (x1)...k
βd

d (xd) dx1...dxd (3.4)

and this can be written as

ν(dx1, ..., dxd) = kβ(x1, ..., xd) dx1...dxd (3.5)

for someβ = (β1, ..., βd).

3.1 Homogeneous marginal densities and anisotropic stableLévy copula
processes

3.1.1 Definition and preliminaries

This subsection is dedicated to the treatment of the case in which the marginal densities in (3.3)
are given with parametersβj = 0 for all j = 1, ..., d. Then each of the functionsk0

j (j = 1, ..., d)
(corresponding toβj = 0) is homogeneous of degree−1 − αj.
More specifically, we will work under the following assumption.

Assumption 3.1. The functionF : R
d
→ R is a homogeneous Lévy copula of order 1 such that

∂1...∂dF : Rd → R exists.
The numbersα1, ..., αd are in (0, 2) and the functionsk0

1, ..., k
0
d, as marginal densities of univari-

ate Ĺevy processes, are homogeneous of order−1 − α1,...,−1 − αd, respectively, i.e.

k0
j (rxj) = r−1−αj k0

j (xj) for all r > 0, and all xj ∈ R \ {0},

for anyj = 1, ..., d.

12



Note that under the above assumption, the tail integralsU0
1 , ..., U

0
d : R \ {0} → R, of the univari-

ate Lévy processes, with marginal densitiesk0
1, ..., k

0
d, are homogeneous of order−α1,...,−αd,

respectively, i.e.

U0
j (rxj) = r−αj U0

j (xj) for all r > 0, and all xj ∈ R \ {0},

for anyj = 1, ..., d. In order to see this, one has only to recall Definition 2.4 of the tail integrals:
U0
j (xj) = νj(xj,∞) if xj ≥ 0 andU0

j (xj) = νj((−∞, x]) if xj < 0 where hereνj(dxj) =
k0
j (xj)dxj .

We now introduce the anisotropic stable Lévy copula processes.

Definition 3.2. LetF : R
d
→ R be a homogeneous Lévy copula of order 1 such that∂1...∂dF :

Rd → R exists and letk0
1, ..., k

0
d be marginal densities of univariate Lévy processes which are

homogeneous of order−1−α1,...,−1−αd, respectively, whereα1, ..., αd ∈ (0, 2); let U0
1 , ..., U

0
d

be the corresponding tail integrals.

By Sklar’s theorem for Ĺevy copulas, Theorem2.5, there exists a Ĺevy processX = (X1, ..., Xd) ∈
R
d such that its components have tail integralsU0

i , i = 1, ..., d.
We call this process anα-stable Ĺevy copula process, whereα = (α1, ..., αd), or simply an
anisotropic stable Ĺevy copula process if it will be clear from the context to which anisotropy
parametersα1, ...,αd we will refer.

As already announced we are able to determine the domainD(E) of the Dirichlet form associated
to the generator of theα-stable Lévy copula process associated toF and to prescribed marginals
U0

1 , ..., U
0
d .

3.1.2 Anisotropic homogeneity of the Ĺevy symbol

We will start proving an anisotropic homogeneity property of the Lévy densityk0, corresponding
to the case when eachβj = 0, j = 1, ..., d.

Theorem 3.3.Let the copulaF , the numbersα1, ..., αd, and let the marginal densitiesk0
1, ..., k

0
d

be as in Assumption3.1. LetU0
1 , ..., U

0
d denote the corresponding marginal tail integrals. Then

the functionk0, defined by

k0(x1, ..., xd) = ∂1...∂dF |ξ1=U0
1 (x1),...,ξd=U0

d (xd) k
0
1(x1)...k

0
d(xd),

compare(3.4)and(3.5), satisfies

k0
(
t
− 1

α1 x1, ..., t
− 1

αd xd

)
= t

1+ 1
α1

+...+ 1
αd k0(x1, ..., xd)

for all t > 0 and allx = (x1, ..., xd) ∈ Rd with x1, ..., xd 6= 0.

13



Proof. Step1. The function∂1...∂dF is homogeneous of order1 − d, i.e.

∂1...∂dF (rξ1, ..., rξd) = r1−d F (ξ1, ..., ξd),

for all r > 0 and allξ = (ξ1, ..., ξd) ∈ Rd, since one has only to take partial derivatives in (2.11)
and to use definition of homogeneity.

Step2. Let F , 0 < α1, ..., αd < 2, andU0
1 , ..., U

0
d as above. Using step 1, we get by a direct

computation that∂1...∂dF ◦ (U0
1 , ..., U

0
d ) : Rd \

d⋃
j=1

{xj = 0} → R satisfies

[
∂1...∂dF ◦ (U0

1 , ..., U
0
d )
] (
t
− 1

α1 x1, ..., t
− 1

αd xd

)
= t1−d

[
∂1...∂dF ◦ (U0

1 , ..., U
0
d )
]
(x1, ..., xd)

for all t > 0, and allxj ∈ R \ {0}, j = 1, ..., d.

Step3. LetF , 0 < α1, ..., αd < 2, U0
1 , ..., U

0
d , andk0

1, ..., k
0
d as above. Then forx1, ..., xd 6= 0 we

have

k0
(
t
− 1

α1 x1, ..., t
− 1

αd xd

)

= ∂1 · · ·∂dF |
ξ1=U0

1 (t
− 1

α1 x1),...,ξd=U0
d (t

− 1
αd xd)

k0
1

(
t
− 1

α1 x1

)
...k0

d

(
t
− 1

αd xd

)

= t1−d ∂1 · · ·∂dF |ξ1=U0
1 (x1),...,ξd=U0

d (xd)

(
t
− 1

α1

)−1−α1

k1(x1)...
(
t
− 1

αd

)−1−αd

kd(xd)

= t
1+ 1

α1
+···+ 1

αd k0(x1, · · · , xd)

and this completes the proof. �

By Definition 3.2, the so-calledα-stable Lévy copula process, denote it byX, is itself a Lévy
process. Its Lévy density is given byk0, as in Theorem 3.3. The corresponding Lévy symbol
ψX : Rd → C of X obtained from (2.1) is a continuous negative definite function.

Below we will see that the domain of the Dirichlet form associated toX can be completely
characterized by the real part<ψX of ψX . Therefore, we will complement now Theorem 3.3
with a result concerning the anisotropic homogeneity of thereal part of the jump part<ψJ of the
Lévy symbolψX . As in (2.4), by the Lévy-Khinchin formula (2.1) we have

ψJ (ξ) =

∫

Rd\{0}

(1 − ei〈ξ,x〉 +
i〈ξ, x〉

1 + |x|2
)k0(x)dx. (3.6)

Theorem 3.4. Under the assumptions of Theorem 3.3, let the Lévy kernelk0(x1, ..., xd) be as
above. Then real part of the Lévy symbolψJ : Rd → C of the pure jump part of theα-Lévy copula
processX with densityk0 is an anisotropic homogeneous function of type(1/α1, ..., 1/αd) and
order 1, i.e. it satisfies

<ψJ (t
1/α1ξ1, ..., t

1/αdξd) = t<ψJ(ξ1, ..., ξd) for all t > 0 and all ξ = (ξ1, .., ξd) ∈ R
d.
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Proof. Since the Lévy symbolψX of X is a continuous negative definite function, alsoψJ
and hence<ψJ are continuous negative definite. Hence,<ψJ : Rd → R can be regarded as
the symbol of a pure jump process with Lévy densityk0. Thus, by [21, Corollary 3.7.9] the
Lévy-Khinchin formula (3.6) can be simplified to

<ψJ(ξ) =

∫

Rd\{0}

(1 − cos〈ξ, x〉)k0(x)dx. (3.7)

With this connection ofψJ andk0, Theorem 3.3 yields for anyt > 0 andξ = (ξ1, ..., ξd) ∈ Rd,

<ψJ (t
1/α1ξ1, ..., t

1/αdξd) =

∫

Rd\{0}

(
1 − cos

( d∑

i=1

xit
1/αiξi

))
k0(x)dx

=

∫

Rd\{0}

(1 − cos〈ξ, z〉)k0(t−1/α1z1, ..., t
−1/αdzd)t

−(α1+...+αd)dz

=

∫

Rd\{0}

(1 − cos〈ξ, z〉)t k0(z1, ..., zd)dz

= t<ψJ (ξ),

where we have used the change of variablesxi = t−1/αizi, i = 1, ..., d. �

3.1.3 The domain of the generator as an anisotropic Sobolev space

We will now identify the domains of generators of anisotropic, α-stable Lévy processes. As
indicated before, we focus onD(EJ), i.e. on the pure jump part of the process and assume (3.2)
throughout. As we will see,EJ coincides with Bessel potential spaces resp. with Sobelev spaces
of mixed smoothness. We start by recapitulating basic factson anisotropic Bessel potential
spaces.

If (s1, ..., sd) is ad- tuple of natural numbers then

W (s1,...,sd)(Rd) =



f ∈ S ′(Rd) : ‖f‖L2(Rd) +

d∑

j=1

∥∥∥∥∥
∂sjf

∂x
sj

j

∥∥∥∥∥
L2(Rd)

<∞





is the classical anisotropic Sobolev space onRd. In contrast to the usual (isotropic) Sobolev
space (s1 = · · · = sd) the smoothness properties of an element fromW (s1,...,sd)(Rd) depend on
the chosen direction inRd.

These spaces are generalized in a natural way: givens1, ..., sd ∈ R one can define anisotropic
Bessel potential spaces, or fractional Sobolev spaces,

H(s1,...,sd)(Rd) =



f ∈ S ′(Rd) : ‖f‖H(s1,...,sd)(Rd) =

∥∥∥∥∥

d∑

j=1

(1 + ξ2
j )
sj/2f̂

∥∥∥∥∥
L2(Rd)

<∞



 . (3.8)

15



Similar to the isotropic case, the study of anisotropic Bessel potential spaces is a part of the
more general theory of anisotropic spaces of Besov and Triebel-Lizorkin type. However for our
purposes it will be enough to restrict ourselves to the aboveclasses of anisotropic Bessel potential
spaces.

It turns out that it is very useful to remark that givens ∈ R andj = 1, ..., d, denoting

Hs
j (R

d) =

{
f ∈ S ′(Rd) : ‖f‖Hs

j (Rd) =
∥∥∥(1 + ξ2

j )
s/2f̂

∥∥∥
L2(Rd)

<∞

}
(3.9)

by [29, Section 9.2] we have (in the sense of equivalent norms):

H(s1,...,sd)(Rd) =
d⋂

j=1

H
sj

j (Rd) and ‖f‖H(s1,...,sd)(Rd) =

( d∑

j=1

‖f ‖2

H
sj
j (Rd)

) 1
2

. (3.10)

Henceforth, we will use the notations = (s1, ...sd).

In the analysis of anisotropic spaces, following [36] an important tool are so-called anisotropic
distance functions.

Let d ≥ 2 and leta = (a1, ..., ad) a given anisotropy, that is a fixedd- tuple of positive numbers.
The casea = (1, ..., 1) is usually known as the ”isotropic case”.

Definition 3.5. Let a = (a1, ..., ad) a given anisotropy. An anisotropic distance function (with
respect toa) is a continuous function% : Rd → R with the properties%(x) > 0 if x 6= 0 and

%(ta1x1, ..., t
adxd) = t %(x) for all t > 0 and all x ∈ R

d.

It is easy to see that%λ : Rd → R defined by

%λ(x) =

(
d∑

i=1

|xi|
λ/ai

)1/λ

(3.11)

is an anisotropic distance function for every0 < λ < ∞. Remark that for appropriate values
of λ we can obtain arbitrary (finite) smoothness of the function%λ introduced above, cf. [9,
Lemma 2.2].

The next result essentially goes back to E. M. Stein and S. Wainger, see [36]. A nice and very
detailed exposition can be found in the thesis of H. Dappa, see [9]. Together with the example
from (3.11) it will play a key role in our further considerations so that we state it separately.

Lemma 3.6. Let a = (a1, ..., ad) a given anisotropy and% and %′ two anisotropic distance
functions. Then they are equivalent in the sense that there exist constantsc, c′ > 0 such that
c %(x) ≤ %′(x) ≤ c′ %(x) for all x ∈ Rd.
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Now we are ready to identify the domain of the Dirichlet formE(·, ·) of an anisotropic stable
Lévy copula process as an anisotropic Bessel potential space.

Theorem 3.7. Let the copulaF , the numbersα1, ..., αd, the marginal densitiesk0
1, ..., k

0
d, and

the tail integralsU0
1 , ..., U

0
d , as in Assumption3.1. Then the domainD(E) of the Dirichlet form

associated to the generator of theα-stable Ĺevy copula process associated toF andU0
1 , ..., U

0
d ,

is the anisotropic Bessel potential space

Hα/2(Rd) = H(α1/2,··· ,αd/2)(Rd),

compare(3.8).

Proof. As in Theorem 3.4, we denote byX theα-Lévy copula process. Its characteristic triple
is denoted by(A, γ, ν) = (Σ>Σ, γ, ν) as in (2.3) and denote its associated semigroup(Tt)t≥0 as
in (1.2) with infinitesimal generatorA. Also as in Theorem 3.4, the Lévy symbolψX : Rd → C

of X is a continuous, negative definite function.

SinceX is a Lévy process,A is translation invariant and its Dirichlet bilinear formE(·, ·) is
given by

E(u, v) = −(u,Av), u, v ∈ S(Rd),

Since it is a translation invariant Dirichlet form onL2(Rd; R), it can be expressed in terms of the
characteristic functionψX(ξ) of X by

E(u, v) =

∫

Rd

ψX(ξ)û(ξ)v̂(ξ)dξ. (3.12)

We know by [21, Example 4.7.32] that for such forms, there existsc > 0 such that

|=ψX(ξ)| ≤ c (1 + <ψX(ξ)) for all ξ ∈ R
d, (3.13)

and that the domain ofE , denotedD(E), is a Sobolev space of generalized smoothness

D(E) = H<ψX ,1(Rd; R).

Let us specify this in the context ofα-stable processes. By hypothesis (3.2) there holds<ψX =
<ψJ , whereψJ denotes the Lévy symbol of the jump part ofX as in formula (3.6). By The-
orem 3.4 the function<ψX = <ψJ is an anisotropic distance function with respect to the
anisotropy

a1 =
1

α1
, · · · , ad =

1

αd
.

Consequently<ψX is equivalent to any of the anisotropic distance functions%λ defined in (3.11),
in particular forλ = 1 or λ = 2 we get

<ψX(ξ) ∼ |ξ1|
α1 + · · · + |ξd|

αd ∼
(
|ξ1|

2α1 + · · ·+ |ξd|
2αd
)1/2

.

From the last characterization, using (3.9) and (3.10), we now get that the spaceH<ψX ,1(Rd)
coincides with the anisotropic Bessel potential spaceH(α1/2,...,αd/2)(Rd) and this completes the
proof. �
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3.1.4 Analyticity of the associated semigroup of operators

We start recalling some basic facts on analytic semigroups of operators and on Gårding inequali-
ties. Recall a semigroup(Tt)t≥0 of operators between Banach spaces is calledanalyticif t 7→ Ttu
admits an analytic extensionz 7→ Tzu to some sectorSθ,d0 := {z ∈ C : arg(z − d0) < θ}.
A sufficient condition for the semigroup(Tt)t≥0 to be analytic is a Gårding inequality for its
infinitesimal generatorA in (1.4).

The Gårding inequality can be stated also in terms of the Dirichlet formE(·, ·) associated withA
(compare [35]): letA : V → V ∗ andE(·, ·) : V × V → R be continuous, whereV ∗ is the dual
space ofV with respect to a pivot spaceH so that

V ↪→ H ' H∗ ↪→ V ∗ with dense injections;

the semigroup(Tt)t≥0 with generatorA is analytic, if E(·, ·) satisfies the Gårding inequality:
there areγ > 0 andC ≥ 0 such that

∀v ∈ V : < E(v, v) ≥ γ‖v‖2
V − C‖v‖2

H . (3.14)

If (3.14) holds, then the Kolmogoroff equation (1.3) is, forg ∈ H, well-posed inL2([0, T ];V ) ∩
C0([0, T ];H) (e.g., [1]).

We note that (3.14) implies apart from analyticity also the exponential convergence of a suitable
high order time-stepping scheme of discontinuous Galerkintype for the numerical integration of
the Kolmogoroff equation (1.3) (e,g. [31] and the references there).

Remark 3.8. With the substitutionv = exp(λt)u, for sufficiently largeλ > 0, we can change
the backward Kolmogoroff equation (1.3) so that a stronger form of (3.14) holds:

∀v ∈ V : < E(v, v) ≥ γ1 ‖v‖
2
V

with a positive constantγ1 > 0.

We next establish Gårding inequalities for generators ofα-stable processes. The case of tempered
α-stable processes will be treated later.

Theorem 3.9.The Dirichlet form induced by the generatorA of the copula ofα = (α1, α2, ..., αd)-
stable marginals satisfying Assumption3.1and (3.2) satisfies a G̊arding inequality in the anisotropic
spaceHα/2(Rd): there exist constantsγ > 0 andC ≥ 0 such that

< E(u, u) ≥ γ ‖u‖2
Hα/2(Rd) − C ‖u‖2

L2(Rd) for all u ∈ C∞
0 (Rd). (3.15)

Moreover, the Dirichlet formE(·, ·) is continuous inHα/2(Rd), i.e.

|E(u, v)| ≤ c2‖u‖Hα/2(Rd)‖v‖Hα/2(Rd) for all u, v ∈ Hα/2(Rd). (3.16)
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Proof. Based on (2.9) and (3.2), and using Theorem 3.7 we have

Hα/2(Rd) = H<ΨX ,1(Rd; R)

=

{
u ∈ L2(Rd) : ‖u‖2

Hα/2(Rd) =

∫

Rd

(1 + <ΨX(ξ)) |û(ξ)|2 dξ <∞

}
.(3.17)

Based on the definition (3.12) of the Dirichlet form induced by the generatorA of an α =
(α1, α2, ..., αd)-stable Lévy copula process, with marginals satisfying Assumption 3.1, we know

< E(u, u) =

∫

Rd

<ΨX(ξ)) |û(ξ)|2 dξ

so that the Gårding inequality (3.15) holds in this case with γ = C = 1.
To prove the continuity ofE in the anisotropic spaceHα/2(Rd), we use the characterization (3.17)
and the fact that the imaginary part ofψX is controlled by its real part, i.e. (3.13), to infer (3.16).
�

3.2 Tempered stable Ĺevy copula processes

In this subsection we introduce temperedα-stable Lévy copula processes and obtain a counter-
part of the Gårding inequality Theorem 3.7 for these processes.

Definition 3.10. Assume that the copula functionF : R
d
→ R is a homogeneous Lévy copula of

order 1 such that∂1...∂dF : Rd → R exists.
Letα1, ..., αd ∈ (0, 2) and the marginal densities be of tempered stable (also knownas ‘CGMY’,
[6] and the references there) type, i.e. (3.3) holds for someCj ≥ 0, βj ≥ 0.
Then the corresponding Lévy copula process(Xβ

t )t≥0 ∈ Rd, which exists according to Theo-
rem2.5, is called a tempered,α-stable Ĺevy copula process.

Obviously, tempered stable Lévy copula processes includetheα-stable ones (compare Defini-
tion 3.2) as special cases (β1 = ... = βd = 0). We show next that the infinitesimal genera-
tor Aβ of the quadratic, pure jump tempered,α-stable processXβ

t satisfies, for any choice of
β1, ..., βd ≥ 0, a Gårding inequality (3.14) in the anisotropic Sobolev spacesV = Hα/2(Rd) and
H = L2(Rd).

We start with a lemma which will be useful later.

Lemma 3.11. Under the above assumptions for anyj = 1, ..., d there exist constantscj, c′j > 0
such that

|k
βj

j (xj) − k0
j (xj)| ≤ cj |xj |

−αj .

and
|U

βj

j (xj) − U0
j (xj)| ≤ c′j |xj |

−αj+1 (3.18)

for anyxj ∈ R with 0 < |xj | ≤ 1.
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Proof. The first inequality follows easy using the Taylor expansionof exp(−ζ) aroundζ = 0.
The second inequality follows immediately. �

Remark 3.12. As a direct consequence of (3.3) it follows that for everyj = 1, ..., d there are
constants0 < c1 ≤ c2 <∞ such that

0 < c1 ≤ |xj |
αj+1|k

βj

j (xj)| ≤ c2 <∞ 0 < c1 ≤ |xj|
αj |U

βj

j (xj)| ≤ c2 <∞ (3.19)

for anyxj ∈ R with 0 < |xj | ≤ 1.

Let us denote byUβj

j (x) =
∫ x
−∞

k
βj

j (ξ)dξ, j = 1, ..., d and writeUβ(x) = (Uβ1

1 , ..., Uβd

d ). For a
1-homogeneous copula Lévy copula functionF , we denote

(F ◦ Uβ)(x1, ..., xd) = F (Uβ1

1 (x1), ..., U
βd

d (xd)).

Applying the chain rule we immediately get

∂1...∂d(F ◦ Uβ)(x1, ..., xd) = ((∂1...∂dF ) ◦ Uβ)(x1, ..., xd) k
β1

1 (x1)...k
βd

d (xd)

which implies that the density of the tempered,α-stable, Lévy copula process from Defini-
tion 3.10 is given by

kβ(x1, ..., xd) = ∂1...∂d(F ◦ Uβ)(x1, ..., xd) = ((∂1...∂dF ) ◦ Uβ)(x1, ..., xd)Π
d
j=1k

βj

j (xj).

In the special case when allβj = 0, j = 1, ..., d, we recover the density of theα-stable Lévy
copula process, i.e.

k0(x1, ..., xd) = ∂1...∂d(F ◦ Uβ)(x1, ..., xd) = ((∂1...∂dF ) ◦ U0)(x1, ...xd)Π
d
j=1k

0
j (xj).

Denote byEβ(·, ·) and byE0(·, ·) the corresponding Dirichlet forms which are given by, cf. (3.12)

Eβ(u, v) =

∫

Rd

ψβ(ξ)û(ξ)v̂(ξ)dξ.

Analogously,E0(·, ·) is defined. Hereψβ andψ0 are the characteristic functions of the tempered
α-stable, resp.α-stable processes. They are given by the Lévy-Khinchin formula (2.1) with
ν(dx) = kβ(x)dx, resp.ν(dx) = k0(x)dx.

We estimate, foru ∈ C∞
0 (Rd),

<Eβ(u, u) ≥ <E0(u, u)− |C(u, u)|

where the formC(·, ·) := (Eβ − E0)(·, ·) is expressed in terms of the characteristic functions by

C(u, v) :=

∫

Rd

(ψβ(ξ) − ψ0(ξ))û(ξ)v̂(ξ)dξ, u, v ∈ C∞
0 (Rd).

To establish the Gårding inequality (3.14) forEβ(·, ·), we use forE0(·, ·) the Theorem 3.9 for the
α-homogeneous case. For the tempered stable case (i.e. forβ 6= 0), we have:
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Proposition 3.13.For anyK ⊂⊂ Rd and any choice ofβ1, ..., βd ≥ 0, the formC(·, ·) is compact
onV = H

α/2
comp(K).

Proof. By Theorem 3.10.5 in [21] in order to prove the compactness ofC(·, ·) it suffices to
verify that

|ψβ(ξ) − ψ0(ξ)|

|ψ0(ξ)|
→ 0 as |ξ| → ∞. (3.20)

Since the Lévy densitieskβ, k0 of theα-stable copula processes are smooth forxi 6= 0, the decay
for |ξ| → ∞ of the characteristic functionsψβ(ξ) andψ0(ξ) as|ξ| → ∞ is determined by the
singularities of the densitieskβ(x1, ..., xd), k0(x1, ..., xd) at zero.

By substitutingkβ = ∂1...∂d(F ◦ Uβ) andk0 = ∂1...∂d(F ◦ U0) in the Lévy-Khinchin for-
mula (2.1) one obtains,

ψ0(ξ) =

∫

Rd\{0}

(1 − ei〈ξ,y〉 +
i〈ξ, y〉

1 + |y|2
)∂y1 ...∂yd

(F ◦ U 0)(y)dy.

and

(ψβ − ψ0)(ξ) =

∫

Rd\{0}

(1 − ei〈ξ,y〉 +
i〈ξ, y〉

1 + |y|2
)∂y1 ...∂yd

((F ◦ Uβ) − (F ◦ U 0))(y)dy.

Using integration by parts we have

ψ0(ξ) =

∫

Rd\{0}

(
∂y1 ...∂yd

(1 − ei〈ξ,y〉 +
i〈ξ, y〉

1 + |y|2
)

)
(F ◦ U 0)(y)dy,

and

(ψβ − ψ0)(ξ) =

∫

Rd\{0}

(
∂y1 ...∂yd

(1 − ei〈ξ,y〉 +
i〈ξ, y〉

1 + |y|2
)

)
((F ◦ Uβ) − (F ◦ U 0))(y)dy.

To establish (3.20) it therefore suffices to investigate thesingularities of[(F ◦Uβ)− (F ◦U0)](x)
and of(F ◦ U 0)(x) atx = 0.

Since the copula functionF in Definition 3.10 is1-homogeneous and Lipschitz (recall (2.6)), we
estimate using (3.18)

∣∣[F ◦ Uβ − F ◦ U0](x)
∣∣ ≤

d∑

j=1

|U
βj

j (xj) − U0
j (xj)| ≤ C

d∑

j=1

|xj |
−αj+1.

On the other hand, by the1-homogeneity of the copula functionF we can write forξ 6= 0

F (ξ) = F

(
|ξ|(

ξ1
|ξ|
, ...,

ξd
|ξ|

)

)
= |ξ|F

(
ξ1
|ξ|
, ...,

ξd
|ξ|

)
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and using (3.19) we find that there is ac > 0 such that

|(F ◦ U0)(x)| ≥ c

d∑

j=1

|xj|
−αj .

Consequently we obtain that the leading singularity ofF ◦ U 0 at x = 0 is cancelled in the
difference[F ◦Uβ −F ◦U 0](x) whence the growth ofψβ(ξ)−ψ0(ξ) as|ξ| → ∞ is slower than
that ofψ0(ξ) which proves (3.20).

This completes the proof of Proposition 3.13. �

4 Numerical Solution of the Kolmogoroff Equation

Here, we address the evaluation of the expectation (1.1) by the numerical solution of the Kol-
mogoroff equation (1.3) for tempered,α-stable Lévy copula processesXβ.

Throughout, we continue to work under the hypothesis (3.2),i.e. that the Lévy processXβ is
quadratic, pure jump. Note that if the driftless diffusionW 6= 0 and, more precisely,Σ in the
Lévy-Itô decomposition (2.3) ofX is non-singular, the domain ofAW in the decomposition (2.5)
isH1(Rd). Hence, because of the intersection structure ofD(AX) described in (3.1), the domain
of the generator ofX is given byD(AX) = D(AW ) = H1(Rd) as in the classical Black-Scholes
setting.

Remark 4.1. To obtain arbitrage free prices of derivative contracts in mathematical models one
requires the stochastic process driving the underlying assets to be a martingale under some suit-
able equivalent martingale measure. As described in e.g. [8], requiring this martingale property
determines the drift partδ of the driving processX. In one dimension this drift part can easily
be calculated in closed form (see e.g. [8, Proposition 8.20]for the case of exponential Lévy
processes). Since for a Lévy measureν of a Copula process there holds for anyi ∈ {1, ..., d}
andf ∈ C(R), ∫

Rd\{0}

f(xi)ν(dx) =

∫

R\{0}

f(xi)νi(dxi), (4.1)

whereνi denotes thei-th marginal measure (cf. [24]), the required drift vectorγ ∈ Rd of
the multivariate copula process comprises of the one-dimensional driftsγi ∈ R, i = 1, ..., d,
corresponding to each marginal process being a martingale.

Nevertheless, one may see that hypothesis (3.2) does not contradict these considerations as fol-
lows: In case the driftless diffusion partW of X does not vanish (andΣ is non-singular) the
domain of the generator ofX is independent ofγ as indicated above. Therefore one may assume
γ = 0 without loss of generality.
If W vanishes and the drift vectorγ ∈ Rd is fixed by the martingale condition one may perform a
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“removal of drift”, i.e. a suitable transformation, to obtain vanishing drift again. Thus, one may
assumeγ = 0 as in (3.2). In the one dimensional case the “removal of drift” is described in [25,
Section 4.4]. This procedure can be adapted to multivariatecopula processes using the marginal
preserving property of the Lévy copula.

4.1 Localization

For the numerical solution of (1.3), we localize this equation fromRd to the bounded computa-
tional domainD = (0, 1)d; this setting arises, for example, when pricing barrier contracts or in
the case of first passage times fromD. We start by defining anisotropic Bessel spaces inD.

Foru ∈ C∞
0 (D), defineū to be the zero extension ofu to all of Rd. Then we define forsi ≥ 0,

i = 1, ..., d the vector of smoothness indicess = (s1, ..., sd) and

H̃s(D) := {ū|u ∈ C∞
0 (D)}

where the closure is taken w.r. to the norm inHs(Rd), defined in (3.10).

By definition, for allu ∈ H̃s(D) it holds thatū ∈ Hs
comp(R

d). For the parabolic setting of the
Kolmogoroff equation (1.3), we replacet by −t and obtain foru(t) = v(−t)

ut = Au in (0, T ), u|t=0 = g. (4.2)

V = H̃α/2(D), H = L2(D), Vθ := (V ∗, V )θ,2, 0 < θ < 1

where we used the real method of interpolation. Finally, we localize the Dirichlet formEβ toD
by

EβD(u, v) := Eβ(ū, v̄), u, v ∈ H̃α/2(D).

The compactness result Proposition 3.13 allows to state theanalog of Theorem 3.9 for tempered
stable Lévy copula processes.

Theorem 4.2.For any bounded domainD ⊂ Rd and any vectorβ in Rd
+, there exists a constant

γ > 0 (depending onD andβ) and a compact bilinear formC(·, ·) : H̃α/2(D) × H̃α/2(D) → R

such that
∀u ∈ H̃α/2(D) : EβD(u, u) ≥ γ ‖u‖2

H̃α/2(D) − C(u, u) (4.3)

and that for allu, v ∈ H̃α/2(D) it holds

|EβD(u, v)| = |Eβ(ū, v̄)| ≤ c3‖ū‖Hα/2(Rd)‖v̄‖Hα/2(Rd) = c3‖u‖H̃α/2(D)‖v‖H̃α/2(D) (4.4)

Therefore, the formED(·, ·) is continuous and coercive onV ×V → C. Henceforth, we omit the
subscriptD onEβD with the understanding that it will be considered only onD.

As already indicated above, in case of non-singularΣ (and thus non-vanishing diffusion part
W of Xβ) the domain of the generatorAD that canonically corresponds toED(·, ·) is given by
H̃1(D) = H1

0 (D) and in particular Theorem 4.2 also holds in this case.
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By (4.3) and (4.4) the Kolmogoroff Equation (1.3) for the tempered,α-stable Lévy copula pro-
cessXβ

t , i.e. (4.2), is well-posed and admits a unique solutionu ∈ L2(0, T ;V ) ∩ C0([0, T ];H).

4.2 Space Discretization

We address the space discretization of (1.3) inD = (0, 1)d. We consider only the case when
V = H̃α1/2,...,αd/2(D) where0 ≤ αi ≤ 2, i.e. the case of1-homogeneous copulas ofαi-stable
(viz. temperedαi-stable) marginals satisfying Assumption 3.1.

We consider discretization of the Dirichlet formEβD(·, ·) by Galerkin projection onto finite di-
mensional subspacesVN = span{bj : j = 1, ..., N} of V = H̃α/2(D).

To realize the Galerkin Finite Element discretization of the infinitesimal generatorA, its Dirichlet
form E(·, ·) given in (3.12) must be evaluated on the basis functions ofVN , resulting in the
generator’s moment (or stiffness) matrixA given by

Ai,j = E(bj, bi), i, j = 1, ..., N.

More specifically, based on the Lévy-Khinchin formula (2.1), on the pseudodifferential repre-
sentation (1.5) ofA and on (3.12), we find for the representation

E(u, v) = D(u, v) + J(u, v)

where thejump-diffusion partD(u, v) of E(·, ·) is given by

D(u, v) =

∫

Rd

d∑

i=1

v(x)γi
∂u

∂xi
dx+

∫

Rd

d∑

i,j=1

qij
∂u

∂xi

∂v

∂xj
dx ∀ u, v ∈ S(Rd)

and the jump-partJ(u, v) of E(·, ·) is given by

J(u, v) =
1

2

∫

x∈Rd

∫

y∈Rd

(u(x+y)−u(x))(v(x+y)−v(x))ν(dy)dx ∀ u, v ∈ S(Rd). (4.5)

Using hypothesis (3.2) we setD(u, v) = 0 in the remainder of this paper. By the considerations
we made at the beginning of Section 4 and since numerically the formD(·, ·) can be treated
separately fromJ(·, ·) this is no real restriction of the following considerations.

Remark 4.3. If the marginals’ densitieskj(xj) are symmetric aboutxj = 0, as, e.g. the densities
in (3.3), the densitykβ(y1, ..., yd) is symmetric with respect to each coordinate axis and also the
copula’s Ĺevy measureν(dy). We emphasize, however, that Lévy densities which are successful
in financial modelling as, e.g. the tempered stable densities [6, 7] have densitieskj(xj) of the
form

k
βj

j (xj) = Cj





e
−β−

j
|xj |

|xj |
1+αj

xj < 0,

e
−β+

j
xj

|xj |
1+αj

xj > 0,
(4.6)
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for someCj > 0 , 0 < αj < 2, β±
j ≥ 0. Here, the singular part of the density nearxj = 0

is symmetric and, hence, the principal part of the generatorAJ is self-adjoint, whereas the tails
(describing the probability of large jumps) are asymmetric, if β−

j 6= β+
j .

For Lévy processesX with infinite intensity of small jumps, the Lévy measureν(dy) = k(y)dy
has a densityk(·) which is nonintegrable with respect to the Lebesgue measureneary = 0. This
causes difficulties in various discretizations of the jump part (4.5) ofA due to the appearance of
divergent integrals. The variational representation (4.5), however, ensures that in Galerkin dis-
cretizations, no divergent integrals will appearprovidedthe basis functionsbi(x) of the subspace
VN satisfy some minimal smoothness.

Proposition 4.4. Assume thatu, v in (4.5) have compact support and satisfy a Lipschitz condi-
tion. Then|J(u, v)| <∞.

Proof. The assertion follows from representation (4.5), since theLipschitz condition foru and
v implies in (4.5) with (2.2)

|J(u, v)| ≤

∫

Rd

∫

Rd

|u(x+ y) − u(x)||v(x+ y) − v(x)|ν(dy)dx ≤ C

∫

y∈Rd

|y|2ν(dy) <∞,

whereC depends on the support ofu, v and on the respective Lipschitz constants. �

It remains to choose a particular basisbj(x) of VN . Based on the tensor product nature of the
domainD, the Lipschitz condition required to cancel the singularity of the jump measure near
zero, and the fact that the order of the generatorA never exceeds two, we build subspacesVN
out of univariate spaces of continuous piecewise polynomials of degreep ≥ 1.

4.2.1 Spline Wavelets inR

In the intervalI = (0, 1), we define the meshT ` given by the nodesj2−`, j = 0, . . . , 2`, with the
meshwidthh` = 2−`. We defineV` as the space of piecewise polynomials of degreep ≥ 1 on the
meshT ` which are inCp′−1([0, 1]) with 1 ≤ p′ ≤ p and vanish at the endpoints0, 1. We write
N ` = dim V`, M ` := N ` − N `−1, N−1 := 0; thenN ` = O(2`), ` = 0, 1, 2, . . . . We employ a
wavelet basisψ`j , j = 1, . . . ,M `, ` = 0, 1, 2, . . . of V` with the properties:

V` = span{ψ`j | 0 ≤ ` ≤ L; 1 ≤ j ≤M `}, diam (suppψ`j) ≤ C 2−` .

Any functionv ∈ VL has the representation

v =
L∑

`=0

M`∑

j=1

v`j ψ
`
j
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with v`j = (v, ψ̃`j) whereψ̃`j are the so-called dual wavelets. Forv ∈ V one obtains the series

v =

∞∑

`=0

M`∑

j=1

v`j ψ
`
j (4.7)

which converges inL2(I) and inH1
0 (I). Moreover, there holds the norm equivalence

c1‖v‖
2
Hθ

≤
∞∑

`=0

M`∑

j=1

|v`j|
2 22`θ ≤ c2‖v‖

2
Hθ
, 0 ≤ θ ≤ 1 (4.8)

whereHθ = (L2(I), H1
0(I))θ,2 = H̃θ(I) for 0 ≤ θ ≤ 1.

Forv ∈ L2(I) we can define a projectionPL : L2(I) → VL by truncating (4.7):

PLv :=

L∑

`=0

M`∑

j=1

v`j ψ
`
j , P−1 := 0 .

This projection satisfies the approximation property

‖u− PLu‖Hθ
≤ c 2−(t−θ)L‖u‖Ht(I), 0 ≤ θ ≤ 1, θ ≤ t ≤ p+ 1 . (4.9)

The Increment or detail spacesW` are defined by
{

W` := span{ψ`j : 1 ≤ j ≤M `}, ` = 1, 2, 3, . . .

W0 := V0 .

Then
V` = V`−1 ⊕W` for ` ≥ 1, and V` = W0 ⊕ · · · ⊕W`, ` ≥ 0 . (4.10)

andQ` := P` − P`−1 is a projection fromL2(I) to W`.

4.2.2 Examples of wavelets

We give an example forp = p′ = 1, i.e., for piecewise linear continuous functions on[0, 1] van-
ishing at the endpoints0, 1. Since there is no nonzero function which vanishes at the endpoints
and which is linear on the whole interval[0, 1] we now define the meshT ` for ` ≥ 0 by the nodes
x`j := j2−`−1 with j = 0, . . . , 2`+1. We haveN` = 2`+1 − 1 andM` = 2`.

We define the waveletsψ`j for level ` = 0, 1, 2, . . ., j = 1, . . . ,M`: for ` = 0 we haveN0 =
M0 = 1 andψ0

1 is the function with valuec0 atx0
1 = 1

2
.

For ` ≥ 1 we haveN` = 2`+1 − 1. and we letc` := 2−`/2, ` = 0, 1, .... Then the wavelet
ψ`1 has valuesψ`1(x

`
1) = 2c`, ψ`1(x

`
2) = −c` and zero at all other nodes. The waveletψ`M`

has
valuesψ`M`

(x`N`
) = 2c`, ψ`M`

(x`N`−1) = −c` and zero at all other nodes. The waveletψ`j with
1 < j < M` has valuesψ`j(x

`
2j−2) = −c`, ψ`j(x

`
2j−1) = 2c`, ψ`j(x

`
2j) = −c` and zero at all other

nodes.
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4.2.3 Sparse tensor product spaces and approximation rates

In Ω = Id = (0, 1)d, d > 1 we define the subspaceV L as the tensor product of the one-
dimensional spaces:

V L := VL ⊗ · · · ⊗ VL (4.11)

which can be written using (4.10) as

V L =
∑

0≤`i≤L

W`1 ⊗ · · · ⊗W`d .

The spaceV L hasO(2`d) degrees of freedom and is too costly ifd is large. We shall use the
sparse tensor product space

V̂ L := span
{
ψ`1j1 (x1) . . . ψ

`d
jd

(xd) | 1 ≤ ji ≤M `i , `1 + · · ·+ `d ≤ L
}

=
∑

0≤`1+···+`d≤L

W`1 ⊗ · · · ⊗W`d. (4.12)

As L → ∞, we haveNL := dim(V L) = O(2dL), andN̂L := dim(V̂ L) = O(Ld−1 2L), i.e. the
spaceŝV L have considerably smaller dimension thanV L. On the other hand, they do have similar
approximation properties asV L, provided the function to be approximated is sufficiently smooth:
To characterize the smoothness we introduce the spacesHk with square integrable mixedk-th
derivatives: LetH0 := L2(Ω), and define for integerk ≥ 1

Hk := { u ∈ H1
0 (Ω) | Dαu ∈ L2(Ω), 0 ≤ αi ≤ k }

equipped with the norm

‖u‖Hk :=
( ∑

0≤αi≤k
1≤i≤d

‖Dαu‖2
L2(Ω)

) 1
2
.

We then defineHs for arbitrarys ≥ 0 by interpolation.

For a functionv ∈ L2(Ω) we have as a consequence of (4.7), (4.11)

v(x) =
∑

`1,...,`d≥0

∑

1≤jk≤n`k

v`1...`dj1...jd
ψ`1j1 (x1) . . . ψ

`d
jd

(xd), (4.13)

wherev`1...`dj1...jd
= 〈v, ψ̃`1j1 . . . ψ̃

`d
jd
〉.

We then define the sparse projection operatorP̂L : L2(Ω) → V̂ L by truncating the wavelet ex-
pansion:

(P̂Lv)(x) :=
∑

0≤`1+···+`d≤L
1≤jk≤n`k

,k=1,...,d

v`1...`dj1...jd
ψ`1j1 (x1) . . . ψ

`d
jd

(xd). (4.14)
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The projectionP̂L can be represented in terms of the projectionsQ` as follows,

P̂L =
∑

0≤`1+···+`d≤L

Q`1 ⊗ · · · ⊗Q`d . (4.15)

The projectionP̂L : V → V̂ L is stable in the anisotropic, fractional order Sobolev spaces.

Proposition 4.5.(Stability ofP̂L) For 0 ≤ θ ≤ 1, 0 ≤ αi ≤ 2, andv ∈ Hθ := (L2(D), H̃α/2(D))θ,2
we have

‖P̂Lv‖Hθ
≤ C ‖v‖Hθ

. (4.16)

Proof. Forθ = 0, we have with

|||v|||20 :=

∞∑

`k=0
k=1,...,d

∑

1≤jk≤n`k

∣∣∣v`1...`dj1...jd

∣∣∣
2

that
‖P̂Lv‖H0 ≤ C1

∣∣∣
∣∣∣
∣∣∣P̂Lv

∣∣∣
∣∣∣
∣∣∣
0
≤ C1 |||v|||0 ≤ C2 ‖v‖L2(Ω) .

We also have from the norm equivalence (4.8) and the characterization (3.10) that for every
v ∈ H̃α/2(D):

‖v‖2
E ∼ ‖v‖2

H̃α/2(D)
∼

∞∑

`k=0
k=1,...,d

∑

1≤jk≤n`k

∣∣∣v`1...`dj1...jd

∣∣∣
2

(1 + 2α1`1 + · · · + 2αd`d) =: |||v|||21 . (4.17)

It follows
‖P̂Lv‖H̃α/2(D) ≤ C3

∣∣∣
∣∣∣
∣∣∣P̂Lv

∣∣∣
∣∣∣
∣∣∣
1
≤ C3 |||v|||1 ≤ C4‖v‖H̃α/2(D) .

Interpolation gives (4.16). �

Let us denote in what follows bȳα = max{αi : i = 1, ..., d} ∈ [0, 2].

Proposition 4.6. (Approximation property of̂PL)

Assume that the component spacesV` of V̂ L have the approximation property(4.9). Then for
0 ≤ ᾱ/2 < p′ + 1

2
andᾱ/2 < t ≤ p + 1

‖u− P̂Lu‖Hᾱ/2(Ω) ≤

{
Chp+1 |log h|(d−1)/2 ‖u‖Hp+1 if ᾱ = 0 andt = p+ 1

Cht−ᾱ/2‖u‖Htotherwise.
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4.3 Time-stepping

4.3.1 Time Discretization

Under hypothesis (3.2) the Kolmogoroff equation (1.3) is parabolic, a stable discretization scheme
for its numerical solution is the implicit Euler Scheme: to define it, subdivide the interval(0, T )
into M subintervals of lengthk = T/M . We approximate the time derivativeut at tm = mk
by the difference quotient(u(tm+1) − u(tm))/k and define a sequence of functionsumL ∈ V̂ L,
m = 0, 1, ...,M approximatingu(tm) as solutions of a sequence of stationary elliptic problems.
We initialize them by projection of the datag into the sparse tensor product spaceV̂ L

u0
L = P̂Lg ∈ V̂ L

and obtain the approximationsum ∈ V̂ L for m = 1, 2, 3, ... as solutions of the stationary elliptic
problems

∀v ∈ V̂ L : (v, um+1
L ) + kE(v, um+1

L ) = (v, umL ), m = 0, 1, ...,M − 1 (4.18)

Note that we use the sparse tensor product space (4.12). In the wavelet basis, eachumL has the
representation (4.13), and we denote the coefficient vectorbyum. Then the sequence of problems
(4.18) is equivalent to the matrix equations

Bum+1 = (M + kA)um+1 = um (4.19)

whereM denotes the mass-matrix andA the stiffness matrix with respect to the wavelet basis of
V̂ L.

4.3.2 Multilevel Preconditioning

For iterative solution of the linear systems (4.19), we use multilevel preconditioning. In or-
der to obtain robust algorithms, a unifying preconditioning approach which is effective in the
anisotropic spacesHα/2(D) will be developed. Here, the wavelet basis is essential.

The norm equivalence (4.17) withθ = 0 implies for everyv ∈ V̂ L of the form (4.13) with
coefficient vectorv = (v`j)

C1 ‖v‖
2 ≤ vHMv ≤ C2 ‖v‖

2 (4.20)

with constantsC1, C2 independent ofL. Let DA denote the diagonal matrix with entries2α1l1 +
· · · + 2αdld for an index corresponding to level(l1, . . . , ld). Then (3.15), (3.16) and (4.8) with
θ = 1 imply that

C1v
HDAv ≤ vHAv ≤ C2v

HDAv (4.21)

with constantsC1, C2 independent ofL.
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Let ‖w‖
DA

:= (wHDAw)1/2, ‖w‖
D

−1
A

:= (wHD−1
A w)1/2. Forv ∈ V̂ L with coefficient vector

v andf ∈ (V̂ L)∗ with coefficient vectorf we then have

‖v‖V ∼ ‖v‖
DA

, ‖f‖V ∗ ∼ ‖f‖
D

−1
A

where the norm equivalences hold with constants independent of L.

We now define for preconditioning the diagonal matrixS and the scaled matrix̂B as

S :=
(
I + kDA

)1/2

, B̂ := S−1BS−1. (4.22)

The next result shows that the linear system with the preconditioned matrixB̂ can be solved with
GMRES in a number of steps which is independent of the meshwidth.

Lemma 4.7. For the linear system̂Bx̂ = b̂ let x̂j denote the iterates obtained by the restarted
GMRES(m0) method with initial guesŝx0. Then there is0 < q < 1 independent ofL andk such
that ∥∥∥b̂ − B̂xj

∥∥∥ ≤ Cqj
∥∥∥b̂ − B̂x0

∥∥∥ (4.23)

Proof. Since<(xHi=(λ)Mx) = 0 we obtain from (4.20), (4.21) that

<(xHBx) ≥ CxHS2x ∀x ∈ R
N̂L

implying with y = Sx

<(yHB̂y) ≥ C3 ‖y‖
2 ∀y ∈ R

N̂L. (4.24)

We have
∣∣xHBy

∣∣ =
∣∣xHMy

∣∣+ k
∣∣xHALy

∣∣ ≤ C ‖x‖ ‖y‖ + Ck
∥∥∥D1/2

A x

∥∥∥
∥∥∥D1/2

A y

∥∥∥

With D := I + kDA we get
∣∣xHBy

∣∣ ≤ C(xHDx)1/2(yHDy)1/2

Using the definition ofS, we obtain
∣∣xHBy

∣∣ ≤ C(xHS2x)1/2(yHS2y)1/2

or ∣∣∣xHB̂y

∣∣∣ ≤ C4 ‖x‖ ‖y‖ .. (4.25)

Inequalities (4.24) and (4.25) can be stated as

λmin

(
(B̂ + B̂H)/2

)
≥ C3,

∥∥∥B̂
∥∥∥ ≤ C4

According to [16] the non-restarted GMRES method for the matrix B̂ yields iteratesxm and
residualsrm satisfying

‖rm‖ ≤
(
1 −

C2
3

C2
4

)m/2
‖r0‖

which shows (4.23). �
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4.3.3 Convergence and Complexity

The implicit time stepping scheme (4.18) yields a sequence{umL }
M
m=0 ⊂ V̂ L of approximate

solutions which approximates the exact solutionu(x, t) for 0 ≤ t ≤ T andx ∈ D.

Using the standard error analysis for the backward Euler scheme, as e.g. in Theorem 5.4 of [30]
(assuming that theexactstiffness matrixA in (4.19) is available, i.e.withoutthe effect of matrix
compression or numerical integration considered in [30]),and assuming full regularity of the
exact solutionu(x, t), we get the following error bound.

Proposition 4.8. The sequence{umL }
M
m=0 ⊂ V̂ L of approximate solutions obtained from the time

stepping scheme(4.18)with exact solutions of the linear systems(4.19) in each timestep satisfy
the error estimate

k
M∑

m=1

‖um − umL ‖
2
E ≤ Ch2(p+1−ᾱ/2)

{
max
0<t<T

‖u(t)‖2
p+1 +

∫ T

0

‖u̇(s)‖2
p+1−ρ/2ds

}
(4.26)

+ Ck2

∫ T

t=0

‖ü(s)‖2
∗ds (4.27)

= O(k2) +O(h2(p+1−ᾱ/2)) (4.28)

whereum := u(·, tm) ∈ H̃α/2(D) denotes the exact solution at timetm = mk, m = 1, ...,M ,
k = T/M and ᾱ = max{αi : i = 1, ..., d} ∈ [0, 2]. Here,‖ ◦ ‖E denotes the natural norm
associated with the bilinear formE(·, ·). It is defined by‖u‖2

E = E(u, u).

Moreover, if the linear systems(4.19)are solved in each time step approximately byO(log(N̂L))
steps of GMRES iteration with preconditionerS defined in(4.22), the resulting approximate
solutions̃umL ∈⊂ V̂ L satisfy (4.26)and the overall work for generating the sequence{ũmL }

M
m=0 ⊂

V̂ L still satisfying the error bound(4.26)is bounded byO(MN̂2
L(log(N̂L)c)) operations for some

c > 0.

We conclude by several remarks on possible extensions and generalizations.

Remark 4.9. In Proposition 4.8 we considered only the backward Euler timestepping proce-
dure (4.18) with uniform timestep. Likewise, theθ-scheme could be analyzed, along the lines of
[30]. All these results assume maximal time regularity and uniform time stepsk.

The time analyticity of the semigroup(Tt)t≥0 can be exploited also for anexponentially con-
vergent timestepping schemeof discontinuous Galerkin type. It would retain the error bounds
in Proposition 4.8 with onlyO(log N̂L) many timesteps; see [35] for analytic time regularity
as well as for details on the dG time stepping scheme. A matrixformulation of this scheme is
available in [31], for example; it applies also in the present case, once the stiffness matrixA for
the diffusion operator in [31] is exchanged for the matrixA of the Dirichlet formE(·, ·) of the
Lévy copula’s generatorA.
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Remark 4.10. The complexity boundO(MN̂2
L(log(N̂L)c)) operations in Proposition 4.8 is sub-

optimal for two reasons: first, as mentioned before, the time-analyticity of the copula’s semi-
group Tt is not exploited by the backward Euler timestepping scheme (4.18); this could be
remedied by thehp dG timestepping procedure from [35, 31]. A second, more severe source
of nonoptimality is the fact that the stiffness matrixA of A in thesparse tensor productwavelet
basis ofV̂ L in (4.12) is fully populated, so that each matrix vector multiplication requiresO(N̂2

L)
many operations. As is well known (e.g [33]), generators ofisotropicα-stable processes have
Calderón Zygmund kernels whose Galerkin discretization matrices infull tensor product wavelet
bases can be compressed fromN2

L toO(NL logNL) many nonzero entries without compromising
accuracy.

Remark 4.11.So far, we discussed only European style contracts without early exercise features.
For American style contracts, arbitrage-free prices are characterized as (viscosity) solutions of
parabolic variational inequalities. Their numerical solution, however, can be achieved along the
lines of [26], based on the norm equivalence (4.17) which implies also optimal preconditioning
of the linear complementarity solver in [26] applied toM andA in (4.19), using (4.20) and
(4.21).
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[32] K.-I. Sato,Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press 1999.

[33] R. Schneider,Multiskalen- und Wavelet-Matrixkompression. Analysisbasierte Methoden zur effizien-
ten L̈osung grosser vollbesetzter Gleichungssysteme, Advances in Numerical Mathematics B. G.
Teubner, Stuttgart, 1998.
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