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Abstract

In computational relativity, critic al behaviour near the black hole threshold has been studied

numerically for several models in the last decade. In this paper we present an spatial

Galerkin method suitable for finding numerical solutions of the Einstein-Dirac equations

in spherically symmetric space-time (in polar/areal coordinates). The method features exact

conservation of the total electric charge and allows for a spatial mesh adaption based on

physical arclength. Numerical experiments confirm excellent robustness and convergence

properties of our approach. Hence, this new algorithm is well suited for studying critical

behaviour.

† Department of Mathematics, ETH Zurich, CH-8092 Zurich, Switzerland



1. Introduction

1.1. Preface

In 1998-1999 F. Finster, J. Smoller and S.T. Yau published static soliton-like solutions of

the massive Einstein-Dirac equations in a spherically symmetric spacetime in [4] and D.W.

Schaefer, D.A. Steck and J.F. Ventrella studied the critical collapse of that system

numerically. Although the applied Crank-Nicholson finite differencing scheme does neither

conserve the total electric charge exactly nor allow for adaptive mesh grid refinement, the

authors were able to investigate critical collapse for low (m = 0.25) and moderate (m = 0.5)

particle masses for suitable initial data (See [11] for details).

Yet, these non adaptive finite difference methods fail for simulations of critical collapse

for large particle masses (m ≥ 1) or propagating Dirac waves as initial data. Therefore

we performed a Galerkin discretization of the same equations and combined this with a

physically motivated adaptive mesh grid refinement algorithm. In this paper we give a proof

of the discretized conservation law, show some convergence tests and compare our results to

those in [11].

1.2. The basic model

Throughout this paper we use Planckian units, where the speed of light, Planck’s action

and Newton’s gravitational constant satisfy c = ~ = GN = 1. We consider a spherically

symmetric space-time in polar/areal coordinates (t, r, θ, φ) with metric

g = A(t, r) dt⊗ dt−B(t, r) dr ⊗ dr − r2 dθ ⊗ dθ − r2 sin2(θ) dφ⊗ dφ, (1)

where A(t, r) and B(t, r) are positive valued functions. We couple this metric by Einstein’s

equations to a massive 2-fermion system of two spin-half particles in singlet state. In order to

find a coordinate representation of the Einstein-Dirac equations, we constructed a complex

4 × 4 matrix representation of the Clifford bundle and an appropriate spin bundle with

fibers isomorphic to
� 4, by using tetrad-formalism‡ [2], [3]. This yields γ-matrices with

{γµ, γν} = 2 gµν � , a representation of the (2, 2)-signed semi-hermitian scalar product 〈., .〉
on spinors and the connection coefficients of the Levi-Civita connection on the spin bundle.

In analogy to the ansatz for the Dirac spinors in flat space-time interacting with a spherically

symmetric potential, we write the wavefunctions in the form

ψ1 =
1

2
√
π r B

1
4








α

[
1

0

]

iβσr

[
1

0

]








=
1

2
√
π rB

1
4







α

0

i sin(θ) sin(φ)β

(i cos(θ) − sin(θ) cos(φ)) β







(2a)

ψ2 =
1

2
√
π r B

1
4








α

[
0

1

]

iβσr

[
0

1

]








=
1

2
√
π rB

1
4







0

α

(i cos(θ) + sin(θ) cos(φ)) β

− i sin(θ) sin(φ)β






, (2b)

‡ We used Pauli-Dirac representation throughout this paper, but one ends up with exactly the same

expressions for all relevant physical quantities by using any other representation within the same unitary

class, e.g. Weyl’s representation [10].
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where α(t, r) and β(t, r) are complex valued functions. These wavefunctions satisfy

ψ
†
iψj =

δij

4πr2
√
B

[
|α|2 + |β|2

]
(3a)

〈ψi, ψj〉 =
δij

4πr2
√
B

[
|α|2 − |β|2

]
. (3b)

On each spacelike slice of constant t, denoted by Σ(t), we construct the fermion state of

the two particles, given by

|Ψ〉 =
1√
2

[ |ψ1〉 ⊗ |ψ2〉 − |ψ2〉 ⊗ |ψ1〉 ] . (4)

Assuming each particle carries§ an electric charge q, the components of the charge current

density vector J = q
∑2

p=1 〈ψp, γ
µψp〉 eµ = Jµ eµ would be

[Jµ] =
q

2πr2








1√
AB

[
|α|2 + |β|2

]

2
B

Im (αβ∗)

0

0








(5)

and the total electric charge on each slice Σ(t) sums up to

Q :=

∫

Σ
〈J,N 〉 dΣ = q

∫

Σ

[

ψ
†
1ψ1 + ψ

†
2ψ2

]

dΣ = 2q

∫ ∞

0

[
|α|2 + |β|2

]
dr = 2q, (6)

which implies the normalization [4] condition‖
∫ ∞

0

[
|α|2 + |β|2

]
dr = 1. (7)

With the ansatz (2a,2b) the equations of motion for the wavefunctions ψ1 and ψ2 are

independent of each other, i.e. they satisfy Dirac’s equation separately:

[ iD −m � ]ψp = 0 (8)

Here m > 0 is the particle mass and D := γσ
∇eσ denotes the Dirac operator constructed

from the metric (1). The stress energy tensor of the system is just the sum of the stress

energies of both wavefunctions, its components are given by

TDirac
µν =

i

2

2∑

p=1

[ 〈

ψp, γ(µ∇eν)
ψp

〉

−
〈

∇e(µ
ψp, γν)ψp

〉 ]

. (9)

From the ansatz (2a,2b) we get

T00 =
1

2πr2

√

A

B
=

(

αα̇∗ + ββ̇∗
)

(10)

T01 =
1

4πr2
<

(

α∗β̇ − α̇β∗
)

+
1

4πr2

√

A

B
=

(
αα′∗ + ββ′

∗)
= T10

T11 =
1

2πr2
<

(
α∗β′ − α′β∗

)

T22 =
1

2πr
√
B

< (α∗β) and T33 =
1

2πr
√
B

< (α∗β) sin2(θ).

§ We don’t couple the particles to the electromagnetic field in this paper. The particle charge q is

introduced just for convenience.
‖ The same result can also be optained by normalizing the quantum states on each slice Σ(t), i.e. by

requiring 〈ψp|ψp〉 = 〈Ψ|Ψ〉 = 1.
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Plugging the ansatz (2a,2b) into (8) yields two first order evolution equations, which are

linear in α and β:

α̇ = − i

√

A

B
β′ − i

2

[√

A

B

]′

β − i

r

√
Aβ − im

√
Aα (11a)

β̇ = + i

√

A

B
α′ +

i

2

[√

A

B

]′

α− i

r

√
Aα+ im

√
Aβ (11b)

Einstein’s equations involving the stress energy (9) leads to the two ordinary differential

equations in the radial variable

A′

A
=

1

r

[
B − 1 + 2

[
α∗β′ − α′β∗ + αβ∗′ − α∗′β

] ]
(12a)

B′

B
=

1

r

[
1 −B + 2

[
α∗β′ − α′β∗ + αβ∗′ − α∗′β

] ]
(12b)

+
4m

r

√
B

[
|α|2 − |β|2

]
+

4

r2

√
B [αβ∗ + α∗β ] ,

which could be identified as the Hamiltonian constraint and the slicing condition in spherical

symmetry, and an evolution equation for B:

Ḃ

B
=

2i

r

√

A

B

[
α′α∗ − αα∗′ + β′β∗ − ββ∗′

]
(13)

The equations (12b) and (13) are consistent. One easily checks that the evolution of B w.r.t.

(13) yields the same as solving (12b) on each slice Σ(t). So one of them is redundant.

1.3. The evolution boundary value problem

We are looking for regular and asymptotically flat solutions of (11a,11b) and (12a,12b,13).

Let T > 0, I := [ 0, T, ] and J := [ 0,∞). We seek solutions of (11a,11b) and (12a,12b,13),

such that for all t ∈ I the variables α and β as functions of r are in the Sobolev space

W 1,∞(J) ∩H1(J) and A and B as functions of r are elements of W 1,∞(J). This leads us to

the “boundary conditions”

lim
r→∞

A(t, r) = lim
r→∞

B(t, r) = lim
r→0

B(t, r) = 1 ∀ t ∈ I. (14)

Because of the factor 1
r

in the ansatz (2a,2b), α and β have to fulfill

α(t, r) = O(r) and β(t, r) = O(r) ∀ t ∈ I for r → 0. (15)

For the numerical treatment of our problem, and in order to guarantee the asymptotical flatness

of the solution, we consider the Dirac matter to be concentrated inside a ball of coordinate

radius R > 0 around the center of spherical symmetry. Due to Birkhoff’s theorem, the part

of space-time at regions where r > R has to be Schwarzschild [12]. Therefore we consider
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the following boundary/initial value problem on I × JR with JR := [ 0, R ] for α, β, A and B:






PDEs : (11a , 11b) for (t, r) ∈ (0, T ) × (0, R)

PDEs : (12a, 12b) for (t, r) ∈ I × (0, R)

α(t, 0) = β(t, 0) = α(t, R) = β(t, R) = 0 for t ∈ I

B(t, 0) = 1 for t ∈ I

A(t, R) = 1
B(t,R) for t ∈ I

α(0, r) = α0(r) for r ∈ JR

β(0, r) = β0(r) for r ∈ JR

(16)

Here α0, β0 ∈W 1,∞(JR)∩H1
0 (JR) denotes some suitable initial data. Because of the boundary

conditions for α and β, outgoing Dirac waves are reflected at r = R, which is an unphysical

requirement. For initial data with a fast decay (i.e. exponential decay) for large r and by

specifying R large enough, these reflected waves do not interfere with what is going on in the

region of interest, that is, for small r.

1.4. Conservation laws

The total electric charge from (6), i.e. the normalization condition (7), and the total ADM-

mass of space-time are constants of motion. For the charge this can be seen by a straightforward

computation [6] using (11a,11b):

Q̇ =
d

dt

∫ ∞

0

[

|α|2 + |β|2
]

dr = 2<
∫ ∞

0

[

α̇α∗ + β̇β∗
]

dr (17)

= 2<
∫ ∞

0

[

− i

√

A

B
β′α∗ − i

2

[√

A

B

]′

βα∗ + i

√

A

B
α′β∗ +

i

2

[√

A

B

]′

αβ∗

− i

√
A

r
[αβ∗ + α∗β ] + im

√
A

[

|β|2 − |α|2
]
]

dr

= 2< i
∫ ∞

0

[√

A

B

[
α′β∗ − β′α∗ ]

+
1

2

[√

A

B

]′

[αβ∗ − βα∗ ]

]

dr

= 2< i
∫ ∞

0

[√

A

B

[
α′β∗ − β′α∗ ]

− 1

2

√

A

B

[
α′β∗ + αβ∗′ − β′α∗ − βα∗′ ]

]

dr

= < i
∫ ∞

0

√

A

B

[
α′β∗ − β′α∗ − αβ∗′ + βα∗′ ] dr

= 2< i
∫ ∞

0

√

A

B
<

(
α′β∗ − β′α∗) dr = 0

The conservation of the ADM-mass of space-time is obvious from the following formula, which

could be transformed into a conserved integral by using Einstein’s equations and (10):

MADM(Σ) =
1

2
lim

r→∞
r

[

1 − 1

B

]

= 2

∫ ∞

0
Im

(

αα̇∗ + ββ̇∗
) 1√

AB
dr (18)
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2. Conservative discretization

To find a conservative Galerkin discretization we first consider the model problem

α̇ = − ifβ′ − i

2
f ′β − igα − i

r
hβ (19)

β̇ = + ifα′ +
i

2
f ′α+ igβ − i

r
hα ,

where f, g, h ∈ C1
(
I,H1(JR)

)
are real valued. We seek complex valued solutions α(t), β(t) ∈

H1
0 (JR). In the sequel (., .) denotes the scalar product in L2(JR). The weak formulation of

(19) reads

(α̇, v) =

(

− ifβ′ − i

2
f ′β − igα − i

r
hβ, v

)

(20)

(

β̇, w
)

=

(

+ ifα′ +
i

2
f ′α+ igβ − i

r
hα,w

)

,

for all v, w ∈ H1
0 (JR). In the spirit of the method of lines, we first carry out the spatial

Galerkin semi-discretization of (20). It can be obtained by replacing the function space

H1
0 (JR) with a finite dimensional subspace Vn. Please note that these subspaces have to

contain continuous functions that vanish for r = 0 and r = R. As a basis for Vn we choose

real valued global shape functions ei ∈ H1
0 (JR) for i ∈ {1, . . . , n}, n := dimVn ∈ � . Thus we

can represent spatially discrete approximations of α and β in (20) by

α ≈
n∑

i=1

αi(t)ei and β ≈
n∑

i=1

βi(t)ei . (21)

Next, we define the n× n Galerkin-matrices E, F , G and H with components

Eij := (ei, ej) , Fij :=

(

fe′i +
1

2
f ′ei, ej

)

, Gij := (gei, ej) and Hij :=

(
1

r
hei, ej

)

. (22)

From the integration by parts formula we get

Fij =

∫ R

0

[

fe′iej +
1

2
f ′eiej

]

dr = −
∫ R

0

[

feie
′
j +

1

2
f ′eiej

]

dr = −Fji (23)

and the above matrices possess the algebraic properties

E† = E, F † = −F, G† = G, H† = H . (24)

Then, we tackle discretization in time: We recall that (19) has the character of a wave

equation with a quadratic first integral, the total charge Q, see Sect. 1.4. Exact conservation

of quadratic first integrals is guaranteed by the so-called implicit midpoint rule, the simplest

representative of Gauss collocation Runge-Kutta timestepping methods [8, Sect. IV.2.1].

Formally, this timestepping scheme is second order accurate with respect to the size of the

timestep. To describe its application to the semi-discrete system, we fix two instances in time

0 ≤ tm < tm+1 ≤ T , introduce the (local) timestep τ := tm+1 − tm and the notations

αm :=






α1(tm)
...

αn(tm)




 , ∆α := αm+1 − αm, ᾱ :=

1

2
[αm+1 + αm ] (25)
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and analogous for βm, ∆β and β̄. The fully discrete version of (20) then reads

1

τ
E∆α = − iF β̄ − iGᾱ− iHβ̄ (26)

1

τ
E∆β = + iF ᾱ+ iGβ̄ − iHᾱ.

Obviously, each timestep involves the solution of a linear system of equations. The discrete

total electric charge is given by

Qm = 2q
[

α†
mEαm + β†mEβm

]

. (27)

Because of the properties (24) it is conserved exactly along the time evolution generated by

the discrete equations (26):

1

2qτ
∆Q = ᾱ†A∆α+ β̄†A∆β + i 2=

(

α†
mAαm+1 + β†mAβm+1

)

︸ ︷︷ ︸

=:S∈ �

(28)

= i
[

β̄†Fᾱ− ᾱ†F β̄
]

︸ ︷︷ ︸

∈ �

+i
[

ᾱ†Hβ̄ + β̄†Hᾱ
]

︸ ︷︷ ︸

∈ �

+i
[

β̄†Gβ̄ − ᾱ†Gᾱ
]

︸ ︷︷ ︸

∈ �

+iS

= 0.

We point out, that this conservation property holds for any choice of trial/test space Vn as

long as the same Vn is used for every timestep.

3. Computer implementation

3.1. Variables

We implemented the discretization scheme described above for the six real variables Xa, Ya,

Xb, Yb, a and b, defined by

α = Xa + i Ya, β = Xb + i Yb, A = ea and B = eb , (29)

where the representation of A and B is motivated by the essential positivity of the metric

coefficient and the presence of logarithmic derivatives in (12a), (12b), and (13). In these

variables Dirac’s equations read

Ẋa = + e
a−b
2 Y ′

b +
1

2

[

e
a−b
2

]′
Yb + e

a
2

[
1

r
Yb +mYa

]

(30a)

Ẏa = − e
a−b
2 X ′

b +
1

2

[

e
a−b
2

]′
Xb − e

a
2

[
1

r
Xb +mXa

]

(30b)

Ẋb = − e
a−b
2 Y ′

a +
1

2

[

e
a−b
2

]′
Ya + e

a
2

[
1

r
Ya −mYb

]

(30c)

Ẏb = + e
a−b
2 X ′

a +
1

2

[

e
a−b
2

]′
Xa − e

a
2

[
1

r
Xa −mXb

]

(30d)

and Einstein’s equations are

a′ =
1

r

[

eb − 1
]

+
4

r

[
XaX

′
b −X ′

aXb + YaY
′
b − Y ′

aYb,
]

(31a)

b′ =
1

r

[

1 − eb
]

+
4

r

[
XaX

′
b −X ′

aXb + YaY
′
b − Y ′

aYb,
]

(31b)
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+
4m

r
e

b
2
[
X2

a + Y 2
a −X2

b − Y 2
b

]
+

8

r2
e

b
2 [XaXb + YaYb ]

and

ḃ =
4

r
e

a−b
2

[
X ′

aYa −XaY
′
a +X ′

bYb −XbY
′
b

]
. (32)

3.2. Initial conditions

We implemented two classes of initial conditions. The one parameter family (Σ) of Gaussian’s,

which was also used in [11], is defined by

Xa(0, r) :=

[
2

π

] 1
4

Σ− 3
2 r e−

r2

4Σ2 (33)

Ya(0, r) := Xb(0, r) = Yb(0, r) = 0.

Further we considered the 8 parameter family (Σa,Σb, Pa, Pb,Ψa,Ψb,Ψw, p):

Xa(0, r) :=
2

1
4
− p

2 cos (Ψw)
√

Γ
(
p+ 1

2

)
Σ

p+ 1
2

a

cos

(

Ψa +
2πr

Pa

)

rp e
− r2

4Σ2
a (34)

Ya(0, r) :=
2

1
4
− p

2 cos (Ψw)
√

Γ
(
p+ 1

2

)
Σ

p+ 1
2

a

sin

(

Ψa +
2πr

Pa

)

rp e
− r2

4Σ2
a

Xb(0, r) :=
2

1
4
− p

2 sin (Ψw)
√

Γ
(
p+ 1

2

)
Σ

p+ 1
2

b

cos

(

Ψb +
2πr

Pb

)

rp e
− r2

4Σ2
b

Yb(0, r) :=
2

1
4
− p

2 sin (Ψw)
√

Γ
(
p+ 1

2

)
Σ

p+ 1
2

b

sin

(

Ψb +
2πr

Pb

)

rp e
− r2

4Σ2
b .

3.3. Mesh and shape functions

As Galerkin trial and test spaces for Xa, Ya, Xb, and Yb we rely on spaces of piecewise

polynomial continuous functions on a spatial mesh covering JR. In other words, we use

classical Lagrangian finite element spaces. More precisely, the mesh is a not necessarily

equidistant grid on JR, whose N cells, N ∈ � , are the intervals

Jn := [ rn−1, rn ] with r0 = 0, rN = R, λn := rn − rn−1. (35)

Following the finite element philosophy, we use bases of the piecewise polynomial function

spaces that only comprise locally supported (global) basis functions. They are assembled from

the following local shape functions:

E0
n(r) :=

{

1 for r ∈ Jn

0 otherwise
(36)

E1
n(r) :=







1

λn
(r − rn) + 1 for r ∈ (rn−1, rn)

1 + δnN

2
for r = rn

0 otherwise
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E2
n(r) :=







1

λn
(rn − λn − r) + 1 for r ∈ (rn−1, rn)

1 + δn0

2
for r = rn−1

0 otherwise

E3
n(r) :=







4

λ2
n

(r − rn) (rn − λn − r) for r ∈ Jn

0 otherwise

E4
n(r) :=







64

3λ3
n

(r − rn) (rn − λn − r)

(

rn − λn

2
− r

)

for r ∈ Jn

0 otherwise

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5
Local shape functions:

x:=(r−r
n
) / λ+1

Figure 1.

Local shape functions of different polynomial degree on an interval of the spatial grid.

The parameters N , rn and λn characterizing the mesh can be redefined at every time step

(See below for the details of our adaption algorithm). The global shape functions are obtained

from the local shape functions through

eBi (r) :=

4,N
∑

s,n=1

TBn
is Es

n(r) (37)

where TBn
is are the combination coefficients

T 0n
is := δ0sδ

n
i (38)

T 1n
is := δ1sδ

n+1
i + δ2sδ

n
i

T 2n
is := δ1sδ

2n+1
i + δ2sδ

2n−1
i + δ3sδ

2n
i

T 3n
is := δ1sδ

3n+1
i + δ2sδ

3n−2
i + δ3sδ

3n−1
i + δ4sδ

3n
i .

With this definitions the sets SB := {eBi } of global basis functions contain N compactly

supported functions of polynomial degree p = 0 for B = 0 and BN + 1 compactly supported

functions of polynomial degrees p ∈ {1, . . . , B} for B ∈ {1, . . . , 3}. For the finite element
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space with basis SB we adopt the notation SB . This spaces will play the role of the abstract

Galerkin trial/test space Vn from sect. 2.

3.4. The discrete equations

We represent the variables Xa, Ya, Xb and Yb of the Dirac fields due to the discussion of

section 2 as in (21) by functions from SB for some fixed parameter B ∈ {1, . . . , 3}. For the

variables a and b we just use a linear approximation by functions in S1:

a(tm, r) ≈
N+1∑

i=1

am,ie1i and b(tm, r) ≈
N+1∑

i=1

bm,ie1i (39)

The representations have to be compatible with the boundary conditions in (16), which implies

Xm,1
a = Y m,1

a = X
m,1
b = Y

m,1
b = 0 (40)

Xm,(BN+1)
a = Y m,(BN+1)

a = X
m,(BN+1)
b = Y

m,(BN+1)
b = 0

bm,1 = 0 and am,N+1 = − bm,N+1.

We construct the discretization of a weak formulation of the equations (30a-32) analogous to

(20), whereby we have to use test functions from S0 for a stable discretization of the ODEs

(31a,31b). We define the coefficients

Aij :=
(

eBi , e
B
j

)

Fij :=
(

1
r
e1i , e

0
j

)

Bijk :=

(

e1i

(

eBj

)′
+ 1

2

(
e1i

)′
eBj , e

B
k

)

Gijk :=

(

1
r

[

eBi

(

eBj

)′
−

(
eBi

)′
ej

]

, e0k

)

Cijk :=
(

e1i e
B
j , e

B
k

)

Hijkl :=
(

1
r
e1i e

B
j e

B
k , e

0
l

)

Dijk :=
(

1
r
e1i e

B
j , e

B
k

)

Iijkl :=
(

1
r2 e

1
i e

B
j e

B
k , e

0
l

)

Eij :=
((
eBi

)′
, e0j

)

Jijkl :=

(

1
r
e1i

[(

eBj

)′
eBk − eBj

(
eBk

)
]

, e1l

)

.

(41)

and finally arrive at the following discretized versions of (30a-32)¶:

0 =
1

τ

[
Xm,i

a −Xm+1,i
a

]
Ais +

1

2
e
am,i − bm,i + am+1,i − bm+1,i

4

[

Y
m,j
b + Y

m+1,j
b

]

Bijs

+
m

2
e
am,i + am+1,i

4
[
Y m,j

a + Y m+1,j
a

]
Cijs +

1

2
e
am,i + am+1,i

4

[

Y
m,j
b + Y

m+1,j
b

]

Dijs

0 =
1

τ

[
Y m,i

a − Y m+1,i
a

]
Ais −

1

2
e
am,i − bm,i + am+1,i − bm+1,i

4

[

X
m,j
b +X

m+1,j
b

]

Bijs

− m

2
e
am,i + am+1,i

4
[
Xm,j

a +Xm+1,j
a

]
Cijs −

1

2
e
am,i + am+1,i

4

[

X
m,j
b +X

m+1,j
b

]

Dijs

0 =
1

τ

[

X
m,i
b −X

m+1,i
b

]

Ais −
1

2
e
am,i − bm,i + am+1,i − bm+1,i

4
[
Y m,j

a + Y m+1,j
a

]
Bijs (42a)

¶ Here we omitted the summation sign to shorten the notation. Analogous to Einstein’s summation

convention, we sum over the indices i, j and k where they appear twice.
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− m

2
e
am,i + am+1,i

4

[

Y
m,j
b + Y

m+1,j
b

]

Cijs +
1

2
e
am,i + am+1,i

4
[
Y m,j

a + Y m+1,j
a

]
Dijs

0 =
1

τ

[

Y
m,i
b − Y

m+1,i
b

]

Ais +
1

2
e
am,i − bm,i + am+1,i − bm+1,i

4
[
Xm,j

a +Xm+1,j
a

]
Bijs

+
m

2
e
am,i + am+1,i

4

[

X
m,j
b +X

m+1,j
b

]

Cijs −
1

2
e
am,i + am+1,i

4

[
Xm,j

a +Xm+1,j
a

]
Dijs

0 = − am+1,iEis +
[

ebm+1,i − 1
]

Fis + 4
[

Xm+1,i
a X

m+1,j
b + Y m+1,i

a Y
m+1,j
b

]

Gijs (42b)

0 = − bm+1,iEis +
[

1 − ebm+1,i
]

Fis + 4
[

Xm+1,i
a X

m+1,j
b + Y m+1,i

a Y
m+1,j
b

]

Gijs (42c)

+ 4m e
bm+1,i

2

[

Xm+1,j
a Xm+1,k

a + Y m+1,j
a Y m+1,k

a −X
m+1,j
b X

m+1,k
b − Y

m+1,j
b Y

m+1,k
b

]

Hijks

+ 8 e
bm+1,i

2

[

Xm+1,j
a X

m+1,k
b + Y m+1,j

a Y
m+1,k
b

]

Iijks

0 =
1

τ

[
bm,i − bm+1,i

]
Ais + e

am,i − bm,i + am+1,i − bm+1,i

4 (42d)

·
[ [
Xm,j

a +Xm+1,j
a

] [

Y m,k
a + Y m+1,k

a

]

+
[

X
m,j
b +X

m+1,j
b

] [

Y
m,k
b + Y

m+1,k
b

] ]

Jijks

Note that although we are free to decide which of the equations (12b) or (13) we consider as

redundant, the discrete systems (42a,42b,42c) and (42a,42b,42d) are not exactly equivalent!

3.5. The algorithms

The following algorithms have been implemented in MATLAB:

(i) An initial mesh can be given and initial conditions can be chosen from the families (33)

or (34) and the software projects them in L2(JR) to a linear combination of the form

(21). All necessary integrals are evaluated by Gaussian quadrature [9], whose order can

be specified in the parameter PGo.

(ii) The initial metric is obtained by solving the equations (42b,42c) implicitly by applying

Newton’s algorithm [9] until the equations are satisfied up to a specified residuum PNtol

or a given maximum number PNmax of iterations is reached.

(iii) Before each time step the mesh is updated due to the following procedure: The initial

mesh structure is represented by a density function ρ(r) such that for all u, v ∈ JR

∫ v

u

ρ dr = Number of cells in [u, v ]. (43)

The automatic mesh update ensures
∫ v

u

ρ
√
B dr = Number of cells in [u, v ] (44)

by dividing a cell into two cells if
∫ rj

rj−1

ρ
√
B dr ≈ λj

2

[

ρj−1e
bj−1

2 + ρje
bj

2

]

> Path, (45)
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where Path is a threshold that can be specified as a parameter. The above criterion means

the number of cells per physical arclength in radial direction is given by the initially

specified function ρ on each spacelike slice Σ(t). This was motivated by the principle of

equivalence.

(iv) If the size τ of the time steps is chosen to be too large, the discrete domain of dependence

does not encompass that of the continuum system and the resulting time evolution may

yield spurious solutions. Therefore we choose

τ := tm+1 − tm = Pλτ · min
j

(

λje
bm,j

−am,j

2

)

(46)

where Pλτ < 1 can be specified as a parameter.

(v) For each time step the equations (42a-42c) are solved implicitly by applying Newton’s

algorithm until the residuum drops below a specified threshold PNtol or the given

maximum number PNmax of iterations is reached. In the latter case the time step is

rejected if the residuum exceeds PNmaxtol and repeated with a smaller τnew := Paτλ · τold.
After Pmaxtry refinements of τ the program exits with an error message.

(vi) The residues of the equations (42a-42c) and (42d) as well as the change in the total electric

charge and the ADM-mass are monitored and, thus, can be used for accuracy checks.

4. Numerical experiments

We tested our code for the initial data family (33) at particle mass m = 0.25 and compared

our results to [11]. We specified the initial mesh by the cell distribution function

Dk
c := 1 + PDc

[

1 + sin

(
kπ

N0
− π

2

)]

, (47)

from which the cell widths and the density function are computed by

λk :=
R

N0

Dk
c

∑N0
j=1D

j
c

and ρk :=
1

λk

. (48)

This results in an equidistant grid for PDc = 1 and for PDc > 1 the density of cells decreases

with increasing r. For all runs we specfied the following fixed parameter values:

PGo = 150, PNtol = 9 · 10− 16, PNmaxtol = 10− 13, PNmax = 30 (49)

Path = 1.25, Pλτ = 0.1, Paτλ = 0.5, Pmaxtry = 50, PDc = 7.

The remaining parameters to be specified for each run are m, R, B, N0 and Σ. For Σ small

enough the system collapsed to form a black hole whereas all matter travels toward spatial

infinity for large Σ. Using Crank-Nicholson finite differencing Schaefer, Steck and

Ventrella found the physical threshold Σth near ΣthSSV := 0.412 for m = 0.25 in [11].

In order to study the convergence of the scheme, we conducted simulations for increasing

numbers N0 of cells of the initial mesh and different polynomial degree B: for m = 0.25 at

Σ = ΣthSSV we examined the numerical solutions for all six variables at a fixed value of t and

r. Two examples are shown in the figures 2 and 3. All plots showed smooth convergence for

increasing N0 and small differences for increasing B.

The decision whether a black hole emerged was based on the existence of a t and r, such

that

F (t, r) :=
2M(t, r)

r
= 1 − 1

B(t, r)
> 1 − εBH (50)
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for a small parameter εBH > 0. By carefully varying Σ we found the numerical blackhole

threshold ΣthZ to satisfy

0.41185 < ΣthZ < 0.41186 (51)

for runs using B = 3 and N0 = 240. This confirms the result of [11]. We show the six variables

as a function of r at a fixed value of t at the end of the run with Σ = 0.41185 in figure 4. To

investigate the details at the forming black hole horizon, we show a zoomed version in figure

5. In this run the black hole was detected at

RBH ≈ 0.052, MBH :=
RBH

2
≈ 0.026 using εBH := 0.9937. (52)

The residues of (42a-42c) and (42d) as well as the changes in the total electric charge and

ADM-mass are plotted in figure 6. Finally we show the development of the mesh+ in figure

7. By comparing these plots to their analogues for the run with Σ = 0.41186 in figures 7-

10, we conclude that runs near the black hole threshold are well behaved and can be well

studied before the numerics break down or are slowed down due to exorbitant mesh adaption.

Therefore our algorithm seems to be suitable for studying critical collapse.

+ Although we specified a value of N0 = 240 the number of cells in the plot starts at 299 because of

the mesh adaption due to the initial metric, which takes place before the time development starts.
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Convergence test for increasing initial mesh resolution N0.
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Plot of the variables as functions of r for R = 12, B = 3, N0 = 240 and Σ = 0.41185 after performing

M = 5150 time steps.
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Figure 4 zoomed to show the forming of the black hole.
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Residues of the equations and changes in the conserved quantities for Σ = 0.41185.
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Development of the mesh due to our adaption algorithms for Σ = 0.41185.
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Plot of the variables as functions of r for R = 12, B = 3, N0 = 240 and Σ = 0.41186 after performing

M = 5950 time steps.

19



0 1 2 3 4 5 6 7 8 9 10
10

−16

10
−15

10
−14

Residues of the equations:

t

0 1 2 3 4 5 6 7 8 9 10
10

−8

10
−6

10
−4

10
−2

Residues of the ∂
t
b−equation:

t

0 1 2 3 4 5 6 7 8 9 10
10

−16

10
−15

10
−14

Change in the total electric charge:

t

0 1 2 3 4 5 6 7 8 9 10
10

−5

10
−4

10
−3

Change in the total ADM−Mass:

t

Figure 9.

Residues of the equations and changes in the conserved quantities for Σ = 0.41186.
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Development of the mesh due to our adaption algorithms for Σ = 0.41186.
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