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Abstract

Purpose - This paper deals with the computation of time-harmonic electric potentials, currents,
and surface charge distributions inside self-healing metallized film capacitors in three dimensions.
A 50 Hz exciting voltage is applied at contacts.

Design/methodology/approach - Extreme aspect ratios warrant dimensional reduction: the
metallization is modelled as a two-dimensional shell. This greatly reduces computational costs and
makes possible an excellent resolution of the geometry. An integro-differential equation for the
complex amplitudes of the electric potential and surface charge densities on this shell is derived
and discretized by means of boundary elements (BEM).

Findings - Adaptive cross approximation (ACA) and H-matrix technology is employed for matrix
compression and preconditioning of iterative solvers. This permits us to use fine surface meshes
and achieve satisfactory accuracy as demonstrated in numerical experiments.

Research limitations/implications - The model is based on an electroquasistatic approach,
thus it is valid for low frequencies only.

Practical implications - Numerical experiments of sophisticated real-life capacitor-designs show
the efficacy of the method for industrial applications.

Originality /value - We developed and implemented a novel model for the three-dimensional
electric field computation inside metallized film capacitors in the frequency domain.

Keywords: Film capacitors, electric field computation, extreme aspect ratios, dimensional reduc-
tion, boundary element method, #-matrices
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1 Self-Healing Metallized Film Capacitors

Phase-shifts caused by inductivities lead to unwanted losses and disturbances in electrical networks.
Capacitive elements reduce these network losses, stabilize the network voltage and increase the
power factor. Self-healing metallized film capacitors (Berqvist, Térnkvist and Mood 2004, Drugge,
Carlen, Laihonen and Spronck 2003) can be used for that purpose and have first been examined
in the fifties by (Charlton 1955, Kohler 1956, Strab 1954). Self-healing metallized film capacitors
consist of a very thin polymer film with a thickness, tp, of 5 to 20 pm and a width, wp, of several
centimeters. Polymer films have high electric strength, i.e., they maintain insulation even in the
presence of very large electric fields. Conducting layers of metal (typically Al or Zn) are vacuum-
deposited onto the surface of the film. This so-called metallization has a thickness, d, of only 5
to 100 nm. The advantage of metallized film capacitors is that they are self-healing or clearing
with respect to small defects, which are always present in industrially produced dielectric films
(Christen and Carlen 2003, Heywang 1976, Kammermaier 1964, Kammermaier, Rittmayer and
Birkle 1989, Reed and Cichanowski 1994). When an electrical breakdown occurs at the small defect,
the metallization evaporates and effectively insulates the defect from the rest of the capacitor. This
limits the damage to the loss of only a few square millimeters of capacitive area.

Figure 1: Sketch of a metallized film capacitor with two sheets, Sheet A and Sheet B. Dielectric
film thickness tp = 6um, dielectric film width wp = 55mm, metallization thickness 6 = 20nm,
axial track distance dp = 5mm, Sheet B track-contact distance dg = 2.5mm. Conductive contact
material is depicted in grey, metallization in black and dielectric film in white.

Depending on the application, various different metallization patterns are in use. In this article
we will examine the configuration shown in Figure [l The capacitor is manufactured by winding
several turns of two different sheets (Sheet A and Sheet B) of metallized film onto a cylindrical
core. The resulting capacitor has the shape of a cylindrical roll. A sprayed-on layer of conductive
contact material connects the metallized tracks of Sheet A to the voltage supply on each end of
the cylindrical roll, whereas the metallization of Sheet B is floating. Electrically, this is equivalent
to a serial connection of two capacitors.

Such a capacitor can be further optimized by adding a segment structure to the metallization
pattern (Carlen and Briiesch 1996), see Figure These structures offer, on the one hand, additional
safety since the incorporated fuses will disconnect a failing segment in the case of large breakdown
currents. On the other hand, the disconnected segment is left floating, capacitively coupled to
the rest of the winding in an inherently three-dimensional way. This could lead to overvoltages
or additional loss currents in the vicinity of the failed segment. Unfortunately this situation
can neither be investigated experimentally nor by simple models with analytic solutions. Thus,
numerical simulation must play a key role in optimizing the design of the metallization. However,
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Figure 2: Optimized design based on a segment structure with fuses.

no effective simulation approaches have been available until now.

In this paper we propose an appropriate numerical method for the computation of electric fields
inside self-healing metallized film capacitors. We face extreme aspect ratios in non-symmetric
and three-dimensional configurations, as can be seen in Figures Ml and Bl The huge aspect ratios,
wp : tp and wp : d, pose the main challenge. The sheer size of these aspect ratios compounds
the difficulties of creating a spatial finite element mesh. The main obstacle is that the thickness,
d, of the metallization is in the range of a few nanometers. However, we do not expect any
significant variation of the field across this very thin metallization. Hence, we can safely ignore
such a variation and carry out dimensional reduction: the metal layer will be represented by a
two-dimensional surface.

This simplification is only a partial remedy, since we still have to cope with the thickness, tp, of
the film in the range of micrometers, which is quite small compared to its width, wp. Fortunately,
the interior of the dielectric film can be treated with a boundary integral method, which does not
require the meshing of the volume. Thus, we merely need a two-dimensional triangulation of the
metallization for the whole simulation. The bad aspect ratio that originates from the film thickness
is automatically and properly removed by the usage of a boundary element method (BEM).

Of course we cannot compute the total length of the film that is wound on the roll, because this
amounts to several meters. As an approximation, we assume that the field on any one turn of the
capacitor is mainly produced by charges on the turns in the close neighborhood, and that the turns
further away can be neglected. This can also be justified by the fact that all electrically induced
charges will locally try to equalize the exciting charges, which means that long range monopole
terms vanish. Thus we only model a couple of turns instead of the complete capacitor.

In the next section we start from an electrogquasistatic model, conduct and justify dimensional
reduction and derive the relevant equations. In Section Bl we give a variational formulation and
prove its well-posedness. In Section Hl we present the boundary element Galerkin discretization
and discuss issues of matrix compression and preconditioning. Finally, we report in Section Bl on
the performance of the method for several test problems.

2 Electroquasistatic modelling

The regime of the electrodynamic phenomena underlying the behavior of the capacitor is marked
by

e an excitation at moderate frequencies, at which electromagnetic wavelengths are much larger
than the size of the capacitor,

¢ the dominance of electric field energy (capacitive effects) compared to magnetic field energy
(inductive effects).



This justifies the use of the electroquasistatic approximation of Maxwell’s equations (Dirks 1996,
Kiang 1996, Reitzinger, Schreiber and van Rienen 2003), which formally amounts to setting the
magnetic induction to zero in Maxwell’s equations. This involves curl E = 0 and permits us to
express the electric field as the gradient of a scalar potential E = —grad ¢. Ampere’s law is
retained, so that the full electroquasistatic model reads

E=—grad¢ |, curlH:%(eE) +j- (1)

Next, we assume linear materials and that Ohm’s law j = ¢E holds inside the conducting film.
Thus, in view of the time-harmonic voltage excitation with fixed angular frequency w, the governing
equations ([l) can be transformed in the frequency domain:

E=—-grad¢ , curlH=iwecE+¢E. (2)

Taking the divergence of the second equation yields the final equation for the (complex) phasor of
the scalar potential,

—div (e + o/iw)grad ¢ =0, (3)

which generically holds in all of R3. The contacts are taken into account by fixing the potential
on certain parts I', of the surface of the conductors.

We now consider @) separately in the part Q¢ of space occupied by the conductors (the met-
allization) and in the remaining insulating dielectric region Qp := R®\ Q¢ (the polymer film).
Integrating ([B) over Q¢ against a test function ¢' that vanishes on the contact zones I'., and
performing integration by parts, we obtain

[(+olgradso gradgar= [ gedas, ()
Qc Qc\I'e

where we wrote go := (€ + 7/iw) grad ¢¢ - n, n standing for the exterior unit normal vectorfield on
the surface Q¢ of the conducting regiont].

In the nonconducting dielectric region, the dielectric tensor € is assumed to be constant with value
€p, SO that we encounter a harmonic potential ¢p there, which allows a representation by boundary
potentials (Sauter and Schwab 2004, Thm. 3.1.6)

(r =) -n(r)

T — e ASE) T e ()

oo@) = [ por—mon@)ase) + [

4rep|r — r’|gD
121976] Qc

where gp := —ep grad ¢p - n is the electric displacement flux density through 0Q2¢. The equations
@) and @) are connected by the transmission conditions implied by the tangential continuity of
both E and H:

¢c=¢p and gc=gp on ¢ . (6)

This permits us to refer to a unique quantity g := gc = gp on 9Q¢c. We remark that the
transmission conditions in conjunction with @) and (&), give rise to a coupling of a variational
formulation inside Q¢ and of a boundary integral formulation in Qp (Johnson and Nédélec 1980,
Costabel 1987).

Yet, we aim to exploit the extreme aspect ratios present in the capacitor setting in order to carry
out dimensional reduction and arrive at a much simpler coupled formulation.

To begin with, the conducting film occupying Q¢ is supposed to have uniform thickness, §, so that

Qo :={r=(x+&d(x) eR®: xe, - <e< i}, (7)

IHere and below, the subscript C' tags functions on Q. Quantities belonging to Qp will bear a subscript D



Figure 3: Skeleton surface for thin sheets

where the “skeleton” ¥ is a smooth bounded surface with transversal normal direction d, see Figure
B The thickness ¢ has to be small enough to render () a valid parameterization of Qc¢.

Next, we neglect any transversal variation of the potential inside the conducting film:
po(x+&d(x) =¢(x), x€F, -F<E<F. (8)

For a thin conducting film this is a reasonable assumption, because a significant transversal drop in
the potential would amount to extremely strong electric fields, which would immediately be offset
by an accumulation of surface charges. In addition, we do not admit any transversal variation of
conductivity and dielectric constant inside 2¢. Also the applied potential at the contacts must be
constant in thickness direction.

Another simplification consists in ignoring fields emanating from the edges of the thin film. This is
justified by their very small contribution to the total surface 9Q¢. Fields that originate from the
edge are only relevant in the vicinity of the edge, for distances of similar size as the edge-radius
(=~ §/2). Thus field enhancements around the edge can neither be computed by our model, nor
need to be taken into account for the purpose of this study.

Once we have made these assumptions, (#) can be equivalently written as
§ [ () + /) grads 6(x) - grads o () 4S(x) = [ () #(x)dSG) V6. (9)
x b

where grady, stands for the surface gradient on X, and
q(x) := go(x + §d(x)) + go(x - §d(x)) - (10)

Also in the boundary potential representation formula we are going to ignore the contribution of
edge parts of 9Q¢ and the local curvature of X, so that (&) becomes

1 5 1
= 2d —94)ds
#olx) /47reD|r—(x+gd)|gD(x+2 I ¥ Trenl = (x = By 0 T 2 DA

(r—(x—$d)) - d(x)
drep|r — (x — £d)|3

¢p(x + §d) —

¢p(x — §d)dS(x), (11)

/ (r— (x+§d)) - d(x)

drep|r — (x + $d)|3

because the exterior unit normals have opposite directions on both sides of 0Q¢. Next, we use the
first order approximation r — (x £ gd) ~ r — x, taking into account the transmission condition



@) and that ¢ does not vary in transversal direction. This will make the second integral of ([Tl
vanish, which means

o (r) ~ / 1 x)dSx), reon. (12)

dmep|r — x|

We can identify ([2) as single layer representation of the potential created by a sheet with area
charge density q. We conclude this from the fact that the electric displacement —ep grad ¢p has
a jump of size ¢ across X.

For the single layer potential ([IZ) the trace on X is well defined, so that we can admit r € X.
Subsequently, we cast the resulting equation in weak form and use the other transmission condition
¢p =¢c on X

2/ 86) 4/ (x / / ep (00 () ASGAASe) Ve (13)

The two variational equations @) and ([I3) for the unknown film potential ¢ and charge density ¢
immediately lend themselves to coupling.

3 Theory

Before we state the final coupled variational equations, we have to fit the equations into a proper
framework of function spaces on X. First equation [{@) requires trial and test functions to possess
a square integrable surface gradient. Further, the test functions are supposed to vanish on the
contacts, which suggests the test space

Hi (£):={veH(X):v=00nT.}. (14)

As we integrate the surface charge density, ¢, against a function from H} () it has to belong to
the dual space of Hf. (X).

We derived ([2) by taking a trace on ¥, which means that [IZ) has to be read as an equation in

the trace space H2 (X), so that the proper test space in (I3) is the dual space H 2 () (Sauter and
Schwab 2004, Section 3.5.3). Also recall that the operator induced by the weak interpretation of the

single layer boundary integral operator, cf. (), provides a continuous mapping H=2 () H 2 (X%)

(Sauter and Schwab 2004, Thm. 3.1.16). This suggests that we actually seek ¢ in the space H~2 ().
Summing up, we arrive at the following coupled problem:

Find the surface charge density ¢ € INI*%(E) and the potential ¢ € H'(X), ¢r, = u, such
that

//47r6D|x—x’| dS(x)dS (x /¢ (x)=0 Vg eH 3(Z), (15)

/ ¢(x) @' (x) dS(x) + 0 / (e + 7/i) grady, ¢ - grady ¢/ dS(x) = 0 Vo' € HA ().  (16)
)

P

Here, u € H?(T.) models the externally applied voltage at the contact edges.

Theorem 1 The variational problem ([8), (&) is well posed.



Proof. Let us denote by ¥, ..., 3%, the connected components of ¥. For the sake of simplicity we
assume that only one of them, say ¥;, does not possess a contact. We split

HY (S) = {0 € HL (S /¢ds—o}@c L H(D) @ C. (17)

Plugging the corresponding decomposition of ¢ = ¢+ c and ¢' = ¢ + ¢’ into ([H), () we end up
with: seek ¢ € HX(X), ¢r, =u,ce€C, and g € H*%(E) such that

] #5RSn dS&)dSeo — [qds +oefdb9ds = .
fng dS + 0§ [(e+ /i) gradza-gradzal ds = ..., (18)
) )

[ a(x)dS = 0,

P}

for all ¢' € HX(), ¢ € H™3(%).
The upper left 2 x 2-block of this variational problem, which we abbreviate as ¢((¢, q), (¢',¢')), has
a convenient block skew-symmetric structure:

!

c((f), (3)) = 5E/(e—l—"/iw)gradza.gradza’d5+z/qa'ds
_/Eq’d5+//%d5(x')ds(x)‘
2 DI

This enables us to apply the following trick: pick any ¢ € Hp_and ¢ €~z (). Test ([B) with
¢ = ¢* and ([[@H) with ¢’ := ¢*. After adding the resulting equations, the real parts of the
non-positive terms cancel and we find that the bilinear form ¢ is H2(Z) x H ™2 (X)-elliptic:

e((9,0), (9% DI 2 C {3 19l13 sy + lall} 3 5

with C' > 0 independent of ¢ and q. Here we appealed to the H —3 (X)-ellipticity of the single layer
boundary integral operator (Sauter and Schwab 2004, Thm. 3.5.3).

Hence we can apply the abstract theory for variational saddle point problems (Brezzi and Fortin

1991, Ch. 2) to (I¥). Since ¢’ — [;, ¢’ dS is a non-trivial functional on H~3(%), the general theory
confirms existence and uniqueness of solutions of ([[J) for any right hand side. O

We note the following further properties of the mathematical model:

1. The mean electric current flowing tangential to metallization can be obtained from j =
o grady, ¢.

2. If &' C ¥ is a connected component of ¥ without contacts, then we can test ([[H) with ¢' =
on ¥’ and ¢' = 0 elsewhere. This yields fE, gdS = 0 and demonstrates that the total charge
of the floating part of the metallization associated with skeleton X' is zero.

3. For w — 0 the solution of ([H) and ([T converges to the following limit problem:

¢ the potential, ¢, drives stationary tangential currents in the metal layer,

e the charge density, ¢, becomes the unknown in a boundary integral formulation for the
exterior Dirichlet problem for —epA¢ = 0 in R3 \ X.

4. The system is singular for § = 0, since then we come across a boundary value problem with
the potential prescribed on one-dimensional curves, which is not a valid boundary condition
in 3D.



5. For ¢ = 0 we recover a valid coupled variational/boundary integral formulation for the
equation — div(egrad ¢) = 0 with the potentials fixed at contacts. However, control on ¢
inside the film may be very weak for § < 1.

Summing up, we found the expected physical properties and models in all examined cases. The
model will suffer poor conditioning for very small values of both de and do/w. We do not encounter
this situation in the targeted application, because the metal layer has to be a sufficiently good
conductor. Very low frequencies do not affect the model.

4 Implementation

4.1 Discretization

We equip the skeleton ¥ with a piecewise flat triangulation My, whose triangles define the ap-
proximate surface ¥;. On X we introduce the boundary element space V}, of globally continuous
M -piecewise affine linear functions. The conforming Galerkin boundary element discretization of
(@) and (@) is based on the trial and test spaces

e Vi, C H=2(3) for the test function ¢,

o Vio={¢Yn € Va: ¥ =00nT.} C H. (X) for test function ¢'.

We choose the standard nodal basis of V}, comprising locally supported functions b,, p € V(My,),
associated with the vertices of My, (the set V(My)). The subset {b, : p € V(My), p & T} is used
as a basis for V3, o. Imposing an ordering of V(M}), we may number the basis functions by, ..., bn,
N := $V(My). We adopt the convention that by, ...,br, L < N, are the basis functions belonging
to vertices away from the contact I'.. Thus we arrive at a linear system of equations

V. K||lq|_|¥
& ol [3] =[5 ®
with the dense, symmetric and positive definite matrix V' that originates from the single layer

boundary integral operator and two sparse matrices K and D. More precisely, we find for the
matrix entries

- )bi(x) o
Vi .—//471_61) |x—x’| dS(x")dS(x) , ih,j=1,...,N,
K, :=— /b x) dS(x) , j=1,....,.N,n=1,...,L,

Dmn::—d/(e—z)gradzb (x) - grady, b(x) dS(x), myn=1,...,L.
)

The right hand side vector in [[J) takes into account the excitation: writing ug, k= L+1,..., N,
for the value of the applied voltage at the vertex #k on I'., we get

p; = uk/bk dS( ) j=1,...,N,
k=L+1

= —0 Z uk/ e—— ) grady, bk (x) - grady b;(x) dS(x), j=1,...,L.
k=L+1



Having solved for the unknown vectors ¢ € CN and ¢ € C*, we recover the approximations of g
and ¢ through

N
g =) i,

¢ = pp = Z; ¢ibi + ZZLH u;b; .

Arguments like in the proof of Theorem [l show that these approximations enjoy the typical quasi-
optimality of Galerkin solutions

0= 01l 5y + 18 = sy < € ind Nla = wnll oy g+ 308 16—l - (20)

Here, barring very distorted triangles in My, the constant C' > 0 is independent of the size of
the linear system (). Of course, when the formulation encounters stability problems, c¢f. the
discussion in the previous section, then this constant will blow up.

Remark. The computation of the matrix entries of V' must be done with high precision, because
the distances between two triangles on different connected components of ¥ can be very small.
Therefore we use accurate semi-analytical integration formulas B

Remark. It would also have been possible to approximate g by means of piecewise constant func-
tions on Mj. We opted for basically the same boundary element space for both ¢ and ¢ in order
to keep data structures simple.

4.2 Matrix compression
The assembly and solution of the linear system ([[d) poses two problems:

1. the Galerkin discretization of the integral operator leads to a dense matrix V' that requires
memory proportional to N2.

2. the system matrix can be extremely poorly conditioned and the use of a direct solver for the
dense system is restricted to problem sizes below 15000 nodes on standard 32-Bit desktop
computers.

Ouly the application of a matrix compression technique like adaptive cross approzimation (ACA)
(Bebendorf 2000, Bebendorf and Rjasanov 2003) for V', in combination with an iterative solver
can reduce the computational effort, provided a preconditioner can ensure satisfactory conver-
gence. Hence an effective preconditioner has to be constructed. Thereby we take advantage of the
compression technique, since the compressed operator is based on so-called hierarchical matrices
(Grasedyck and Hackbusch 2003, Hackbusch 1999, Hackbusch and Khoromskij 2000). These H-
matrices can be employed to perform an approximative Cholesky-decomposition of V. Below we
will first describe the basic ideas behind ACA and the approximative Cholesky-decomposition by
H-matrices. Then we will show, how these techniques are used to construct the preconditioner.

The kernel 1/(4mep|x — x’|) of the single layer boundary integral operator in ([[H) is smooth, if
x and x' are well separated. The idea behind all compression techniques is the approximation of
the boundary integral operator in the farfield, i.e., in regions where x and x’' are far away from
each other. Well known compression techniques are the fast multipole method (Greengard and
Rokhlin 1997), panel clustering (Hackbusch and Nowak 1989), or the H2-matrix approximation
(Bérm and Hackbusch 2002). These techniques are based on expansions or interpolations of the
kernel-function. An alternative is the so-called adaptive cross approzimation (ACA) (Bebendorf
2000, Bebendorf and Rjasanov 2003) that is applied here. ACA is a purely algebraic method. It
only requires the computation of a small percentage of the entries of the matrix.

2Thanks to O. Steinbach, G. Of and J. Breuer



All compression techniques make use of farfield and nearfield, that have to be defined first. The
boundary element basis functions are collected in so-called clusters. Diameter, center, and distance
of such clusters can be defined easily. They induce a partitioning of the matrix V' into submatrices
corresponding to pairs of clusters. A pair of clusters (C;,C,) and the corresponding submatrix
belong to the farfield if the diameters diam C., diam C, of the clusters are small compared to their
distance dist (C;, C,), i.e. if they fulfill the admissibility condition

min{diam Cr,diam C,} < n-dist (Cr, Cy).

The admissibility parameter 7 is typically chosen between 0.5 and 1.5. If the admissibility condition
is not fulfilled, then the submatrix belongs to the nearfield. The submatrices of the nearfield
remain uncompressed in all compression techniques. The matrices of the farfield are approximated
differently, depending on the specific compression technique.

In the case of ACA one approximates the generically dense submatrices of the farfield by using
only a few rows and columns (i.e. crosses) of the submatrix. Other matrix entries, except for
these crosses, need not be calculated. One applies this approximation iteratively, starting from
only one cross, adding more and more crosses and stopping the sequence of approximations if
the difference between two consecutive cross-approximations is small enough. Thus one finds
adaptively a low-rank approzimation of the submatrices of the farfield. Thus ACA compresses the
matrix V into a good approximation V. Also, matrix-vector multiplication with the compressed
matrix becomes much faster. A picture of the resulting ACA-matrix-approximation with the ranks
of the submatrices is shown in Figure Bl Full rank submatrices have a dark colour.

Figure 4: An ACA-matrix-approximation with its rank distribution

The matrices that approximate the boundary integral operator have a special structure for all
mentioned compression techniques. They can be regarded as a set of so-called hierarchical matrices
(H-matrices) (Hackbusch 1999). Arithmetics can be defined on the set of these matrices (Grasedyck
and Hackbusch 2003, Hackbusch and Khoromskij 2000) that allow the efficient construction of
an approximative Cholesky decomposition LLT ~ V of the compressed single layer matrix V.
This decomposition can be used for preconditioning. For further details on the topic we refer to
(Bebendorf 2005, Grasedyck and Hackbusch 2003).



4.3 Preconditioned iterative solution

After compression of V with ACA and inserting the approximation V into equation ([d) we end

up with the equation _
wle) =l ol e -] @

We found that all usual preconditioning techniques (Jacobi, ILU, etc.) fail to make an iterative
GMRES solver converge. Only the following approach yielded an effective, robust and inexpensive
preconditioner:

We start with a matrix factorization

V o

M:M“/-MS with M"’,Z: [0 1

~ 1
1 V ‘K
],a.ndMszz lKT D ]

Next, we make use of the approximative H-Matrix based Cholesky decomposition L - LT ~ ‘7, see
Section and find

o~ - T_l.
M5%M5:=|:1 (LL) K]

K" D
The preconditioner P is finally defined by
A ar—1 a1
P=Mg M; ;~M ".
The two “matrix inversions” are realized by another application of preconditioned iterative solvers.

e A good preconditioner for M can be based on the Cholesky-decomposition L - LT~ V.

e The matrix Mg can be approximated by using only the diagonal part of (L - LT). This
leads to a sparse matrix for which standard sparse ILU-decompositions (Saad 1995) can be
performed that can be used as preconditioners for M g.

5 Results

5.1 Model validation

The model is validated by computing the configuration of Figure [ for just one turn of radius
Ro = 9 cm for a very low frequency of 0.5 Hz. The dimensions are depicted in the caption of
Figure Ml The radial distance between the conducting tracks tp is much smaller then their axial
distance dr and the cylindrical tracks of the capacitor behave in very close approximation to
stationary parallel-plate capacitors. The film has a relative dielectric constant of ¢, = 2.2. The
metallization has a conductivity of ¢ = 2.5 - 108 ﬁ, and is connected to a voltage supply of
Upeak = 1.2 kV. By using standard formulas for stationary parallel-plate capacitors we expect the
surface charge density with values of ¢ = 1.95- 1073 C/m? to be homogeneously distributed over
the conducting tracks. This charge is fed by a current density of j = 6881 mAg at the contacts. The
current density has only axial components.

The results of our computation in Figure [ are in very good agreement with these estimates. The
phase of the current is shifted about II/2 compared with the exciting voltage. The imaginary
part of the potential, the imaginary part of the surface charge, and the real part of the current
density are orders of magnitude smaller than their counterparts of opposite phase. The distance tp
between the conducting tracks is drawn to a larger scale by a factor of 6000 for better visualization
in all figures of this section. We used a uniform mesh with 16000 nodes, the computations required

10
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Figure 5: The upper left illustration shows the real part of the potential in [V], the upper right
illustration shows the real part of the surface charge density in [C'/m?], and the lower illustration
shows the imaginary part of the current density in [A/m?].
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Figure 6: Convergence of simulation results

about 300 MB and the GMRES iterations converged after 23 steps (final relative residual norm
109).

We also recorded the computed value of the surface charge density in the middle of the floating
track, see Figure Bl The convergence of this value to the charge density in the stationary case
(which is a very good approximation in this situation) as finer and finer uniform meshes are used
is evident.

5.2 Simulation of Segment Structure

Next we discuss an application of the new simulation method to the practical situation shown
in Figure B The segment structure of Sheet A is implemented by interrupting the conducting
tracks every 130 degrees. This models the situation depicted in Figure All other dimensions
and material parameters remained unchanged from the last Section Bl

We compare the case of regular service of the capacitor with the defective case. When the capacitor
is in regular service, all segments of Sheet A are contacted to the voltage supply. The defective
case means that one segment of Sheet A is not connected to the voltage supply. In both cases,
even in the defective case, the grounded track of Sheet A is contacted properly. Both cases are
simulated for six turns, and the defect is placed in the middle. Figure [ shows the results of the
two computations. The left column is the defective case, and the right column is the regular case.

For the defective case, one easily discerns the non-contacted segment in the central lower part of
the spiral by comparing the potentials of the two cases. The floating non-contacted segment of
Sheet A is approximately at potential zero. It is covered on each side by a floating part of Sheet
B. Each of these adjacent parts is only charged up to half of the normal surface charge density,
since it is exposed to the normal electric field from only one side. There is a large additional loss
current flowing on Sheet B, with a maximum that is 50% higher than the maximum current on
Sheet B for the regular case.

The additional loss current can be understood by looking at Figures 8 and @l These figures show
the uncurled capacitor with Sheet B in the foreground (the edges of the slightly wider Sheet A are
visible in the background). Figure B shows the surface charge density. The upper illustration shows
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Figure 7: The right column shows the results for the regular case; the left column shows the
results for the defective case, which includes one non-contacted segment. The first row shows the
potentials in [V], the second row shows the surface charge densities in [C'/m?], and the last row
shows the current densities in [A/m?].
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the uncurled capacitor in the regular case, whereas the lower illustration shows the defective case.
As already mentioned, the two parts of Sheet B that are adjacent to the non-contacted segment of
Sheet A carry only half the surface charge density (i.e. approximately —2.0- 1073 C/m?).

-4.500e-003 4.500e-003

No contact

Figure 8: The real part of the surface charge density in [C/m?] on Sheet B, the floating sheet.
The upper illustration shows the surface charge density for the regular case. The lower illustration
shows the surface charge density in the defective case.

Figure @ shows the current densities for the two cases. For the regular case shown in the upper
illustration we find a maximum current density of 1.24-106A/m?. The current density has only an
axial component, which is in the e,-direction. The current density in the lower illustration shows
the defective case with a maximum of 2.0 - 105A/m?2. It has components in the axial e,-direction
as well as in the e,-direction. This can be explained by taking a look at the surface charge of
Figure B for the defective case. The surface charge is asymmetrically distributed on Sheet B. This
asymmetry results from the fact that all segments of the grounded track of Sheet A are contacted
to earth, whereas there is a non-contacted segment on the other track of Sheet A. This means that
the surface charge density of Sheet B must be fed from a non-axial current in e, direction.

0.000e+000 2.000e+006
No contact
ez1
€

Figure 9: The imaginary part of the current density in [A/m?] on Sheet B, the floating sheet. The
upper illustration shows the current density for the regular case, containing only a e, component.
The lower illustration shows the current density in the defective case. Its maximum is 50% higher
than the maximum for the regular case, and the additional loss current goes in the e, direction.

We found the preconditioner P and ACA to work well within the applied GMRES for the two
computations. We used the same grid for both defective and regular cases, and the GMRES
converged to a final relative residual norm of approximately 10~% in less then 50 steps. The grid
consists of 38000 nodes, i.e. approximately 76000 complex unknowns, and the solver required in
total approximately 700 Megabytes of memory for the solution.
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