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Abstract

In this series of two articles, we consider the propagation of a time harmonic wave in a medium
made of the junction a half-space (containing possibly scatterers) with a thin slot. The Neumann
boundary condition is considered along the boundary on the propagation domain, which authorizes
the propagation of the wave inside the slot, even if the width of the slot is very small. We perform a
complete asymptotic expansion of the solution of this problem with respect to the small parameter
ε, the ratio between the width of the slot and the wavelength. We use the method of matched
asymptopic expansions which allows us to describe the solution in terms of asymptotic series whose
terms are characterized as the solutions of (coupled) boundary value problems posed in simple
geometrical domains, independent of ε : the (perturbed) half-space, the half-line, a junction zone.
In this first article, we derive and analyze, from the mathematical point of view, these boundary
value problems. The second one will be devoted to establishing error estimates for truncated
series.
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1 Introduction

In many practical applications concerning time harmonic (namely the pulsation ω or the wave
length λ is given) electromagnetic or acoustic wave propagation, the problems to be solved involve
the presence of structures with at least one space dimension of characteristic length ε � λ. In
this paper, we are considering the treatment of 2D thin slots which corresponds typically to the
geometry of figure 1.

Figure 1: Geometry of the domain of propagation.

For the applications, the physically interesting situation (for example the situation one meets with
the microwave shielding of thin slots [11] or flanged waveguide antennas [9], see [18] for more
examples) corresponds to:

λ/1000 < ε < λ/10, ε < L/10 and λ/10 < L < 10 λ, (1.1)

where λ is the wave length, ε is the width of the slot and L the length of the slot.

For numerical simulation of wave propagation in media with thin slots, a natural idea is to derive
an approximate “1D - 2D” model: a 1D model – posed on the curve that materializes the limit
of the slot when ε tends to 0 – for the propagation inside the slot and a 2D model for the rest
of the computational domain. The main difficulty consists in finding the technique (not unique)
used for coupling the two models. Such models have been designed in the engineering literature
(see [1], [4], [5], [18] or [17] for a review) and are commonly used in various computational codes.
However, the complete understanding and evaluation of such models suffers, to our opinion, from
a lack of mathematical analysis.

In a previous paper [7], in the case of the scalar Helmholtz equations with homogeneous Neumann
boundary conditions (the interesting case from the physical point of view) we proposed and ana-
lyzed in detail a “1D - 2D” model by a “brute matching” of the 1D and 2D models, in the spirit
of what is done in the engineering literature. This work justifies completely this type of approach
from the mathematical point of view (sharp error estimates are given) but also emphasizes its
limitation: the accuracy is, roughly speaking, limited to O(ε2).

A natural idea is to try to develop more accurate approximate models. Of course, this requires a
(more) complete description of the asymptotic behavior of the solution when ε tends to 0. This
is precisely the objective of the present article, which is the first of a series of two papers devoted
to the asymptotic analysis of the model problem of the semi-infinite straight slot. Typically, the
domain of propagation is the union of a half-space (that may contain, for instance, an obstacle)
and a thin semi-infinite straight slot, orthogonal to the half-space (see figure 2):
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y

Figure 2: domain for the model problem

Ωε = ΩH ∪ ΩεS , (1.2)

with
ΩεS = {(x, y) ∈ IR2 / 0 < x and − ε/2 < y < ε/2}, (1.3)

ΩH = {x = (x, y) ∈ IR2 / x < 0 and x /∈ B}, (1.4)

where B is a regular obstacle included in the left half-space x < 0. The problem we consider is†:




Find uε ∈ H1
loc(Ωε) outgoing such that:

∆uε + ω2 uε = −f in Ωε,

∂uε

∂n
= 0 on ∂Ωε,

(1.5)

where f ∈ L2(ΩH) is the compactly supported data. Classically, by outgoing solution, we mean
that we prescribe a given behavior at infinity to the solution, namely:

• At infinity in ΩH , uε satisfies the Sommerfeld radiation condition [16].

• Inside the slot the solution is the superposition of modes which are either evanescent or
propagating in the direction x > 0 (see [7]).

Remark 1.1 The case of a slot of finite length is of the same type of analysis, modulo some
additional technical difficulties, except however for some critical lengths L linked to resonance
phenomena (see [2]).

For studying the behavior of uε for small ε, we will use the method of matched asymptotic expan-
sions. This is a well-known method that has been developed in the beginning of the 70’s, initially
to analyze boundary layer phenomena. This approach has been developed quasi-independently
(one does not find a lot of cross citations in the publications) by two mathematical schools, from
two rather different points of view:

• The British School whose effort has been put on the machinery of formal asymptotics and
matching principles (see [21] for the basic tools or [3] for a review)

• The Russian School has investigated more deeply the rigorous justification, far from being
easy, of this type of formal expansions (see for [8] the justification of the spatial expansions,
and [6] for a review on the matching of asymptotic expansions).

In this work, we intend to apply this technique and analyze it rigorously for the model problem .
This problem has already been studied via matched asymptotics in [14] where the authors restrict
themselves to the first orders of the expansions, without paying attention to the mathematical
justification.

†We have choosen to use the definition u ∈ H1
loc(D)⇐⇒ ϕu ∈ H1(D), ∀ϕ ∈ D(IR2).
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Remark 1.2 The fact that the method of matched asymptotic expansions is most often presented
as a formal technique is a major drawback in the opinion of a lot of mathematicians who prefer
the so-called multi-scale technique, which appears to benefit from a rigorous framework (the reader
can refer to [15, 13, 12, 22] to obtain explanations on the multi-scale technique). With this work,
we also want to convince the reader that the method of matched asymptotic expansions is not only
a formal technique.

As it is classical with this type of problem, the work can be naturally divided into three steps. The
first one is related to obtaining the formal asymptotic expansion and constitutes the most algebraic
and calculatory part of the work. The next two cover two different aspects of the mathematical
justification and make use of various techniques for the analysis of PDE’s.

Step 1: Derive the formal expansion. One starts from an Ansatz, i.e. an a priori form
for the asymptotic expansion that is injected in the equations of the initial (ε dependent)
problem, to deduce a series of (ε independent) elementary problems that are supposed to
characterize the different terms of the asymptotic expansion.

Step 2: Show that the various terms of the asymptotic expansions are well defined, i.e. that
the above elementary problems are well posed. This is not necessarily straightforward since
these problems are quite often non standard.

Step 3: Justify the asymptotic expansion, namely establish error estimates between the
true solution and truncated asymptotic expansions.

For the clarity of the exposition, we have chosen to separate our presentation into two distinct
articles. In the present one, the first part, we treat essentially the steps 1 and 2. We also state the
main theorems (error estimates) whose proof, postponed to the second part, will use in particular
the stability and consistency arguments that have been developed in [7].

The outline of this paper is as follows:

In section 2, we will give the forms of the asymptotic expansions in the three different zones (far-
field, near-field and slot-field zones) and state our main results, namely the theorems 2.1, 2.2 and
2.3.

The section 3 is devoted to step 1. First, we introduce some preliminary materials: asymptotic
behavior of solutions of Helmholtz and Laplace equations. We give then the coupled problem –
see section 3.3 – which defines the terms of the asymptotic expansions. Finally, we present the
computations which allow to derive this problem.

In section 4, we prove that the coupled problem is well-posed (this is step 2). The existence proof
is based on the introduction of special functions which are constructed in appendix A.

2 The asymptotic expansions and associated estimates.

2.1 The formal expansions

For this type of problem involving several space scales, it is not possible to write a uniform
expansion for the solution everywhere in the domain Ωε. Here, we will have to consider three
distinct zones, respectively the far-field zone, the near-field zone and the slot zone, in which
different expansions are obtained. The denomination “far” and “near” refers to the position with
respect to the end point of the slot.

In the following, we will denote by C the class of positive continuous functions of ε > 0 that tend
to 0 when ε→ 0, less rapidly than linearly.

C = {η : IR+
∗ → IR+

∗ / lim
ε→0

η(ε) = 0, and lim
ε→0

η(ε)/ε = +∞.} (2.1)

3



and will introduce four functions η±H and η±S in C satisfying:

η−H(ε) < η+
H (ε) and η−S (ε) < η+

S (ε). (2.2)

Because of the 2D context, polynomial logarithmic gauge functions will be used for describing the
asymptotic behavior of uε, namely the functions

(ωε
2

)i
logk

(ωε
2

)
, (2.3)

More precisely, we will use the following set of indices (see figure 4):

J = {(i, k) ∈ IN× IN / k 6 i}, (2.4)

that we shall fournish with the total order relation:

(j, l) < (i, k)⇐⇒ j < i or j = i and l < k. (2.5)

illustrated by Figure 5.

Remark 2.1 We have here used ωε/2 for the small parameter. This is justified by the fact that
ωε has no dimension. The factor 1/2 has simply a technical interest.

The far-field (half-space) expansion. Roughly speaking, the far-field domain is ΩH (the
half-space without the obstacle B) in which the solution uε is searched of the form:

uε =
+∞∑

i=0

i∑

k=0

(ωε
2

)i
logk

(ωε
2

)
uki + o(ε∞), in ΩH . (2.6)

This expansion will not be valid uniformly in ΩH but only in a far-field zone of the form:

ΩH(ε) =
{

x ∈ ΩH / |x− 0| > η−H(ε)
}
. (2.7)

Note that the domain ΩH(ε) converges to ΩH (see figure 3), as ε tends to 0.

x
η−H

y

ΩH(ε)
ε→ 0

�

y

ΩH x0

Figure 3: The far-field domain
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Figure 4: The index set J
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Figure 5: The order relation in J .
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The slot-field expansion. The slot-field domain is denoted by Ωε
S , see figure 6. In such a

domain, it is natural to introduce the scaling (x, Y ) = (x, y/ε) in such a way that:

(x, y) ∈ ΩεS ⇐⇒ (x, y/ε) ∈ Ω̂S = ] 0,+∞ [ × ]− 1/2, 1/2[,

where Ω̂S is a normalized (or canonical) slot of width 1. In Ωε
S , we shall look for uε of the form:

uε(x, εY ) = Uε(x, Y ) =

+∞∑

i=0

i∑

k=0

(ωε
2

)i
logk

(ωε
2

)
Uki (x) + o(ε∞), (x, Y ) ∈ ΩS , (2.8)

where the functions Uki ’s are defined on IR+.

Remark 2.2 In fact, one does not need to assume a priori that U ki does not depend on Y : this
follows from the calculations (see section 3.4). The Y -dependence of U ε is hidden in o(ε∞) term.

Once again, such an expansion will not be valid uniformly in Ω̂S but only in a slot-field zone of
the form:

ΩS(ε) =
{
x = (x, y) ∈ ΩεS / x > η−S (ε)

}
. (2.9)

ΩS(ε)
�
ε

η−S

x
y

1

η−S

x

Y

ε → 0

x

Ω̂SY
1

Figure 6: Slot-field domain

The near-field expansion The near-field zone is defined by:

ΩN (ε) =
{
x ∈ ΩH / |x| < η+

H(ε)
}
∪
{

(x, y) ∈ ΩεS / x < η+
S (ε)

}
(2.10)

In this zone we use the classical scaling X = x/ε and Y = y/ε in such a way that

(x, y) ∈ ΩN (ε) ⇐⇒ (x/ε, y/ε) ∈ Ω̂N (ε),

where, since η+
H and η+

S belong to C, when ε tends to 0, ΩN (ε) collapses to the origin and Ω̂N (ε)

converges to the canonical infinite open domain Ω̂N , see figure 7, defined by:

Ω̂N =
(

]−∞, 0 [ × IR
)
∪
(

[0,+∞ [ × ] − 1

2
,

1

2
[
)
. (2.11)

x

y

ε

ηS

ηH

ηH
ε

Ω̂N (ε)

ηS
ε

1
X

Y

ΩN (ε)

ε −→ 0

− 1
2

1
2 X

Y

Ω̂N

Figure 7: Near-field domain
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In Ω̂N (ε), uε will be of the form:

uε(εX, εY ) = Uε(X,Y ) =

+∞∑

i=0

i∑

k=0

(ωε
2

)i
logk

(ωε
2

)
Uki (X,Y ) + o(ε∞), (X,Y ) ∈ Ω̂N , (2.12)

where the Uki are complex valued functions defined in Ω̂N .

2.2 The main results

In this section, we state three theorems that specify the sense to be given to the expansions (2.6),
(2.8) and (2.12). The proof of these theorems (a version of which is given in [19]) is postponed to
the second article. Note also that these theorems refer to section 3 where the (coupled) problems
defining the various functions appearing in these expansions are presented. Implicitely, it also
refers to section 4, where we shall prove that these problems are well-posed.

Theorem 2.1 There exists a unique family of functions {uki ∈ C∞(ΩH \{0}), (i, k) ∈ J}, defined
in section 3 (in particular ukk ≡ 0 for k 6= 0), such that:

For any compact set FH ⊂ ΩH \ {0} and any N ∈ IN, there exists CN (ω, FH , supp(f)) > 0 such
that:

∥∥∥uε −
N∑

i=0

i∑

k=0

(ωε
2

)i
logk

(ωε
2

)
uki

∥∥∥
H1(FH)

6 CN

(ωε
2

)N+1 ∣∣∣ log
(ωε

2

)∣∣∣
N

‖f‖L2 . (2.13)

The function u0
0 is the natural limit of uε, i.e. the solution of the problem without a slot (see

section 3.1).

Anticipating section 3.3, let us emphasize that the uki are not smooth up to the origin. For
i 6= 0, each of the uki ’s is singular near 0 so that uki /∈ H1

loc(ΩH ). More precisely, the singularity
“increases” with i− k in the sense that, when r = |x| → 0,

uki = O(r−i+k+1) for 0 6 k 6 i− 2, and ui−1
i = O(log r). (2.14)

The convergence rate in the right hand side of (2.13) is as expected : it corresponds to the order
of magnitude of the first neglected term in the complete series expansion. On the other hand, we
can not claim that the series (2.6) converges, since the constant CN depends on N.

Theorem 2.2 There exists a unique family {U ki ∈ C∞(IR+), (i, k) ∈ J}, defined in section 3 (in
particular Uki (x) = Uki (0) exp iωx) such that:

For any compact set FS ⊂
{

(x, y) ∈ Ω̂S/x 6= 0
}

and any N ∈ IN, there exists a positive constant
CN (ω, FS , supp(f)) such that

∥∥∥Uε −
N∑

i=0

i∑

k=0

(ωε
2

)i
logk

(ωε
2

)
Uki

∥∥∥
H1(FS)

6 CN

(ωε
2

)N+1 ∣∣∣ log
(ωε

2

) ∣∣∣
N+1

‖f‖L2. (2.15)

Theorem 2.3 There exists a unique family of functions {Uki ∈ C∞(Ω̂N ), (i, k) ∈ J}, defined in
section 3, such that:

For any compact subset FN of Ω̂N and any N ∈ IN , there exists CN (ω, FN , supp(f)) > 0 such
that:

∥∥∥ Uε −
N∑

i=0

i∑

k=0

(ωε
2

)i
logk

(ωε
2

)
Uki
∥∥∥
H1(FN )

6 CN

(ωε
2

)N+1 ∣∣∣ log
(ωε

2

)∣∣∣
N+1

‖f‖L2 . (2.16)
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Anticipating section 3, let us mention that, except for i = k, the Uki are growing at infinity. More
precisely:




Uki = O(ρi−k) when ρ = (X2 + Y 2)

1
2 → +∞ in the half-space X < 0,

Uki = O(X i−k) when X → +∞ in the normalized slot X > 0.

(2.17)

3 The coupled problems satisfied by the terms of the asymp-

totic expansions

In this section, we first derive the so called limit fields corresponding to (i, k) = (0, 0) (section 3.1).
Then, we introduce in section 3.2 some preliminary notions that are needed for the description of
the complete asymptotic expansion. In section 3.3, we present a problem that will characterize
the fields uki , Uki , Uki . The way this problem is obtained is given in section 3.4 where we derive the
equations and boundary conditions satisfied by the fields (uki , Uki , Uki ) and explain how to obtain
the matching conditions relating these fields.

3.1 The limit fields

As it is intuitively expected (and already proven in [7]), the field u0
0, limit of uε when ε → 0 in

the domain ΩH , is nothing but the solution of the slotless problem posed in ΩH :




Find u0
0 ∈ H1

loc(ΩH) outgoing such that :

−∆u0
0 − ω2 u0

0 = f in ΩH and
∂u0

0

∂n
= 0 on ∂ΩH .

(3.1)

The other limit fields, namely the near field U0
0 and the slot U0

0 are also quite easy to guess:

• U0
0 is a constant in Ω̂N equal to the value at the origin of the limit far-field u0

0:

U0
0 (X,Y ) = u0

0(0), for (X,Y ) ∈ Ω̂N . (3.2)

• U0
0 is the 1D-field is independent of Y and is the outgoing solution of Helmholtz equation in

the half-line x > 0, whose value at x = 0 coincides with the value at the origin of the limit
far-field u0

0, namely:

U0
0 (x, Y ) = u0

0(0) exp iωx, for (x, Y ) ∈ Ω̂S . (3.3)

3.2 Towards the construction of (uki , U
k
i ,Uki ): preliminary material

This section is devoted to present useful results and notions about the solutions of homogeneous
Hemholtz equations and “embedded” Laplace equations that naturally appear when applying the
technique of matched asymptotic expansions. These results are needed to understand the coupled
problem of section 3.3.

3.2.1 Bessel functions and related results.

In what follows, we shall make an extensive use of the Bessel functions Jp(z) and Yp(z) for p ∈ IN
(see for example [10]). We shall use more particularly the generalized Taylor series expansion of
these functions (one of their possible definitions)





Jp(z) =

+∞∑

l=−∞
Jp,l (

z

2
)l,

Yp(z) =

+∞∑

l=−∞
Yp,l (

z

2
)l +

+∞∑

l=−∞

2

π
Jp,l (

z

2
)l log

z

2
,

(3.4)
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where the numbers Jp,l are given by:





Jp,p+l = 0, if l < 0 or l odd,

Jp,p+2l =
(−1)l

l!(l+ p)!
, if l ≥ 0,

(3.5)

and the numbers Yp,l are given by:





Yp,−p+l = 0, if l < 0 ou l odd,

Yp,−p+2l = − 1

π

(p− l − 1)!

l!
, if 0 6 l < p,

Yp,p+2l = − 1

π

(−1)l

l!(l+ p)!
(ψ(l + 1) + ψ(l + p+ 1)), if p 6 l,

(3.6)

with

ψ(1) = −γ, ψ(k + 1) = −γ +
k∑

m=1

1

m
, ∀k ∈ IN∗. (3.7)

We emphasize here the fact that Jp is regular at the neighborhood of z = 0, while Yp is singular:

Jp(z) ∼ zp

p!
, Y0(z) ∼ 2

π
log z, Yp(z) ∼ − (p− 1)!

π
z−p for p ≥ 1. (3.8)

The property which will interest us here is that Jp(z) and Yp(z) form a basis of solutions of the
Bessel equation:

D2
p u+ u = 0, where D2

p ≡
1

z

d

dz
(z
d

dz
)− p2

z2
. (3.9)

We shall exploit this to introduce two families of functions that will be useful in the next section.
First note that, after the shift of index l→ l + p (for convenience)

Jp(z) =

+∞∑

l=−∞
Jp,p+l (

z

2
)p+l =

+∞∑

l=−∞
̂p,l(z), (3.10)

where we have defined
̂p,l(z) = Jp,p+l (

z

2
)p+l. (3.11)

Substituting u = Jp into (3.9), we get, since

D2
p z

q = (q2 − p2) zq−2, (3.12)

+∞∑

l=−∞
Jp,p+l

(p+ l)2 − l2
4

(
z

2
)p+l−2 +

+∞∑

l=−∞
Jp,p+l (

z

2
)p+l = 0,

that is to say
+∞∑

l=−∞

[
Jp,p+l

(
(p+ l)2 − l2)

)
+ 4 Jp,p+l−2

]
(
z

2
)p+l−2 = 0, (3.13)

which leads to the recurrence equation:

Jp,p+l
(
(p+ l)2 − l2)

)
+ 4 Jp,p+l−2 = 0, (3.14)

that is classically used for constructing Jp by obtaining (3.5), but can also be rewritten as (multiply
(3.14) by (z/2)p+l−2, use formula (3.12) and the definition (3.11) of ̂p,l ):

D2
p ̂p,l + 4 ̂p,l−2 = 0, ∀ p, l . (3.15)
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Note that, because of (3.5),

̂p,l ≡ 0 for negative l and odd l.

In particular, for each p, the first (with respect to the index l) non zero ̂p,l is:

̂p,0 = Jp,p z
p, and D2

p ̂p,0 = 0. (3.16)

In the same way, we can write

Yp(z) =

+∞∑

l=−∞

(
Jp,−p+l + Yp,−p+l log

z

2

)
(
z

2
)−p+l =

+∞∑

l=−∞
ŷp,l(z), (3.17)

having defined

ŷp,l(z) =
(
Jp,p+l + Yp,−p+l log

z

2

)
(
z

2
)−p+l . (3.18)

Then we can use the identity

D2
p z

q log z = zq−2
(
[q2 − p2] log z + 2q

)
, (3.19)

to substitute u = Jp into (3.9) and obtain





1

4

+∞∑

l=−∞

{ (
(p+ l)2 − p2

)
Jp,−p+l +

[ (
(p+ l)2 − p2

)
log

z

2
+ 2(l − p)

]
Yp,−p+l

}
(
z

2
)−p+l−2

+
+∞∑

l=−∞

[
Jp,p+l−2 + Yp,−p+l−2 log

z

2

]
(
z

2
)−p+l−2 = 0,

which yields, for each l




(
(p+ l)2 − p2

)
Jp,−p+l +

[ (
(p+ l)2 − p2

)
log z

2 + 2(l − p)
]
Yp,−p+l

+ 4
[
Jp,p+l−2 + Yp,−p+l−2 log

z

2

]
= 0,

(3.20)

that is usually exploited to write recurrence relations for the Yp,l’s but that we choose here to
reinterpret as the following identity (using both (3.12), (3.19) and the definition (3.18) of ŷp,l):

D2
p ŷp,l + 4ŷp,l = 0, ∀ p, l . (3.21)

Here again, thanks to (3.5) and (3.6),

ŷp,l ≡ 0 for negative l and odd l.

In particular, for each p, the first (with respect to the index l) non zero ̂p,l is:

ŷp,0 = (Jp,−p + Yp,−p log z) z−p, and D2
p ŷp,0 = 0. (3.22)

3.2.2 Modal expansions of far-fields.

To shorten our presentation, let us give some definitions:

• We denote by H1
0,loc(ΩH) the space of “H1

loc(ΩH) functions except at the origin”†:

H1
0,loc(ΩH) = {u ∈ D′(ΩH) / ∀ ϕ ∈ C∞00 (ΩH), ϕu ∈ H1(ΩH)}. (3.23)

with C∞00 (ΩH) = {ϕ ∈ C∞(ΩH ) / ∃ r1 > r0 > 0 such that r0 > |x| or |x| > r1 ⇒ ϕ(x) = 0}.
†The topology on this space is the one generated by the semi-norms ‖ϕu‖H1 with ϕ ∈ C∞00
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• We will say that u ∈ H1
0,loc(ΩH), such that ϕ∆u ∈ L2(ΩH) for all ϕ ∈ C∞00 (ΩH), satisfies

the Neumann boundary condition except at the origin:

∂u

∂n
= 0 on ∂ΩH \ {0}, (3.24)

if and only if

∀ v ∈ C∞00 (ΩH),

∫

ΩH

(
∇u(x) · ∇v(x) + ∆u(x) v(x)

)
dx = 0. (3.25)

Note that as soon as u ∈ H1
loc(ΩH) and ∆u ∈ L2

loc(ΩH), the above definition corresponds
to the classical variational definition of the Neumann condition (by density of C∞00 (ΩH) in
H1
loc(ΩH )) .

• By definition, a far-field is a function u ∈ H1
0,loc(ΩH) that satisfies the homogeneous Helmholtz

equation
∆u+ ω2u = 0 in ΩH ,

and satisfies the Neumann boundary condition on ∂ΩH \ {0} in the sense of the above
definition (3.25).

Remark 3.1 The reader will observe that if a given far-field is outgoing at infinity, then it is
identically zero as soon as we assume that it belongs to H1

loc(ΩH) : this is a consequence of the
standard uniqueness theorem for the Helmholtz equation. In other words, non trivial outgoing
far-fields will be necessary singular at the origin (with a non-H1

loc singularity). The functions uki
of the expansion (2.6) will be of that type.

Next, we introduce the polar coordinates (r, θ) so that x = −r sin θ, y = r cos θ, and we will be
concerned with a space of H1

0,loc functions that satisfy the homogeneous Helmoltz equation and
the Neumann condition only in a neighborhood of the origin. More precisely we introduce:





ΩRH = {x ∈ ΩH and 0 < |x| < R} (⇐⇒ 0 < r < R, 0 < θ < π)

V(ΩRH) = {u ∈ H1
0,loc(ΩH ) / ∆u+ ω2u = 0 in ΩRH and

∂u

∂θ
(r, θ = 0, π) = 0, 0 < r < R}

(3.26)

Note that V(ΩRH) contains all the far fields in the sense of the above definition but also the
limit field u0

0 (cf (3.1)). The method of separation of variables in (r, θ) naturally introduces the
functions (cos pθ, p ∈ IN), namely the eigenfunctions of the operator −d2/dθ2 in the interval ]0, π[
with Neumann conditions at θ = 0 or π. More precisely, any u ∈ V(ΩR

H) admits the following
expansion (where the convergence holds, for instance in H1

0,loc(Ω
R
H )):

u(r, θ) =

+∞∑

p=0

(
L0
p(u) Yp(ωr) cos pθ + L1

p(u) Jp(ωr) cos pθ
)
, (3.27)

where the complex coefficients L0
p(u) and L1

p(u) define linear forms in V(ΩR
H) that can be also

defined as (setting δ0 = 1 and δp = 2 for p > 0):





L0
p(u) = lim

r→0

δp
π Yp(ωr)

∫ π

0

[u(r, θ) cos pθ] dθ,

L1
p(u) = lim

r→0

δp
π Jp(ωr)

∫ π

0

[
u(r, θ)−L0

p(u) Yp(ωr) cos pθ
]

cos pθ dθ.

(3.28)
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According to (3.8), the representation formula (3.27), provides a natural decomposition u = ureg+
using as the sum of the regular part ureg and singular part using of the field u, namely:





ureg(r, θ) =

+∞∑

p=0

L1
p(u) Jp(ωr) cos pθ,

using(r, θ) =

+∞∑

p=0

L0
p(u) Yp(ωr) cos pθ.

(3.29)

Remark 3.2 One can show [19] that the coefficients L1
p(u) can be written as a linear combination

of the y derivatives of ureg at the point 0. For example, one has:

L1
0(u) = ureg(0), L1

1(u) =
2

ω

∂ureg

∂y
(0), L1

2(u) = 2 ureg(0) +
4

ω2

∂2ureg

∂y2
(0). (3.30)

The degree of singularity of u can be seen from the coefficients L0
p(u).

Definition 3.1 A function u ∈ V(ΩR
H) is singular at order k ≥ 0, if and only if:




L0
p(u) = 0 for p > k ⇐⇒ u −

k∑

p=0

L0
p(u) Yp(ωr) cos pθ ∈ H1

loc(ΩH),

( see (3.8) ) ⇐⇒ u(r, θ) = O(r−k) if k > 0, = O(log r) if k = 0.

(3.31)

Remark 3.3 If we require the far-field to be outgoing at infinity, it is entirely determined in ΩH

by the knowledge of its singular part using (see for instance lemma 4.1). In particular, the set of
outgoing far-fields which are singular of order k at the origin is a vector space of dimension k+ 1:
such a far-field is determined by the knowledge of the k+ 1 complex numbers L0

p(u) for 0 ≤ p ≤ k.

3.2.3 Solutions of embedded Laplace equations in Ω̂N .

In this paragraph, we are interested in describing the structure of solutions of embedded Laplace
equations in Ω̂N , i. e. a family of functions H1

loc(Ω̂N ) which are inductively related by the equations
(with U−2 = 0 and U−1 = 0):

∆Ui = −4 Ui−2 in Ω̂N and
∂Ui
∂n

= 0 on ∂Ω̂N . (3.32)

More precisely, we will give two different modal expansions of the functions Ui in the following
two subdomains of Ω̂N (see figure 9):





Ω̂HN = {(X,Y ) ∈ Ω̂N / X < 0 and X2 + Y 2 > 1},

Ω̂SN = {(X,Y ) ∈ Ω̂N / X > 0}.
(3.33)

We will use cartesian coordinates (X,Y ) in Ω̂SN and polar coordinates ((ρ, θ), θ ∈ [0, π]) in Ω̂HN :

X = −ρ sin θ and Y = ρ cos θ. (3.34)

Modal expansions in the domain Ω̂HN . We use again separation of variables in polar coordi-

nates (ρ, θ). A function U ∈ H1
loc(Ω̂

H
N ) can be decomposed in the form:

U(ρ, θ) =
+∞∑

p=0

(U)p(ρ) cos pθ, (3.35)
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where (U)p(ρ) =
δp
π

∫ π

0

U(ρ, θ) cos (pθ) dθ, (with δ0 = 1 and δp = 2 for p > 0).

Our objective is now to describe more precisely the form of the functions (U)p(ρ) for U = Ui. For
i = 0, 1, Ui is harmonic so that:

∀ p ∈ IN, D2
p [ (Ui)p ] = 0.

According to (3.16) and (3.22), the kernel of the differential operatorD2
p is generated by (̂p,0(ρ), ŷp,0(ρ)).

Thus if we introduce the particular harmonic functions :




p,0(ρ, θ) = ̂p,0(ρ) cos pθ = Jp,p ρ
p cos pθ,

yp,0(ρ, θ) = ŷp,0(ρ) cos pθ =
(
Yp,−p + 2

πJp,−p log ρ
)
ρ−p cos pθ,

(3.36)

for i = 0, 1, there exist two sequences αi = (αi,p)p∈IN and βi = (βi,p)p∈IN such that:

Ui =
+∞∑

p=0

(αi,p p,0 + βi,p yp,0) . (3.37)

Next, we construct, for each i, two particular sequences (p,i, yp,i, p ∈ IN), that are identically 0
for odd i, and satisfy embedded equations:





∆p,i = −4 p,i−2 in Ω̂HN and
∂p,i
∂n

= 0 on ∂Ω̂HN ∩ ∂Ω̂N ,

∆yp,i = −4 yp,i−2 in Ω̂HN and
∂yp,i
∂n

= 0 on ∂Ω̂HN ∩ ∂Ω̂N .

(3.38)

These functions are constructed from the functions (̂p,i, ŷp,i) introduced in section 3.2.1:





p,i(ρ, θ) = ̂p,i(ρ) cos pθ = Jp,p+i ρ
p+i cos pθ,

yp,i(ρ, θ) = ŷp,i(ρ) cos pθ =
(
Yp,−p+i + 2

π Jp,−p+i log ρ
)
ρ−p+i cos pθ.

(3.39)

The reader will remark that:

• The formulas (3.39) define p,i and yp,i for any i with p,i = yp,i if i < 0.

• The log term appears in the definition of yp,i only for i ≥ 2p (Jp,−p+i = 0 for i < 2p, see (3.6)).

• Except for i = p = 0, the functions p,i are increasing at infinity while the functions yp,i
grow only for i > p. In this case, p,i grows strictly more rapidly than yp,i (except for p = 0).

• Using in particular (3.5) and (3.6), it is possible to show that the functions { (p,i, yp,i) / p ∈
IN, i ∈ 2IN } are linearly independent.

Remark 3.4 The introduction of p,i and yp,i for odd i may appear as a strange choice since
they are identically 0. This is only for convenience and will permit us to write our forthcoming
calculations in a more compact form.

Then, we are able to prove, by induction on i, the following fundamental lemma:

Lemma 3.1 Let {(Ui) / i ∈ IN} be a family of functions in H1
loc(Ω̂N ) satisfying (3.32), then there

exist two sequences { (αp,i, βp,i) / (p, i) ∈ IN2 } of complex numbers such that:

Ui =

+∞∑

p=0

i∑

l=0

(
αi−l,p p,l + βi−l,p yp,l

)
in H1

loc(Ω̂
H
N ). (3.40)
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Proof. First, note that the result is true for i = 0 and 1 with the sequences (αp,0, βp,0) and
(αp,1, βp,1) introduced previously ((see (3.37) and the fact that p,1 = yp,1 = 0). By induction, let
us admit that the sequences (αp,l, βp,l) have been constructed up to l = i − 1. Let us introduce
(remember that p,1 = yp,1 = 0) :

U∗i =

+∞∑

p=0

i∑

l=1

(
αi−l,p p,l + βi−l,p yp,l

)
≡

+∞∑

p=0

i∑

l=2

(
αi−l,p p,l + βi−l,p yp,l

)
. (3.41)

We have (successively, we use (3.38) and apply the change of index l→ l − 2):





∆U∗i =
+∞∑

p=0

i∑

l=2

(
αi−l,p ∆p,l + βi−l,p ∆yp,l

)

= −4

+∞∑

p=0

i∑

l=2

(
αi−l,p p,l−2 + βi−l,p yp,l−2

)

= −4

+∞∑

p=0

i−2∑

l=0

(
αi−2−l,p p,l + βi−2−l,p yp,l

)
= −4 Ui−2.

(3.42)

The function Ui − U∗i being harmonic in Ω̂HN , we know that there exist two sequences of complex
numbers, that we choose to denote respectively by (αi,p, p ∈ IN) and (βi,p, p ∈ IN), such that:

Ui − U∗i =

+∞∑

p=0

(
αi,p p,0 + βi,p yp,0

)
(3.43)

and the proof is completed. �

Remark 3.5 Since the proof is done by induction, it is clear that the result of lemma 3.1 is also
valid for finite families {Ui, i ≥ N}, satisfying (3.32) for i ≤ N , in which case (3.40) holds for
i ≤ N . This remark justifies recurrence proofs that will be done later.

The previous lemma suggests to introduce the (increasing with i) subspaces of H1
loc(Ω̂

N
H):

Vi(Ω̂HN ) = Span{(p,l, yp,l), p ∈ IN, l ≤ i }, (3.44)

(more precisely, the closure in H1
loc(Ω̂

H
N ) of the space generated by the jlp and ylp for l 6 i) and

V(Ω̂HN) =

+∞⋃

i=0

Vi(Ω̂HN ). (3.45)

On V(Ω̂HN ), we can define linear forms U ∈ V(Ω̂HN ) 7→ `0p(U) ∈ C and U ∈ V(Ω̂HN ) 7→ `1p(U) ∈ C
as the coefficients of U associated the functions (p,0, yp,0)). More precisely, `0p(U) and `1p(U) are
characterized by:

∀ U ∈ V(Ω̂HN ), U −
+∞∑

p=0

(
`0p(U) p,0 + `1p(U) yp,0

)
=

∑

l≥1,finite

+∞∑

p=0

(Ap,l p,l +Bp,l yp,l) (3.46)

Looking at the expansion (3.40) one sees that `0p(Ui) = αi,p and `qp(Ui) = βi,p. Thus, the informa-
tion provided by lemma 3.1 can be reinterpreted in a form that we state as a corallary:

Corollary 3.1 Let (Ui) be a family of functions in H1
loc(Ω̂N ) satisfying (3.32), then:

• The function Ui belongs to Vi(Ω̂HN ).
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• It can be expanded as

Ui =

+∞∑

p=0

i∑

l=0

(
`0p(Ui−l) p,l + `1p(Ui−l) yp,l

)
. (3.47)

Remark 3.6 Once again, the previous corollary is valid, modulo obvious modifications, for finite
families Ui (see also remark 3.5). Note that (3.47) means that, once the functions Ul are given
for l < i, the coefficients (`0p(Ui), `1p(Ui)) are the only decrees of freedom for Ui, as it was clear in
the proof of lemma 3.1.

Modal expansions in the domain Ω̂SN . We use the separation of variables in (X,Y ). Let us
introduce the functions:

ψp(Y ) = cos
(
pπ(Y + 1/2)

)
, p ∈ IN, (3.48)

namely the eigenfunctions of the operator −d2/dY 2 in the interval ]− 1/2,+1/2 [ with Neumann

conditions at Y = ±1/2. Any function U ∈ H1
loc(Ω̂

S
N ) can be decomposed in the form:

U(X,Y ) =

+∞∑

p=0

[U ]p(X) ψp(Y ). (3.49)

This is in particular the case for each function Ui. For i = 0 and 1, Ui is harmonic and therefore:

[Ui] ′′p − p2π2 [Ui]p = 0. (3.50)

Hence, there exist two sequences γp,i and δp,i such that:

Ui =

+∞∑

p=0

[
γp,i cp,0(X,Y ) + δp,i dp,0(X,Y )

]
(3.51)

where cp,0 and dp,0 are given by:





cp,0(X,Y ) = e+pπX ψp(Y ), for p > 0, c0,0(X,Y ) = 2 iX,

dp,0(X,Y ) = e−pπX ψp(Y ), for p ∈ IN,
(3.52)

where, for the definition of c0,0, the factor 2i has been introduced for convenience. Now, we
introduce two families of functions cp,i and dp,i for p ∈ IN and i ∈ IN∗ , which are identically 0 for
i odd, and satisfy by construction:





∆ cp,i = −4 cp,i−2 in Ω̂SN and
∂cp,i
∂n

= 0 on ∂Ω̂SN ∩ ∂Ω̂N ,

∆ dp,i = −4 dp,i−2 in Ω̂SN and
∂dp,i
∂n

= 0 on ∂Ω̂SN ∩ ∂Ω̂N .

(3.53)

These functions are given by





cp,i(X,Y ) = ĉp,i(X) e+pπX ψp(Y ),

dp,i(X,Y ) = d̂p,i(X) e−pπX ψp(Y ),

(3.54)

where the functions ĉp,i and d̂p,i are uniquely defined by:





ĉ ′′p,i − 2πp ĉ ′p,i = −4 ĉp,i−2 (≡ (2i)2 ĉp,i−2), ĉp,i(0) = ĉ ′p,i(0) = 0,

d̂ ′′p,i + 2πp d̂ ′p,i = −4 d̂p,i−2 (≡ (2i)2 d̂p,i−2), d̂p,i(0) = d̂ ′p,i(0) = 0.
(3.55)
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Starting (see (3.52)) from ĉ0,0(X) = iωX , ĉp,0(X) = 1 for p ≥ 1 and d̂p,0(X) = 1, for all p. By
induction on i, one easily sees that:

∀ i ≥ 0, (ĉ0,i, d̂0,i) ∈ IPi+1 × IPi, and (ĉp,i, d̂p,i) ∈ IPi × IPi, ∀ p ∈ IN∗. (3.56)

where IPi is the space of polynomials of degree less or equal to i. Moreover, for even i, the degree
of ĉp,i and d̂p,i is exactly i (or i + 1 for ĉ0,i). In what follows, we shall not need the explicit

expression of ĉp,i and d̂p,i except for p = 0 for which one easily shows that:

ĉ0,2l(X) =
(2iX)2l+1

(2l + 1)!
, d̂0,2l(X) =

(2iX)2l

(2l)!
. (3.57)

We state then the following lemma, whose proof is identical to the one of lemma 3.1:

Lemma 3.2 Let (Ui) be a family of functions in H1
loc(Ω̂N ) satisfying (3.32), then there exist two

sequences (γp,i, δp,i) of complex numbers such that:

Ui =

+∞∑

p=0

i∑

l=0

[
γp,i−l cp,l + δp,i−l dp,l

]
in H1

loc(Ω̂
S
N ). (3.58)

As in the previous paragraph, we introduce:

Vi(Ω̂SN ) = Span†{(cp,l; dp,l), p ∈ IN, l 6 i}, V(Ω̂SN ) =
+∞⋃

i=0

Vi(Ω̂SN ). (3.59)

and linear forms U ∈ V(Ω̂SN ) 7→ L0
p(U) ∈ C and U ∈ V(Ω̂SN ) 7→ L1

p(U) ∈ C such that:

∀ U ∈ V(Ω̂sN ), U −
+∞∑

p=0

(
L0
p(U) cp,0 + L1

p(U) dp,0
)

=
∑

l≥1,finite

+∞∑

p=0

(Cp,l cp,l +Dp,l dp,l) . (3.60)

We can then rewrite lemma 3.2 as:

Corollary 3.2 Let (Ui) be a family of functions in H1
loc(Ω̂N ) satisfying (3.32), then:

• The function Ui belongs to Vi(Ω̂SN ).

• It can be expanded as

Ui =

+∞∑

p=0

i∑

l=0

(
L0
p(Ui−l) cp,l + L1

p(Ui−l) dp,l
)
. (3.61)

Remark 3.7 Here again, lemma 3.2 and corollary 3.2 are valid for finite families Ui (in the sense
explained in remark 3.5).

3.3 Presentation of the coupled problems defining uki , U
k
i ,Uki for i > 0.

For indices (i, k) /∈ J (see (2.4) and figure 4), we adopt the following convention:

uki ≡ 0, Uki ≡ 0, Uki ≡ 0, ∀ (i, k) /∈ J. (3.62)

The problem to be solved is:

Find the family of functions uki ∈ H1
0,loc(ΩH), Uki ∈ H1

loc(Ω̂N ) and Uki ∈ H1
loc(IR

+) with (i, k) ∈
J \ {(0, 0)} such that:

†More precisely, the closure in H1
loc(

bΩSN ) of the space generated by the clp and dlp for l 6 i
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• For each (i, k), the function uki belongs to V(ΩRH) and is a singular outgoing solution of the
Helmholtz equation in ΩH satisfying:





∆uki + ω2 uki = 0 in ΩH and
∂uki
∂n

= 0 on ∂ΩH \ {0}, (a)

L0
p(u

k
i ) = 0, ∀ p > i− k. (b)

(3.63)

• The functions Uki belong to V(Ω̂HN )∩V(Ω̂SN ) and are, for each k, solutions non homogeneous
embedded Laplace equations:





∆Uki = −4 Uki−2 in ΩN and
∂Uki
∂n

= 0 on ∂ΩN , (a)

`0p(Uki ) = 0, ∀ p > i− k, (b)

L0
p(Uki ) = 0, ∀ p > 0. (c)

(3.64)

• For each (i, k), the function Uki is an outgoing solution of the 1D Helmholtz equation in IR+,
namely:

Uki (x) = Uki (0) exp iωx. (3.65)

• The behaviors of uki at the origin and of Uki at infinity in Ω̂HN are linked by the conditions:





L0
p(u

k
i ) = `1p(Uki−p), for 0 6 p 6 i− k,

`0p(Uki ) = L1
p(u

k
i−p) +

2

π
L0
p(u

k−1
i−p ), for 0 6 p 6 i− k.

(3.66)

• The behavior at infinity of Uki in Ω̂SN is linked to the behavior at the origin of Uki and Uki−1,
namely:

L0
0(Uki ) = Uki−1(0) and L1

0(Uki ) = Uki (0). (3.67)

The reader can refer to (3.26) (3.44,3.45) and (3.59) for the definition of the spaces V(ΩR
H), V(Ω̂HN ),

V(Ω̂SN ). In these spaces we can define the linear forms L0
p, L1

p, `
0
p, `

1
p, L

0
p and L1

p which give the

spatial asymptotic expansions of uki and Uki via equations (3.29), (3.47) and (3.61).

Remark 3.8 Conditions (3.63,b), (3.64,b) and (3.64,c,3.67) give (non optimal see remark 4.3)
information on the far-field singularity and on the near-field growing in the half-space and in the
slot. The conditions (3.63,b) could be replaced by : uki is singular at order i-k (see definition 3.1).
The conditions (3.64,b) is equivalent to Uki (ρ, θ) = O(ρi−k log ρ) when ρ → +∞. Indeed, the
modal expansion (3.47) (with Uki−l ≡ 0 for l > i− k) leads to:

Uki =

+∞∑

p=0

i−k∑

l=0

(
`0p(Uki−l) p,l

)
+

+∞∑

p=0

i−k∑

l=0

(
`1p(Uki−l) yp,l

)
. (3.68)

Due to (3.64,b), one has `0p(Uki−l) = 0 for p > i− l − k:

Uki =

i−k∑

l=0

i−k−l∑

p=0

(
`0p(Uki−l) p,l

)
+

+∞∑

p=0

i−k∑

l=0

(
`1p(Uki−l) yp,l

)
. (3.69)

As p+ l is smaller than i− k in the first sum, this yields when ρ→ +∞ to:

Uki = O(ρi−k) + O(ρi−k log ρ).
(
jp,l = O(ρp+l) and yp,l = O(ρ−p+l log ρ

)
(3.70)

One can also easily see that (3.64,c,3.67) leads to Uki = O(X i−k) when X → +∞. We say that
Uki is growing at infinity at order i− k.
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3.4 Derivation of the coupled problems.

In this section, we are going to derive equations (3.63), (3.64), (3.65), (3.66) and (3.67).

Derivation of the equations (3.63,a), (3.64,a) and (3.65,a). The calculations are straight-
forward and the details left to the reader.

• (3.63,a) follows immediately from substituting (2.6) into the Helmholtz equation (and Neu-
mann condition) written in ΩH(ε). The fact that ui is outgoing follows in the same way.

• (3.64,a) is obtained by substituting the Ansatz (2.12) into the Helmholtz equation (and
Neumann condition) written in ΩN (ε).

• Finally, substituting (2.8) into the Helmholtz equation (and Neumann condition) written in
ΩS(ε), we get: 




−ω
2

4

∂2Uki
∂Y 2

=
∂2Uki−2

∂x2
+ ω2Uki−2, in Ω̂S

∂2Uki
∂Y

(x, 0) =
∂2Uki
∂Y

(x, 1) = 0, x > 0.

(3.71)

Setting Ũki (x) =

∫ 1

0

Uki (x, Y ) dY , after integration of (3.71) over Y , we easily get:

∂2Ũki
∂x2

+ ω2Ũki = 0, x > 0.

which leads, using the outgoing condition in the slot (we omit the details) to:

Ũki (x) = Ũki (0) exp iωx.

To conclude it suffices to show that, for any i ≥ k, U ki is constant in Y so that Uki = Ũki .
This is immediate for i = k, k + 1 (∂2Uki /∂Y

2 and ∂Uki /∂Y vanishes for Y = 0 and 1) and
obtained by induction for i ≥ 2.

Matching between far-field and near-field: derivation of (3.63,b) (3.64,b) and (3.66).
Here, we choose to derive the matching condition using the identification of formal series. However,
the alternative Van Dyke matching principle (see [21]), modified adequately to take into account
the presence of the logarithmic terms, leads to the same result.

We consider the overlaping zone in Ωε for near and far-fields:

ΩH(ε) ∩ ΩN (ε) = {(x, y) ∈ Ωε / x < 0, η−H(ε) 6 r 6 η+
H(ε)}. (3.72)

In this zone, we express uε via our two Ansatz (2.6) and (2.12), written in polar coordinates:

+∞∑

i=0

i∑

k=0

(ωε
2

)i
logk

(ωε
2

)
uki (r, θ) = uε(r, θ) =

+∞∑

i=0

i∑

k=0

(ωε
2

)i
logk

(ωε
2

)
Uki (

r

ε
, θ). (3.73)

In the rest of this section, we shall write infinite sums over i ∈ ] − ∞; +∞[, k ∈ ] − ∞; +∞[,
p ∈ [0; +∞[ and l ∈ ] − ∞; +∞[. This has the advantage of simplifying the manipulations of
infinite sums and is completely justified, as the reader can easily check, thanks to our convention
(3.62). First, thanks to (3.63,b), we can expand spatially the functions uki via the equation (3.27).
Then, denoting, by R the left hand side of (3.73),

L =
∑

i,k,p

(ωε
2

)i
logk

(ωε
2

)(
L0
p(u

k
i ) Yp(ωr) + L1

p(u
k
i ) Jp(ωr)

)
cos pθ. (3.74)
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For the right hand side R of (3.73), we expand the functions Uki using (3.46) and corollary 3.1,
which can be applied to each family i→ Uki thanks to (3.64,a). We get

R =
∑

i,k,p,l

(ωε
2

)i
logk

(ωε
2

)(
`0p(Uki−l) p,l(

r

ε
, θ) + `1p(Uki−l) yp,l(

r

ε
, θ)

)
. (3.75)

Using the definitions of the functions p,l and yp,l (see (3.39), we get




R =
∑

i,k,p,l

(ωε
2

)i
logk

(ωε
2

)
`0p(Uki−l) Jp,p+l

(r
ε

)p+l
cos pθ

+
∑

i,k,p,l

(ωε
2

)i
logk

(ωε
2

)
`1p(Uki−l)

(
Yp,−p+l +

2

π
log

r

ε
Jp,−p+l

)(r
ε

)−p+l
cos pθ

=
∑

i,k,p,l

(ωε
2

)i−l−p
logk

(ωε
2

)
`0p(Uki−l) Jp,p+l

(ωr
2

)p+l
cos pθ

+
∑

i,k,p,l

(ωε
2

)i−l+p
logk

(ωε
2

)
`1p(Uki−l)

(
Yp,−p+l +

2

π
log

ωr

2
Jp,−p+l

)(ωr
2

)−p+l
cos pθ

−
∑

i,k,p,l

(ωε
2

)i−l+p
logk+1

(ωε
2

)
`1p(Uki−l)

2

π
Jp,−p+l

(ωr
2

)−p+l
cos pθ,

where we have used log(r/ε) = log(ωr/2) − log(ωε/2). Applying, for the summation over i, the
change of index i→ i− l− p in the first sum and i→ i− l + p in the last two, we obtain




R =
∑

i,k,p,l

(ωε
2

)i
logk

(ωε
2

)
`0p(Uki+p) Jp,p+l

(ωr
2

)p+l
cos pθ

+
∑

i,k,p,l

(ωε
2

)i
logk

(ωε
2

)
`1p(Uki−p)

(
Yp,−p+l +

2

π
log

ωr

2
Jp,−p+l

)(ωr
2

)−p+l
cos pθ

−
∑

i,k,p,l

(ωε
2

)i
logk

(ωε
2

)
`1p(Uk−1

i−p )
2

π
Jp,−p+l

(ωr
2

)−p+l
cos pθ.

We recognize in the sums over l, the expansions (see (3.4)) of Jp(ωr) and Yp(ωr). Thus

R =
∑

i,k,p

(ωε
2

)i
logk

(ωε
2

)[(
`0p(Uki+p)− 2

π
`1p(Uk−1

i−p )
)
Jp(ωr) + `1p(Uki−p) Yp(ωr)

]
cos pθ.

Identifying the terms of the two series L and R, leads to:

L0
p(u

k
i ) = `1p(Uki−p) and L1

p(u
k
i ) = `0p(Uki+p) −

2

π
`1p(Uk−1

i−p ) (3.76)

or equivalently to the coupling conditions:

L0
p(u

k
i ) = `1p(Uki−p) and `0p(Uki ) = L1

p(u
k
i−p) +

2

π
L0
p(u

k−1
i−p ), ∀ i, k, p. (3.77)

The matching conditions (3.66) are nothing but (3.77) specified to 0 ≤ l ≤ i− k.

The conditions (3.63,b) (uki is singular at order i−k) are obtained by remarking that, for p > i−k,

L0
p(u

k
i ) = `1p(Uki−p) = 0

since i− p < k means that (i− p, k) does not belong to J and thus Uki−p = 0.

The conditions (3.64,b) also follow since, if p > i − k, (i − p, k) and (i − p, k − 1) do not be-
long to J so that

uki−p−l = uk−1
i−p−l ≡ 0 =⇒ `0p(Uki ) = 0. (see 3.77)
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Matching between near-field and slot-field: derivation of (3.64,c) and (3.67). We
consider the ovelaping zone in Ωε for near and slot-fields:

ΩN (ε) ∩ ΩS(ε) = {(x, y) ∈ Ωε / x < 0, η−H (ε) 6 r 6 η+
H(ε)}. (3.78)

In this zone, we express uε via our two Ansatz (2.6) and (2.12), written in cartesian coordinates
(using again the convention (3.62)):

∑

i,k

(ωε
2

)i
logk

(ωε
2

)
Uki (

x

ε
,
y

ε
) = uε(x, y) =

∑

i,k

(ωε
2

)i
logk

(ωε
2

)
Uki (x) +O(ε∞). (3.79)

Denoting by R the left hand side of (3.79), we have (3.27), using (3.65) and replacing exp iωx by
its series expansion (the reason for writing the second line below will appear later),





R =
∑

i,k,l

(ωε
2

)i
logk

(ωε
2

)
Uki (0)

(iωx)l

l!
+O(ε∞)

=
∑

i,k,l

(ωε
2

)i
logk

(ωε
2

)
Uki (0)

[
(iωx)2l+1

(2l + 1)!
+

(iωx)2l

2l!

]
+O(ε∞).

(3.80)

Next, we expand the left hand side L of (3.73) using equation (3.61) of corollary 3.2 , which can
be applied to each family i→ Uki thanks to (3.64,a). We get

L =
∑

i,k,p,l

(ωε
2

)i
logk

(ωε
2

)[
L0
p(Ui−l) cp,l(

x

ε
,
y

ε
) + L1

p(Uki−l) dp,l(
x

ε
,
y

ε
)
]
. (3.81)

Noticing that for p > 0, the quantities dp,l(
x
ε ,

y
ε ) are O(ε∞) terms in ΩN (ε) ∩ ΩS(ε) , this can be

rewritten as:




L =
∑

i,k,l

(ωε
2

)i
logk

(ωε
2

)[
L0

0(Uki−l) ĉ0,l(
x

ε
) + L1

0(Uki−l) d̂0,l(
x

ε
)
]

+
∑

p≥1

∑

i,k,l

(ωε
2

)i
logk

(ωε
2

)
L0
p(Uki−l) ĉp,l(

x

ε
) ψp(

y

ε
) +O(ε∞)

(3.82)

where we have isolated in the expansion the term which is a function of x only. Using the expression
of ĉ0,l and d̂0,l, we thus have:





L =
∑

i,k,l

(ωε
2

)i
logk

(ωε
2

)[
L0

0(Uki−2l)
(2i x/ε)2l+1

(2l + 1)!
+ L1

0(Uki−2l)
(2i x/ε)2l

2l!

]

+
∑

p≥1

∑

i,k,l

(ωε
2

)i
logk

(ωε
2

)
L0
p(Uki−l) ĉp,l(

x

ε
) ψp(

y

ε
) +O(ε∞)

=
∑

i,k,l

(ωε
2

)i−2l−1

logk
(ωε

2

)
L0

0(Ui−2l)
(iωx)2l+1

(2l + 1)!

+
∑

i,k,l

(ωε
2

)i−2l

logk
(ωε

2

)
L1

0(Ui−2l)
(iωx)2l

2l!

+
∑

p≥1

∑

i,k,l

(ωε
2

)i
logk

(ωε
2

)
L0
p(Ui−l) ĉp,l(

x

ε
) ψp(

y

ε
) +O(ε∞)

(3.83)

or equivalently, after change of index in the sum over i,





L =
∑

i,k,l

(ωε
2

)i
logk

(ωε
2

) [
L0

0(Uki+1)
(iωx)2l+1

(2l + 1)!
+ L1

0(Uki )
(iωx)2l

2l!

]

+
∑

p≥1

∑

i,k,l

(ωε
2

)i
logk

(ωε
2

)
L0
p(Uki−l) ĉp,l(

x

ε
) ψp(

y

ε
) +O(ε∞).

(3.84)
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The identification of (3.80) and (3.84) leads to:




∀ i, k, L0

0(Uki+1) = L1
0(Uki ) = Uki (0)

∀ i, k, ∀ p ≥ 1, L0
p(Uki ) = 0.

(3.85)

This is nothing but (3.64,c) and (3.67).

4 Existence and uniqueness result

The object of this paragraph is to prove the following result:

Theorem 4.1 There exists a unique family of functions uki , Uki and Uki for (i, k) ∈ J \ (0, 0)
satisfying equations (3.63) (3.64) (3.65) (3.66) and (3.67). Moreover, uii = 0, ∀i ≥ 1.

Preliminary step. The first step is to eliminate the U ki ’s using the equations (3.67). One sees
that if ((uki , Uki ,Uki ), (i, k) ∈ J) is solution of ((3.63), (3.64), (3.65), (3.66), (3.67)) then ((uki , Uki ),
(i, k) ∈ J) is solution of to the problem:

Find uki ∈ H1
0,loc(ΩH) outgoing and Uki ∈ H1

loc(Ω̂N ) such that:





∆uki + ω2 uki = 0 in ΩH and
∂uki
∂n

= 0 on ∂ΩH \ {0},

L0
p(u

k
i ) = 0 for p > i− k.

(4.1)





∆Uki = −4 Uki−2 in Ω̂N and
∂Uki
∂n

= 0 on ∂Ω̂N ,

`0p(Uki ) = 0 for p > i− k,

L0
0(Uki ) = L1

0(Uki−1) and L0
p(Uki ) = 0 for p > 0.

(4.2)





L0
p(u

k
i ) = `1p(Uki−p), for 0 6 p 6 i− k,

`0p(Uki ) = L1
p(u

k
i−p) +

2

π
L0
p(u

k−1
i−p ), for 0 6 p 6 i− k.

(4.3)

Reciprocally, one checks easily that if ((uki , Uki ), (i, k) ∈ J) is solution of the problem ((4.1), (4.2),
(4.3)). Then, defining

Uki (x) = L1
0(Uki ) exp iωx, (4.4)

((uki , Uki ,Uki ), (i, k) ∈ J) is solution of ((3.63), (3.64), (3.65), (3.66), (3.67)).

Uniqueness. By induction on (i, k), it is easy to see that the uniqueness result will be obtained
if we are able to prove that the unique solution (u,U) of the following problem:
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Find u ∈ H1
0,loc(ΩH) outgoing and U ∈ H1

loc(Ω̂N ) such that:





∆u + ω2 u = 0 in ΩH and
∂u

∂n
= 0 on ∂ΩH \ {0},

L0
p(u) = 0 for p > 0.

(4.5)





∆U = 0 in Ω̂N and
∂U
∂n

= 0 on ∂Ω̂N ,

`0p(U) = 0 for p > 0,

L0
p(U) = 0 for p ∈ IN.

(4.6)




L0

0(u) = `10(U),

`00(U) = L1
0(u).

(4.7)

is the trivial solution u = U ≡ 0.

To show that u = 0, we remark from (4.5) that it suffices to prove that L0
0(u) = 0. Indeed,

this will imply that u is a regular outgoing far-field and is thus identically 0 (see remark 3.1).
From the first equation of (4.7), we see that it suffices to show that `1

0(U) = 0.

Since U is solution of a homogeneous Laplace equation in Ω̂N with homogeneous Neumann con-
ditions, we can write its modal expansion in Ω̂HN , using (4.6), as follows (see (3.47) with i = 0):

U =

+∞∑

p=0

(
`0p(U) p,0 + `1p(U) yp,0

)
= `00(U) 0,0 +

+∞∑

p=0

`1p(U) yp,0. (4.8)

Next, the key remark is that, for p > 0, both p,0 and yp,0 have mean value 0 with respect to θ
varying in ]0, π[. Therefore, for any ρ > 1 we have:

1

π

∫ π

0

U(ρ, θ) dθ =
( 1

π

∫ π

0

0,0(ρ, θ) dθ
)
`00(U) +

( 1

π

∫ π

0

y0,0(ρ, θ) dθ
)
`10(U), (4.9)

that is to say, using the expression (3.36) of 0,0 and y0,0

1

π

∫ π

0

U(ρ, θ) dθ = `10(U)
(
Y0,0 +

2

π
J0,0 log ρ

)
+ `00(U) J0,0, ∀ρ > 1. (4.10)

By differentiation with respect to ρ, we get rid of the term in `00(U) and obtain, since J0,0 = 1:

∫ π

0

∂U
∂ρ

(ρ, θ) dθ =
2

ρ
`10(U) =⇒ (ρ→ 1) `10(U) =

1

2

∫ π

0

∂U
∂ρ

(1, θ) dθ. (4.11)

Then, to obtain `00(U), we integrate the Laplace equation over the domain

Ω̂IN = {(ρ, θ) ∈ ΩN / 0 6 ρ 6 1 and 0 6 θ 6 π}, (4.12)

which, using Green-Riemann’s formula, leads to:

∫

bΩIN
∆U =

∫

∂bΩIN

∂U
∂n

⇐⇒
∫ π

0

∂U
∂ρ

(1, θ) dθ +

∫ 1
2

− 1
2

∂U
∂X

(0, Y ) dY = 0. (4.13)
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Ω̂IN

Y

X

Figure 8: The domain Ω̂IN

Ω̂HN

Ω̂SN

Y

X

Figure 9: The domain Ω̂HN and Ω̂SN

Moreover, since U is harmonic in Ω̂SN , we know (see lemma 3.2) that the function

X →
∫ 1

2

− 1
2

U(X,Y ) dY

is affine. More precisely:

∫ 1
2

− 1
2

U(X,Y ) dY = L1
0(U) + 2i L0

0(U) X = L0
0(U), (4.14)

where we have used the last equation of (4.6). Therefore, after differentiation in X

∫ 1
2

− 1
2

∂U
∂X

(0, Y ) dY = 0 =⇒ (using (4.11) and (4.13)) `10(U) = 0, (4.15)

which we wanted to show. Once u = 0, we observe, using the first equation of (4.6), that U
satisfies: 




∆U = 0 in Ω̂N and
∂U
∂n

= 0 on ∂Ω̂N ,

`0p(U) = 0 for p ∈ IN and `10(U) = 0,

L0
p(U) = 0 for p ∈ IN.

(4.16)

Therefore, we see that U admits the following expansions (use (3.47) and (3.61) with i = 0):





U =

+∞∑

p=1

`1p(U) yp,0, in Ω̂HN ,

U =

+∞∑

p=0

L1
p(U) dp,0, in Ω̂SN .

Since the functions yp,0 for p > 0 (resp. dp,0 for p > 0) decay at infinity in Ω̂HN (resp. Ω̂SN ) and
since dp,0 = 1. this yields:

lim
ρ→+∞

sup
θ∈[o,π]

|U(ρ, θ)| = 0 and U is bounded in Ω̂SN . (4.17)

The rigorous proof requires to pay attention to the infinite series. This is where the H1
loc regularity

comes in and permits to get uniform bounds. We refer to [19] for more details.

It has been shown in [20] (see lemma A.1) that this implies that U ≡ 0. �
Existence. With the next lemmas 4.1 and 4.2, we introduce some “basis functions” (defined as
solutions of uncoupled problems) in order to reduce the problem to a finite dimensional one.
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Lemma 4.1 For all p ∈ IN, there exists a unique wp ∈ H1
0,loc(ΩH) satisfying:





∆wp + ω2 wp = 0 in ΩH and
∂wp
∂n

= 0 on ∂ΩH \ {0},

L0
q(wp) = 1 if p = q and L0

q(wp) = 0 else.

(4.18)

Proof. Due to (3.31), we first remark that the second line of (4.18) is equivalent to:

wp − Yp(ωr) cos (pθ) ∈ H1
loc(ΩH). (4.19)

Then, to prove the existence and uniqueness of wp, we introduce the new unknown:

wregp (r, θ) = wp(r, θ) − χ(r) Yp(ωr) cos pθ (4.20)

whith χ a C∞ cut-off function equal to 1 near r = 0 and equal to 0 for r > R. The function
wregp satisfies a standard Helmholtz problem with Neumann boundary condition and source term
compactly supported in the open ΩH . Classical theorems apply. �

Remark 4.1 In the special case where there is no obstacle in the half-space (B = ∅), the wp are
known explicitly:

wp(r, θ) =
1

i
H(1)
p (ωr) cos pθ with H(1)

p (z) = Jp(z) + i Yp(z). (4.21)

Lemma 4.2 For all p ∈ IN, there exists a unique family of functions Wp,l ∈ H1
loc(Ω̂N )∩V(Ω̂HN )∩

V(Ω̂SN ), with l ∈ IN, satisfying:





∆Wp,l = −4Wp,l−2 in Ω̂N and
∂Wp,l

∂n
= 0 on ∂Ω̂N , (Wp,l ≡ 0 for l < 0)

`0q(Wp,l) = 1 if q = p and l = 0 and `0q(Wp,l) = 0 else,

L0
0(Wp,l) = L1

0(Wp,l−1) and L0
q(Wp,l) = 0 for q > 0.

(4.22)

Moreover, one has for p in IN:
`10(Wp,0) = 0. (4.23)

The proof of this lemma is more delicate and postponed to the appendix A.

Remark 4.2 One can easily check that W0,0 ≡ 1. Moreover, one can obtain more informations
about the Wp,0 and Wp,1 for p ≤ 1 using conformal mapping techniques.(see [14]).

We can now proceed to a constructive existence proof (that can also be used as an algorithm
for numerical computations). To shorten the presentation, we have chosen to introduce some
formalism, taking the risk to add some abstraction. However, we hope this will not hide the idea
of the proof which is simple : it consists of looking for each uki (resp. Uki ) as a particular (finite)
linear combination of the wp’s (resp. Wp,l’s) defined above.

We shall work with sequences with three indices:

a = {(aki )p ∈ C / (i, k) ∈ J \ {(0, 0)} and p ∈ IN}.

and we shall denote by S the subset of such sequences such that:

S = {a =
(
(aki )p

)
/ (aki )p = 0 for p > i− k}. (4.24)

To any a ∈ S, we shall associate respectively:




ak = {(aki )p ∈ C / p ∈ IN and i > k}, a “two indices”-sequence,

aki = {(aki )p ∈ C / p ∈ IN}, a “one index”-sequence.
(4.25)
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Note, due to (4.24), each sequence aki can be identified to a vector of Ci−k+1.

To a sequence a ∈ S, we also associate the family of functions in H1
loc(ΩH) defined by :

u(aki ) =

+∞∑

p=0

(aki )p wp, (i, j) ∈ J \ {(0, 0)} (due to (4.24), the sum is finite). (4.26)

By definition of the wp’s, each u(aki ) is an outgoing far-field in the sense of section 3.2.2 and:

L0
p( u(aki ) ) = (aki )p, ∀(i, k) ∈ J \ {(0, 0)}, ∀p ∈ IN. (4.27)

To another sequence A ∈ S, we associate the family of functions in H1
loc(Ω̂N ) defined by :

Ui(Ak) =

+∞∑

p=0

i−k∑

l=0

(Aki−l)p Wp,l, (i, k) ∈ J \ {(0, 0)} (once again the sum is finite), (4.28)

where, by convention, we have set (this is needed for defining Ui(Ak) when i and k are zeros)

(A0
0)0 = u0

0(0) and (A0
0)p = 0, ∀ p > 0, (4.29)

Note that this convention permits to extend the validity of the formula (4.28) to i = k = 0. Indeed
this gives U0(A0) = u0

0(0)W0,0 with W0,0 = 1 (see (3.2)).

By definition of the Wp,l’s, each family i → Ui(Ak) obeys to embedded Laplace equations in

Ω̂NH with Neumann boundary conditions on ∂Ω̂NH . Indeed:

∆Ui(Ak) =

+∞∑

p=0

i−k∑

l=0

(Aki−l)p ∆Wp,l =

+∞∑

p=0

i−k∑

l=0

(Aki−l)p ∆Wp,l−2. (4.30)

Making the change of index l − 2→ l and exploiting Wp,l = 0 for l < 0, we get:

∆Ui(Ak) = −4

+∞∑

p=0

i−k−2∑

l=0

(Aki−2−l)p Wp,l(ρ, θ) = −4 Ui−2(Ak). (4.31)

Moreover, by construction of the Wp,l’s, one has

`0p( Ui(Ak) ) = (Aki )p, ∀(i, k) ∈ J \ {(0, 0)}, ∀p ∈ IN. (4.32)

and, by manipulations similar to the ones we applied to obtain (4.31), one shows that:

L0
0( Ui(Ak) ) = = L1

0( Ui−1(Ak) ).

The idea is now to construct adequately the sequences a and A in S so that:

uki ≡ u(aki ) and Uki ≡ Ui(Ak). ∀(i, k) ∈ J \ {(0, 0)}. (4.33)

be solution of (4.1), (4.2) and (4.3).

We first notice that, whatever is the choice of a and A in S, (4.1) and (4.2) are automatically
satisfied. It remains to ensure the coupling condition (4.3), which will define inductively on (i, k)
the sequences aki and Aki .

Assume that the sequences alj and Alj have been determined for (j, l) < (i, k) in such a way
that equations (4.3) (after having replaced (i, k) by (j, l)) are satisfied, for all (j, l) < (i, k), by
ulj = u(alj) and U lj = Uj(Al). We explain below how (4.3) leads to the construction of aki and Aki .
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In the rest of this paragraph, we set, for simplicity, uki = u(aki ) and Uki = Ui(Ak).

If i > k, we begin by determining the (aki )p’s and (Aki )p’s 0 < p ≤ i− k. We note that writing
(4.3) for 0 < p ≤ i− k gives, taking into account (4.27) and (4.32),

(aki )p = `0p(Uki−p) and (Aki )p = L1
p(u

k
i−p) +

2

π
L0
p(u

k−1
i−p ) (4.34)

which determines the (aki )p’s and the (Aki )p’s from the previous (j, l)’s since (i− p, k) < (i, k).

In any case (i.e. even if i = k), it only remains to determine (aki )0 and (Aki )0 in order to satisfy
(4.3) for p = 0. Using again (4.27) and (4.32), the first equation of (4.3) with p = 0 gives:

(aki )0 = L0
0(uki ) = `10(Uki ) =

+∞∑

p=0

i−k∑

l=0

(Aki−l)p `
1
0(Wp,l). (4.35)

As, for all p > 0 , `10(Wp,0) = 0 (see lemma 4.2, (4.23)) , this can be rewritten:

(aki )0 =

+∞∑

p=0

i−k∑

l=1

(Aki−l)p `
1
0(Wp,l), for 0 6 k 6 i− 1 and (aii)0 = 0 (4.36)

which determines the (aki )0’s and from the previous (j, l)’s since (i− l, k) < (i, k) for l > 0.

Finally, by (4.32), the second equation of (4.3) gives :

(Aki )0 =

i−k∑

p=0

(aki )p L1
0(wp) +

2

π
L0

0(uk−1
i ). (4.37)

This concludes the proof of existence and uniqueness of the uki ’s and Uki ’s. Moreover, an immediate
consequence of (4.26) and (4.36) is ukk ≡ 0 for all k 6= 0. �

Remark 4.3 One can prove (see [19]) that, for i > k, the functions uki , a priori singular at order
i − k, are in fact only singular at order i − k − 1 (this is what we announced in section 2, see
(2.14)). In the same way, one shows with the same type of arguments that the growth at infinity

of Uki in Ω̂HN is less than the O(ρi−k log ρ) growth predicted by remark 3.8. More precisely, one
shows that (2.17) holds.

A Proof of lemma 4.2

Let us recall first an existence and uniqueness result for a Laplace equation in the domain Ω̂N
with prescribed behavior at infinity. This result is proven in [20]:

Lemma A.1 Let UH ∈ H1
loc(Ω̂

H
N ), US ∈ H1

loc(Ω̂
S
N ) and f ∈ L2

loc(Ω̂N ) such that:





∆UH = −f, in Ω̂HN ,
∂UH
∂x

= 0, for x = 0,

∆US = −f, in Ω̂SN ,
∂US
∂y

= 0, for y = 0 or y = 1.

(A.1)

There exists a unique U ∈ H1
loc(Ω̂N ) such that:





∆U = −f, in Ω̂N ,
∂U
∂n

= 0, on ∂Ω̂N ,

lim
ρ→+∞

sup
θ∈[0;π]

|U(ρ, θ)− UH(ρ, θ)| = 0,

U − US is bounded in Ω̂SN .

(A.2)
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if and only if: ∫ π

0

∂UH
∂ρ

(1, θ) dθ +

∫ 1
2

− 1
2

∂US
∂x

(0, Y ) dY +

∫

bΩIN
f dx = 0, (A.3)

where Ω̂HN , Ω̂SN and Ω̂IN are defined in (3.33) and (4.12).

Remark A.1 The condition (A.3) is analogous to the classical compatibility condition for the non
homogeneous Neumann problem for −∆ in bounded domains. The proof of lemma A.1 consists
in reducing (A.2) to a similar problem with homogeneous conditions at infinity. This is done by
subtracting from U an appropriate function which is constructed with the help of UH and US and an
adequate truncation process. Then, the homogeneous conditions are handled through a variational
formulation in weighted Sobolev spaces. Finally, the use of Hardy’s inequalities permit to show
that Lax-Milgram’s lemma can be applied to the new problem.

For p ∈ IN given, the functions Wp,l will defined by induction over l, using lemma A.1.

Construction of Wp,l for l = 0. According to lemma 4.2, we look for Wp,0 solution of

∆Wp,0 = 0 in Ω̂N and
∂Wp,0

∂n
= 0 on ∂Ω̂N . (A.4)

and satisfying: 



`0q(Wp,0) = 1 if q = p and `0q(Wp,0) = 0 else,

L0
q(Wp,0) = 0 for q ≥ 0.

(A.5)

We are going to transform the problem (A.4, A.5) into an equivalent problem to which lemma A.1
can be applied.

In this goal, applying (3.47) and (3.61), for i = 0, to the function U0 = Wp,0, we see that the
conditions (A.5) are equivalent to:





Wp,0 = jp,0 +

+∞∑

q=0

`1q(Wp,0) yq,0, in Ω̂HN ,

Wp,0 =

+∞∑

q=0

L1
q(Wp,0) dq,0, in Ω̂SN .

(A.6)

Since, for all q ≥ 1, the functions yq,0 (resp. dq,0) decay at infinity in Ω̂HN (resp. Ω̂SN ) and since
d0,0 = 1, one sees that (A.5) is also equivalent (see [19] for details) to :





lim
ρ→+∞

{
Wp,0(ρ, θ) − jp,0(ρ, θ)− `10(Wp,0) y0,0(ρ, θ)

}
= 0,

Wp,0 is bounded in Ω̂SN .

(A.7)

We next prove (4.23). For this, we integrate (A.4) over Ω̂IN and apply Green formula, we get

0 =

∫

bΩIN
∆Wp,0 =

∫

∂bΩIN

∂Wp,0

∂n
=

∫ π

0

∂Wp,0

∂ρ
(1, θ)dθ +

∫ 1
2

− 1
2

∂Wp,0

∂X
(0, Y )dY. (A.8)

Next, we use the modal expansions (A.6) and the fact that, for q > 0, the functions cos qθ (resp.
ψq(Y )) have mean value 0 in [0, π] (resp. [−1/2,+1/2]) we get:

∫ π

0

∂j0,0
∂ρ

(1, θ) dθ + `10(Wp,0)

∫ π

0

∂y0,0

∂ρ
(1, θ) dθ + L1

0(Wp,0)

∫ 1

0

∂d0,0

∂X
(1, Y ) dY = 0.
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which yields, since j0,0(ρ, θ) = 1, y0,0(ρ, θ) = 1 + 2
π log ρ and d0,0(X,Y ) =1,

`10(Wp,0) = 0. (A.9)

Hence, we have proven that (A.5) is equivalent to:





lim
ρ→+∞

{
Wp,0(ρ, θ) − jp,0(ρ, θ)

}
= 0,

Wp,0 is bounded in Ω̂SN .

(A.10)

Finally, the existence and uniqueness of Wp,0 are ensured by lemma A.1 with:

f ≡ 0, UH = jp,0, US ≡ 0. (A.11)

Construction of Wp,l for l ≥ 1. We suppose that the Wp,m’s are defined for all m < l. Then,
according to lemma 4.2, we look for Wp,l solution of:

∆Wp,l = −4Wp,l−2 in Ω̂N and
∂Wp,l

∂n
= 0 on ∂Ω̂N . (A.12)

and satisfying the conditions at infinity for any m 6 l:




`0q(Wp,m) = 1 if q = p and m = 0 and `0q(Wp,m) = 0 else,

L0
0(Wp,m) = L1

0(Wp,m−1) and L0
q(Wp,m) = 0 for q > 0.

(A.13)

First, we apply (3.47) and (3.61), for i = l, to the family (Wp,i)06i6l. Using and the analytic
expression of c0,m and d0,m (3.57), we get:





Wp,l = jp,l +

+∞∑

q=0

l∑

m=0

`1q(Wp,l−m) yq,m, in Ω̂HN ,

Wp,l =

l∑

m=0

L1
0(Wp,l−m)

(2iX)m

m!
+

+∞∑

q=1

l∑

m=0

L1
q(Wp,l−m) dq,m, in Ω̂SN .

(A.14)

Thanks to Green-Riemann’s formula, one has:

∫

bΩIN
∆Wp,l =

∫

∂bΩIN

∂Wp,l

∂n
=

∫ π

0

∂Wp,l

∂ρ
(1, θ) dθ +

∫ 1
2

− 1
2

∂Wp,l

∂X
(0, Y ) dY. (A.15)

For q > 0, the functions cos (qθ) (resp. ψq(Y )) have mean value zero in [0;π] (resp. [−1/2; 1/2]).
Thus, equations (A.12) and (A.14) lead to:





−4

∫

bΩIN
Wp,l−2 =

∫ π

0

∂p,l
∂ρ

(1, θ) dθ +

l∑

m=0

`10(Wp,l−m)

∫ π

0

∂y0,m

∂ρ
(1, θ) dθ

+ 2i L1
0(Wp,l−1).

(A.16)

Hence, since

∫ π

0

∂y0,0

∂ρ
(1, θ) dθ = 2, we get the expression of `10(Wp,l):





`10(Wp,l) = −1

2

∫ π

0

∂p,l
∂ρ

(1, θ) dθ − 1

2

l∑

m=1

`10(Wp,l−m)

∫ π

0

∂y0,m

∂ρ
(1, θ) dθ

− i L1
0(Wp,l−1)− 2

∫

bΩIN
Wp,l−2 (≡ µp,l).

(A.17)
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For all q > 0, yq,0 and dq,0 decay at infinity . Using a second time the modal expansions (A.14),
one shows that conditions (A.13) are equivalent to (see [19] for details):





lim
ρ→+∞

sup
θ∈[0,π]

∣∣∣∣∣
{
Wp,l − jp,l − µp,l y0,0 −

+∞∑

q=0

l∑

m=1

[
`1q(Wp,l−m) yq,m

]}
(ρ, θ)

∣∣∣∣∣ = 0,

Wp,l −
l∑

m=1

L1
0(Wp,l−m)

(2iX)m

m!
−

+∞∑

q=1

l∑

m=1

[
L1
q(Wp,l−m) dq,m

]
is bounded in Ω̂SN .

(A.18)

Let us set f = 4Wp,l−2 and define UH and US as:




UH = p,l + µp,l y0,0 +
+∞∑

q=0

l∑

m=1

[
`1q(Wp,l−m) yq,m

]
,

US =

l∑

m=1

L1
0(Wp,l−m)

(2iX)m

m!
+

+∞∑

q=1

l∑

m=1

[
L1
q(Wp,l−m) dq,m

]
.

(A.19)

To apply lemma A.1, it remains to check that UH , US and f satisfy (A.1) and (A.3). To verify
(A.1), we remark that (remember that jq,1 = yq,1 = dq,1 = 0):





∆UH = ∆p,l + µp,l ∆y0,0 +

+∞∑

q=0

l∑

m=1

[
`1q(Wp,l−m)∆yq,m

]

= ∆p,l + µp,l ∆y0,0 +

+∞∑

q=0

l∑

m=2

[
`1q(Wp,l−m)∆yq,m

]
(see (3.38))

= − 4 p,l−2 − 4

+∞∑

q=1

l−2∑

m=0

[
`1q(Wp,l−m−2)∆yq,m

]
= −4Wp,l−2 = f. (see (A.14))





∆US =

l∑

m=1

L1
0(Wp,l−m) ∆

[ (2iX)m

m!

]
+

+∞∑

q=1

l∑

m=1

[
L1
q(Wp,l−m) ∆dq,m

]

=

l∑

m=1

L1
0(Wp,l−m) ∆

[ (2iX)m

m!

]
+

+∞∑

q=1

l∑

m=2

[
L1
q(Wp,l−m) ∆dq,m

]
(see (3.53))

= − 4

l−2∑

m=0

L1
0(Wp,l−m−2)

(2iX)m

m!
+

+∞∑

q=1

l−2∑

m=0

[
L1
q(Wp,l−m−2) dq,m

]

= − 4Wp,l−2 = f. (see (A.14))

To conclude, it is sufficient to check that:

I =

∫ π

0

∂UH
∂ρ

(1, θ)dθ +

∫ 1

0

∂US
∂x

(0, Y ) dY +

∫

bΩIN
f = 0. (A.20)

which directly follows from (A.17) (we omit the details). �
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