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1 Introduction

Arbitrage-free values v(x, t̄) of contingent claims on assets whose log-returns are modelled by a
strong Markov process Xt with state space R can be expressed as (conditional) expectations of prices
at time of maturity t̄ > 0, i.e.

v(x, t̄) = Ex(g(Xt̄)) (1.1)

(e.g. [10]). Here Ex denotes expectation with respect to a martingale measure of Xt, conditional to
X0 = x, and g(x) is a given, so-called payoff function of the contingent claim. The classical example
for Xt is geometric Brownian motion in the Black-Scholes-Merton model [4, 24].

Definition (1.1) suggests to estimate v(x,t̄) by Monte-Carlo simulation, i.e. by averaging over M
realizations {Xt(ωj)}Mj=1 of sample-paths. The statistical error in the estimate vM (x, t̄) thus obtained

tends to zero not faster than O(1/
√
M), in general.

Deterministic methods to compute v(x, t̄) are based on the semigroup Tt of Xt defined by

v(x, t) = (Ttg)(x) = Ex(g(Xt)), t > 0. (1.2)

The process Xt and its Semigroup Tt are called Feller if

i) Tt maps C0(R), the continuous functions on R vanishing at infinity, into itself:

Tt : C0(R)→ C0(R) boundedly

and

ii) if Tt is strongly continuous, i.e. limt→0+ ‖u− Ttu‖L∞(R) = 0 for all u ∈ C0(R).

The infinitesimal generator AX with domain D(AX) of a Feller process Xt with semigroup Tt is
defined by the strong limit

AXu := lim
t→0+

1

t
(Ttu− u) (1.3)

on all functions u ∈ D(AX) ⊂ C0(R) for which the limit (1.3) exists w.r. to the sup-norm. We call
(AX ,D(AX)) Feller generator of X . Feller generators admit the positive maximum principle, i.e.

if u ∈ D(AX) and sup
x∈R

u(x) = u(x0) > 0, then (AXu)(x0) ≤ 0 (1.4)

and admit a pseudodifferential representation (e.g. [8, 14, 15]):

Theorem 1.1. Let (A,D(A)) be a Feller generator with C∞0 (R) ⊂ D(A). Then A|C∞0 (R) is a pseu-
dodifferential operator,

(Au)(x) = −a(x,D)u(x) = −(2π)−1/2

∫

R
a(x, ξ)û(ξ)eixξdξ u ∈ C∞0 (R) (1.5)

with symbol a(x, ξ) : R × R → C which is measurable and locally bounded in (x, ξ) and which
admits the Lévy-Khintchine representation

a(x, ξ) = c(x)− iγ(x)ξ + (σ(x))2ξ2 +

∫

06=y∈R

(
1− eiyξ +

iyξ

1 + y2

)
N(x, dy) (1.6)
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The parameters c(x), γ(x), σ(x), N(x, dy) in (1.6) are called characteristics of the Feller process X t.
Spatially and temporally homogeneous Feller processes Xt are Lévy-processes (e.g.[2, 27]). Their
characteristics, the Lévy characteristics, do not depend on x explicitly.

Symbols a(x, ξ) of the form (1.6) are called negative definite symbols. In (1.6), N(x, dy) is the
compensated jump measure of the Feller process Xx

t = {Xt|X0 = x} which satisfies

sup
x∈R

∫

R
min(1, y2)N(x, dy) <∞. (1.7)

Fast deterministic computation of the conditional expectation v(x, t) in (1.2) across all maturities
0 < t < t̄ is based on the numerical solution of the backward Kolmogoroff equation

vt +Av = 0, v|t=T = g. (1.8)

In the Black-Scholes model [4], Xt is a diffusion for which N(x, dy) = 0 in (1.6). The generator
A in (1.8) is a diffusion with possibly spatially inhomogeneous characteristics c(x), γ(x), σ(x), resp.
killing, drift and volatility, corresponding to local volatility models.

Exploiting the analyticity of the semigroup Tt and a spline wavelet discretization of degree p ≥
1 for generators A in (1.5) which are classical pseudodifferential operators of constant order 2m,
0 ≤ m ≤ 1, it has been shown in [21, 22, 23] that v(x, t) can be computed for 0 < t ≤ T with
essentially O(N) work and memory essentially ∗ to accuracy O(N−p−1). Key ingredient in the
numerical analysis in [22, 23] were i) wavelet norm equivalences in the “energy” space of A (which
are also crucial ingredients for adaptive solution methods), and ii) the wavelets’ vanishing moment
property to compress the N 2 entries in the stiffness matrices ofA to O(N logN) “essential” elements
without loss in accuracy.

Here, we address the efficient solution of (1.8) for pure jump processes X with state dependent jump
intensity. In this case, σ = 0 in (1.6) and the domain V of the Dirichlet form associated to AX is
a Sobolev space of variable order m(x) ∈ (0, 1). Development of linear-complexity solvers for the
Kolmogoroff equation (1.8) along the lines of [22, 23] and also for the pseudodifferential inequality
arising from expectations over the stopped processes X (e.g. [20]) requires a) verification of wavelet
norm equivalences in the “energy” space H m(x) and b) wavelet compression of the generator AX or,
equivalently, of the jump measure of the Feller process X and c) establishing time-analyticity of the
semigroup Tt. Proving a) - c) is the main purpose of the present paper.

Its outline is as follows: in Section 2, we introduce a class of pseudodifferential operators of variable
order containing, in particular, certain generators AX of the form (1.6). To analyze wavelet-based
solution algorithms for (1.8), we derive, based on the calculus of [18, 12], estimates for the Schwartz
kernels of AX , resp. the densities of the compensated jump measure NX(x, dy) of Xt with respect
to the Lebesgue measure dy which are interesting in their own right. In Section 3, we define the
variable order Sobolev spaces Hm(x) for 0 ≤ m(x) < 1 which are the domains of Dirichlet forms of
AX . They also form the basis of Galerkin discretization of AX . In Section 4, we use the bounds on
the Schwartz kernels to establish our main results: multilevel norm equivalences in the variable order
spaces Hm(x) for 0 ≤ m(x) < 1 and compression estimates for the moment matrices of AX in the
wavelet basis. In Section 5, we prove the Gårding inequality for the generator (1.6) in variable order
Sobolev spaces and deduce time-analyticity of the Semigroup Tt. The final section 6 addresses the
generalization of the fast pricing algorithms from [22, 23] to variable order generators.
∗Throughout, “essentially” means up to powers of logN or log h which will be clear from the context
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2 Generators of Variable Intensity Feller-Lévy Processes

The infinitesimal generator AX of the Feller process X is the pseudodifferential operator a(x,D)
provided by (1.5) in Theorem 1.1. Denote by KX(x, y) the Schwartz kernel of the nonlocal part of
AX . The distribution KX(x, y) is the density of the jump measure NX(x, dy) of X with respect to
the Lebesgue measure dy, i.e.

NX(x, dy) = KX(x, y)dy. (2.1)

For pure jump Feller processes X with state-dependent jump-intensity, domains D(AX) of their gen-
erators AX are Sobolev spaces of variable order m(x) which, by (1.7), satisfies m(x) < 1. Wavelet
solution of the derivative pricing pseudodifferential equation (1.8) for variable intensity processes X
with generators of type (1.6), (1.7) requires multilevel norm equivalences. To prove these, we use a
calculus for variable order pseudodifferential operators. We start by identifying classes of variable
intensity pure jump Feller processes X through conditions on the Lévy symbols a(x, ξ) in (1.6) of
their infinitesimal generators AX .

Throughout we use the notation 〈ξ〉 := (1 + |ξ|2)1/2. We define a class of quadratic, pure jump
Feller processes X with variable jump intensity through their generators AX which are variable order
pseudodifferential operators. They, in turn, are given in terms of their symbols. The following symbol
classes of variable order have been introduced in [16].

Definition 2.1. Let 0 ≤ δ < ρ ≤ 1 and let m(x) ∈ C∞(R) be a real-valued function all of which

derivatives are bounded on R. The symbol a(x, ξ) belongs to the class Sm(x)
ρ,δ of symbols of variable

order m(x) if a(x, ξ) ∈ C∞(R× R) and m(x) = s+ m̃(x) with m̃ ∈ S(R) is a tempered function,
and if, for every α, β ∈ N0 there is a constant cα,β such that

∀x, ξ ∈ R : |Dβ
xD

α
ξ a(x, ξ)| ≤ cα,β〈ξ〉m(x)−ρ|α|+δ|β|. (2.2)

The variable order pseudo-differential operators A(x,D) ∈ Ψ
m(x)
ρ,δ correspond to symbols a(x, ξ) ∈

S
m(x)
ρ,δ by

A(x,D)u(x) :=
1

2π

∫

R

∫

R
ei(x−y)·ξa(x, ξ)u(y)dydξ, u ∈ C∞0 (R). (2.3)

Given a variable order m(x), we define m := supx∈Rm(x) and m := infx∈Rm(x) and assume
0 ≤ δ < ρ ≤ 1 throughout.

For a(x, ξ) ∈ Sm(x)
ρ,δ , the Martingale Problem is the problem of existence of a Feller Process X with

given generator A(x,D). We have ([16, 12], [15], Ch. 2.10 and [28]).

Proposition 2.2. For every negative definite symbol a(x, ξ) ∈ S
m(x)
ρ,δ of variable order m(x) with

1 ≥ ρ > δ > 0 exists a unique Feller process Xt with generator AX as in (1.5), (1.6) and jump
measure NX(x, dy) as in (2.1).

By FPm(x)
ρ,δ we denote the set of all Feller processes with generator AX ∈ Ψ

m(x)
ρ,δ given by a negative

definite characteristic function a(x, ξ) ∈ Sm(x)
ρ,δ . Their domainsD(AX) are Sobolev spaces of variable

order. Our definition and characterization of these variable order Sobolev spaces will be based on
variable order Riesz potentials Λm(x) with symbol a(x, ξ) = 〈ξ〉m(x). The operators Λm(x) are the
generators of so-called “stable-like” Feller processes whose existence has been established in [1].
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More general pseudodifferential generators and their associated Feller processes have been considered
for example in [16, 12, 28]. Since |Dβ

xDα
ξ 〈ξ〉m(x)| . 〈ξ〉m(x)−|α|| log〈ξ〉||β|, we have aΛ ∈ Sm(x)

ρ,δ ⊂
Smρ,δ for all 0 < δ < ρ ≤ 1. The following lemma from [16] is the variable order analogue to a
classical result for constant order pseudo-differential operators (see, e.g., Theorems 3.1 to 3.4 in [31]
or Chap. VI.6 in [32]).

Lemma 2.3. Consider compound symbols of the form a(x, ξ, y) ∈ C∞(R× R× R) satisfying

|Dα
xD

β
ξD

γ
ya(x, ξ, y)| ≤ cα,β,γ〈ξ〉m(x)+δ(|α|+|γ|)−ρ|β|,

together with the corresponding operators

(A(x,D, y)u)(x) :=
1

2π

∫

R

∫

R
ei(x−y)ξa(x, ξ, y)u(y)dydξ , u ∈ C∞0 (R).

If 0 ≤ m(x) for all x ∈ R and ‖m‖L∞(R) < 1, and A(x,D, y) is compactly supported (see e.g.

[17, 31]), there exists a pseudo-differential operator B ∈ Ψ
m(x)
ρ,δ with symbol b ∈ Sm(x)

ρ,δ together with

a pseudo-differential operator C ∈ Ψ
m(x)−ρ+δ
ρ,δ , such that

A(x,D, y) = B(x,D) + C (2.4)

holds.

Furthermore there exist pseudo-differential operators T1, T2 ∈ Ψ−ε1,δ, ε, δ > 0, and an ε > 0, such

that, for a(x, ξ) := 〈ξ〉m(x) ∈ Sm(x)
1,δ , b(x, ξ) := 〈ξ〉−m(x) ∈ S−m(x)

1,δ and corresponding operators

A(x,D) ∈ Ψ
m(x)
1,δ , B(x,D) ∈ Ψ

−m(x)
1,δ there holds

A(x,D)B(x,D) = I + T1, B(x,D)A(x,D) = I + T2. (2.5)

A calculus for variable order pseudodifferential operators Ψ
m(x)
ρ,δ was developed in [16], see also [12].

Define the operators L by (Lu)(x) := (Λm(x)u)(x) := 1
2π

∫ ∫
eiξ(x−y)〈ξ〉m(y)u(y)dydξ. Then the

calculus [16] shows that L> := Λm(x) ∈ Ψ
m(x)
1,δ and the operators A = L, A = L> ∈ Ψ

m(x)
1,δ ,

A = L−1 ∈ Ψ
−m(x)
1,δ andA = LL> = (Λm(x))>(Λm(x)) ∈ Ψ

2m(x)
1,δ , as well asA(−1) = (LL>)(−1) =

(Λ−m(x))>(Λ−m(x)) ∈ Ψ
−2m(x)
1,δ can be expressed as singular integrals with respect to their Schwartz

kernels KA(x, y) (related to the jump measure NX(x, dy) of the Markov process X with generator A
by (2.1))

Au(x) =

∫

R
KA(x, y)u(y)dy.

Formally, these kernels are given by oscillatory integrals

KA(x, y) =
1

2π

∫

R
ei(x−y)·ξaA(x, ξ, y)dξ,

with
aL(x, ξ) = 〈ξ〉m(x), aLL>(x, ξ, y) = 〈ξ〉m(x)+m(y)

and
aL−1(x, ξ, y) = 〈ξ〉−m(x) + b(x, ξ, y)

with a corresponding pseudo-differential operator B ∈ Ψ−ε1,δ for sufficiently small ε > 0.

The following lemma plays a crucial role in the wavelet compression of aL(x,D).
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Lemma 2.4. For any 0 < δ < 1, the Schwartz kernel KA(x, y) of A = LL> ∈ Ψ
2m(x)
1,δ satisfies the

Caldéron-Zygmund type estimate

|Dα
xD

β
yKA(x, y)| ≤ Cα,β,δ|x− y|−(1+m(x)+m(y)+(1−δ)(|α|+|β|)) , (2.6)

where x 6= y, |x− y| . 1. For A−1 = (LL>)(−1) ∈ Ψ
−2m(x)
1,δ , a corresponding estimate holds

|Dα
xD

β
yKA−1(x, y)| ≤ Cα,β,δ|x− y|−(1−m(x)−m(y)+(1−δ)(|α|+|β|)) . (2.7)

For |x− y| → ∞ the kernels are rapidly decaying in the sense that

|Dα
xD

β
yK(x, y)| . |x− y|−N

for every N > 0 and for K = KA and K = KA−1 .

The technique for validating of the above assertion is standard, e.g. Chap. VI of [32]. For the reader’s
convenience we provide a proof. Let χ̂ ∈ C∞0 (R) be a cut-off function, 0 ≤ χ̂(x) ≤ 1, χ̂(x) = 1 if
x ∈ [0, 1], with support suppχ̂ ⊂ [0, 2], such that Ψ̂(ξ) = χ̂(ξ) − χ̂(2ξ) defines a Littlewood Paley
decomposition cf. [32] , i.e.

χ̂(ξ) +

∞∑

j=1

Ψ̂(2−jξ) = 1 ,∀ξ ∈ R.

The extended symbol a(x, ξ, y) = (1 + ξ2)(m(x)+m(y))/2 = 〈ξ〉m(x)+m(y) of A = LL> can be
decomposed into the sum

a(x, ξ, y) = a0(x, ξ, y) +
∞∑

j=1

aj(x, ξ, y) := a(x, ξ, y)χ̂(ξ) +
∞∑

j=1

a(x, ξ, y)Ψ̂(2−jξ). (2.8)

From this we obtain the corresponding decomposition of the operator

A = A0 +

∞∑

j=1

Aj . (2.9)

Here the operators Aj are defined by their Schwartz kernels

kj(x, z, y) =
1

2π

∫

ξ∈R
eiξ·zaj(x, ξ, y)dξ , z = x− y . (2.10)

Lemma 2.5. Let (x, z, y) 7→ kj(x, z, y) be the kernel functions defined by (2.10). Then for all M ≥ 0
and z 6= 0 there holds

|Dα
xD

β
yD

γ
zkj(x, z, y)| ≤ CM,α,β|z|−M2j(−M−1−|γ|+δ(|α|+|β|)+m(x)+m(y)) (2.11)

Proof. Due to definition (2.10) partial integration yields

(−z)µDγ
zD

α
xD

β
y kj(x, z, y) =

1

2π

∫
eiξ·zDµ

ξ [(iξ)γDα
xD

β
y aj(x, ξ, y)]dξ (2.12)
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We observe that the integrand is supported on {ξ : 2j−1 ≤ |ξ| ≤ 2j+1} and the volume of this support
is bounded by c2j . Therefore, we can estimate the above integral (2.12) directly using

|Dα
xD

β
yD

µ
ξ aj(x, ξ, y)| . 〈ξ〉m(x)+m(y)−|µ|+δ(|α|+|β|) ,

by

|zµDα
xD

β
yD

γ
zkj(x, z, y)| ≤ 1

2π

∫
|Dµ

ξ [ξγDα
xD

β
y aj(x, ξ, y)]|dξ

≤ Cµ,α,β2j(1+m(x)+m(y)+|γ|−|µ|+δ(|α|+|β|)).

Choosing M = |µ| gives the desired result.

We can now prove Lemma 2.4.

Proof. Since

K(x, y) = k0(x, x− y, y) +
∞∑

j=1

kj(x, x− y, y)

it is sufficient to estimate

Dα
xD

β
y k0(x, x− y, y) +Dα

xD
β
y

∞∑

j=1

kj(x, x− y, y). (2.13)

From Lemma 2.5 we conclude the estimate

|Dα
xD

β
y kj(x, x− y, y)| ≤ CM,α,β|x− y|−M2j(M+1−(1−δ)(|α|+|β|)+m(x)+m(y)) .

First we consider the case |z| = |x− y| ≤ 1 and decompose the sum (2.13)

k0 +

∞∑

j=1

kj =
∑

2j≤|z|−1

kj +
∑

2j≥|z|−1

kj .

Setting M = 0 in Lemma 2.5 the first sum can be majorized by a multiple of
∑

2j≤z−1

2j(1+m(x)+m(y)−(1−δ)(|α|+|β|)) . |z|−(1+m(x)+m(y)−(1−δ)(|α|+|β|))

provided that 1 +m(x) +m(y)− (1− δ)(|α| + |β|) > 0.

To estimate the second sum
∑

2j≥|z|−1 kj we choose

M > 1 +m(x) +m(y)− (1− δ)(|α| + |β|)

and obtain an upper bound

C|z|M
∑

2j≥|z|−1

2−j(1−M+m(x)+m(y)−(1−δ)(|α|+|β|)) . |z|−((1+m(x)+m(y)−(1−δ)(|α|+|β|)) .

To conclude the proof we consider |z| ≥ 1. Then Lemma 2.5 provides, for all N := M −m(x) +
m(y)− (1− δ)(|α| + |β|) > 0, that (2.13) can be bounded by CN,α,β|z|−N .
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Using analogous arguments as above, we obtain

Theorem 2.6. Let A ∈ Ψ
2m(x)
ρ,δ for some 0 < δ < ρ ≤ 1. Then the Schwartz-kernel KA(x, y) of A

satisfies for all α, β ∈ N0 and all x, y ∈ R with x 6= y

|Dα
xD

β
yKA(x, y)| ≤ Cα,β,δ|x− y|−(1+m(x)+m(y)+(ρ−δ)(|α|+|β|)) . (2.14)

In the applications we have in mind, the spatial domain is the unit interval I = (0, 1) rather than all of
R and the variable order m(x) is only defined on I . There holds 0 < m(x) < 1, for all x ∈ [0, 1]. For
technical purposes we extend m(x) = s+ m̃(x) such that there exists ε > 0 with ε < m(x) < 1− ε
and m̃ ∈ S(R).

3 Variable Order Sobolev Spaces

We define the Sobolev space Hm(x)(R) of variable order m(x) ∈ [0, 1) on R through the Hm(x)(R)
Sobolev norm given by

‖u‖2
Hm(x)(R)

:= ‖Λm(x)u‖2L2(R) + ‖u‖2L2(R). (3.1)

We also introduce the inner product

〈u, v〉m(x) := 〈Λm(x)u,Λm(x)v〉+ 〈u, v〉,

so that 〈u, u〉m(x) = ‖u‖2
Hm(x)(R)

. The space H−m(x)(R) is defined as the dual space of Hm(x)(R)

with respect to the 〈., .〉 - duality. An equivalent norm in H−m(x)(R) is given by

〈u, v〉−m(x) := 〈Λm(x)u,Λm(x)v〉+ 〈Λ−2mu, v〉, ‖u‖2
H−m(x)(R)

= 〈u, u〉−m(x).

We remark that due to the symbolic calculus in [16] referred to in Lemma 2.3, an equivalent definition
used by [16, 18] is

‖u‖Hm(x)(R) := ‖(Λm(x))>u‖L2(R). (3.2)

On a bounded interval I = (a, b) ⊂ R we define for a variable order 0 ≤ m(x) < 1 the space

H̃m(x)(I) :=
{
u|I
∣∣∣ u ∈ Hm(x)(R), u|R\I = 0

}
.

It coincides with the closure of C∞0 (I) (the space of smooth functions with support compactly con-
tained in I) with respect to the norm

‖u‖H̃m(x)(I) := ‖ũ‖Hm(x)(R), (3.3)

where ũ is the zero extension of u to all of R. It follows from Lemma 2.4 applied to L = Λm(x)

and from the positive definiteness of the Dirichlet form of the variable order Riesz potential Λm(x) on
C∞0 (R) that for 0 < m ≤ m(x) ≤ m < 1 an intrinsic norm on H̃m(x)(I) is given by

‖u‖2
H̃m(x)(I)

:= ‖u‖2L2(I) + |u|2
H̃m(x)(I)

, |u|2
H̃m(x)(I)

:=

∫

R

∫

R

|ũ(x)− ũ(y)|2
|x− y|1+m(x)+m(y)

dydx. (3.4)
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Evidently, H̃m(x)(I) ⊂ Hm(x)(R). We also define

Hm(x)(I) = {u ∈ D(I) : there exists an extension lu ∈ Hm(x)(R), lu|I = u}

supplied with the quotient norm ‖u‖Hm(x)(I) := inf{‖lu‖m(x) : lu|I = u}. Then Hm(x)(I) is

isomorphic to the quotient space Hm(x)(R)/H̃m(x)(R\I).

Spaces of order m(x) ≤ 0 are defined by duality

(H̃m(x)(I))′ = H−m(x)(I) and (Hm(x)(I))′ = H̃−m(x)(I). (3.5)

We remark that if m(a) > 1
2 then functions u ∈ H̃m(x)(I) have zero Dirichlet trace, i.e. u(a) = 0.

4 Spline Wavelets with Complementary Boundary Conditions

Since we discretize the parabolic equation (1.8) in (0, T )×I in the spatial variable with spline wavelet
bases for V = H̃m(x)(I), we briefly recapitulate basic definitions and results on wavelets from e.g.
[6] and the references there.

The primal wavelet bases ψl,k span finite dimensional spaces

W l := span {ψl,k : k ∈ ∇l} , VL :=
L−1⊕

l=−1

W l l = −1, 0, 1 . . . ,

and the dual spaces are defined analogously in terms of the dual wavelets ψ̃l,k by

W̃ l := span {ψ̃l,k : k ∈ ∇l} , ṼL :=
L−1⊕

l=−1

W̃ l l = −1, 0, 1 . . . ,

In the sequel we will require the following properties of these functions

1. Biorthogonality: the basis functions ψl,k, ψ̃l,k satisfy

〈ψl,k, ψ̃l′,k′〉 = δl,l′δk,k′. (4.1)

2. Local support: the diameter of the support is proportional to a meshsize 2−l,

diam supp ψl,k . 2−l , diam supp ψ̃l,k ∼ 2−l. (4.2)

3. Conformity: the basis functions should be sufficiently regular, i.e.

W l ⊂ H̃1(I) , W̃ l ⊂ Hδ(I) for some δ > 0 , l ≥ −1. (4.3)

Furthermore
⊕∞

l=−1W l,
⊕∞

l=−1 W̃ l are supposed to be dense in L2(Ω)
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4. Vanishing moments: The primal basis functions ψl,k are assumed to satisfy vanishing moment
conditions up to order p∗ + 1 ≥ p

〈ψl,k, xα〉 = 0 , α = 0, . . . , d = p∗ + 1, l ≥ 0, (4.4)

and for all dual wavelets, except the ones at each end point, one has

〈ψ̃l,k, xα〉 = 0 , α = 0, . . . , d = p+ 1, l ≥ 0. (4.5)

At the end points the dual wavelets satisfy only

〈ψ̃l,k, xα〉 = 0 , α = 1, . . . , d = p+ 1, l ≥ 0. (4.6)

On I = (0, 1) we set ∇l = {k = 1, . . . ,Ml}, where usually Ml = 2l. We remark, that the third
condition implies zero Dirichlet condition, namely ψl,k(0) = ψl,k(1) = 0. To guarantee this condition
one has to sacrifice the vanishing moment property of one wavelet, e.g. ψl,k, l = 0, . . ., at each end
point 0 or 1. A systematic and general construction for arbitrary order biorthogonal spline wavelets is
presented in [9]. Sufficiently far apart from the end points of (0, 1), biorthogonal wavelet (e.g. [6] and
the references there) bases are used in this approach. Using biorthogonal wavelets in the case p = 1,
piecewise linear spline wavelets vanishing outside I = (0, 1) are obtained by simple scaling. The
interior wavelets have two vanishing moments and are obtained from the mother wavelet ψ(x) which
takes the values (0,− 1

6 ,−1
3 ,

2
3 ,−1

3 ,−1
6 , 0, 0, 0) at the points (0, 1

8 ,
1
4 ,

3
8 ,

1
2 ,

5
8 ,

3
4 ,

7
8 , 1) by scaling and

translations: ψl,k(x) := 2l/2ψ(2l−3x − k + 2) for 2 ≤ k ≤ 2l − 3 and l ≥ 3. At the left boundary
k = 1, we use the piecewise linear function ψleft defined by the value (0,58 ,

−3
4 ,
−1
4 ,

1
4 ,

1
8 , 0, 0, 0) and

ψright(x) = ψleft(1− x). For more details we refer to [11].

The following simplified basis functions are shown to be quite efficient for the present applications
[23]. They have the advantage of an extremely small support. Nevertheless, the dual wavelets do not
permit compact support, but they are exponentially decaying. I.e.,

∣∣∣Ψ̃e(x)
∣∣∣ ≤ C exp(−κ |x|), κ > 0, x ∈ R. (4.7)

We emphasize that we do need the local support only of the primal wavelets for matrix compression.
Therefore, this property is important for an efficient implementation. But we have assumed local
support of the dual wavelets only for simplifying the present proof of the norm equivalence. However
it is very likely that the present results remain valid for exponentially decaying dual wavelets.

The biorthogonal wavelets in the case p = 1 are continuous, piecewise linear spline wavelets vanishing
outside I = (0, 1) (for general intervals I = (a, b), they are obtained by simple scalings). The interior
wavelets have two vanishing moments and are obtained from the mother wavelet ψ(x) taking values
(0,−1

2 , 1,−1
2 , 0) at (0, 1

4 ,
1
2 ,

3
4 , 1) by scaling and translation: ψl,k(x) := 2l/2ψ(2l−1x− (2k− 1)2−2)

for 1 ≤ k ≤ 2l − 2 and l ≥ 2.

The boundary wavelets are constructed from the continuous, piecewise linear functions ψ∗, with val-
ues (0, 1,− 1

2 , 0) at (0, 1
4 ,

1
2 ,

3
4), and ψ∗, taking values (0,− 1

2 , 1, 0) at ( 1
4 ,

1
2 ,

3
4 , 1): ψl0 = ψ∗(2l−1x)

and ψl,2l−1 = 2l/2ψ∗(2l−1x− 2l−1 + 1). The following results are known for wavelets satisfying the
above requirements (e.g., [6]).

For all vh =
∑L−1

l=0

∑M l

k=1 vl,kψl,k ∈ Vh = VL, h ∼ 2−L, there holds the norm equivalence

‖vh‖2H̃s(I)
∼=

L∑

l=0

M l∑

k=1

|vl,k|222ls, (4.8)
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for all 0 ≤ s < 3
2 . Validity of (4.8) in the variable order spaces H̃m(x)(I) will be shown in Theorem

5.9 below. Using the abbreviation λ = (l, k) ∈ I := {λ = (l, k) = l = −1, 0, 1, . . . , k = 1, . . . M l}
any function v ∈ H̃s(I), 0 ≤ s ≤ p+ 1, and, due to H̃m(I) ⊂ H̃m(x)(I) ⊂ H̃m(I), any function in
H̃m(x)(I) can be represented in the wavelet series

v =
∞∑

l=0

M l∑

k=1

vl,kψl,k =
∑

λ∈I
vλψλ.

This makes it possible to define an approximation operator Qh : H̃m(x)(I)→ Vh, defined by

Qhv =

L∑

l=0

M l∑

k=1

vl,kψl,k. (4.9)

For 0 ≤ s < 3
2 ≤ t ≤ p+ 1, we have the approximation property (e.g. [6])

‖v −Qhv‖H̃s(I) ≤ Cht−s ‖v‖Ht(I) . (4.10)

5 Matrix Compression and Norm Equivalences

Consider Λm(x) ∈ Ψ
m(x)
1,δ with symbol 〈ξ〉m(x) ∈ S

m(x)
1,δ . Then M := (Λm(x))>Λm(x) is, for u ∈

C∞0 (R), given by the oscillatory integral

((Λm(x))>Λm(x))u(x) :=
1

2π

∫

R

∫

R
eiξ(x−y)〈ξ〉m(y)+m(x)u(y)dydξ.

For preconditioning as well as to establish norm equivalences in the spaces H̃m(x)(I) of variable
order, we will consider the stiffness matrices of the operators Λm(x) in the wavelet basis ψλ, i.e.

M = (〈Λm(x)ψλ′ ,Λ
m(x)ψλ〉)λ,λ′∈I (5.1)

and
M(−1) = (〈Λ−m(x)ψλ′ ,Λ

−m(x)ψλ〉)λ,λ′∈I (5.2)

We recall m := supx∈Rm(x) and m := infx∈Rm(x). For λ = (l, k), we define the extended support
Ωλ of a wavelet basis function ψλ by

Ωλ := Ωl,k =
⋃

l′≥l
{suppψλ′ : suppψλ ∩ suppψλ′ 6= ∅}. (5.3)

For λ = (l, k) we also define

mλ := inf{m(x) : x ∈ Ωλ} and mλ := inf{m(x) : x ∈ Ωλ}. (5.4)

Lemma 5.1. Let ψl,k, ψl′,k′ be two wavelet basis functions with compact support and with p∗+ 1 ≥ 2
vanishing moments. If dist(suppψl,k, suppψl′,k′) > 0, then we have for each 0 < δ < 1 the estimate

|〈Λm(x)ψl,k,Λ
m(x)ψl′,k′〉| ≤ Cδ2−(l+l′)(1/2+d) dist(suppψl,k, suppψl′,k′)

−(1+2m+2(1−δ)d) (5.5)

for come constant Cδ > 0 independent of l, l′ as well as

|〈Λ−m(x)ψ̃l,k,Λ
−m(x)ψ̃l′,k′〉| ≤ Cδ2−(l+l′)(1/2+d)dist(supp ψ̃l,k, supp ψ̃l′,k′)

−(1−2m+2(1−δ)d) .
(5.6)
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Proof. We define the operator A = (Λm(x))>Λm(x) with extended symbol

a(x, ξ, y) = 〈ξ〉m(x)+m(y)

and denote by KA(·, ·) the corresponding Schwartz kernel.

Following standard arguments in wavelet matrix compression (e.g., [6, 29]) we obtain

|〈Λm(x)ψl,k,Λ
m(x)ψl′,k′〉| .

∣∣∣∣
∫ ∫

KA(x, y)ψl,k(x)ψl′,k′(y)dxdy

∣∣∣∣

. (diam suppψl,k)d(diam suppψl′,k′)
d(

∫
|ψl,k(x)dx|)(

∫
|ψl′,k′(y)dy|)

× sup
x∈suppψl,k

sup
y∈suppψl′,k′

|Dd
xD

d
yKA(x, y)|

. 2−(l+l′)(1/2+d) dist(suppψl,k, suppψl′,k′)
−(1+2(1−δ)d+2m).

In the last step, we have used the fact that A ∈ Ψ
2m(x)
1,δ ⊂ Ψ2m

1,δ together with the Caldérón Zyg-

mund property of KA(x, y) shown in Lemma 2.4. Since B = (Λ−m(x))>Λ−m(x) ∈ Ψ
−2m
1,δ a similar

argument proves (5.6).

Since the boundary wavelets of the dual wavelet system do not have vanishing moments, we treat the
corresponding matrix coefficients separately.

Lemma 5.2. If among ψ̃l,k, ψ̃l′,k′ only the latter wavelet has no vanishing moments, and if

dist(supp ψ̃l,k, supp ψ̃l′,k′) > 0

then we have for each 0 < δ < 1 the estimate

|〈Λ−m(x)ψ̃l,k,Λ
−m(x)ψ̃l′,k′〉| ≤ Cδ2−l(1/2+d) dist(suppψl,k, suppψl′,k′)

−(1−2m+(1−δ)d). (5.7)

We need an estimate treating the case that the supports of two wavelet functions overlap. First we
investigate the diagonal matrix entries.

Lemma 5.3. Let 0 ≤ m(x), x ∈ R and mλ, mλ, λ = (l, k) as defined in (5.4), then

22lmλ . |〈Λm(x)ψl,k,Λ
m(x)ψl,k〉| . 22lmλ . (5.8)

For Λ−1 holds correspondingly

2−2lmλ . |〈Λ−m(x)ψ̃l,k,Λ
−m(x)ψ̃l,k〉| . 2−2lmλ . (5.9)

Proof. Observing 〈ξ〉m(x)〈ξ〉−m ∈ S0
1,δ for any δ > 0, and since Λm(x) : H̃m(x)(I) → L2(I) is

one-to-one [18], we estimate

〈Λm(x)ψl,k,Λ
m(x)ψl,k〉 = ‖Λm(x)ψl,k‖2L2(I) . ‖Λmλψl,k‖2L2(I)

.
∫

ξ
|
∫

x
e−ixξ〈ξ〉mλψλ(x)dx|2dξ

. 22lmλ .
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By similar arguments we obtain using inf{θ(x) : x ∈ Ωλ} ≥ mλ the estimates

〈Λ−m(x)ψ̃l,k,Λ
−m(x)ψ̃l,k〉 =

1

2π

∫

ξ
|
∫

x
e−ixξ〈ξ〉−m(x)ψ̃l,k(x)dx|2dξ . ‖Λ−mλψ̃l,k‖20 . 2−2lmλ .

We get also lower bounds. For some C > 0 independent of λ holds

〈Λm(x)ψl,k,Λ
m(x)ψl,k〉 =

1

2π

∫

ξ
|
∫

x
e−ixξ〈ξ〉m(x)ψl,k(x)dx|2dξ ≥ ‖Λ−mλψl,k‖20 ≥ C22lmλ .

Similar arguments prove the remaining inequality.

Lemma 5.4. In case suppψλ ∩ suppψλ′ 6= ∅ and l ≤ l′, the following estimate holds for 0 ≤
s+mλ < γ,

|〈Λm(x)ψl,k,Λ
m(x)ψl′,k′〉| . 2−|l−l

′|s2lmλ+l′mλ′ (5.10)

Proof. We suppose that l ≥ l′. Then, for 0 ≤ s < γ −m,

|〈Λm(x)ψl,k,Λ
m(x)ψl′,k′〉| ≤ ‖Λm(x)−sψl,k‖0‖Λm(x)+sψl′,k′‖0

. ‖Λmλ′−sψl′,k′‖0‖Λmλ+sψl,k‖0

. 2lmλ+l′mλ′2−s|l−l
′|.

We need to treat the dual wavelets in H−m(x)(I) analogously.

Lemma 5.5. In case supp ψ̃λ ∩ supp ψ̃λ′ 6= ∅ and l ≤ l′, the following estimate holds for 0 ≤
s+mλ < γ,

|〈Λ−mψ̃l,k,Λ−mψ̃l′,k′〉| . 2−|l−l
′|s2−lmλ−l

′mλ′ (5.11)

We remark that Lemmas 5.3-5.5 include the boundary wavelets as well.

Lemma 5.6. For λ = (l, k) ∈ I one has

mλ −mλ . 2−l (5.12)

Proof. Due to m ∈ C1(R) (actually, only m ∈ C0,1(R) is required) there holds

0 ≤ mλ −mλ ≤ diam(Ωλ) sup
x∈Ωλ

|m′(x)| . 2−l sup
x∈Ωλ

|m′(x)|.

Definition 5.7. A matrix A = (aλ,λ′)λ,λ′∈I will be called compressible, if there exist constants a, b >
0 such that for all λ = (l, k), λ′ = (l′, k′) holds

|aλ,λ′ | . 2−(a+1/2)|l−l′ |(1 + d(λ, λ′))−1−b (5.13)

with d(λ, λ′) := 2min{`,`′} dist(suppψλ, suppψλ′) if at least one wavelet has vanishing moments of
order d∗ ≥ 2 and d(λ, λ′) := +1 otherwise.
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Let us introduce the diagonal matrices

D−m(x) := (2−mλδλ,λ′)λ,λ′∈I , Dm(x) := (2mλδλ,λ′)λ,λ′∈I . (5.14)

Proposition 5.8. The matrices

A = (aλ,λ′)λ,λ′∈I := D−m(x)MD−m(x) and A(−1) := Dm(x)M(−1)Dm(x)

with M, M−1 as in (5.1), (5.2) are compressible: there exists s > 0 such that

|aλ,λ′ | . 2−|l−l
′|(s+1/2)(1 + d(λ, λ′))−1−2(d−m)(1−δ) (5.15)

and
|a(−1)
λ,λ′ | . 2−|l−l

′|(s+1/2)(1 + d(λ, λ′))−1−2(d−m)(1−δ). (5.16)

Proof. If d(λ, λ′) . 1 the assertion follows from Lemma 5.4 and Lemma 5.5.

If d(λ, λ′) ≥ 1 we infer from Lemma 5.1, that for l ≤ l′ holds

|aλ,λ′ | . 2l(1/2+m+2(1−δ)d)−d)2−l
′(1/2+d−m)(1 + d(λ, λ′))−(1+2m+(1−δ)2d)

. 2(l−l′)(1/2+s)(1 + d(λ, λ′))−(1+2m+(1−δ)2d)) ,

provided that 0 < s = min{m + 2(1 − δ)d − d, d − m}, which is possible since δ > 0 can be
arbitrarily small and m < 1 if Xt is quadratic, pure jump.

An estimate for A(−1) can be derived similarly. The case that the dual wavelets are boundary wavelets
is treated similarly if only one of the wavelets has vanishing moments.

The case that both wavelets do not have vanishing moments is treated in the same way as the case of
overlapping support.

The previous result is the basis for the numerical analysis of variable order pseudodifferential equa-
tions. It implies multilevel norm equivalences in the variable order Sobolev spaces H̃m(x)(I) and
diagonal preconditioning for wavelet discretizations of the variable order pseudo-differential opera-
tors Λm(x).

Theorem 5.9. Let u =
∑

λ∈I uλψλ = u>Ψ ∈ H̃m(x)(I). Then for Dm(x) as in (5.14) holds the
multilevel norm equivalence in variable order spaces:

‖u‖2
H̃m(x)(I)

∼ u>(Dm(x))>Dm(x)u ∼ u>D2m(x)u. (5.17)

For v =
∑

λ∈I vλψ̃λ = v>Ψ̃ ∈ H−m(x)(I) holds correspondingly

‖v‖2
H−m(x)(I)

∼ v>D−2m(x)v. (5.18)

The spectral condition number of A = D−m(x)MD−m(x) is uniformly bounded in h.

Proof. As a first step, we need to show that cond D−m(x)Dm(x) ≤ C . Recalling the definition we
observe that D−m(x)Dm(x) = diag(2−lmλ2lmλ). Due to Lemma 5.6 we get liml→∞ 2l|mλ−mλ| =
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liml→∞ 2lC(2−l) = 1. Therefore we estimate 1 ≤ 2l|mλ−mλ| ≤ C . It is well known that the spec-
tral norm of a compressible matrix is bounded, see e.g. [6] Theorem 4.6.1. Therefore, it follows
from this result together with Proposition 5.8 that the spectral norm of the matrices A and A−1 are
bounded, which means cond A ∼ 1. Thus the matrices M, Dm(x)(Dm(x))> and D2m(x) are spec-
trally equivalent. Since ‖u‖2

H̃m(x)(I)
= u>Mu, we have established the first assertion (5.17). The

second equivalence (5.18) follows analogously.

An immediate consequence of the norm-equivalence (5.17) is the uniform boundedness of the quasi-
interpolants Qh in the variable order norms H̃m(x)(I).

Corollary 5.10. The quasi-interpolants Qh defined in (4.9) are uniformly bounded in H̃m(x)(I), i.e.
there is C > 0 such that

∀u ∈ H̃m(x)(I), ∀h > 0 : ‖Qhu‖H̃m(x)(I) ≤ C‖u‖H̃m(x)(I).

Using the variable order norm equivalence (5.17) we can extend the approximation property (4.10) to
variable order spaces.

Corollary 5.11. Let u ∈ Hs(I) ∩ H̃1(I) for some 1 ≤ s ≤ p + 1. Then for the quasi-interpolant

uh = Qhu =
∑L

l=0

∑M l

j=1 u
l
jψ

l
j in (4.9) there holds for 0 < m < 1 ≤ s ≤ p+ 1 the Jackson estimate

‖u− uh‖2H̃m(x)(I)
.
∫

I
22L(m(x)−s)(|Dsu(x)|2 + |u(x)|2)dx . 22L(m−s)‖u‖2Hs(I) (5.19)

Proof. For multi-indices λ = (l, k), µ = (L, k ′) ∈ I , we introduce the notation λ � µ if l := |λ| ≥
|µ| =: L and suppψλ ∩ suppψµ 6= ∅. For s ≥ 3

2 we choose s′ < s with 1 ≤ s′ < 3
2 , otherwise we

set s′ = s, we observe that mλ − s′ ≤ (mµ − s′) < 0 holds for all λ � µ . Therefore we conclude
from the norm equivalence (5.17)

‖u− uh‖2H̃m(x)(I)
∼

∑

l>L

Ml∑

k=1

22|λ|mλ |ul,k|2 =
∑

l>L

Ml∑

k=1

22|λ|(mλ−s′)22s′|λ||uλ|2

.
∑

µ∈∇L
22L(mµ−s′)

∑

λ�µ
22s′|λ||uλ|2,

where ∇L = {µ = (L, k′) : k′ = 1, . . . ,ML}.
Let µ = (L, k′), L = |µ| and �µ := [2−|µ|k′, 2−|µ|(k′ + 1)]. Then, due to the norm equivalence
(5.17) and the approximation property (4.10) we have

∑

µ∈∇L

∑

λ�µ
22s′|λ||uλ|2 .

∑

µ∈∇L
22L(s′−s)

∫

�µ
(|Dsu(x)|2 + |u(x)|2)dx.

Recalling that 2Lmµ ∼ 2Lm(x) ∼ 2Lmµ holds for x ∈ �µ, we obtain the final result

‖u− uh‖2H̃m(x)(I)
.
∫

I
22L(m(x)−s)(|Dsu(x)|2 + |u(x)|2)dx.
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Recalling that 2Lmλ ∼ 2Lm(x) ∼ 2Lmλ holds for x ∈ �λ, we obtain the final result

‖u− uh‖2H̃m(x)(I)
.
∫

I
22L(m(x)−s)(|Dsu(x)|2 + |u(x)|2)dx.

Lemmas 5.1 to 5.5 addressed only the generators Λm(x). We focussed on this case since it is crucial
for establishing the norm equivalences (5.17). For wavelet solution of the Kolmogoroff equation (1.8)
in log-linear complexity we need the compressibility of the moment matrices in wavelet bases also for
generators which are more general than Λm(x).

Theorem 5.12. LetA ∈ Ψ
2m(x)
ρ,δ (R) for some 0 < δ < ρ ≤ 1, and let {ψλ}λ be a system of compactly

supported spline wavelets in I = (0, 1) of polynomial degree p ≥ 1 as introduced in Section 4 with
complementary boundary conditions and d ≥ p+ 1 vanishing moments if supp(ψλ) ∩ ∂I = ∅.
Then the preconditioned moment matrix

A := D−m(x)(〈Aψλ′ , ψλ〉)λ,λ′∈ID−m(x) (5.20)

has condition number which is uniformly bounded in L and A is compressible: there are C > 0,
s > 0 such that for all λ, λ′ ∈ I holds

|Aλ,λ′ | ≤ C2−|l−l
′|(s+1/2)(1 + d(λ, λ′))−1−2(d−m)(ρ−δ) (5.21)

The proof of Theorem 5.12 is completely analogous to that of Proposition 5.8, using Lemmas 5.1 to
5.5 with the kernel estimates (2.14) in place of (2.6).

6 Option Pricing under Variable Intensity Feller Processes

With the norm equivalences (5.17), (5.18) we develop linear complexity numerical solution algorithms
for the pricing equation (1.8). Since elements of the algorithm are identical to [26, 22, 23], we focus
only on the essential differences in the analysis due to the variable order m(x) of AX .

6.1 Weak Form of the Pricing Equation. Well-posedness.

We consider (1.8) with nonlocal operator A ∈ L(V, V ∗) of variable order 2m(x) ∈ (0, 2) in V =
H̃m(x)(I), V ∗ = H−m(x)(I) with Dirichlet form

a(u, v) := 〈Au, v〉V ∗×V , u, v ∈ V.

This Dirichlet form is continuous, i.e. there exists a constant α > 0 such that

|a(u, v)| ≤ α‖u‖V ‖v‖V , ∀u, v ∈ V. (6.1)

It is well known that problem (1.8) has a unique (weak) solution u(t), and there holds the a priori
estimate (see e.g. [19])

‖u‖C(J,L2(I)) + ‖u‖L2(J,V ) + ‖u̇‖L2(J,V ∗) ≤ C‖u0‖L2(I)
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provided that for some constants γ > 0, C ≥ 0 the Dirichlet form a(·, ·) satisfies the Gårding inequal-
ity, i.e.,

∀u ∈ V <a(u, u) ≥ γ ‖u‖2
V − C ‖u‖2L2(I) . (6.2)

Remark 6.1. Without loss of generality, we may assume in (6.2) that C = 0 since the substitution
ū = e−βtu results in (1.8) with the shifted operator A + βI which is definite for sufficiently large
β > 0 by (6.2) (β > 2C will suffice).

Note that for asymmetric distributions of positive and negative jumps in Xt, the generator A needs
not to be self-adjoint, i.e. a(·, ·) is generally non-symmetric.

6.2 Gårding Inequality. Analyticity of Tt

To establish (6.2), we start with the variable order Riesz potential A = Λ2m(x) ∈ Ψ
2m(x)
1,δ given by

Au(x) :=
1

2π

∫ ∫
eiξ·(x−y)〈ξ〉2m(x)u(y)dydξ, u ∈ C∞0 (I), (6.3)

and introduce the operator L = Λm(x) ∈ Ψ
m(x)
1,δ .

Lemma 6.2. For every δ > 0 sufficiently small there exist ε > 0 and pseudo-differential operators
B,R ∈ Ψ−ε1,δ with symbols b(x, ξ), r(x, ξ) ∈ S−ε1,δ such that

A = L ◦ L> + L ◦ B +R. (6.4)

Proof. Since the the extended symbol a(x, ξ, y) of LL> is in S2m
1,δ , and since I ⊂ R is compact we

can assume that A(x,D, y) is compactly supported. We also may apply standard pseudo differential
operator calculus and expand

a(x, ξ, y) = a0(x, ξ) + a1(x, ξ) + r1(x, ξ, y) = 〈ξ〉2m(x) +DyDξ(〈ξ〉)m(x)+m(y) |y=x + r1(x, ξ, y).

Therefore, the subprincipal symbol of a(x, ξ) is

a1(x, ξ) = 〈ξ〉m(x)〈ξ〉m(x)−1 log〈ξ〉.

We represent the corresponding operator a1(x,D), using symbolic calculus, as

a1(x,D) = L ◦ 〈D〉m(x)−1 log〈D〉+R2 = L ◦ B +R1,

whereR2 ∈ Ψ−ε1,d for sufficiently small ε. The symbol of the operator B is b(x, ξ) = 〈ξ〉m(x)−1 log〈ξ〉 ∈
S−εI,δ , provided that 0 < ε < 1− δ −m. Setting R = R1 +R2 gives the claimed result.

Lemma 6.3. Let B ∈ Ψ−ε1,δ and b ∈ S−ε1,δ as in Lemma 6.2. Then, for each ε > 0 there exists bε ∈ S−2
1,δ

such that
|(b− bε)(x, ξ)| ≤ ε. (6.5)
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Proof. Since b ∈ S−ε1,δ , for any ε > 0 there exists Rε such that

|b(x, ξ)| ≤ ε , |ξ| ≥ Rε

holds. Let χ be the cut-off function defined in the proof of Lemma 2.4, we set χ̂Rε(ξ) := χ̂((2R)−1
ε (ξ−

1
2)) and bε(x, ξ) := b(x, ξ)χRε(ξ). Then

bε(x, ξ) = 0 x ∈ R, |ξ| > 2Rε

i.e. bε ∈ S−k1,δ for all k ∈ N and bε satisfies the desired estimates (6.5).

Lemma 6.4. Let the operators B be defined as in Lemma 6.2, and Bε be defined by the symbol bε in
Lemma 6.3. Then

|〈L ◦ (B −Bε)u, v〉| . ε‖u‖H̃m(x)(I)‖v‖H̃m(x)(I) (6.6)

and
|〈L ◦ Bεu, u〉| . ε‖u‖2L2(I) (6.7)

hold for all u, v ∈ H̃m(x)(I).

Proof. Since u, v have compact support, we can without assume loss of generality that x 7→ b(x, ξ)−
bε(x, ξ) has compact support with respect to x, which simplifies the proof. We proceed in a standard
way (see e.g [32] Chapter VI, §2), by proving that under this assumption Lemma 6.3 ensures that for
all ε > 0 there exists Bε satisfying

‖(B −Bε)u‖L2(R) ≤ ε‖u‖L2(I).

To this end, let us consider the function d̂(λ, ξ) = 1
2π

∫
e−ixλ(b(x, ξ) − bε(x, ξ))dx. Then, due to the

local support of x 7→ b(x, ξ)− bε(x, ξ), for each N ∈ N, there holds an estimate

sup
ξ
d̂(λ, ξ) ≤ CNε(1 + |λ|)−N .

We estimate

(B −Bε)u(x) =
1

2π

∫ ∫
eiξ(x−y)(b(x, ξ) − bε(x, ξ))u(y)dydξ

=
1

2π

∫ ∫
(

∫
d̂(λ, ξ)eiλxdλ)eiξ(x−y)u(y)dydξ

=

∫
(eixλ

∫
(eixξ d̂(λ, ξ)û(ξ)dξ))dλ =:

∫
(Tλ,u)(x)dλ .

By Plancherels Theorem we get

‖Tλu‖L2(R) . sup
ξ
|d̂(λ, ξ)|‖û‖L2(R) . ε(1 + |λ|)−2‖u‖L2(R).

Integrating with respect to λ gives

‖(B −Bε)u‖L2(R) .
∫
‖Tλu‖L2(R)dλ .

∫
((1 + |λ|)−2)ε‖u‖L2(R)dλ . ε‖u‖L2(R).
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Therefore, we estimate

|〈L ◦ (B −Bε)u, v〉| ≤ ‖(B −Bε)u‖L2(R)‖Λm(x)v‖L2(R)

≤ ε‖u‖L2(I)‖v‖H̃m(x)(I)

≤ ε‖v‖H̃m(x)(I)‖u‖H̃m(x)(I),

for all u, v ∈ H̃m(I), which concludes the first estimate (6.6).

Since m < 1 and bε ∈ S−2
1,δ , standard pseudo differential operator calculus gives L ◦ Bε ∈ Ψ−ε1,δ and

we obtain

|〈L ◦ Bεu, u〉| . ‖u‖2L2(I).

Now we establish the Gårding inequality in an important special case. We recall the definition (3.3)
of the H̃m(x)(I)-norm.

Lemma 6.5. The variable order Riesz potential operator A given by (6.3) satisfies the Gårding in-
equality: there exist constants γ > 0 and C ≥ 0 such that

∀u ∈ H̃m(x)(I) : <a(u, u) =
1

2
(〈Au, u〉 + 〈u,Au〉) ≥ γ‖u‖2

H̃m(x)(I)
− C‖u‖2L2(I). (6.8)

Furthermore, the operator A is continuous,

|〈Au, v〉| . ‖u‖H̃m(x)(I)‖v‖H̃m(x)(I) ∀u, v ∈ H̃m(x)(I). (6.9)

Proof. We decompose
A = L ◦ L> + L ◦ (B −Bε) + L ◦ Bε +R

where R ∈ Ψ−ε1,δ. A similar expression holds for the adjoint A>. Using Lemma 6.4 there exist
constants γ > 0, C ′ ≥ 0 such that for ε > 0 sufficiently small

∀u ∈ H̃m(x)(I) : 〈Au, u〉 + 〈u,Au〉 ≥ 2〈Λm(x)u,Λm(x)u〉 − ε‖u‖2
H̃m(x)(I)

− C‖u‖2L2(I)

≥ γ‖u‖2
H̃m(x)(I)

− C ′‖u‖2L2(I),

which proves the Gårding inequality (6.8).

The second assertion follows by the same ingredients observing the L2-continuity of R and Bε.

The previous theorem has been shown in [12] for a larger class of operators under the more restrictive
condition m−m < 1

2 .

The Gårding inequality (6.8) holds for the operator A = Λ2m(x) defined in (6.3). Lemma 6.5
is, however, the key ingredient in establishing a Gårding inequality for variable order operators
A(x,D) ∈ Ψ

2m(x)
ρ,δ which are elliptic in a suitable sense.
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Theorem 6.6. Let A(x,D) ∈ Ψ
2m(x)
ρ,δ be a pseudodifferential operator of variable order 2m(x),

0 < m(x) < 1, given by (2.3) with symbol a(x, ξ) ∈ S2m(x)
ρ,δ for some 0 < δ < ρ ≤ 1 for which there

exists γ > 0 with
∀x, ξ ∈ Rd : <e a(x, ξ) + 1 ≥ γ〈ξ〉2m(x). (6.10)

Then A(x,D) ∈ Ψ
2m(x)
ρ,δ satisfies a Gårding inequality in the variable order space H̃m(x)(I): there

are constants γ > 0 and C ≥ 0 such that

∀u ∈ H̃m(x)(I) : <a(u, u) ≥ γ‖u‖2
H̃m(x)(I)

− C‖u‖2L2(I), (6.11)

and

∃λ > 0 such that A(x,D) + λI : H̃m(x)(I)→ H−m(x)(I) is invertible. (6.12)

Proof. Let I = (a, b) ⊂ R be a bounded interval and m(x) : I → (0, 1) a variable order. As in the
proof of Lemma 6.5, we can decompose A into

A = N ◦N> +N(B −Bε) +N ◦Bε +R,

where N is an injective elliptic operator on I with symbol n(x, ξ) satisfying n(x, ξ) ≥ c〈ξ〉m(x) and
B,Bε and R have similar properties as in Lemma 6.2 - 6.4. Due to these assumptions there is c > 0
such that for all u ∈ H̃m(x)(I) we have ‖Nu‖L2(I) ≥ c‖u‖H̃m(x)(I). This implies in the same fashion
as in the previous proof

<a(u, u) =
1

2
(〈Au, u〉 + 〈u,Au〉) = cγ

(
(Nu,Nu)− ‖u‖2L2(I)

)
≥ γ′(‖u‖2

H̃m(x)(I)
−C ′‖u‖2L2(I)).

Where we conclude (6.8) with Lemmas 6.2 to 6.5.

The invertibility (6.12) ofA(x,D)+λI follows from (6.8): it implies that for λ > 0 sufficiently large,
A(x,D) + λI is H̃m(x)(I)-coercive.

The Gårding inequality (6.11) implies time-analyticity of the semigroup Tt corresponding to Xt ∈
FP

2m(x)
ρ,δ and A ∈ Ψ

2m(x)
ρ,δ . As in [30], Theorem 1, we obtain from (6.8)

Theorem 6.7. LetX ∈ FP 2m(x)
ρ,δ be a quadratic, pure jump Feller process of variable intensity 2m(x)

with characteristic function a(x, ξ) as in (1.6) belonging to S2m(x)
ρ,δ , which we assume to be coercive

in the sense that (6.10) holds. Then A(x,D) is the infinitesimal generator of the Feller semigroup T t
of Xt defined in (1.2). This semigroup is analytic in the sense, that there exist C, d > 0, such that for
all t > 0, l ∈ N0 and 0 ≤ θ ≤ 1 holds

∥∥∥T (l)(t)
∥∥∥

2

L(Vθ ,V )
≤ Cd2l+1−2θΓ(2l + 2− 2θ)t−2(l+1)+2θ . (6.13)

Here, Vθ = (H−m(x)(I), H̃m(x)(I))θ,2 denotes the real interpolation space with index 0 ≤ θ ≤ 1
with the convention that V = V1 = H̃m(x)(I).

Proof. If the negative definite characteristic function a(x, ξ) in (1.6) belongs to S2m(x)
ρ,δ , by Theorem

1.3 of [28], the operator A(x,D) extends to a Feller generator given by (1.3). Assumption (6.10)
implies by Theorem 6.6 and by Theorem 1 in [30] the analytic regularity estimate (6.13) for the Feller
semigroup Tt.

19



6.3 Discretization of the Kolmogoroff Equation

We discretize (1.8) with wavelets on I = (a, b), and, to exploit the time-analyticity (6.13) of u(t), by
a hp-discontinuous Galerkin (dG) scheme on J = (0, T ), following [30, 22, 26]. In our analysis, we
will need to consider functions in V = H̃m(x)(I) with additional regularity. Therefore, for s ≥ 0, we
define the spaces

Hs(I) =

{
H̃s(I) for s ≤ m,
V ∩Hs(I) for s > m.

By ‖·‖s, we denote the corresponding norm in Hs(I).

6.3.1 Spatial Semi-Discretization by Wavelets

We first discretize (1.8) with respect to the space variable. Hence, let T0 be a fixed coarse partition of
I . Furthermore, define the mesh T l, for l > 0, recursively by bisection of each interval in T l−1. We
assume that our computational mesh Th (with mesh size h) is obtained in this way as T L, for some
L > 0, with h = C2−L.

The finite element space Vh ⊂ V used for the discretization is the space of all continuous piecewise
polynomials of degree p ≥ 1 on the triangulation Th which vanish on the boundary ∂I . In the same
way, we define the spaces Vl corresponding to the triangulation T l, so that we have V 0 ⊂ V 1 ⊂
· · · ⊂ V L = Vh. Let N l = dimV l and N = dimVh = NL = C2L.

The semi-discrete problem corresponding to (1.8) reads: Given u0 ∈ L2(I), find uh ∈ H1(J, Vh)
such that

d

dt
(uh, vh) + a(uh, vh) = 0, ∀ vh ∈ Vh, and uh(0) = Phu0. (6.14)

Here, Ph is the L2 projection onto Vh. Using the stability of the quasi interpolant Qh in (4.9), i.e.
Corollary 5.10, the following result on the spatial semi-discretization can be proved as in [23], Section
5, using the approximation property Corollary 5.11.

Theorem 6.8. Let (6.1) and (6.8) be satisfied. Furthermore, we assume that the operator A is of the
form A = A0 + B, where A0 = C0Λ2m(x) ∈ Ψ

2m(x)
1,δ , C0 > 0 and δ > 0 arbitrarily small, is a

variable order Riesz potential, and B : V → V ∗ is a compact perturbation in V = H̃m(x)(I).

Then, for any t > 0, there holds

‖u(t)− uh(t)‖V ≤ C min{1, hp+1t−
p+1
m }. (6.15)

Here, C > 0 is a constant independent of h and t, and u, uh are solutions of (1.8) and (6.14),
respectively.

In order to compute a fully discrete approximation (in space and time) to the parabolic problem (1.6),
systems of linear equations have to be solved in each implicit time step (of the corresponding time
discretization). To obtain an efficient solution method, we use wavelet matrix compression of the
dense matrices corresponding to the operator A into sparse ones and we use optimal preconditioning.
The methodology is as in [22, 23], but in the variable order case it is based on the norm equivalence
Theorem 5.9 and the approximation property Corollary 5.11. After compression and preconditioning,

20



the systems may be solved in linear or log-linear complexity. Since the proofs are analogous to what
was done in [22, 23], we only give brief outlines of the argument here.

The restriction of the Dirichlet form a to Vh × Vh corresponds to a matrix A with entries Aλ,λ′ =
A(l,k),(l′,k′) = a(ψl′,k′ , ψl,k) which, due to the Caldéron-Zygmund estimates (2.14) and the vanishing
moment conditions (4.4) - (4.6), decay with increasing distance of their supports. Hence, we can
define a compressed matrix Ã and a corresponding sesquilinear form ã by replacing some of the
small entries in A with zero:

Ã(l,k),(l′,k′) =

{
A(l,k),(l′,k′) if dist(Ωl,k,Ωl′,k′) ≤ δl,l′ or Ωl,k ∩ ∂I 6= ∅ ,
0 otherwise.

(6.16)

Here, the truncation parameters δl,l′ are given by

δl,l′ := cmax{2−L+bα(2L−l−l′), 2−l, 2−l
′}, (6.17)

with some parameters c > 0 and 0 < α̂ ≤ 1, and Ωl,k = suppψl,k.

By continuity (6.9) and coercivity (6.8) with C ′ = 0 (which can always be achieved by Remark 6.1)
of the Dirichlet form a, we have the norm equivalence

‖u‖a = |a(u, u)| 12 ∼= ‖u‖V ∼= ‖u‖H̃m(x)(I).

As in [25, Proposition 3.2], we have

Proposition 6.9. Assume c in (6.17) is sufficiently large. Then, there exists 0 < β̃ ≤ α̃ < ∞
independent of h such that

|ã(uh, vh)| ≤ α̃‖uh‖a‖vh‖a, (6.18)

and
<ã(uh, uh) ≥ β̃‖uh‖2a, (6.19)

for all uh, vh ∈ Vh.

Moreover, there holds [25]

Proposition 6.10. Assume c in (6.17) is sufficiently large. Then, there exists 0 < τ < 1 independent
of h such that for all L > 0 the following consistency condition is satisfied:

|a(uh, vh)− ã(uh, vh)| ≤ τ ‖uh‖a ‖vh‖a, ∀uh, vh ∈ Vh. (6.20)

In addition, if

α̂ >
2p+ 2

2p+ 2 + 2 inf{x : m(x)(ρ− δ)} =
p+ 1

p+ 1 +m(ρ− δ) , (6.21)

where α̂ is the constant from (6.17), then, there holds

|a(Qhu, vh)− ã(Qhu, vh)| ≤ Chs−m ‖u‖s ‖vh‖V , ∀u ∈ Hs(Ω),∀vh ∈ Vh, (6.22)

and

|a(Qhu,Qhv)− ã(Qhu,Qhv)| ≤ Chs+s′−2m ‖u‖s ‖v‖s′ , ∀u ∈ Hs(Ω),∀v ∈ Hs′(Ω), (6.23)

for all m ≤ s, s′ ≤ p+ 1. Here, Qh is a projection or quasi-interpolation operator from (4.9).

21



The matrix compression (6.16) reduces the number of nonzero elements from N 2 in A to N times a
logarithmic term in Ã; see e.g. [29, 6]. More precisely, there holds:

Proposition 6.11. For α̂ < 1 in (6.21), the number of nonzero elements in Ã is O(N logN). If
α̂ = 1, then the number of nonzero elements in Ã is O(N(logN)2).

The matrix compression from the previous section induces, instead of (6.14), a perturbed spatial semi-
discretization of (1.8): find ũh ∈ Vh such that

d

dt
(ũh, vh) + ã(ũh, vh) = 0, ∀ vh ∈ Vh. with ũh(0) = Phu0. (6.24)

6.3.2 Discontinuous Galerkin Time Discretization

In order to obtain a fully discrete approximation (in space and time) to the parabolic problem (1.8),
we discretize (6.24) in time using a discontinuous Galerkin timestepping following [30].

For 0 < T < ∞ and M ∈ N, letM = {Im}Mm=1 be a partition of J = (0, T ) into M subintervals
Im = (tm−1, tm), m = 1, 2, . . . ,M with 0 = t0 < t1 < t2 < . . . < tM = T . Moreover, denote by
km = tm − tm−1 the length of Im.

For u ∈ H1(M, Vh) = {v ∈ L2(J, Vh) : v|Im ∈ H1(Im, Vh),m = 1, 2, . . . ,M}, define the
one-sided limits

u+
m = lim

s→0+
u(tm + s), m = 0, 1, . . . ,M − 1, u−m = lim

s→0+
u(tm − s), m = 1, 2, . . . ,M,

and the jumps
[[u]]m = u+

m − u−m, m = 1, 2, . . . ,M − 1.

In addition, to each time interval Im, a polynomial degree (approximation order) rm ≥ 0 is associated.
These numbers are stored in the degree vector r = {rm}Mm=1. Discontinuous Galerkin time stepping
yields an approximate solution in the space

Sr(M, Vh) = {u ∈ L2(J, Vh) : u|Im ∈ Prm(Im, Vh),m = 1, 2, . . . ,M},

where Prm(Im) denotes the space of polynomials of degree at most rm on time interval Im.

With these definitions, the fully discrete dG scheme for the solution of problem (1.8), respectively
(6.24), reads as follows: findŨdGh ∈ Sr(M, Vh) such that for all W ∈ Sr(M, Vh)

B̃dG(ŨdGh ,W ) = FdG(W ), (6.25)

where

B̃dG(U,W ) =

M∑

m=1

∫

Im

(
(U̇ ,W ) + ã(U,W )

)
dt+

M−1∑

m=1

([[U ]]m,W
+
m) + (U+

0 ,W
+
0 ), (6.26)

and
FdG(W ) = (Phu0,W

+
0 ). (6.27)
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We recall from [30] that the solution ŨdGh ∈ Sr(M, Vh) of the dG method (6.25) is uniquely defined
and that the dG method (6.25) can be interpreted as a time stepping scheme of variable step size
km and orders rm. Indeed, assuming that ŨdGh is known on the time intervals Im = (tm−1, tm),
m = 1, 2, . . . , n − 1, we may find ŨdGh ∈ Prn(In, Vh), 1 ≤ n ≤ M , by solving the variational
problem

∫

In

(
(∂tŨ

dG
h ,W ) + ã(ŨdGh ,W )

)
dt+ (ŨdG+

n−1 ,W
+
n−1) = (ŨdG−n−1 ,W

+
n−1), (6.28)

for all W ∈ Prn(In, Vh). Here, we set ŨdG−0 = Phu0.

6.3.3 Convergence of the Fully Discrete Scheme

The solution operator of the parabolic problem (1.8) generates a holomorphic semi-group (see e.g. [30]).
Therefore, the solution u(t) of (1.8) is analytic with respect to t for all t > 0. However, due to the
non-smoothness of the initial data, the solution may be singular at t = 0. The aim of this section
is to show how, by the use of so-called geometric time partitions and linearly increasing polynomial
degrees in the time discretization, the low regularity of the solution at t = 0 can be resolved.

Definition 6.12. A partition MM,γ = {Im}Mm=1 in J = (0, T ), T > 0, is called geometric with M
time steps Im = (tm−1, tm), m = 1, 2, . . . ,M , and grading factor γ ∈ (0, 1), if

t0 = 0, tm = TγM−m, 1 ≤ m ≤M.

Definition 6.13. A polynomial degree vector r is called linear with slope µ > 0 onMM,γ , if r1 = 0
and rm = bµmc, m = 2, . . . ,M , where bµmc = max{q ∈ N0 : q ≤ µm}.

We have the following a priori error estimate on the fully discrete (perturbed) dG method.

Theorem 6.14. Let ρ ∈ (0, 2], and u be the solution of the parabolic problem (1.8) on J × Ω =
(0, T )× (a, b), with initial data u0 ∈ Vθ, for some 0 < θ ≤ 1. Let the assumptions of Theorem 6.8 be
satisfied. Moreover, let (6.18)–(6.23) hold.

Then, there exist µ0,m0 > 0 such that for all geometric partitions MM,γ (cf. Definition 6.12) with
0 < γ < 1 and M ≥ m0| log h|, and all polynomial degree vectors ~r onMM,γ (cf. Definition 6.13)
with slope µ > µ0, the fully discrete solution ŨdGh to (1.8) obtained by (6.25) on the finite element
space Sr(MM,γ , Vh) satisfies the a priori error estimate

‖u(T )− ŨdGh (T )‖V ≤ CT−
p+1
m̄ hp+1 (6.29)

Here, h and p are the mesh size and the polynomial degree of the spatial discretization, respectively,
and C > 0 is a constant independent of h.

6.4 Iterative Solution of the Linear Systems

The dG time stepping scheme (6.25) requires the solution of a nonsymmetric linear system in each
time step. These systems can be solved approximately by incomplete GMRES iteration without loss
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in convergence rates in the error estimate (6.29). Based on the norm equivalences (5.17), it can be
shown as in [23, 26] that the overall complexity of this fully discrete dG time stepping is linear (up to
some logarithmic terms). We indicate the argument and state the main result.

The dG time stepping scheme (6.28) requires a linear system of size (rm + 1)NL to be solved in
each time step m = 1, 2, . . . ,M . Here and in what follows, in order to clarify the dependence on the
refinement level L explicitly, we denote by NL the dimension of the finite element space Vh = V L.

For 1 ≤ m ≤ M , let {φj =
√
j + 1

2Lj}
rm
j=0, where Lj is the j-th Legendre polynomial on (−1, 1)

(normalized such that Lj(1) = 1), be a basis of the polynomial space Prm(−1, 1). Then, the temporal
shape functions on the time interval Im are given by φj◦F−1

m , where the mapping Fm : (−1, 1)→ Im
is given by

t = Fm(t̂) =
1

2
(tm−1 + tm) +

1

2
kmt̂, km = tm − tm−1, t̂ ∈ (−1, 1).

Writing ŨdGh,m(x, t) = ŨdGh |Im(x, t) and Wm = W |Im in (6.28) as

ŨdGh,m(x, t) =

rm∑

j=0

ŨdGh,m,j(x)(φj ◦ F−1
m )(t), Wm(x, t) =

rm∑

j=0

Wm,j(x)(φj ◦ F−1
m )(t),

the variational formulation (6.28) reads: find (ŨdGh,m,j)
rm
j=0 ∈ (Vh)r such that there holds for all

(Wm,i)
rm
i=0 ∈ (Vh)r ,

rm∑

i,j=0

Cij(Ũ
dG
h,m,j,Wm,i)L2(Ω) +

km
2

rm∑

i=0

ã(ŨdGh,m,j ,Wm,i) =

rm∑

i=0

fm,i(Wm,i), (6.30)

where, for i, j = 0, 1, . . . , rm,

Cij = σij

√(
i+

1

2

)(
j +

1

2

)
, σij =

{
(−1)i+j if j > i

1 else
, (6.31)

and fm,i(v) = φi(−1)
(
ŨdG−h,m−1(tm−1), v

)
.

From now on, for the sake of readability, we will drop the subscript m. Then, denoting by M and Ã
the mass and (compressed) stiffness matrix on V h = V L with respect to (·, ·) and ã(·, ·), respectively,
(6.28) takes the matrix form

Ru = f with R = C⊗M +
k

2
I⊗ Ã, (6.32)

where u denotes the coefficient vector ofŨdGh,m = ŨdGh |Im ∈ Prm(Im, Vh).

In [26] it has been found that the system (6.32) of size (r+1)N L can be reduced to solving r+1 linear
systems of size NL. To this end, let C = QTQ> be the Schur decomposition of the (r+ 1)× (r+ 1)
matrix C with a unitary matrix Q and an upper triangular matrix T. Note that the diagonal of T
contains the eigenvalues λ1, λ2, . . . , λr+1 of C. Multiplying (6.32) by Q>⊗ I from the left results in
the linear system

(
T⊗M +

k

2
I⊗ Ã

)
w = g with w = (Q> ⊗ I)u, g = (Q> ⊗ I)f.
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This system is block-upper-triangular. With w = (w0, w1, . . . , wr), wj ∈ CN
L

, we obtain its solution
by solving

(
λj+1M +

k

2
Ã
)
wj = sj (6.33)

for j = r, r − 1, . . . , 0, where sj = g
j
−∑r

l=j+1 Tj+1,l+1Mwl.

By (6.33), a dG-time step of order r amounts to solving r + 1 linear systems of the form

B = λM +
k

2
Ã. (6.34)

Here, λ is an eigenvalue of C in (6.31). Estimates on the eigenvalues of C have been established
in [26].

For the preconditioning of (6.34), we define the matrix S and the scaled matrix B̂ ∈ RNL × RNL
by

S =
(

Re(λ)I +
k

2
Dm(x)

) 1
2
, B̂ = S−1BS−1,

where Dm(x) is defined in (5.14).

The preconditioned linear equations corresponding to (6.33) are solved approximately with incom-
plete GMRES(m0) iteration (restarted every m0 ≥ 1 iterations). There holds:

Theorem 6.15. Let the assumptions of Theorem 6.14 hold. Then, choosing the number and order of
time steps such that M = r = O(| log h|) and in each time step nG = O(| log h|)5 GMRES iterations,

‖u(T )− ÛdGh (T )‖V ≤ CT−
p+1
m hp+1, (6.35)

where ÛdGh denotes the (perturbed) dG approximation of the exact solution u to (1.8) obtained by the
incomplete GMRES(m0) method.

Applying the matrix compression techniques from Section 5, the judicious combination of geometric
mesh refinement and linear increase of polynomial degrees in the dG time-stepping scheme (Theorem
6.14), and an appropriate number of GMRES iterations (Theorem 6.15), results in an linear (up to
some logarithmic terms) overall complexity of the fully discrete scheme (6.25) for the solution of the
parabolic problem (1.8).

Theorem 6.16. Under the assumptions of Theorems 6.14 and 6.15, the fully discrete scheme (6.25)
with nG = O(| log h|)5 GMRES(m0) iterations per time step yields ÛdGh (T ) in at mostO(N(logN)8)
operations, where N = NL = dimVh = O(h−1) is the number of spatial degrees of freedom.
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