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1. Introduction. In this paper, we consider the boundary value problem

Lu:=curl(Acurlu)+ Bu = f in
nx(uxn) = 0 on 09,

(1.1)

with Q a bounded polyhedral domain in R® and curl the three-dimensional curl
operator; see, e.g., [23]. The domain Q has unit diameter and n is its unit normal.
The coefficient matrices A and B are symmetric, uniformly positive definite with
entries A;;, B;; € L>°(), 1 <4,j < 3.

The weak formulation of problem (1.1) requires the introduction of the Hilbert
space H(curl; ), defined by

H(curl; Q) := {v € (L*(?))?| curlv e L*(0)*}.

The space H(curl; Q) is equipped with the following inner product and graph norm,

(u,V)cur1 = /u-v dz + /curlu-curlv de, ||[ul]2,a = (0, 0)cur -
Q Q

The tangential component n X (u x n) = u — (u-n)n, of a vector u € H(curl;)
on the boundary 9, belongs to the space H~2(8Q)3; see [4, 23]. We note that the
vectors n X (u x u) and u X n are perpendicular, have the same length, and are both
perpendicular to n. Boundary conditions can therefore be equivalently expressed in
terms of either one. The trace space can be further characterized and this will be
done in section 7. The subspace of vectors in H(curl; Q) with vanishing tangential
component on 9 is denoted by Hy(curl; Q).
For any D C Q, we define the bilinear form

ap(u,v) := /(A curlu-curlv+ Bu-v)dz, u,v e H(curl;Q). (1.2)
D

The variational formulation of Equation (1.1) is:
Find u € Hy(curl; Q) such that

aq(u,v) = /f-v dx, v € Hy(curl;). (1.3)
Q

Neumann and/or inhomogeneous conditions can also be considered and the general-
ization of our algorithms to these cases is straightforward.

The purpose of this work is to construct and analyze a dual-primal FETI (FETI-
DP) preconditioner for three-dimensional h finite element approximations of Problem
(1.3). Neumann-Neumann (NN) and FETI algorithms are particular domain decom-
position (DD) methods of iterative substructuring type: they rely on a nonoverlapping
partition into subdomains. They are among the most popular and heavily tested DD
methods and are now employed for the solution of huge problems on parallel archi-
tectures; see, e.g, [21, 13, 11, 33, 3]. The rate of convergence is often independent of
possibly large jumps of the coefficients.

The motivation of this work lies in the fact that no iterative substructuring meth-
ods (and in particular no NN or FETI preconditioners) that are robust with respect
to the number of unknowns, the number of subdomains, and large jumps of the co-
efficients have been developed or proposed so far for edge element approximations
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of three dimensional problems. Some methods are available for two dimensional ap-
proximations. In [32], a domain decomposition preconditioner was proposed, which is
based on a standard coarse space and local spaces associated to the subdomain edges.
NN preconditioners with standard coarse spaces were studied in [27]. One level FETI
methods were developed in [29, 25], thanks to the introduction of suitable local func-
tions which are the analog of constants and rigid body modes for the Laplace equation
and linear elasticity, respectively. These functions were then employed to construct a
Balancing NN method in [28]. FETI-DP algorithms were proposed in [30]. Standard
coarse spaces however are not in general suitable for quasioptimal preconditioners in
three dimensions and the search for suitable local functions in three dimensions for
Balancing NN and one level FETI methods has produced no results so far.

A first important attempt to solve this problem was made in [16] where a wire
basket algorithm was proposed and studied in three dimensions. See also [17] for
a generalization to a saddle-point problem. Local components are associated with
the faces of the partition and two wire basket coarse spaces are then considered.
The underlying idea is to employ two coarse spaces that should reduce two error
components associated with a discrete Helmholtz decomposition. The corresponding
preconditioned operator is shown to be scalable and its condition number to grow
polylogarithmically. Independence of coefficient jumps is not guaranteed due to the
overlap between the coarse and local spaces. No numerical result is provided. We
believe that the size of the coarse space in [16] associated to the subspace of discrete
divergence free vectors can be reduced. We also refer to [8], which gives a fine survey
of algebraic solvers currently employed in large scale computational electromagnetics.
We note in particular that some FETT algorithms are sometimes employed in practice
(see equation (4.4)) without preconditioning.

In this work, we first show that the difficulty of iterative substructuring for edge
element approximations mainly lies in the strong coupling between degrees of freedom
associated with subdomain edges and faces and that no efficient and robust iterative
substructuring strategy is therefore possible unless a change of basis is performed.
The situation is here the same as for general p and hp continuous finite element
approximations for diffusive problems, for which strong coupling exists between edge
and face components, unless very special bases are employed; see, e.g., [20]. The
surprising feature is that strong coupling appears here even for the simple h version,
something that has no analog with nodal finite elements.

We next propose a change of basis, which is local and is only associated to the
tangential degrees of freedom on the subdomain edges. This change of basis is much
simpler than those necessary for the p versions, produces very sparse matrices, and
does not rely on the fact that the subdomains have a simple shape.

Once a change of basis is performed we are able to devise robust FETI-DP algo-
rithms, by selecting suitable primal constraints quite straightforwardly. We propose
three algorithms: one with a minimal coarse space that does not exhibit good con-
vergence properties for large problems, one with an improved, low dimensional coarse
space for which good convergence is assessed, and a third one with a very large coarse
space, which has the advantage of not requiring a change of basis and can therefore
be potentially suitable for some future extensions.

An analysis of the resulting condition numbers is performed: it relies on some
generalizations of certain discrete Sobolev type inequalities for the more complicated
traces spaces associated to the subdomains €2;, conforming in Hll/ 2(curl 5; ;). The
bounds are not optimal, but we present them here in view of the novelty of these
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methods and of these theoretical tools.

This paper is organized as follows:
in section 2, we introduce our discrete problems, the subdomain partition, and local
and global finite element spaces. Tangential vector finite element spaces are described
in section 3. We introduce FETI-DP algorithms and an abstract framework for their
analysis in section 4. The strong coupling between edge and face degrees of freedom
is shown in section 5. Our FETI-DP algorithms, which rely on a change of basis
and suitable sets of primal constraints, are introduced in section 6. Section 7 is
devoted to the technical tools necessary for the analysis: they consist of trace and
inverse inequalities for discrete tangential vectors, decompositions associated to the
face boundaries and the face interiors, and relations between these decomposition for
neighboring substructures. The proof of two of the main results are given in the
appendices. Condition number bounds are given in section 8 and section 9 is devoted
to some numerical tests.

2. Partitions and discrete spaces. We discretize this problem using edge
elements, also known as Nédélec elements; see [24]. These are vector finite elements
that only ensure the continuity of the tangential component across the elements,
as is physically required for the electric and magnetic fields, solutions of Maxwell’s
equations. We refer to [23] for a fine presentation of approximations of electromagnetic
problems, the Sobolev space H (curl; (), and edge elements.

We introduce a shape-regular triangulation 7 = 7 of the domain €, made of
affinely mapped cubes. In particular, if = (—1,1)3 is a reference cube, for each
element K € T, there exists an affine mapping Fi : Q — K, such that K is the image
of (). Here we only consider meshes built on affinely mapped cubes for simplicity but
our results are equally valid for approximations on tetrahedral meshes.

Let &, be the set of edges of 7. For every edge e € &, we fix a direction, given
by a unit vector t., tangent to e. The length of the edge e is denoted by |e| and, in
the following, we will always denote the measure of a region D by |D|.

We next consider a nonoverlapping partition of the domain 2 into subdomains
(substructures),

{] 1<i<N, uN,0;=0}

such that each Q; is connected. The substructures {); are unions of elements in 7.
We denote the diameter and the local meshsize of Q; by H; and and h;, respectively.
We define H as the maximum of the diameters of the subdomains:

H:= lglzaé\f{Hl}

We assume that the coefficients A and B are constant in each substructure ;
and denote them by A; and B;, respectively. Since jumps of both coefficients will play
a role in the rate of convergence of our algorithms, we only consider jumps in one of
them:

A = diag{a, a,a},
Case 1:
0 < Bilx]* < x'Bix < yilx[>, x € R,
0 < Bilx|* < x'A;x < x|?, xRS,
Case 2:
B = diag{b, b, b},
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fori =1,---,N, where | - | denotes the standard Euclidean norm. Scaling matrices
for our FETT algorithms will be constructed with the values {~;}.

We always assume that the substructures are images of a reference square un-
der sufficiently regular maps, which effectively means that their aspect ratios remain
uniformly bounded. In addition, we assume that the ratio of the diameters of two
adjacent subregions is bounded away from zero and infinity. Further assumptions,
necessary for the analysis but not for the definition of the algorithms, are made at
the beginning of section 7.

We next define the local spaces

H, (curl; ;) := {u; € H(curl;Q;)| n x (u; x n) =0on 002N 0Q;}

and the following polynomial spaces on the reference square,

~ ~ ~ ~

ND(Q) = Qo0,1,1(Q) ® Q1,0,1(Q) ® Q1,1,0(Q),

~

with Qg, &,k (Q) the space of polynomials of degree k; in the i-th variable. We note
that the tangential component of a vector in ND(K) over a face of @ perpendicular
to, e.g., the z axis is vector function of Qg1 x Q1.

On an affinely mapped element K € T, we take

ND(K)={u=J;'d| @e€ND@Q)y}, (2.2)

with Jg, the Jacobian of the transformation Fk. The tangential component of a
vector in ND(K) can also be characterized in this case.

On each subdomain 2;, the lowest-order Nédélec finite element spaces are defined
as

X; = ND"(Q;) := {u € Hy(curl;Q;)| u, € ND(K), K € Ty, K C Q;}.

Higher polynomial degrees can also be considered and our results and bounds will
remain valid with constants that depend on the polynomial degree. See, e.g., [23] for
more details. Functions in X; have a constant tangential component along the fine
edges in &,. The degrees of freedom are normally chosen as the constant values of the
tangential component on the fine edges in &: for u € X;,

Ae(u) :==u-t,, = le|™* /u ‘teds, e€&, eC Q. (2.3)

These edge averages also define local interpolation operators. The degrees of freedom
(2.3) can be naturally partitioned into three classes according to where the corre-
sponding edge lies: face, edge, and interior.

We next consider the product space

N N
X =X(Q) =[] X; ¢ []Halcurl; ),
i=1 =1

which consists of vectors that have in general a discontinuous tangential component
across the subdomain boundaries. The discrete solution is sought in the conforming
space

X := X NHy(curl; Q),
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of vectors with a continuous tangential components across the subdomain faces and
edges.

Finally, we will also employ the standard finite element spaces of scalar, contin-
uous, piecewise trilinear functions on the subdomains V*(Q;) ¢ H'(Q;). We note
that

VVR(Q;) € ND"(Q;). (2.4)

3. Interface functions. We define the boundaries I'; = 99; \ 9Q and the inter-
face T as their union. We remark that T is the union of the interior subdomain faces,
regarded as open sets, which are shared by two subregions, and interior subdomain
edges and wertices, which are shared by more than two subregions. In the following,
we tacitly assume that points on 92 are excluded from the geometrical objects that
we consider, or, in other words, we will only deal with geometrical objects (faces,
edges, vertices, ...) that belong to I'. We denote the faces of Q; by F;; and its edges
by E;; and also use faces and edges with one or no subscript. We will always assume
that a face Fj; does not coincide with a connected component of 9€);; this implies
that the boundary 0F;; is not empty.

For a face F' and an edge E of a substructure 2;, we introduce unit vectors
tangent to OF and FE, denoted tsr and tg, respectively. The sets of fine edges
(and the corresponding degrees of freedom) on I'; and I' are denoted by I';; and
Iy, respectively. We note that there are no degrees of freedom associated with the
subdomain vertices and that subdomain faces and edges that lie on 92 do not belong
to the interface.

REMARK 3.1. In case Neumann boundary conditions are imposed on 0S), edges
(but not faces) lying on O are part of the interface T' and also need to be employed
in the definition of our algorithms.

We now introduce some trace spaces consisting of tangential components on the
boundaries of the substructures. A tangential vector w, defined on 0%; \ 01, belongs
to W; if and only if there exists u € X; such that, on the closure of each face F' C T';,

w=nx (uxn), onF.

We note that a function w € W; belongs to the lowest order, two-dimensional edge
element space on each face F' and that the tangential component of w along an edge
shared by two faces must be the same when calculated on either one of the faces.

Similarly, given a face F' of a substructure §2;, we consider the tangential compo-
nent along 0F

u=u-tsgr, ondF.

The function w is piecewise constant. A similar definition holds for the tangential
component along an edge £ C OF.

We will use the following convention: given a vector u defined in Q;, we denote
its tangential component on 0f2; by the same bold letter u. Its tangential component
along an edge or the boundary of a face is denoted by wu.

We will employ the product space of functions defined on I', W := [], W;, and
its continuous subspace w consisting of tangential traces of vectors in X.

Vectors in the spaces W; and W are uniquely defined by the degrees of freedom
in T; , and T'y, respectively. For each fine edge e € Ty, let N, be the set of indices of
the subdomains that have e on their boundary. Throughout this paper, we will use
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the same notation for a vector in W; or X; and the corresponding column vector of
degrees of freedom. Similarly for the corresponding spaces and for global vectors in
X and W.

We recall that, if u = V¢ € H(curl;Q;), for ¢ € H(Q;), and v € H(curl;;),
then, on a face F', we have, see [7, Sect. 1],

u=nx (V¢ xn) =Vgd=Vgs(o|r),

curlv-n = curlgv = curl g(n x (v x n)),

with Vg and curl g the surface gradient and curl on F'. For the whole of 9f2;, tangential
gradients and curls are taken face by face.
Finally, for i = 1,--- , N, we define the extensions into the interior of the ;

Hz': Wz' —)Xi,

that are discrete harmonic with respect to the bilinear forms ag, (-,-). We recall that
u® = H;w() minimizes the energy ag,(u®,u(?) among all the vectors of X; with
tangential component equal to w(?) on T';. We will refer to #; as the Mazwell discrete
harmonic extension.

4. FETI-DP methods. In this section, we introduce a first dual-primal FETT
method for the solution of the linear system arising from the edge element discretiza-
tion of problem (1.3). Throughout the paper, given two column vectors u and w
of degrees of freedom, we denote their scalar product in 2 by < u,w >:= u’w.
We recall that dual-primal FETI methods were originally introduced in [11]. The
first theoretical result was given in [22] for two dimensional problems and then later
in [19] for three dimensions. Extensive work and analysis has been performed for
linear elasticity problems in [12, 18]. Algorithms for two-dimensional edge element
approximations have been proposed in [30]. See also the forthcoming [31, Ch. 6 and
8].

We first assemble the local stiffness matrices, relative to the bilinear forms ag, (-, -),
and the local load vectors. The degrees of freedom that belong only to one substruc-
ture can be eliminated in parallel by block Gaussian elimination. We note that these
are degrees of freedom associated to edges e in the interior of the substructures. We
are then left with the degrees of freedom involving the tangential component along
the substructure boundaries. Let f(*) be the resulting right hand sides and S the
Schur complement matrices

S(i) W, — Wz',

relative to the tangential degrees of freedom on T';.
We recall that the local Schur complements satisfy the following property

1?2 = @D, $Ou) = ag, (Hiu®, H;u®); (4.1)

see, e.g., [26, 27]. Since the local bilinear forms are positive definite, so are the local
Schur complements S(*). We write

u® £

u:= : ew, S:= diag{S(l),--- 75(N)}7 fo— :
u®™ £(N)
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The solution u € W to the discrete problem can then be found by minimizing the
energy

5 (. 5u) — (f,u)

subject to the constraint that u is continuous, i.e., it belongs to w.
For dual-primal FETI methods we work in a subspace W C W of functions
satisfying a certain number of continuity constraints. We have

W = ﬁ/\r{ D WA.
Here the primal space W\H C W consists of continuous tangential vectors determined
by degrees of freedom (primal variables) associated to the substructures. Choices for

primal constraints are given in section 6.2.
The dual space Wa is the product space of spaces associated to the substructures

N
Wa = H Wa.i
i=1

of functions for which the functionals given by the primal variables vanish.

The primal degrees of freedom can then be eliminated together with the inter-
nal ones, at the expenses of solving one coarse problem. We are then left with a
problem involving interface functions with vanishing primal degrees of freedom, and,
consequently, in the dual space Wa. Let S : WA — Wa be the corresponding Schur
complement and fa the corresponding load vector. We then look for ua € Wa, such
that

1 P = .
E(uA,SuA) — (fa,ua) — min
subject to the constraint that ua is continuous. The continuity constraint is expressed
by the equation

Baua =0,

where B is constructed from {0,1,—1} and evaluates the difference between all the
corresponding tangential degrees of freedom on I'. We employ the same matrix as in
our previous paper [29] and then enforce redundant conditions associated with the
substructure edges. The matrix Ba has the following block structure:

Ba=[BY BY ... BY),

where each block corresponds to a substructure.
We obtain the saddle point problem

Sun + BIN = fa

Baua (4.2)

|
o

with up € Wa and A € V := Range(Ba).

We note that S can be obtained from the restriction of S to the space W, by
eliminating the primal degrees of freedom. We have therefore the minimization prop-
erty

(ua, Sup) = min(u, Su), (4.3)
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where the minimum is taken over all the functions u = ua + wy, wy € /WH. This
property ensures that S is also positive definite.
Since the Schur complement § is invertible, an equation for A can easily be found:

FX=d, (4.4)
with
F:= BAS™'BX, d:=BaS 'fa. (4.5)
Once X is found, the primal variables are given by
up = S (fa — BXA) e W.

In order to define a preconditioner for (4.4), we need to define scaling matrices
and functions defined on the subdomain boundaries. As opposed to our previous
work [29, 30], they are constructed with the coefficient that has jumps across the
subdomains. For either case considered in (2.1), we define, on each substructure,
5;' € W;, such that on each fine edge e € I'; 3,

sto=) Y% (4.6)

JEN.

for an arbitrary but fixed x € [1/2, +00); see (2.1). By direct calculation, we find
2
%6) < min(yi, ;). (4.7)

For each substructure €);, we next introduce a diagonal matrix DX) :V = V. The
diagonal entry corresponding to the Lagrange multiplier that enforces the equality
of the degree of freedom associated with a fine edge e between ); and a second
substructure §2; is set equal to the value of (5; along e. The remaining values are zero.
We next define the scaled matrix

Bpa=[DYBY DYBY ... D{"BM):Wa - V.

We solve the dual system (4.4) using the preconditioned conjugate gradient algo-
rithm with the preconditioner

N
M~ :=BpaSBh A =Y DYBYsOBYITDY; (4.8)
i=1
see [11, 22, 19].
We now recall an abstract framework for the analysis of FETI-DP algorithms,

which was originally given in [19] and recalled in [30]. It turns out that condition
number bounds rely on one stability estimate for the following jump operator

Pn:=BE \BA W — W.

We summarize the properties of Pa proven in [19, Sect. 6] in the following lemma.
LEMMA 4.1. The operator Pa is a projection and preserves the jump of any
function w € W, i.e.,

BAPAW = BAW.
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If v:= Paw, for w € W, then on every fine edge e € I'; j,, we have

v = 3" sl w® - wii)), (4.9)
JEN.

Finally, PAw =0, if w € w.
The following fundamental result can be found in [19, Th. 1]; see also [31, Sect.
6.4.3]. It employs the norms

N
v[3 == (v, 5v) =D (v, SOV |y [L = (v, Sv). (4.10)

i=1

THEOREM 4.2. Let Cp, be such that
|Pawal% < Cp, [wal%,  wa € Wa. (4.11)
Then, if S and M1 are invertible,
(MM A) <(FXNA) <Cpy (MM A), AeV. (4.12)

5. Remarks on iterative substructuring for edge element approxima-
tions. Preconditioners for Schur complement systems rely on decoupling degrees of
freedom associated to geometrical objects associated to subdomains, typically ver-
tices, edges, and faces for three-dimensional continuous nodal elements; see, e.g., [10,
Sect. 5]. In our case, we only need to consider subdomain edges and faces. The per-
formance of the corresponding preconditioned iterative method depends on how weak
the coupling between the different blocks of degrees of freedom is and depends on the
particular basis chosen. This decoupling may appear explicitly in the construction of
finite element subspaces as in wire basket methods, [10], but it may also be hidden
in the algorithm and may not appear explicitly in the subspaces considered, as in
Neumann-Neumann or FETI methods. Indeed, the scaled matrix Ba acts on vectors
of degrees of freedom and is constructed with the scaling functions (52 . These func-
tions are constant on the edges and faces of a subdomain and formula (4.9) naturally
decouples degrees of freedom on edges and faces.

Decompositions into edge and face components are fairly harmless (i.e., loga-
rithmically stable) operations for continuous nodal A finite elements but turn out to
be disastrous for edge element approximations, as it can be seen in Figure 5.1, left.
More precisely, we refer to Figure 5.1, right, and consider the gradient of a continu-
ous, scalar, piecewise trilinear function ¢ with vanishing nodal values on the closure
of a subdomain (2; except at one node on a coarse edge E where it is one. Since
¢r decreases linearly from one to zero along an edge of length O(h), its tangential
component is O(h~1). This vector is curl free and has a low energy:

IVoElir e o) = IVoElL2 )5 = O(h™? - h%) = O(h).

We recall that the square of the L? norm of a basis function is O(h?) while that of its
curl is O(h). When we put to zero the degrees of freedom on the two faces adjacent
to E, we obtain a vector w with a nonvanishing curl and therefore with a much larger
energy

W[ Fr(curts0:) ~ lleurlw(|7zq, s = O(h™2 - h) = O(1/h).
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E Qe W e

F1Gg. 5.1. Two types of basis functions associated to a subdomain edge: the standard basis (left)
and one consisting of gradients of continuous, scalar, nodal functions associated to nodes internal
to the coarse edge and one vector function with unitary tangential component along the coarse edge

The constant Cp, in Theorem 4.2 is therefore expected to grow at least as h~2, thus
resulting in a condition number that grows at least as h~2! The situation is the same
as for general p and hp approximations, for which strong coupling exists between edge
and face components, unless very special bases are employed; see, e.g., [20].

We stress that this will happen independently of the chosen primal constraints,
unless they impose the continuity of all the fine degrees of freedom across the coarse
edges; in the latter case, the difference w9 — w(/) in formula (4.9) already vanishes
on the coarse edges and no decoupling takes place. Any Neumann-Neumann or FETI
method which employs the standard three-dimensional edge element basis is bound
to show a factor A~2 in the condition number.

6. FETI-DP algorithms for edge element approximations. The discus-
sion in the previous section suggests that before devising effective FETI methods,
a change of basis is necessary. We will therefore employ a local change of basis on
the local spaces X;. New basis functions are only needed for the degrees of freedom
associated to the edges of the subdomains. In this new basis, it will be relatively
straightforward to find a good set of primal constraints that ensure scalability and a
coarse problem of relatively small size.

6.1. A change of basis. We consider a local space X; associated to a substruc-
ture ; and introduce the following new basis,
DEFINITION 6.1 (New basis).
1. The basis functions associated with the interior edges e in Q; p and with those
in the interior of the faces are the same as for the standard basis;
2. the basis functions associated with a subdomain edge E are:
(a) one vector function ® g with unitary tangential component along E and
vanishing tangential component along all the fine edges e € &, that lie
on the remaining coarse edges, on the faces, and in the interior of Q;;
(b) the gradients of continuous, scalar, nodal functions associated to the
interior nodes of E; these scalar functions take the value zero at all the
nodes in the closure of Q; except at one node in the interior of E, where
they are equal to one.
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This new basis is described in Figure 5.1 and it has the same dimension as the
old one. The degree of freedom associated to a basis function ®p is the average
over the coarse edge E, while those associated to the basis functions at Point 2.b
are values at the nodes internal to the subdomain edges. The new basis functions
are introduced only for the coarse subdomain edges and it can be easily proven that
they are linearly independent. The new degrees of freedom can still be partitioned
into interior, face, and edge. For an interface function w € W; they give rise to the
following decomposition:

W:;(WE+V5¢E)+2F:WF, on 602 (61)

A face component wg vanishes on all faces except F' and has a vanishing tangential
component along all coarse edges. The component wg has a constant tangential com-
ponent along the edge E and vanishing degrees of freedom on all faces and remaining
edges; we will refer to it in the following as constant component along the edge E.
Finally, the scalar function ¢ vanishes at all the nodes except at those in the interior
of E; we will refer to Vg ¢ as the gradient component along E.

Given a local vector u € X;, the corresponding vectors of degrees of freedom in
the new and old bases are related by

uner — Qiuold’ uold — Q;lunew — Riunew. (62)

The matrix R; can easily be found by noting that its columns are associated to the
new basis functions and the entries of each column are the degrees of freedom in the
old basis associated with one new basis function.

DEFINITION 6.2 (Change of basis). The matriz R; is defined as follows:

1. Columns for the new functions associated with the degrees of freedom in the
interior of Q; or in the interior of a face (¢f. Point 1 in Definition 6.1)
consist of zeros except for one entry corresponding to a fine edge where they
take the value one.

2. The column for a basis function that has unitary tangential component along
a coarse edge E (cf Point 2.a in Definition 6.1) is zero except for the entries
relative to the fine edges e C E, where it takes the value 1 or —1, depending
on the convention chosen for the direction of e and E.

3. The column for the gradient of a scalar nodal function associated with a node
zr, on an edge E (cf Point 2.b in Definition 6.1) is zero except for the entries
relative to the fine edges e C €Q; that have xj as an end point; these entries
are equal to *|e|™1 depending on the convention chosen for the direction of
e.

We note that R; has very few nonzero entries and its inverse is also sparse. The
new basis and the definition of the matrix R; do not rely on the fact that the substruc-
tures are elements of a coarse mesh or have a special shape, but can straightforwardly
be defined for less regular subdomains produced by, e.g., practical mesh partitioners.

6.2. Primal constraints. We consider the FETI-DP algorithm introduced in
section 4. We assume from now on that vectors of primal degrees of freedom are
relative to the new basis introduced in the previous section and recall that we still
have a partition into edge and face degrees of freedom. The matrix Ba still consists
of zeros and ones, the scaling functions are defined by associating to each new degree
of freedom the ratio in (4.6), which only depends on the subdomain partition and
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the coefficients A or B, and the Schur complements are those obtained from stiffness
matrices in the new basis.

We are only left with the definition of suitable primal constraints. Our choices are
related to the decomposition (6.1) of the degrees of freedom for the new basis. We first
impose that, for each coarse edge of the interface I', the degree of freedom associated
with the term wg in the decomposition (6.1) is the same for each subdomain that
contains E. The degree of freedom associated to this term is the average of the
tangential component along the edge E:

an(w) = ap(w) = | B! /Ew-tEds=|E|*1 /Ewds. (6.3)

DEFINITION 6.3 (Algorithm A). The space W = Wa is the subspace of W of
interface vectors for which the averages ap(w) of the tangential component along the
coarse edges F are equal, independently of which component of w € WA is used in the
evaluation of these averages. The local spaces W ; consist of vectors with a vanishing

average for the tangential component along the edges, while the primal subspace W\n
consists of continuous vectors with a constant tangential component along each coarse
edge and zero components wr and Vs ¢ in the decomposition (6.1).

We note that, in case the subdomain partition coincides with a coarse mesh,
the primal constraints are the degrees of freedom for the edge element coarse space.
Algorithm A is not however expected to perform well. Indeed, we see that there are
no constraints acting on the scalar functions ¢g in the decomposition (6.1), except
from the requirement that they vanish at the end points of the edges E. We therefore
expect that Algorithm A performs at least as bad as the corresponding FETI-DP
for continuous, scalar finite elements where only primal constraints at the subdomain
vertices are imposed; cf Algorithm A in [19].

Together with averages along the edges, we need to add additional constraints
involving the gradient components along the edges. Looking at which algorithms are
effective for scalar approximations, averages of the scalar functions ¢g

< ¢ >pi= |E|_1 /JE¢E ds, (6.4)

along the subdomain edges should be imposed to be continuous as well; see Algorithm
C in [19] and [31, Sect. 6.4.2].

Before giving a precise definition, we want to express these second averages in
terms of the vector w € W; itself. We assume that the vector w in (6.1) has a
vanishing average (6.3) for the tangential component along an edge E. We denote by
s the arc length along E. Since ¢ vanishes at the end points of F, integration by
parts yields

< ¢g >E

B [ gwds =11 [ pods =B [ (Von-tw)sds
E E B

—|EI7! /(w—wE)-tEsds=_|E|—1 /(w-tE)sds.
E E

When w-t g has a vanishing mean value, the averages of the functions ¢ are therefore
equal to first order moments of the original vector w along the edge. For each coarse
edge E, we define the continuous, scalar function 8 to be zero at all the nodes of the
interface I' except at those internal to E where it is equal to one.
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DEFINITION 6.4 (Algorithm B). The space W = Wp is the subspace of W of
interface vectors for which the averages ag(w) and < ¢g >g along the coarse edges,
or, equivalently, ag(w) and the first order moments

|E|’1 / (w-tg)sds,
E

are equal, independently of which component of w € Wp is used in the evaluation of
these averages. The local spaces W ; consist of vectors with vanishing average and
first order_moment for the tangential component along the edges, while the primal
subspace Wiy is spanned the same functions as for Algorithm A and in addition the
gradients Vs 0g associated to the coarse edges.

Algorithm B will provide a very favorable bound. We note that, despite the
difficulty of this problem, the size of the global problem that needs to be solved (equal
to the number of primal constraints) is very reasonable: we have two constraints
per coarse edge. In case, for instance, the substructures are elements of a coarse,
cubical, uniform mesh, each subdomain has twelve edges, which is shared by four
substructures. We have therefore siz coarse degrees of freedom for each substructure.

We finally define an algorithm with a very large coarse space.

DEFINITION 6.5 (Algorithm C). The space W = W is the subspace of W of
interface vectors for which the tangential component along the fine edges on the coarse
edges

Ae(wW) = |6|_1 /W teds, eCE,

are equal. The local spaces AWJAJ consist of vectors with a vanishing tangential com-

ponent along the edges, while the primal subspace Wn is spanned by the continuous
basis functions associated to the fine edges that lie on a coarse edge.

A practical implementation of FETI-DP algorithms for Problem (1.1) is given in
[30, Sect. 6]. While one should in principle employ matrices and vectors associated to
the new basis for Algorithms A and B, it is possible to employ the original operators in
the standard basis and work with the local matrices Q; in (6.2). We note in particular
that primal constraints can be expressed in terms of the old basis and the matrix Ba,
which evaluates the difference between corresponding degrees of freedom, is the same
for the two bases in case, for instance, the same orientation for the corresponding fine
edges is employed on different subdomains.

7. Technical tools. In this section, we will prove some decomposition and com-
parison results for edge element vectors. Some of the ideas of this analysis have been
suggested in [5]. Many of our estimates depend on a logarithmic factor

w:=1+log(H/h), (7.1)

where the ratio H/h is a shorthand notation for the maximum over the substructures
of H;/h;. As is often customary in the analysis of iterative substructuring methods,
we require that the substructures are elements of a shape-regular coarse mesh Tg or
that they are union of a uniformly bounded number of coarse shape-regular elements.

7.1. Trace spaces. For a substructure 2;, we need to consider tangential traces
of functions in H (curl; ;) and the corresponding edge element spaces on the bound-
ary, on a face F, or along 0F. We refer to, e.g., [1, 6, 7] for more details and
definitions.
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In the following, Sobolev spaces of vectors on 0€; and F' are always understood
as spaces of tangential vectors; we will use a notation with bold letters for them. We
define

H11/2(cur15; 00;) ={ue HII/Q(BQi) , curlgu € H*1/2(BQ,~).}

The space H1/2(9%);) is the dual of H'/?(9€;), while Hj/z(an-) is the dual of

Hi_/ %(69;). The precise definition of Hi_/ %(69;) and its norm are given in Appendix

A since they are not important at this stage: it is, roughly speaking, the space of

tangential vectors on 9€);, the restriction of which to a face F belongs to H'/?(F)

and with a normal component along the face boundaries in H'/2(8Q;); see [1, 6, 7).
For a face F', we define

H_ ! (curl 53 F) = {u € HI\; (F), curlsu € Hy/*(F)}

where H:O/OZ (F) and H&]l/ *(F) are the duals of Hi/f)o (F) and Hé({ *(F), respectively,
consisting of functions in H'/?(F) and H'/?(F) for which the extensions by zero to

99; belong to Hlf(ani) and H'/%(89;), respectively. If Eu and £¢ denote these
extensions, we employ the norms

lullggra, oy = N€ulligrnonys  10llags ey = €m0,

The space H~'/2(curl ; F) is defined in a similar way:

H_l/z(Curls;F) ={ue H_I/Q(F)a curl gu € H_l/z(F)}'

The spaces HII/Q(curls;GQi), Hl,lo/g(curls;F), and H~1/2(curl 5; F) are equipped
with the graph norms. We note that H~'/2(F), H '/2(F), and H /?(curl s; F)
are proper subspaces of H&)l/ 2(F), HJ__lo/O2 (F), and HJ__lo/O2 (curl g; F), respectively. In
addition, by simple computation,

||¢||H&)1/2(F) S ClEa-172(00:) < C Sl -172(F)>

(7.2)

Wl 2206y < CIEW =272 gy < € IWles-s72r-

In the following, we will also employ H~1(0F), the dual of H'(OF).
Throughout, we will work with scaled norms for the spaces H*(D), s > 0, obtained

from the definition of the Sobolev norm on a region with diameter one and a dilation.

Thus, if Hp is the diameter of a region D C R", we define

lullzpy = ultn ) + Hp llullizm),

for a substructure D = Q; or the boundary of one of its faces D = 0F, and

ull3ras2(py = [ul3s2(py + Hp llull32(p,
(D) (D)

for the boundary of a substructure D = 9Q; or one of its faces D = F. Analogous
definitions hold for the spaces of vectors. The definition of dual norms employs these
scaled norms. As is standard in the analysis of domain decomposition methods,
inequalities are obtained for regions of unit diameter and then by a scaling argument
that provides an explicit dependence on the diameter of the regions.
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We have the following trace estimates. The first two are a straightforward conse-
quence of the fact that curlu € L2(€);)® has a vanishing divergence and therefore its
normal component is well-defined; see, e.g., [4, Lem. 1.2, Chap. III]. The others can
be found in, e.g., [6], Theorems 3.6 and 5.6, and Proposition 5.3.

LEMMA 7.1. Let Q; be a substructure and F' one of its faces. Then, there exists
a constant C, independent of H;, such that, for u € H(curl;;),

||cur1 Su||§{_1/2(39i) < c ”curlu”iQ(Q,—)’

lleurl sull},_y 2 ) < Clleurlullfq,),

(F

18112y * 2 el stllf ooy < € (allaga,y + B lleurlulag, )

+ H? [lewl sull?_,,
00

C (llul[Zsq,) + HE leurlul[fsq,)-

2
<
il vz ey (F) =

In addition, for u € H=Y/?(curl 5; F), its tangential component u = u - tsp satisfies

||u||§{—1(8F) < C(”““%{—l/a(p) + H} [curl Su”%{—lﬂ(F))-

We note that tangential components along face boundaries are not defined for
every vector in H(curl;(;) or its appropriate trace space. They can be defined
however for edge element vectors and the link between the stronger and weaker norms
is given by the inverse inequalities of the following lemma.

LEMMA 7.2. Let Q; be a substructure and F' one of its faces and assume that the
mesh on F' is quasi-uniform. Let u € W;. Then there exists a constant, independent
of h and H;, such that

[|curl Su||%{_1/2(F) <Cw? ||CUTISU||§1—1/2(BQ1-)’
||u||%_1_1/2(p) S sz ||u||§_111/2(39i)’

”u”%]—lm(p) + Hz-2||cur1 Sll||§{_1/2(F) < CW2(||‘1”2

2 2
HT2(00,) + H; ||‘3111”l511||H—1/2({~)Q,-))7

with w the logarithmic factor defined in (7.1).

We note that a stronger version of the first inequality, involving a piecewise con-
stant function on 0Q;, was already proven in [35, Lem. 4.4] by using an equivalent dual
norm for H 1/ 2(09Q;) with a supremum taken over a finite element space of piecewise
bilinear, continuous functions augmented with one bubble for each boundary element.
That proof however cannot be easily generalized to the edge element tangential space
in Hll/ 2(6(2,»). The lemma is proven in Appendix A, using a localization result and
an inverse inequality for norms in Sobolev spaces with negative exponents.

7.2. Decompositions associated with the edges. For a substructure §2;, we
now consider the decomposition (6.1) in more detail. The edge contributions can be
found in the following way:

We consider w € W; and an edge E C OF, F C 99;. We assume that the edge tangent
vectors tg have the same direction as tsr. Let w be its tangential component along
OF. We have

Wg = aE(w) ‘}E,
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or, equivalently
wg =wWg-tg =ag(w) =ag(w).

Here, @ is the basis function of Point 2.a, Definition 6.1. Let ®g(s) be the function
that is one on F and zero on the remaining of 0F. By definition, we have

/ (w—wg)ds = / (w —ag(w))ds = 0.
E E

If s € [0, | E|] is the arc length along E, there then exists a continuous, piecewise linear
scalar function ¢g(s), vanishing on 0F \ E, such that

¥p(s) = w(s) ~ap(w), 5() = [ (&) —apw))ds,  onE.
0
We have therefore the decomposition

w = Z (ap(w) ®g + ¢'5), on OF, (7.3)
ECOF

which gives the tangential component along dF of the decomposition (6.1). A function
¢r defined on the whole of (2; can then be obtained as a zero extension, by setting
to zero all the nodal values that do not lie inside of E. We have therefore found the
terms V¢pg in the decomposition (6.1).

We note that the decomposition (7.3) is not logarithmically stable. Roughly
speaking, ap(w) is not bounded linear functional in H~!(9F), the appropriate space
of the tangential component w along OF (apart from a logarithmic factor). For this
reason, we are forced to consider a second decomposition. We define the average

agr (W) = agr(w) = |8F|’1/ wds.
oF

There then exists a continuous, piecewise linear scalar function ¢gr(s), such that

Por(s) = w(s) —asr(w), Por(s) = / (w(s') —agr(w))ds'+C,  on OF. (7.4)
0
This gives the second decomposition
w = agr(w) + ¢5p, on dF. (7.5)

We note that ¢sr does not necessarily vanish at all the vertices on OF and is defined
up to an additive constant. Once this constant is fixed and a suitable extension to F' is
defined, the corresponding edge element function Vggp provides an extension of the
tangential component ¢}, inside Q;. The terms associated to the two decompositions
are illustrated in Figure 7.1 for the case of a triangular face. We make the following
choice.

DEFINITION 7.3. The constant in (7.4) is chosen such that the scalar function
dar has a vanishing mean value < ¢psr >g over one of the edges E C OF; ¢or 1is
then extended by zero to all the remaining nodes in Q; \ OF .

A more intuitive and equivalent definition of ¢sr is the following:
we consider the function

mwszwwmww,mmm%



FETI-DP for 3D edge elements 17

Fi1c. 7.1. Terms associated to two decompositions of the tangential component w along the
boundary of a face: {ag(w)®r, ¢r} for (7.3) (left) and apr(w) and ¢por for (7.5) (right).

defined on OF and vanishing at one of the vertices. We then take its mean value along
an edge E and assign this value at all the internal nodes on F' and the remaining ones
in Q;. This is related to the similar coarse interpolant in [10, Sect. 6.2], where averages
along face boundaries are employed. Since only the gradient of this function has a
meaning here, we can subtract the edge average on ; and obtain the function in
Definition 7.3. Here, we have chosen to work with an edge average instead of one on
OF since for the proof of Lemma 8.2 we will need to compare gradient contributions
for two different substructures that may only have an edge in common but not an
entire face.

We now consider the decomposition (7.5) in more detail and show that it is
logarithmically stable. The following is a trivial property of the zero extension from
a subdomain edge; see [10, Lem. 4.7].

LEMMA 7.4. Let Q; be a substructure and F' one of its faces. If ¢ is a continuous,
piecewise trilinear function that vanishes at all nodes in Q; except those on OF, then

IVlIEz(a,) < ClIglTecom)-

We next find a bound for the face average.
LEMMA 7.5. Let Q; be a substructure and F one of its faces. There exists a
constant, independent of H; and the meshsize, such that, for w € X;,

laor (w)? < C H; ™ w? [|eurl wl|72 (g,

Proof. We have

s (w)| |6F|—1|/ w-tapds|=|6F|_1|/ curl s w dS|
F

oF
< CH;' llcurl swl| g—1/2(py (|1l mrr2(my-

The proof is concluded by using the first inequality of Lemma 7.2, the trace estimate
in Lemma 7.1, and the fact that ||1|| g1/2(p) < CVH;. O

We note that a better bound can be proven; see the proof of [35, Lem. 4.1]. Here,
we chose a different proof that relies on Lemma 7.2, in order to give a self-contained
presentation. Indeed, there is no difference in our final result.

We now need the following technical result.
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LEMMA 7.6. Let F be a face of a substructure and E C OF one of its edges. If
@ is a continuous, piecewise linear function on OF and < ¢ >g its mean value on E,
then

lp— < ¢ >E llz2or) < Cll' | u-1(5F)-

Proof. We have, for an arbitrary constant c,
lp— < ¢ >E llz20r) = (¢ — )= < b — ¢ >E l|z2ar) < C |6 — cllL2(or)-
Choosing ¢ =< ¢ >sp, the mean value over OF, therefore gives

lp— < ¢ >E llL20r) < Cllop— < ¢ >ar ||lL2(or)

| @ <o>om)vds b (W < ¥ >or) ds
= (C sup oF =C sup oF
$eL2(9F) 1Yl L2 (ar) GEL?(AF) [KAIFEIE 2
¢ (Y= <1 >or)ds on' ds
< C  sup oF =C sup &
ver2(or) W= <Y >oF ll2(ar) nerl o) 7|1 (oF)
— [ ¢'nds
= C sup —2E < CO|¢llg-1om)-

nemtiory  |N|H (8F)
0

n(0)=

O
REMARK 7.7. We note that it is necessary to subtract an average from ¢ for the

previous lemma, in order to obtain a good bound; see also Definition 7.3 and Lemma
7.8 below. If P is a node on OF, indeed we only have

6 = d(P)llL20r) < C (H/D) 1 I[-1(o)-

This bound can be obtained by using a similar reasoning and the trivial bound for a
linear function on a small edge e C OF: ||q§||2<,c(e) < (C/h) ||¢||i2(e).

We now give a discrete trace estimate for a face boundary.

LEMMA 7.8. Let F be a face of a substructure Q; and w € W;. If ¢par is chosen
according to Definition 7.3, then there exists a constant, independent of H; and the
meshsize, such that

1bor 2oy < Cw? (W20, + HE lleurlwl[Za g, ).

Proof. We recall that Definition 7.3 ensures that the mean value < ¢sr >g
vanishes for an edge E C 9F. Using Lemma 7.6 and (7.5), we can then write
¢orllzzor) < l¢spllr-1or) = llw — agr (W)lla-1(om)
< Nlwllg-1or) + llasr (W)l g-1(ar)-

The first term can be bounded using the trace estimates in Lemma 7.1 and the
inverse inequalities in Lemma 7.2, while the second using Lemma 7.5 and the fact

that [|1]|g-1(sr) < C’H?/2 since we employ scaled norms. O
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Bounds for the gradient component associated to OF' can then be found.

LEMMA 7.9. Let F be a face of a substructure Q; and w € X;. If ¢or is
chosen according to Definition 7.3, then there is a constant, independent of H; and
the meshsize, such that

||V¢8F||i2(9i) < Cw? (||W||%2(Qi) + H} ||cur1w||iz(9i)),
Vs <i58F||f{I /2(p) < Cw? ([Wllizq,) + HE lleurl w72 q,)),

”VS ¢8F||%-1—1/2(F) < Cut (”W”%P(Q,) + Hz2 ||cur1w||%2(9i))'

Proof. The first bound is a straightforward application of Lemmas 7.4 and 7.8.
The second can be then found thanks to the third trace estimate in Lemma 7.1 and
the third by then using the second inverse inequality in Lemma 7.2. 0

We are only left with the task of associating a tangential vector to the average
asr(w). If ©; is an element of a coarse triangulation, this can be done by considering
the coarse, edge element basis functions in ND();) associated to the edges E C OF
and associate with them the degree of freedom agp(w):

WoF = aap(w) Z @g = aap(w) @gF;
ECOF

see Figure 7.1 for a triangular face. The generalization to the case where 2; is the
union of coarse elements is straightforward. The following lemma relies on Lemma
7.5 and a scaling argument.

LEMMA 7.10. Let Q; be a substructure and F one of its faces. There exists a
constant, independent of H; and the meshsize, such that, for w € X;,

Wor sy + H? leurl swopl%—spy < C H? W [lourlwlla(q,)-

7.3. Decompositions associated with the faces. After we have found the
components associated with the edges, we are left with a tangential vector that van-
ishes along the the face boundary:

wp:=w— Y (wg+Vsép), onF. (7.6)
ECOF

Good bounds cannot be found for wr since edge components are not logarithmi-
cally stable. We therefore consider a second face component associated to the better
behaved decomposition related to OF":

wg:=w— (Wor + Vsdor), onF. (7.7)

The following stability result is a direct consequence of Lemmas 7.9 and 7.10, and
the triangle inequality.
LEMMA 7.11. Let F' be a face of 02;. Then, for w € X;,

||cur15‘7VF||§{_1/2(F) S Cw2 ||Cur1wl|2L2(Qi)>

121222y < Ot (191 + HE leurl Wi, )
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Because of the H? term in front of the norm of the curl, good bounds for the
Maxwell discrete harmonic extension of W cannot be found directly from the previous
lemma. We need to further decompose Wy into a curl free and a discrete divergence
free component. The following lemma is proven in Appendix B.

LEMMA 7.12. Let F be a face of 0Q2; and W € W; be a tangential vector that
vanishes on all faces of Q; except on F. There exist g € V"(Q;) and up € ND"(€),),
that vanish on 0Q; \ F, such that

wWr=Vso¢r+upr, onkF, (7.8)
and
||curluF||iz(Qi) < C||cur15up||fq_1/2(p) =C ||cur15v~vF||f{_1/2(F),
lurlRa,) < C H? lleurlur|Pa.), (7.9)
||V¢F||i2(gi) <C (||V~VF||%1—1/2(F) + Hz2 [lcurl SV~VF||?{—1/2(F))-

We note that no logarithmic factors appear in the first and third bounds since we
have employed the stronger norms in H='/2(F) and H~'/%(F).

7.4. Comparisons for different substructures. In this section, we relate
decompositions of functions associated to neighboring substructures. We recall that
for Algorithm A only the edge averages ag(w) are continuous and that for Algorithms
B and C also < ¢p >g are.

We first need to relate the two decompositions (7.3) and (7.5) for the tangential
component along a face boundary. The relation is given by the following lemma.

LEMMA 7.13. Let Q; be a substructure and w € W;. Then,

0F|agr(w) = > |E|ap(w).
ECOF

On every edge E, we have
Por(s) = ¢(s) + (ap(w) —agr(w)), s € 0,|E],
and, if in addition E is the edge of Definition 7.3,

por(s) = (¢r(s)— < ¢r >E) + (ap(w) — asgr(w)) (s — |E|/2), s €[0,|E][].

Proof. The first and second equalities are an immediate consequence of the defini-
tion of average and of (7.3) and (7.5), respectively. The third is obtained by integrating
over [0, s],

dar(s) = dar(0) + ¢r(s) + (ap(w) — asr(w)) s.

The constant ¢gr(0) is then found by imposing that ¢gr(s) has a zero mean value
along E. O

We have the following corollary.

COROLLARY 7.14. Let F' be a face shared by two substructures §; and Q; and E

an edge of F'. Then, for Algorithms A, B, and C, if w € W,

ap(w?) = ap(w?),  agr(w?) = app(w?).
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We are now ready to relate the gradient contributions from different substructures.

LEMMA 7.15. Let Q; and Qj, be two substructures that share a common edge E.
Assume that E C OF; and E C OFy, with F;_and Fy, faces of Q; and §y, respectively,
that do not necessarily coincide. Let w € W, with local components w() € W; and
wk) € Wy. If the edge E is that of Definition 7.3, then for Algorithms A, B, and C
and s € [0,|E|],

B 0% = bk —d6n) + (<o >p— <4y >p)
+  (agr, (WD) — asp, (W) (s — | E|/2).

In particular, if the two substructures share the face F = F; = F}, then

o0 o) = (05— o)+ (< 80 > = < 6% >0,

Proof. The result is a direct consequence of Lemma 7.13 and Corollary 7.14. O

We also have a comparison result for face components. It employs the continuous,
piecewise trilinear function 8yp that is identically one on OF and vanishes at all the
nodes inside F'.

LEMMA 7.16. Let Q; and Q; be two substructures that share a common face
F. Let in addition w € W, with local components w¥ € W; and w'*) € Wy,. For
Algorithms A, B, and C, we have, on F,

W(Fz;) — Wg) = Wg) — Wg) — (< (ﬁ(El) > — < (ﬁg) >E‘) Vgeap,

with E the edge of Definition 7.3.
Proof. The proof relies on (7.6) and (7.7). We have,

w —w) = % - ")+ (wi) - wih) - E§F<W‘é’—w%>)
— Y (Vs — Vsl + (Vsobh — Vsoll).
ECOF

Corollary 7.14 implies that the second and third term on the right hand side vanish
and thus

wy —wi) = (vv%’—vv@)wsr
(7.10)
ro= (G- T ) — (05— T o).
ECOF ECOF

We now give a closer look to the remainder Vgr. We first note that r vanishes at
all the nodes inside F. We next consider the tangential component along OF. Using
Lemma 7.13, we find, along OF,

Vsr-tor = Y (ap(w®) —ap(w)) @5 — (agr(w?) — agr (™)),
ECOF

with & the characteristic function of E. Corollary 7.14 implies that the right hand
side is zero and r is therefore constant on OF. In order to find this constant value,
we find the mean value < r > with E the edge of Definition 7.3. We have

r=<r>p=—(< ¢ >p — < ¢ >), onF,
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which concludes the proof. O

We stress that the differences between components over different substructures
depend on the averages < ¢p >p, which are continuous for Algorithms B and C, or
the averages asr(w) for which good bounds have been found in Lemma, 7.5.

8. Main result. The FETI operator and the preconditioner are invertible for
the three algorithms considered. The proof is the same as that of [30, Lem. 4.5] and is
a direct consequence of the invertibility of the local bilinear forms on the subdomains.

LEMMA 8.1. The Schur complement S and the preconditioner M~1 for Algo-
rithms A, B, and C are invertible.

We are now ready to prove our main result, which is a logarithmic bound for the
condition number of Algorithms B and C, independent of the coefficient jumps; see
Theorem 4.2.

LeEMMA 8.2 (Algorithms B and C). For Algorithms B and C, there is a constant,

independent of h, H, and the coefficients A and B, such that, for wa € WA,

|Pawalg < Cn(1+log(H/h))" wal3,

where
max max{l,l-k ’—%} for Case 1,
1<i<N Bi a
n:= 2
; H:b
max max{l,l—k L } for Case 2.
1<i<N ; Bi

Therefore, the condition number of the corresponding preconditioned FETI operators
satisfies

K(M~YF) < Cn (1 +log(H/h))™

Proof. Here, we only consider the coefficient distribution of Case 1 in full detail;
see (2.1). Case 2 can be dealt with in the same way. Using the minimization property
in (4.3), we consider the element w = wa + wy, wig € Wy such that

N N
|WA|2§ = |wlg = Z |W(i)|?g(i) = Zam (Hiw(i);HiW(i)); (8.1)
i=1 i=1

where for the last inequality we have used the minimization property of the discrete
harmonic extension. We note that, since wyy is continuous, Lemma 4.1 ensures

v := PAwa = Paw.
We then need to calculate
|Paw( =D VO30 =Y ag,(Hv®, HivD).
i=1 i=1

On each subdomain €;, the tangential vector v(? is given by formula (4.9). We recall
that this formula is to be understood for vectors of degrees of freedom, which are those
in the new basis of Definition 6.1. These are the averages along the subdomain edges,
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the nodal values that determine the gradient components along the edges, and the
tangential components along fine edges that lie in the interior of the faces, and they
determine the decomposition (6.1) into edge and face components. In addition, the
vector of degrees of freedom 5;[ takes the same value (5;'- (F) on a subdomain face F' and

the same value 6} (E) on a subdomain edge E. It is therefore natural to decompose
v(®) into terms associated to single edges and faces; see (6.1). We obtain

v = ZVE + ZVS¢E +ZVF,J
E E
= S lE) W - (k) )+ Z Z LB Vs (0¥ - oY) (89)
E k
Y6l (Fy) (wh, —wi),
Fij

_|_

where a face Fj; is assumed to be shared by Q; and €2; and the sums over k are taken

over the subdomains j, that share the edge E. Since for functions in W averages of
the tangential component along an edge E are all equal for all the algorithms consid-
ered, the constant edge contributions W%) and w%) are equal and the corresponding
sums on the right hand side of (8.2) vanish; cf. Corollary 7.14. We are therefore left
with two terms, which we consider separately.

Edge terms. We first note that for Algorithm C, these terms vanish since all
degrees of freedom are continuous across a coarse edge in this case. For Algorithm B,
we consider an edge E and two subdomains §2; and , that share the edge E.

We first assume that the two substructures also share a whole face F'. We consider
the term

OL(E) Vs (4 — 6i5)-
It involves a tangential vector on the boundary of €2; and in order to evaluate its

|-|g) norm, we need to evaluate the energy of its discrete Maxwell extension into ;.
Using the minimizing property of the Maxwell extension and Lemma 7.4, we find

161(E) Vs (6% — 6820 < Cvi6L(E)? 16 — 0% 1225

We assume that we have chosen E as the edge of Definition 7.3. Using Lemma 7.15
with F' = F; = Fy, and the fact that < ¢(Ez) >p=< qﬁg) >pg, we can write along E,

i k i k
o0 - o = o - o, 9
and, thus
6L(B) Vs (8% — 653 < Cudl(B)? lloby — 852l22m,
< C'Yi‘slz(E) (”d) || 8F)+||¢8F”L2([-)F))'

The last two terms can then be bounded using Lemma 7.8 and inequality (4.7). For
the first, we find

¥ LB 150 3 2omy < C 7 w? (W[ + HE leurl w32 q,)) < Cnw? [w ),
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where we have used the same notation for w(? € W; and the corresponding Maxwell
extension in €2;. A similar reasoning on € gives a bound for the second term. We
have therefore found

165(B) Vs (6% — %)% < Cn (1 +1og(H/R))? (WD 3 + WD 20).  (84)

We now consider the case of two substructures 2; and €2 that share an edge E
but not a full face. We note that in this case (8.3) does not hold. Lemma 7.15 gives

o — o = o) — 88 + (aor (WD) — apm, (wM)) (s — | E|/2).

The first two terms on the right hand side can be bounded in the same way as before.
We are left with two terms involving the face averages. Using Lemma 7.5 yields

7 0} (E)? lagr, (w™) (s |E|/2)|122(m)
Cilaor, (W) |Is — |E|/2[13 25
Criw? H [leurl wd|7, o ) < Cnw? [wh [,

IA A

An analogous bound holds for the term corresponding to Q and therefore (8.4) also
holds in this case.

Face terms. We now consider the sum involving face terms on the right hand
side of (8.2). We fix a face F' = Fj;. Lemma 7.16 ensures

Wi _wid % _ s,
We employ the decomposition of Lemma 7.12 and find
S1(F) (wid) = wil)) = 01(F) (V5o — Vso) +01(F) (uf —ui?).  (8.5)

For the gradient term ngb%), Lemmas 7.12 and 7.11 ensure

61 (F) Vs e, < 81(F)? ag, (VoL Vo) < 7 68(F)2 I8 1131,
< O UWR sy + B llewrd W52 13, o)
< Crw (WO, + HE lleurlw@ 17 )
< Cn(1+log(H/h))* |W(z)|5()

J)

The term involving V5¢ can be bounded in a similar way. We therefore find

161(F) (Vs — Vs @[3 < Cn (1L +logH/R)* (w2 + [wD2,).  (8.6)

The second term in (8.5) is associated to the curl operator and is the sum of two
contributions, which we consider separately. For the first, Lemmas 7.12 and 7.11 give

Bl a2, < O1(F)? ag, () ul) < 81(F)? (a+ v H?) [leurluld |2, g,

< 5;(F)2 (a +vHY) ||curlng ||§1—1/2(F)

< C’(S}‘.(F)2 w?(a +v;H?) ||Curlw(i)||%2(9)

< Cw?(1+ (y:H?)/a)||a?curl w ||L2(Q

< Cuw?nlla'?curl wti )||L2(Qi)

< COn(IB WOz, + o Peurl wlfsq,)

C (1 +1log(H/h))?q||w® 18-
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For the term ug) in (8.5), we can reason in a similar way. Using (8.6), we obtain the
bound

165(F) (Wi = wi) 2y < On (1 +1og(H/R) (w2 + WD 2).  (8.7)

The proof is concluded by combining (8.2), (8.4) and (8.7) and summing over the
substructures ;. O

We note that the bound in the previous lemma is not likely to be sharp. Indeed,
the results in Tables 9.2 and 9.3 are consistent with a quadratic growth with log(H/h),
which is typical of many iterative substructuring algorithms.

REMARK 8.3. For Algorithm A, we expect the bound

k(M™'F) < Cn(H/h) (1 +log(H/h))1.

A similar analysis as that above would provide a bound with q = 4, while the results
in Table 9.1 are consistent with q = 2. More precisely, when bounding the edge
terms associated with the decomposition (8.2), additional terms involving the averages

< ¢%) >p and < qﬁg) >pg need to be considered; see Lemma 7.15. Logarithmic
bounds for these averages cannot be found. Analogous considerations apply to the face
contributions; see Lemma 7.16. Alternatively, we could simply ask that the functions
dor in Definition 7.3 only vanish at one vertex for Algorithm A: this would simplify
Lemmas 7.15 and 7.16 but good bounds cannot be found in Lemma 7.8 for a function
that only vanishes at a point of OF'; see Remark 7.7.

9. Numerical Results. In this section, we present some numerical results on
the performance of the three algorithms proposed in this paper.

We consider the domain 2 = (0,1)% and uniform triangulations 7 and 7. The
coarse triangulation Ty consists of N® cubical elements, with H = 1/N. The fine
one Ty, is a refinement of Ty and consists of n® cubical elements, with h = 1/n. The
substructures €; are chosen as the elements of 7. The matrices A and B are always
multiples of the identity; cf. (2.1). We employ the value x = 1/2 for the definition of
the scaling matrices DX); see (4.6). We consider a conjugate gradient (CG) algorithm
and estimate the condition number of the preconditioned operator using the quantities
provided by CG. We stop the iteration when ||zg||/||f]| is less than 10712, where 2y, is
the k—th preconditioned residual M ~1(d — F)y,).

The purpose of these simple tests is to assess the scalability, quasioptimality, and
robustness with respect to coefficient jumps of our algorithms. In addition, they show
that low condition numbers and iteration counts typical of FETI methods are also
found for edge element approximations and that the bounds that we derived are not
sharp, ether in terms of H/h and the parameter 7.

We first consider the case where both coefficients are identically one. Tables 9.1,
9.2, and 9.3 show the estimated condition number and the number of iterations, as
a function of the dimensions of the fine mesh and H/h = n/N, for Algorithms A,
B, and C, respectively. For a fixed H/h, the condition number appears to remain
bounded independently of the number of fine mesh points n. As expected, for a fixed
ratio H/h, the condition number and the number of iterations are quite insensitive
to the dimension of the fine mesh. However, considerably higher iteration counts and
condition numbers are found for Algorithm A; Algorithms B and C show the typi-
cally low condition numbers of FETI methods; see, e.g., [29, 30] for two dimensional
results on edge elements. See also [31, Ch. 6]. We note that, surprisingly, the much
larger coarse space of Algorithm C does not translate into a much smaller number of
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iterations or condition number. On the other hand, results for the two algorithms are
comparable (for the case H/h = 2, they provide the same results). Some cases with
very small values of H/h give rise to very large coarse problems for Algorithm C and
could not be run. The interest for Algorithm C is that it does not require a change
of basis and can be potentially attractive for p and hp edge element approximations
where the required change of basis is less local.

The results for Algorithms B and C are consistent with a quadratic growth with
log(H/h), hinting that the result in Lemma 8.2 is not sharp. For Algorithm A, we
refer to Remark 8.3.

In order to show the necessity of a change of basis, we report in Table 9.4 the
condition numbers of Algorithm B employed without performing a change of basis,
for the same cases of Table 9.2. The condition numbers become very high and are
consistent with a quadratic growth in n = 1/h, thus confirming our analysis in section
5. For H/h = 2, there are only two degrees of freedom along a subdomain edge and
the two primal constraints enforce therefore the continuity of the edge element vectors
along an edge. We remark that adding more primal constraints, such as face averages
or higher order moments along the edges, does not remove this dependence in h (the
results are not presented here).

TABLE 9.1
Algorithm A. Estimated condition number and number of CG iterations (in parentheses),
versus H/h and n. Case of constant, unitary coefficients A and B.

l#/m | 8 [ 6 | 4 | 3 [ 2 |
n=8 - - 7.085 (15) - 3.134 (18)
n=16 | 19.38 (20) - 8.962 (33) - 3.179 (19)
n=24 | 25.72 (37) | 17.39 (43) | 9.306 (35) | 5.879 (27) | 3.184 (18)
n=32 | 27.45 (46) - 9.382 (35) R 3.186 (17)
n=40 | 28.01 (57) - 9.449 (35) - -
n=48 | 28.24 (59) | 18.12 (48) | 9.487 (34) | 5.94 (26) -

TABLE 9.2
Algorithm B. Estimated condition number and number of CG iterations (in parentheses),
versus H/h and n. Case of constant, unitary coefficients A and B.

(A | 8 [ 6 [ 4 | 3 | 2 |
n=8 - - 2.213 (12) - 1.869 (13)
n=16 | 3.076 (15) - 2.742 (18) - 1.936 (13)
n=24 | 3.566 (20) | 3.322 (20) | 2.838 (18) | 2.48 (16) | 1.960 (13)
n=32 | 3.774 (22) _ 2.899 (18) - 1.969 (13)
n=40 | 3.866 (22) - 2.926 (18) - -
n=48 | 3.951 (22) | 3.537 (20) | 2.944 (18) R -

Despite the fact that our condition number bound blows up when the coefficient
A goes to zero, the algorithms remain robust in practice (results are not shown here),
in exactly the same way as for many iterative substructuring algorithms for Raviart-
Thomas and 2D edge element approximations; see [32, 35, 27, 29].

We now focus our attention to Algorithm B and problems with coefficient jumps.
We first consider jumps in B; see Case 1 in (2.1). We choose a 4 x 4 x 4 checkerboard
distribution, where B assumes two values, b; and bs. For a fixed value of n = 32,
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TABLE 9.3
Algorithm C. Estimated condition number and number of CG iterations (in parentheses),
versus H/h and n. Case of constant, unitary coefficients A and B.

(#mn ] 8 [ 6 [ 4 | 3 | 2 |
n=8 - - 2.211 (12) - 1.869 (13)
n=16 | 3.068 (16) - 2.741 (17) - 1.936 (13)
n=24 | 3.558 (20) | 3.318 (20) | 2.837 (18) | 2.479 (16) | 1.960 (13)
n=32 | 3.766 (21) - 2.899 (18) - 1.969 (13)
n=40 | 3.859 (22) - 2.929 (18) - -
n=48 | 3.945 (22) | 3.536 (20) - - -

TABLE 9.4

Algorithm B without change of basis. Condition number versus H/h and n. Case of
constant, unitary coefficients A and B.

L | 8 [ 6 [ 4 [ 3 [ 2 |
n=8 | - | - [1616] - | 1869
n=16 | 643.7 | - | 6076 | - | 1936
n=24 | 1449 | 1429 | 1365 | 1429 | 1.960
n=32 | 2576 | - | 2427 | - | 1.969
n=40 | 4024 | - | 3793 | - | -

n=48 | 579 | 5712 | 5462 | - | -

b; = 100, and a = 1, Table 9.5 shows the estimated condition number and the number
of iterations, as a function of H/h and by. The algorithm appears to be robust with
respect to large coefficient jumps. The results for a case of jumps in the coefficient
A, see Case 2 in (2.1), are shown in Table 9.6. We choose a 4 x 4 x 4 checkerboard
distribution, where A assumes two values, a; = 0.01 and as. The same conclusions
as for Table 9.5 can be drawn in this case. Algorithms A and C show an analogous
behaviour (the results are not presented here). We note that for Case 1 and 2, iteration
counts and condition numbers remain bounded when the coefficient A goes to zero
(or B is large) on some subdomains; see n in Lemma 8.2. The case when jumps are
present in both coeflicients remains open.

Appendix A. Proof of Lemma 7.2. We first consider the first inequality in
Lemma 7.2. We need to show that, given a piecewise constant function ¢ on 99;, we
have

=172y < C (1 +log(H/R))? IS Fr-1/2 (50, - (A1)
(F) (092)

The proof relies on two results. The first is an inverse inequality for Sobolev
norms of negative exponent:

LEMMA A.1. Let ¢ be a piecewise constant function on 09;. Given € € [0,1/2],
there exists a constant, independent of (, €, H; and the meshsize, such that,

< =172+ a0,y < C B ICll 17280,

Proof. The proof relies on the inverse inequality

I<llz2a0:) < CRY2 Kl a-1/2(00:),
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TABLE 9.5
Algorithm B. 4 x 4 x 4 checkerboard distribution for b: (b1,b2). Estimated condition number
and number of CG iterations (in parentheses), versus H/h and ba. Case of n = 32, a = 1, and
b1 = 100.

| H/h | 8 [ 4 [ 2 |
b2= le-4 | 10.47 (58) | 7.283 (46) | 4.588 (34)
b2= 1e-3 | 10.46 (56) | 7.282 (46) | 4.587 (32)
b2=1e-2 | 10.45 (56) | 7.278 (44) | 4.586 (32)
b2= le-1 | 10.37 (52) | 7.252 (42) | 4.572 (30)
b2=1 9.728 (40) | 7.075 (33) | 4.477 (25)
b2= le+1 | 7.219 (33) | 5.696 (29) | 3.739 (22)
b2= le+2 | 2.549 (16) | 2.254 (14) | 1.739 (11)
b2= le+3 | 6.023 (30) | 3.968 (23) | 3.267 (20)
b2=le+4 | 8.747 (36) | 3.902 (24) | 2.935 (19)
b2=le+5 | 11.25 (52) | 3.819 (32) | 1.977 (20)
b2=1e+6 | 11.97 (52) | 3.836 (34) | 1.746 (18)
TABLE 9.6

Algorithm B. 4 X 4 X 4 checkerboard distribution for a: (a1,a2). Estimated condition number
and number of CG iterations (in parentheses), versus H/h and az. Case of n = 32, b =1, and
a; = 0.01.

[ H/n | 8 [ 4 [ 2 |
a2=1.e-7 | 8.152 (30) | 3.722 (20) | 1.896 (12)
a2=1.e-6 | 8.102 (30) | 3.704 (20) | 1.901 (12)
a2=leb | 7.687 (29) | 3.554 (19) | 1.937 (12)
a2=l.e4d | 6.282 (27) | 3.061 (18) | 2.229 (14)
a2=1.e-3 | 4.707 (23) | 3.015 (17) | 2.255 (14)
a2=1.e-2 | 2.549 (16) | 2.254 (14) | 1.739 (11)
a2=l.e1 | 4.674 (24) | 3.238 (19) | 2.289 (15)
a2=1 5.450 (27) | 3.782 (21) | 2.680 (17)
a2=1l.e+1 | 5.545 (27) | 3.851 (22) | 2.702 (22)
a2=l.e+2 | 5.484 (32) | 3.801 (28) | 2.707 (22)
a2=1.e+3 | 5.486 (32) | 3.802 (28) | 2.707 (22)

see [9, Th. 4.6], which gives a bound for the identity operator I : H~/2(8Q;) —
L2(09Q;) restricted to the finite element space on 99;, together with the trivial estimate
for I: H-1/2(09;) = H~/2(8Q;), and an interpolation argument. [0

The second result is a well-known localization result. We give details about the
proof since we need an explicit bound in e.

LEMMA A.2. Let ¢ € HY/?~¢(F), with € € (0,1/2), and £y its extension by zero
to the whole of 00;. There exists a constant, independent of ¢ and €, such that

1€l m1r2-< (00, < C € 1]l /e—c(my.-

Proof. We first note that, thanks to [14, Lem. 1.3.2.6],

||g¢||§{1/2—€(89i) S C (||¢||§{1/2—€(F) + ||p€_1/2¢”i2(}?))7
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with p(x) the distance from a point x to OF. Since, for the given €, the space
H'/?>~¢(F) coincides with that of its extensions by zero to 8Q;, it is enough to show

1o Yllzaey < C e [llaromeqry-

This is indeed the statement of [14, Th. 1.4.4.4], with Q = F, p=2,and s = 1/2—e.
The proof can be found there and it relies on the Hardy inequality

+0o0 1 +o0 2 +oo 1
/ : /¢(s)ds 2o dt < (o —1/2)"? /¢(t)2t2“dt, a> g,
0 t 0

for which the explicit dependence of the constant has been derived from [14, Pg. 28].
O
We are now ready to prove (A.1l). Lemma A.2 and a duality argument yield

ICller-1/2+e(my < C €Il r-1/2+< (002;)-

Using the inverse inequality of Lemma A.1 therefore gives

1<l er-172(r) < C I -1724e(ry < C € ¢l m-1/2+< (805 < C € B Kl rr-1/2(00,)-

The proof is concluded by choosing 1/e = 1+ log(H/h).

As previously mentioned, a stronger version of (A.1) was already proven in [35,
Lem. 4.4]. The proof given here however has the advantage that only relies on the
existence of the inverse inequality in Lemma A.1, which holds for more general finite
element spaces. The proof can be directly applied for the second inequality of Lemma
7.2, involving the subspaces of H~Y/2(F) and Hll/ 2(6Qi) consisting of tangential,
edge element vectors on 0f2;. More precisely, given a tangential vector w on 0€);, we
define

|w(:c') v!— W(:E”) v //|2
90200 = S B+ S [ f v s as
L ! Fl FI F”¢F,F1 FII |:L. - m |

(A.2)
see [6], where the last sum is taken over the faces F" that share an edge with F.
Here, given two faces that share an edge, we have employed the vectors

v'i=tsr xn', v'" =ty xn",

with the outward unit normal vectors n’ and n' to the two faces, and the assumption
that tgp: and typr have the same direction along the common edge. We note that
the last term in (A.2) scales like the H'/? seminorm and therefore no scaling factor
involving the diameter H; needs to be employed; see the definition of scaled norms in
section 7.1. Given this norm, we can define a norm in Hll/ 2(69,-) by duality. Lemmas
A.1 and A.2 remain valid in this case. Finally, the third inequality of Lemma 7.2 is
proven by a scaling argument.

Appendix B. Proof of Lemma 7.12. For this section we employ the lowest-
order Raviart-Thomas space RT"((;), conforming in H (div;(;), and need to recall
a few results. We refer to [4, Sect. II1.3.2] or [24, 2, 15] for an introduction. Here,
H(div;€;) is the space of square summable vectors in (); with square summable
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divergence and H,(div; ;) its subspace of vectors with vanishing normal component
on 9Q; N ON. For the reference cube K = (), we define

RT(K) = Q1,0,0(K) ® Qo,1,0(K) ® Qo,0,1(K);

for an affinely mapped element, the definition can be found in [4, Sect. I111.3.2]. We
then set

RT™M;) == {u € H(div; )| v, € RT(K), K € Tp,, K C Q;}.

We recall that for conforming finite elements in H(div;(;) the normal component
across element boundaries is continuous. In addition, the normal component u - n of
a vector u € RT"*(Q;) on 09Q; is a piecewise constant function.

We next define ND%(€;) and V2(€2;) as the subspaces of ND"(;) and V(Q;),
respectively, of tangential vectors and functions that vanish on 09Q; \ F. Analogously,
we define RTE(€);) as the subspace of RT"(Q;) of vectors with vanishing normal
component outside F. We summarize some of the properties that we need in the
following lemma.

LEMMA B.1.

1. We have the inclusion V V() C NDL(Q;). The following orthogonal de-
composition is therefore well defined

NDE() = V V() ® NDE(:) ™ (B.1)

2. We have curl ND();) C RTE(Q) and, for every v € curl NDR(€);) there
is a unique ut € ND%(Q;)*, such that

curlut = v, ||uJ‘||%z(Qi) < CH? ||cur1uJ‘||iz(Qi). (B.2)

Conversely, if v € RTE(;) has a vanishing divergence, there exists u €
ND(9Q;), such that v = curlu.

3. Let u be the restriction of a tangential vector in W; to the face F, such that
u-tgr = 0 and curl su = 0. Then, there exists a continuous piecewise bilinear
function ¢ on F that vanishes on OF, such that u = Vg ¢.

For the proof, the results for the spaces ND"(Q;) and ND}(Q;) in [2, Sect. 4.1]
can be straightforwardly generalized to ND%(€;). We note that we have excluded
that a face coincides with a connected component of 9Q;; see section 3. For (B.2)
we refer, in particular, to [2, Prop. 4.6], where, as usual, the dependence on H; is
obtained by a scaling argument. Point 3 is a two-dimensional result for a face F' and
can be proven as in [2, Lem. 4.3].

We next need an extension theorem, which was originally given in [35, Lem. 4.3].

LEMMA B.2. Let ¢ be piecewise constant function on 0€); with vanishing mean
value. Then there exists an extension v(¢) € RT"(Q;), such that divv(() =0 and

V(C) ‘n= Ca on an;
V(2o < ClICla-1/2(804)

with a constant that is independent of the meshsize and H;.

We finally need a result for continuous functions.

LEMMA B.3. Let ¢ be a continuous, piecewise bilinear functions on F that van-
ishes on OF and &£ the operator that defines the extension by zero to 0€2;. Then,

18032y = 1€ Slz172020) < CIEV'S B)lgg=172
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Proof. We first recall that the surface divergence operator on 9€);
div g : HY/?(09;) — HY2(890;)

is defined as the adjoint of Vg and is continuous and surjective; see [7], Prop. 3.7 and
Rem. 3.8. We can therefore write

<, €4 > <C sup

[l a-1r2080,) ~ veHY?(50:) Vll2 50,

Y

||g¢||H1/2(691-) = sup
YEH—1/2(0Q;)

with < -,- > the obvious duality pairing. Using the definition of div g as adjoint of
Vs and the fact that

Vs (€9) = (Vs ¢),

completes the proof. 0
We are now ready to prove Lemma 7.12. Some of the ideas of the proof rely on
[34]. We first consider the curl of the tangential vector wg:

(r =curlg W,

and note that, since wr has a vanishing tangential component along OF, (r has
mean value zero on F. We then consider the extension by zero ( = £({r) to 0%;.
This extension satisfies the assumptions of Lemma B.2. We can therefore define the
divergence-free extension

Vip = V(C)a

in ;. Since vp € RTR(Q;) is divergence free, Lemma B.1, Point 2, ensures that there
exists a vector up € ND®(€;)1, such that

curlup = vp.
Lemma B.2 and (7.2) thus provide the first of (7.9):
lleurlur||zz2(;) < ClIClla-1/2(80,) < ClICFlH-1/2(r) = C llcutl sup||g-1/2(p)-

The second inequality of (7.9) is a consequence of (B.2).
We next restrict ug to F. Since

curls (WF — uF) = 07

Lemma B.1, Point 3, ensures that there exists a continuous, piecewise bilinear function
that vanishes on OF, such that (7.8) holds. We then extend ¢p by zero to the rest of
09); and consider its extension to €2; which is Laplace discrete harmonic. A standard
stability result for Laplace discrete harmonic functions and Lemma B.3 yield

IVorllz@y < Clérlyyep) < CIEVs ¢r)luzaoa,
< ClEwrllg e gq,) + 1€0rllyrz g,
<

C I ez + 1E0Fllg-172 50
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where we have used (7.2) for the last inequality. We are only left with the task of
finding a bound for the term in up. For this, we can use the trace estimate in Lemma
7.1, the definition of ug and the two already proven bounds:

||511F||H11/2(89i) = ||uF||H11/2(391.) <C (”uFll%Q(Qi) + Hz2 ||CllI'1 uF”%Q(Q,))

IN

C H? ||cur1uF||%2(Qi) <CH? ||cur15uF||§{_1/2(F).
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