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Abstract

This paper describes a two dimensional edge element discretisation of Maxwell’s equations in
which the standard lowest order basis functions for the H/(curl) space are augmented by plane
wave expansions. The aim is to improve the accuracy of the underlying low order scheme for
electromagnetic scattering problems. A method to determine the directions of the plane waves on
edges inside the mesh is proposed in which the condition number of the global matrix is controlled.
Improvements in the calculation of the scattering width distribution lead to substantial improve-
ments in accuracy. A range of two—dimensional scattering examples are included and comparisons
with a hp—version code are undertaken.
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1 Introduction

The aerospace industry is interested in electromagnetic scattering problems where the wavelength
of the wave is short compared to the length of the scatterer. This problem is made more complex
as the scatterer may contain multi-materials and have many sharp corners. In fact, the primary
interest lies in the accurate evaluation of the scattering width distribution, which can be computed
directly as an output of the scattering problem. This output represents the far field pattern of the
scatterer and may be used for the radar detection of civilian and military vehicles.

The H (curl) conforming finite elements first introduced by Nédélec [27, 28, 29] are well suited to
such problems as these elements can readily handle material interfaces and boundary conditions. In
addition, the spurious modes which are known to occur when components of the field variables are
discretised by nodal finite elements do not occur with H (curl) conforming finite elements [31, 26].
Within the engineering community, these elements have become better known as edge elements.
This is in part due to the fact that the lowest order H(curl) conforming approximation has a
degree of freedom associated with each edge of the element.

Unfortunately the standard lowest order H (curl) conforming elements are known to have bad
dispersive properties which make them unsuitable for using in problems when the wavelength is
small [33, 2, 1]. As this is exactly the problem in which the aerospace industry is interested
in, then this makes the application of low order elements inappropriate. Considerable success at
minimising dispersion was obtained when hp—version H (curl) conforming finite elements were used
to discretise Maxwell’s equations [19, 17, 21, 18]. Indeed, for meshes composed of squares one can
directly quantify the dispersion for a given mesh spacing h and polynomial order p [2, 1]. An
interesting approach which attempts to minimise the dispersive behaviour for all wave directions
on the stencil resulting from the lowest order square edge element was proposed in [12]. The
idea for this follows on from the work of Babuska, Sauter and coworkers [5, 4] who proposed
the so called generalised finite element method for the Helmholtz equation. In this approach
they were able to eliminate the dispersion for one-dimensional problems and minimise it for two—
dimensional problems. This was achieved by modifying the H' finite element stencil for a mesh
composed of uniformly sized square elements. The approach presented in [12] considers Maxwell
wave propagation and scattering problems, for both cases accurate results were obtained with the
modified stencil.

Using meshes consisting only of square elements places a restriction on the type of scatterer
that can considered. In this work we explore an alternative approach for solving electromagnetic
scattering problems, without this restriction. The new procedure enriches the lowest order H (curl)
conforming space with a series of plane wave expansions. The idea of supplementing standard
H (curl) conforming elements with expansions of plane waves comes from the work of Melenk and
Babuska [22, 3] who developed the partition of unity finite element method in which the underlying
finite element space was enriched by additional knowledge about the solution. In this case, as in
the later work of Bettess et. al. [16, 15], one of the main areas of interest was the solution of the
Helmholtz equation and in—common with our approach the enrichment was through expansions of
plane waves. The use of plane wave expansions makes an attractive choice as once the directions of
the plane waves are correctly selected, the dispersion problems associated with standard elements
become irrelevant.

What we describe in this report is an extension of our initial investigation [20] which considered
wave propagation problems with Neumann boundary conditions. In this work, we shall extend
this approach to two—dimensional scattering problems in which Dirchlet and Neumann boundary
conditions can be applied and multi—-material properties can be considered. In common with all
domain based solvers for scattering problems, we require a method to truncate the otherwise infinite
domain. Suitable candidates for this are absorbing boundary conditions [6], infinite elements [8, 10],
coupling with boundary integral techniques [11] or a through application of an absorbing sponge
layer [7]. In this work, the truncation will be accomplished by the perfectly matched layer (PML)
approach of Berenger [7]. We adopt this approach due to its ease of implementation and the success
that was previously obtained when it was used with hp—version H (curl) conforming elements for
scattering problems [17, 19, 21, 18].
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The presentation of the material in this report proceeds as follows: In Section 2 the mathe-
matical formulation of the problem will be stated together with an appropriate weak variational
statement. Section 3 introduces the far field condition used to truncate the infinite domain to-
gether with the approximate weak variational statement of the problem. The plane wave H (curl)
conforming quadrilateral and triangular elements together with the necessary convairant transfor-
mation required for curvilinear elements is described in Section 4. In Section 5 some details of
the computational procedure are described including how the directions of the plane waves may
be chosen on Dirchlet and interior edges and how the scattering width output can be accurately
evaluated. Section 6 gives a selection of numerical examples which demonstrate the computa-
tional performance of the proposed procedure. Examples with and without analytical solutions
are undertaken and comparisons are made with a hp approach [17, 19, 21, 18].

2 Problem formulation
Let us consider Maxwell’s equations expressed in the frequency domain for a source free medium
curl E = —ipwH curl H = iewE (1)

where E and H are the electric and magnetic field intensity vectors, ¢ and u are the relative
material parameters, the frequency is such that w? > 0 and i> = —1. It is convenient to introduce
a splitting of the electric and magnetic fields

E=E°+FE H=H’+H' (2)

where the superscript ¢ refers to the incident component and the superscript s to the scattered.
The incident fields are chosen so as to satisfy Maxwell’s equations in free space

curl B* = —iwH"* curl H® = iwE* (3)

where the material properties in free space have been normalised to unity. We wish to restrict
consideration to two—dimensional problems expressed in Cartesian coordinates O(z,y) in which the
electric field has two components E = (E,, E,)? and the magnetic field has only the component

H, (z direction into the page). The curl of a two dimensional vector field should be interpreted

as curl E = % — Baﬁ. We shall consider perfect conducting scatterers with possible dielectric

coatings. In the case of a perfect magnetic conductor, the Neumann boundary condition
n Acurl E® = —n A curl E* (4)
should be applied on I';,.,,. In the case of a perfect electrical conductor the Dirchlet condition
nAE° = -nAE' (5)
should be applied on I'y;.. When variations in the matearial properties occur, the jump conditions
nA(E,—E;) = 0 (6)
nA (uy ' curlE — pt curlE) = —nA(ug' — pyt) curl B (7

should be imposed. In addition, the above boundary and interface conditions should be supple-
mented by the radiation condition

lim (r A curlE® —iwE?®) =0 (8)

=00

to handle the correct behaviour of the field at the infinite extent of the domain .
Combining Maxwell’s curl equations for the total fields (1) with those for the incident fields (3),
it follows that the scattered electric field satisfies the vector wave equation

curly'curl Ef — w2 eE® = w?(e — )E' — curl{(u~" — I)curl E} (9)
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where [ is the identity tensor. We note that a similar elimination procedure could also be followed
for the magnetic field. However, we wish to focus on the solution of the electric field in this report
and recover, when required, the magnetic field from equation (1).

With a finite element procedure in mind, we give the weak the variational statement [17]: Find
E € H ;(curl; ) such that

(pteurl B* curl W)q — w?(eE°, W)q = (W) YW € Hy(curl; Q) (10)

where (-,-)q denotes the standard L? inner product performed over Q and £ is a linear form defined
as

LW) :/F W -n A curl E* ds+/9w2(e—I)E"-W—(u—1—I)curlE"-cuﬂWdQ (11)

neu

The function spaces H 4(curl; Q) and H(curl; Q) introduced above are defined as
H 4(curl; Q) = {v, v € H(cur; Q) nAv=—-nA E on Tair}

Hy(curl; Q) = {v, v € H(cur; Q) n Av =0, on Iy}

with
H(curl; Q) = {v € (L*(Q))?, curlv € L*(Q)}

The end goal is accurately compute the scattering width (or radar cross—section per unit length)
distribution. For the two—dimensional problems considered in this report this is defined as

HS 2
x(¢) = lim 27rr| :|

r—00 |HZ|?

(12)

where ¢ is the viewing angle. In particular, we shall consider incident plane waves of the form

i —sinf . .
E'= ( 030 )exp{1w(a:cos€+y51n0)} (13)

where 0 is a specified angle of incidence. For these waves |H}|? = 1.

3 Approximate weak variational statement

To obtain an approximate weak variational statement, we need to first truncate the infinite domain
and approximate the radiation condition (8). This is accomplished by the introduction of an
absorbing sponge layer ,,,; which surrounds the truncated free space region Q,. It shall be
assumed that a single scatterer lies inside the free space region and this may have a dielectric
coating Q4. For the absorbing sponge layer we shall adopt the perfectly matched layer (PML)
approach of Berenger [7] and in particular the curvilinear anisotropic formulation [14, 19]. Inside
Qpmi the scattered electric field should satisfy the following non-physical vector wave equation

curl (A" curl E*) — w?AE® =0 (14)

where A is a tensor which is constructed so as absorb the outgoing scattered wave [14, 19]. Of
course, this can only be done approximately and in general the PML is constructed so as to perfectly
absorb outgoing waves propagating at a certain angle, for all other directions, the absorption is
approximate. Nevertheless very accurate results can be accomplished with the PML approach. The
boundary condition nAE® = 0 at the exterior boundary I' 4, of Qpm completes the approximation
to the radiation condition. The complete arrangement of the scattering problem is illustrated in
Figure 1.
Corresponding to the PML formulation, we introduce the solution and weighting spaces as

Xqg={v,v € H(curt; Q),n Av = —nAE‘onTgr ,nAv=0on Tor}
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Figure 1: The arrangement of the electromagnetic scattering problem.

and
Xo={v,v € H(curl; Q),nAv=00nTg, ,nAv=0o0nTg,}

The approximate weak variational statement to the problem is then: find E® € X  such that
(,u_lcurl Esa curl W)Qfs-l-ﬂd-i-ﬂpml - w? (eEsa W)Qf s+Q3+Qpm1 = K(W)Qd VW € X, (15)

where we set € = p = A inside €5 and € = p = I inside Qy,. Note the modified definition of the
linear form

(W)q, = / W -nAcurl B ds + / wXe—-DE"-W — (™! — Icurl E* - curl W dQ (16)
Fneu Qg
which is to account for the un—physical PML layer.
Following a Galerkin finite element procedure, we replace the continuous spaces with discrete
subspaces X7 C X, and X#' C X, and solve for discrete solutions E € XH. The discrete weak
variational statement is then: Find E} € XX such that

(,u_lcurl E;Ia curl WH)Qfs+Qd+mel —w’ (6E§{7 WH)Qfs+Qd+mel = E(WH)Qd VWhy € X({{
(17)
In the next section we shall discuss the discretisation which leads to an approximate solution of
this equation.

4 Plane wave H(curl) conforming discretisation

We follow our previous work [20] and introduce the plane wave H (curl) conforming basis functions
for quadrilateral and triangular elements.

4.1 Quadrilateral element

The lowest order (p = 0) H(curl) conforming basis functions for quadrilateral elements may be
expressed, over the reference square element —1 < £, 7 < 1 shown in Figure 2, as
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Figure 2: Reference quadrilateral element.

#-ga-n(g) #-zaen( ) (18)
B=jaro(V) s=ta-o( ) (19

where the presence of the hat denotes a vector expressed relative to the reference coordinate
system (£,7). In the usual manner, the variation of the solution over the element is expressed in

the form
- EH ! 24
Ey = ( E ¢ ) = E eid’i (20)

Hn i=1

The degrees of freedom for the lowest order edge element are defined as

Eg— L()TZ' . EHd’y (21)

Vi

where ~; and 7; are the parameterization and tangent vector in the (x,y) coordinate system to
the ¢’th edge, respectively. Ly = 1 is the zero’th order Legendre polynomial. It follows that the
unknown scalar coeflicients, e;, satisfy the relations

ei:Tz"EHli i:1a2:354 (22)

due to the fact that on an edge i, 7; - $?|i =0fori#j and 7; (}jh =1 for 4 = j. This results in
a scheme with a constant tangential component of the field along the edges of the element. In the
plane wave basis approach, we choose to represent e; as an expansion of M plane waves [16, 15]

M(3)
e; = Z AT exp {iw(z cos b, + ysinbp,)} (23)

m=1

where A}* are unknown complex valued coefficients and 6,, are the plane wave directions. In
general, the number of directions M (i) may vary on different edges. For this approach, the degrees
of freedom are defined as

Ey — / exp {iw(z cosby, + ysinb,)}r; - Egdl n=1,---,M(1) (24)
8!

The approximation Ep is then given by

4 M(3)
Ey = Z(i)j Z AT exp {iw(z cos b, + ysinb,,)} (25)

i=1 m=1
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or as

where 12;:1 are new vector shape functions which are defined as
P, =, exp {iw(w cos by, + ysinby,)} (27)

We will need to determine the components of Ey in the (z,y) coordinate system, but, we postpone
the details of how this may be accomplished until after the presentation of the basis functions for
the triangular element.

4.2 Triangular element

The lowest order H (curl) conforming basis functions for triangular elements may be expressed,
over the equilateral triangular reference element shown in Figure 3, in the form

il
2

Figure 3: Reference triangular element.

(ﬁi = 2(A1grad Ay — Aagrad A1) (2); = 2(Aggrad A3 — Azgrad \2) (28)
b = 2(Msgrad A — Argrad \s) (29)
and the approximation of the solution over the element written as
LA
By =Y eid; (30)
i=1

Here the symbols A1, A2, A3 denote the area coordinates of the master triangle and these can be
defined as

1 1
AL = 2—\/5(\/3‘1' V3¢ —n) Ay = %77 (31)
1
As = ﬁ(\/i—\/ﬁﬁ—n) (32)

These area coordinates satisfy the condition X\;(&;,n;) = d;5, where (&;,n;) are the coordinates of
vertex j and §;; is the Kronecker delta.

~t
The triangular element basis functions given in equations (28) and (29) satisfy 7; - ¢;|; = 0 on

~1
an edge i for i # j and 7; - ¢;|; = 1 for i = j. In a similar manner to the quadrilateral basis, we
choose to represent e; as an expansion of plane waves such that

3 M(i)
Ey = Z{{yf Z A™ exp {iw(x cos O + ysinbhy,)} (33)
i1

m=1
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or, equivalently, as

A 3 M(i) o
Ba=3Y Ar) (34)
i=1 m=1
where
'zz;zn = q]): exp {iw(x cos O, + ysinfp,)} (35)

are the new vector shape functions.

4.3 Covariant mapping

We will be interested in determining the components of a vector shape function 9 in the (z,y)
coordinate system. If the components of 17) in the reference coordinate system are 1]; = (1&5, z@n)T,
and we write ¢ = (¢, 1,)? for the vector shape function expressed in the (z,y) coordinate system,
it follows from a covariant mapping [30] that

$=JT ( Ve ) (36)
¥y
where J is the Jacobian matrix, which is defined as
0z 0a
—| 9 on
J = @ @ (37)
o6 On

If a linear representation of the geometry is adopted, the standard bilinear shape functions
1 1
N1 = Z(l—f)(l_ﬂ) Ny = Z(1+§)(1_TI) (38)
1 1
N; = Z(1+f)(1+77) Ny = 1(1—5)(1"‘77) (39)

can be employed to construct a mapping from (£,n) to (z,y) for the quadrilateral element. Ex-

plicitly, this mapping is given by
x ! z
=Y N 40

where (x;,v;) i = 1,2, 3,4 are the nodal coordinates. For the triangular element the corresponding

mapping is
3
T % T;
= E A ¢ 41
( y ) P ( Yi ) 4D

where }; are the area coordinates defined in equations (31) and (32). When curved geometries
are required we use a blending function approach [32] to give an exact boundary resolution. The

expression
1 (0, 0
curly = — | 2L - == 42
Y= (65 877) 42

is used to evaluate curlt in terms of the reference coordinate system. The differentiation required
for this expression is achieved through repeated use of the chain rule.
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5 Computational procedure

Following discretisation of equation (17) by the plane wave H (curl) conforming basis one obtains
the linear equation system

Bu=r (43)

with typical entries

B = / pteurlap; - curl P — wierp,; -1p,;dQ (44)
Qs +Q2a4+Qpmi

/ ¥, -n A curl E'ds +/ Wwie—DE" -4, — (u=' — Icurl E" - curl ¢,dQ (45)
Iy Q

neu d

Ti

Note that when a Cuthill-Mckee re-numbering of the edges is performed and the unknowns are
carefully numbered this system becomes banded in nature. In this section we shall comment on
how the plane wave directions may be chosen and how the evaluation of the integrals may be
accomplished. We shall also propose a new method which uses our plane wave basis to obtain an
accurate computation of the scattering width output.

5.1 Selection of the plane wave directions

We first describe how the plane wave directions may be selected for Dirchlet boundary conditions.
Next we describe how the directions inside the mesh may be chosen in such a way so as to control
the condition number of the global matrix.

5.1.1 Dirchlet boundary conditions

First let us observe that the boundary condition nAE® = —nAE® may be equivalently written as 7
E? = —7-E" in two—dimensions. One might wish to determine the coefficients A" corresponding to
the known coefficients for an edge i aligned with a Dirchlet boundary by solving an L? minimisation
problem.

(r-Eg, 79 )r =—(r-E',7-¢")r  m=1,--M() (46)

where (,)r is an L? inner product on an edge of I'. However, when linear geometry is considered,
and one of the plane wave directions is selected to be the same as the incident wave, it follows that
only the coefficient corresponding to the incident direction is non—zero. Thus the solution to this
often ill-conditioned system can be avoided.

To show that this is the case, we now consider an example consisting of a single Dirchlet edge
with M = 4 plane wave directions. We obtain the linear system

b2 biby bibs biby Al bid
2 2
o / 222 bg@ bié” Zigi ar | 4 | = Clrasing - 7, cos) / l’zj dar  (47)
T\ baby baby baby B2 Al "\ by

where the entries are of the form
b; = exp {iw(z cosf; + ysinb;)} d = exp {iw(z cosf + ysinb)} (48)
and the constant C = 7,¢;; + Ty¢$;y which arises from the tangential component of the standard

lowest order basis function may be taken outside the integral. If we select 8; = 0 and 0 # 03 #
04 # 0 then we arrive at the solution

gl _Te sin@ — 1, cos

, = A= AT = Al =0 (49)
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A complication arises in the case of curved elements as 7, sinf — 7, cosf is no longer a constant.
For curved elements, we propose the following approximation to the Dirchlet boundary condition
which avoids the computation of the solution to the ill conditioned linear system

Tz |7 8in @ — 7, |5 cos

Al = . A=A} =4} =0 (50)
in the above 7|5 = (7|5, 7y|7)7 is the tangent vector evaluated at the midpoint of the edge

(the constant C' is un-affected by the curved geometry). Note that in the case of Neumann
boundary conditions, no special selection of the directions is required as one may directly evaluate
the contribution to the right hand side vector (45).

5.1.2 Interior edges

In our previous experiments with the plane wave basis, it was found that the condition number
of the global matrix grows rapidly as the number of directions is increased [20]. Therefore, we
propose to select the number and directions of the plane waves on interior edges in the mesh in
such a way that the condition number of the global matrix is controlled. What we propose is a
similar approach to that which Monk et. al. employed to select the directions of the waves in their
ultra weak formulation [24]. In our approach, the assessment is based on the computation of the
condition number

_ max s;(B¢)
Be — Be A Be 1 — i A Sedv/ 1
W(B) = 1Bl - 1Bl = L (51)
of elemental matrices B® where s; are the singular values. The matrix B® has typical entries
B = / pteurlp, - curlp; — wrerp, “1h;dQ (52)

e

where 2¢ is the elemental area. To compute the allowable directions, the following procedure is
performed

1. Set Kmaz to be the maximum allowable condition number and M,,,, to be the maximum
number of allowable directions.

2. For i=1,nelem{

(a) Set M = M4, for all edges of the element;

(b) Select the directions of the plane waves on each edge of the element as 6; = 2nj/M
with j=1,--- , M ;

(¢) Compute k(B°®);

(d) If K(B®) > Kmaz { Set M = M — 1; goto b}}

3. For i=1,ne{

(a) Compare the number of directions on an edge 4 for neighbouring elements M; and M,
and set M (i) = min(M;, M)}

In the above nelem is the number of elements and ne is the number of interior edges in the mesh.
The above procedure make use of the result that K(B°) > k(A). If Kpqe is not exceeded, all
edges are enriched with M,,,, plane wave directions. Currently the directions are selected to be
uniformly spaced, however it is acknowledged that this may not be the best choice. A better
selection may perhaps be obtained by using ray techniques to determine the directions of the plane
waves.

5.2 Evaluation of integrals

Due to the presence of the PML and the use of blending functions for the curved boundaries, the
integrals are non standard and therefore high—degree Gauss quadrature rules are used to evaluate
the expressions. However, special analytical integration along the lines suggested by Bettess et.
al. [9] could possibly be developed which would improve the efficiency of the approach.
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5.3 Evaluation of the scattering width

Following a near to far field transformation, the scattering width may be evaluated from the

functional [17]
2

d / nAEy-V+nAculEy-YdlY (53)
r.

xm($) = 4

where I'. is a collection surface, which is chosen to completely surround the scatterer. The value
of the scattering width, measured in decibels, is given by 10log (x(¢)). The vectors V and Y are
functions of the viewing angle ¢ and are defined as

0
V= 0 |exp{iw(z' cosp+y'sing)} (54)
-1
1 sin ¢
Y = | eos ¢ | exp{iw(z' cosp + y' sin )} (55)
0

A basic approach to computing the scattering width is obtained by directly evaluating (53). How-
ever in this approach the flux term n A curl E%; is not calculated carefully, and accuracy may be
lost in the computation of the scattering width. To this end, as a more sophisticated approach, we
employ the technique proposed by Monk [25, 23], who suggests using the variational statement to
approximate the flux term. In this case, it is convenient to rewrite the scattering width as [17, 21]

xi(6) = £L°(Ew; 6)L°(En; 9) (56)

where the functional L°(FE g; ¢) is defined as
L°(Em; ) = / nAEg-Vdl + Z/ (wQEH -Yyg —curl Eg - curlYH) 4o’ (57)
T, k

Here, the summation extends over all elements k € Q such that 9k UT. # 0 and Y g is the plane
wave H (curl) interplant of Y. We can determine the coefficients of Y g by following a similar
procedure to that which was already described for determining the coefficients for the Dirchlet
boundary conditions.

6 Numerical experiments

In this section we present a selection of numerical experiments to demonstrate the performance
of our proposed procedure. All the examples presented will be measured in terms of the size of
the electrical length. This is a representative dimension of the object (eg diameter of a cylinder)
measured in terms of incident wave lengths. The higher the electrical length, the more complex
the problem. In particular, we shall apply the approach to scattering by circular PEC and PMC
cylinders which have exact analytical solutions and asses the accuracy of the original and improved
methods for calculation of the scattering width. We will also undertake comparisons of the compu-
tational efficiency of the plane wave approach with that of a hp version approach [17, 19, 21]. This
is a challenging comparison as the hp approach has already been observed to be very competitive
for scattering problems.

Furthermore we shall present numerical examples with dielectric coatings in which the material
properties take non-identity values. For these examples we shall consider PEC and PMC cylinders
with a thin dielectric coatings and use analytical solutions to asses the accuracy of the approach.
Finally, we will asses the predictive capability of the approach by applying it to non—circular
scatterers which have no analytical solution. We asses the accuracy of the proposed procedure for
these problems by undertaking comparisons with the hp version finite element code.
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6.1 Perfectly conducting cylinders

Initially we consider scattering of a plane wave by circular cylinders with PEC and PMC boundaries
and electrical length 2)\. For these examples we consider waves with an angle of propagation
8 = 0. We consider a mesh of quadrilateral elements in the form of a circular annulus with inner
radius r = 1 and outer radius r = 2. The spacing is chosen as 3 points per wavelength and
the blending function approach is used to represent the geometry. An illustration of the mesh,
without the blending function correction, is shown in Figure 4 (a). We select M, = 8, and for
this choice the corresponding scattering width distributions are shown in Figure 4 (b) and (c¢). In
this figure scattering width distributions corresponding to the analytical solutions are also shown.
For each scatterer, the plane wave scattering width distributions are computed using two different
approaches: the basic approach and the more sophisticated approach described in Section 5.3.
When the sophisticated method for calculating the scattering width distribution is adopted, very
accurate results are obtained. The more naive approach leads to an inaccurate solution.

We note that for meshes with spacings coarser than 3 points per wavelength inaccurate scatter-
ing width distributions are obtained with the plane wave approach, even if the more sophisticated
method is used. This is due to the approximations inherent in the underlying p = 0 basis functions
and the approximations introduced in the application of Dirchlet boundary conditions on curved
meshes. These problems could be addressed by increasing the order of the underlying H (curl)
conforming approximation. But this is beyond the scope of this report.

As a second example we consider scattering by circular cylinders of electrical length 8\ with
PEC and PMC boundaries. Again we employ a mesh of quadrilaterial elements in the form
of a circular annulus with inner radius » = 1 and outer radius » = 2. The mesh spacing of
3 points per wave length is retained and the blending function approach is used to represent
the geometry. An illustration of the mesh without the blending function correction is shown in
Figure 5 (a). As it is already apparent that the more sophisticated scattering width computation
performs substantially better than the basic approach, we shall henceforth only show results for
the sophisticated approach. In Figure 5 (b) and (¢) we show the computed scattering width
distributions obtained with M,,,, = 8 directions. In this figure we observe that a very accurate
prediction of the scattering width is obtained for both PEC and PMC scatterers. Note that if the
PML is coupled with an absorbing boundary condition it is expected that these accurate results
could be maintained even if I'f,, is placed very close to the object [17].

Next, we compare the performance of the plane wave approach with that of the hp version
approach. We undertake computations for the 2\ and 8\ PEC and PMC cylinders and employ
the same meshes that were previously described. In Figure 6 we present the scattering width
distributions obtained in the 2\ case. We observe that a comparable accuracy for both PEC and
PMC cylinders is obtained when uniform p = 3 elements are employed. In Table 1 we present a
comparison of the computational resources that are required by the two approaches. We observe
that the total number unknowns used in the plane wave approach is about half that for the hAp—
version approach. However, the size of the linear system that should be solved in the case of the
hp approach is smaller than that for the plane wave approach. This is because in the hp—version
approach the interior degrees of freedom (which for high p make up the majority) can be eliminated
through static condensation [17].

In Figure 7 we present findings for the cylinders of electrical length 8. We obtain comparable
accuracy to the plane wave approach for both PEC and PMC cylinders when uniform p = 3
elements are employed. In Table 2 we present a comparison of the computational resources that
are required for the two approaches. As in the 2\ case, we observe that the total number of
unknowns for the plane wave approach is about half that for the hp version approach. Although,
in the hp approach the size of the linear system is smaller.

In order to make a fair comparison to the hp version approach, we should note that only
the plane wave approach is limited by the 3 points per wavelength restriction. For the hp—version
approach one could adopt coarser mesh spacings than those presented here and still obtain accurate
results, as shown in [17]. For coarser meshes, a smaller numbers of unknowns would be required,
albeit at the computational cost of a slightly larger linear system. Reductions in the number of
unknowns required for the plane wave approach could also be obtained if the a more sophisticated
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Figure 4: Scattering by a cylinder of electrical length 2X showing: (a) a mesh with 3pts/\, (b)
PEC scattering width distribution and (¢) PMC scattering width distribution.
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Figure 5: Scattering by a cylinder of electrical length 8\ showing: (a) a mesh with 3pts/A, (b)

PEC scattering width distribution and (¢) PMC scattering width distribution.
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Figure 6: Scattering by a cylinder of electrical length 2\ showing comparisons of the scattering
width distribution for the PW version and hp-version in the cases of: (a) a PEC cylinder and (b)
a PMC cylinder.

|| Total Unknowns | Linear Solver Dimension | Bandwidth |

hp—version PEC 1920 480 116
PW version PEC || 900 900 232
hp—version PMC 2000 560 116
PW version PMC || 1080 1080 232

Table 1: Comparison of the number of unknowns required by the PW version and hp—version
H (curl) conforming finite element methods in order to obtain comparable accuracy for a 2\ cylin-

der.
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|| Total Unknowns | Linear Solver Dimension | Bandwidth |

hp—version PEC 29488 7600 404
PW version PEC || 16412 16412 808
hp—version PMC 29184 7296 404
PW version PMC || 15804 15804 808

Table 2: Comparison of the number of unknowns required by the PW version and hp—version
H (curl) conforming finite element methods in order to obtain comparable accuracy for a 8\ cylin-

der.
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method was adopted for choosing the directions.

6.2 Coated perfectly conducting cylinders

In this section we explore the application of the plane wave approach to cylinders with a dielectric
coating. We consider cylinders of electrical length 8\ with coatings of thickness 2A/3. The material
properties of the coating are

€ = 2.56 p=1 (58)

For this example we use a hybrid mesh of quadrilaterals and triangles with mesh spacing 3 points
per wavelength. An illustration of the mesh is shown in Figure 8 (a). The dielectric region
is composed of the first 2 layers of triangular elements. In Figure 8 (b) and (c) the scattering
width distributions for PEC and PMC coated cylinders are presented. In these plots we show the
distributions obtained when plane wave elements with M,,,, = 8 directions are used alongside
those distributions obtained with a hp—version approach using uniform p = 4 elements. For both
the PEC and PMC cylinders, excellent agreement with the analytical solutions are obtained with
the plane wave and the hp approaches.

| | Total Unknowns | Linear Solver Dimension | Bandwidth |

hp—version PEC 42990 9990 565
PW version PEC || 17316 17316 904
hp—version PMC 43360 10360 565
PW version PMC || 17390 17390 904

Table 3: Comparison of the number of unknowns required by the PW version and hp—version
H (curl) conforming finite element methods in order to obtain comparable accuracy for a coated
8\ cylinder.

It is perhaps quite suprising that the plane wave conforming elements perform so well for the
coated perfectly conducting cylinders, especially as the exponential functions contained in the ba-
sis functions contain the free space frequency and not the wavenumber in the dielectric medium.
Nevertheless the results produced clearly demonstrate that using plane wave basis functions, orig-
inally designed for free space regions, do not encounter difficulties when applied to problems with
dielectric materials. In the Appendix A the use of planewave approach for dielectric matearials is
discussed in more detail.

In Table 3 we give a comparison of the computational resources required for the hAp and plane
wave approaches. As in the previous perfectly conducting examples, the total number of unknowns
required in the plane wave approach is about half that in the hp version approach. The size of the
linear system to be solved in the hp approach is smaller than that in the plane wave approach.

6.3 Non—cylindrical cavities

In this final section, we apply the plane wave approach to a selection of non—cylindrical cavities.
First we consider scattering by a 4X\ PEC U shaped cavity rotated through 90 degrees. The
thickness of the walls are denoted by d and the outer dimensions are given by b+d in the x direction
and ¢ + 2d in the y direction. The implication here is that the inner cavity has dimensions b and
¢. We consider the particular cavity which is defined by the values d = 0.2A = 0.2, b = 4\ =4
and ¢ = XA = 1. A hybrid unstructured mesh is constructed to solve the problem, an illustration
of which can be found in Figure 9 (a). In Figures 9 (¢) and (d) we present the scattering width
distributions obtained for waves with incident directions 8 = 0 and § = 45 degrees. In both
cases we compare the results with that of the hp—version approach. For the incident direction of
6 = 0 we observe a very good agreement in the scattering width distribution. Although for the
case of the incident direction # = 45 the plane wave approach exhibits some differences to the hp
approach. However, the results still remain very similar. In Table 4 we show a comparison of the
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Figure 8: Scattering by a coated cylinder of electrical length 8\ showing: (a) a mesh with 3pts/A,

(b) PEC scattering width distribution and (¢) PMC scattering width distribution.
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| | Total Unknowns | Linear Solver Dimension | Bandwidth |

hp—version PEC 9335 3010 305
PW version PEC || 4002 4002 427

Table 4: Comparison of the number of unknowns required by the PW version and hp—version
H (curl) conforming finite element methods in order to obtain comparable accuracy for a coated
4\ cavity.

computational resources required for the 4\ cavity example.

Next we consider scattering by a NACA0012 aerofoil. We consider electrical lengths A and
2)\, but use the same mesh for both cases. The unstructured hybrid mesh employed is shown in
Figure 10 (a). The implication for this example is that the number of points per wavelength is
reduced for the larger electrical length. The mesh is generated in such a way that a small mesh
spacing appears in the neighbourhood of the leading and trailing edges where singularities are
known to exist. It is hoped that this specially designed mesh will improve the handling of the
singularities. In Figure 10 (b) and (c) we show the scattering width distributions obtained for the
electrical lengths A and 2\ when an incident wave with the direction § = 0 is considered. In both
cases the agreement between the plane wave and hp approaches is very good.

In Table 5 we show a comparison of the computational resources required for the plane wave
and hp approaches. Note that for the plane wave approach we select M,,,, = 6 for both electrical
lengths. Due to the adaptive way in which the directions are selected, the number of allowable
directions on the smallest triangular elements increases with the frequency. This is because the
elemental condition number for these elements reduces as the number of points per wave length
increases. We therefore observe an increase in total number of unknowns for the plane wave
approach, as shown in Table 5 . For the hp approach a higher degree polynomial is required for
the 2\ example, thus resulting in the increase in number of degrees of freedom for this case.

| || Total Unknowns | Linear Solver Dimension | Bandwidth |

hp—version A 11392 4608 572
PW version \ 5327 5327 858
hp—version 2\ 26544 6912 858
PW version 2\ || 6762 6762 858

Table 5: Comparison of the number of unknowns required by the PW version and hp—version
H (curl) conforming finite element methods in order to obtain comparable accuracy for NACA0012
aerofoils of electrical lengths A and 2\ .

7 Conclusions

In this report we have extended our previous work on plane wave H (curl) conforming elements [20]
to electromagnetic scattering problems. Methods have been proposed for the application of Dirch-
let and Neumann boundary conditions together with a new approach which leads to the accurate
evaluation of the scattering width output. Results on both quadrilateral and hybrid meshes demon-
strate that the proposed method is very accurate at predicting the scattering width distributions
for coated and uncoated PEC and PMC cylindrical scatterers. The method also compares well with
a hp code for non—cylindrical scatterers. Comparisons of the computational cost of the method
with that of the hp approach demonstrate that the required number of global unknowns is smaller.
On going research is concentrated in to the efficient selection of the directions, which it is hoped
will lead to a reduction in the size of the linear system for the plane wave approach.
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A Plane wave approach for dielectric media

In this report we postulated that the scattered field in air may be written as

N M(n)
E3 = Z b, Z AT exp{iw(z cos b, + ysinb,,)} (59)
n=1 m=1

where N is the total number of basis functions. We now wish to explore this approximation in a
little more detail, for the case of dielectric mediums.

Following Jackson [13], let us consider a dielectric interface between two materials, as shown
in Figure 11 the first with properties € and pu, the second with properties € and p'. We consider a
wave incident to this interface and examine the resulting transmitted and reflected waves

e Incident wave

E* = Eyexp{ik - 2} (60)
e Transmitted wave
EF = Ejexp{ik’ - x} (61)
o Reflected wave
EF = E{ exp{ik" - x} (62)

In order that the interface conditions (6,7) are satisfied, we require on y = 0 that
kz=k -z=k'-=2 (63)

The amplitudes of the vector wavenumbers k, k" and k" are as follows

k| = k| =k=2Vae |K|=K =2 (64)
and it follows that
ksini = k'sinr = k" sinr’ (65)

Further, note that as ¢ = r/, then k = k"’

'

<V

ep
o\

Figure 11: Interface between two materials



22 ELECTROMAGNETIC SCATTERING SIMULATIONS USING PLANE WAVE H (CURL) ELEMENTS

Let us now turn our attention to our plane wave finite element procedure in dielectric media.
At first sight, one might expect that the field inside the dielectric should be approximated as

N M(n)
s = Z ®, Z AT exp{ikq(x cos 8y, + ysinb,,)} (66)
n=1 m=1

using the wavenumber in the dielectric, (w? = k3eu) However, we see that this is not necessarily
the case.

On a given edge n of the dielectric interface I'12 we prescribe a number of directions 61,62, -+ , Oar(n),
which will be the same independent of whether the edge is considered as part of the free space
region or as part of the dielectric medium. We require that 7 - E%|fs = 7 - E%|q on edge n. This
then suggests that we should use

M(n)
T-Eyla=C Z AT exp{iw(x cos by, + ysinby,)} (67)

m=1

as the approximation of the field on edges adjacent to the dielectric region (when viewed from inside
the dielectric). This choice then automatically satisfies equation (63) for all of the considered plane
wave directions.

On edges residing in the interior of the dielectric, one may also use the approximation based
on the frequency w as the solution procedure will automatically select the amplitudes A7 of the
wavenumbers (w cos @, w sin6,,), corresponding to the wavenumber of the wave in the dielectric
medium, to have the largest magnitude.
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