Finite Elements for Elliptic Problems with
Stochastic Coefficients !

P. Frauenfelder, C. Schwab and R.A. Todor

Research Report No. 2004-12
October 2004

Seminar fir Angewandte Mathematik
Eidgenossische Technische Hochschule
CH-8092 Zurich
Switzerland

'supported in part under the IHP network Breaking Complexity of the EC (contract number HPRN-
CT-2002-00286) with support by the Swiss Federal Office for Science and Education under grant No.
BBW 02.0418.



Finite Elements for Elliptic Problems with Stochastic Coefficients !

P. Frauenfelder, C. Schwab and R.A. Todor

Seminar fir Angewandte Mathematik
Eidgenossische Technische Hochschule
CH-8092 Ziirich
Switzerland

Research Report No. 2004-12 October 2004

Abstract

We describe a deterministic Finite Element (FE) solution algorithm for a stochastic
elliptic boundary value problem (sbvp), whose coefficients are assumed to be random
fields with finite second moments and known, piecewise smooth two-point spatial cor-
relation function. Separation of random and deterministic variables (parametrization
of the uncertainty) is achieved via a Karhunen-Loeéve (KL) expansion. An O(N log N)
algorithm for the computation of the KL eigenvalues is presented, based on a kernel
independent Fast Multipole Method (FMM). Truncation of the KL expansion gives an
(M,1) Wiener Polynomial Chaos (PC) expansion of the stochastic coefficient and is
shown to lead to a high dimensional, deterministic boundary value problem (dbvp). An-
alyticity of its solution in the stochastic variables with sharp bounds for the domain of
analyticity are used to prescribe variable stochastic polynomial degree r = (r1,...,7ar)
in an (M, r) Wiener PC expansion for the approximate solution. Pointwise error bounds
for the FEM approximations of KL eigenpairs, the truncation of the KL expansion and
the FE solution to the dbvp are given. Numerical examples show that M depends on
the spatial correlation length of the random diffusion coefficient. The variable polyno-
mial degree r in PC-stochastic Galerkin FEM allows to handle KL expansions with M
up to 30 and 7, up to 10 in moderate time.
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1 Introduction

The rapid development of (adaptive) algorithms, hardware and software in recent years
has made the accurate numerical solution of elliptic partial differential equations a
routine matter in many (but not all!) engineering applications. Despite this, results of
accurate FE computations often deviate significantly from the responses of the physical
system under consideration. Having eliminated the discretization error, and assuming
(boldly, perhaps) that the modelling error inherent in the selected partial differential
equations (PDEs) is negligible (i.e. that the adopted PDEs precisely describe the
physics of the system under consideration), the gap between simulation and observation
must be due to uncertainty in the input data. This is closely related to the fact that,
contrary to popular belief, so far a computer can only transform information rather
than increase it.

One task for applied mathematics and scientific computing is therefore to develop
tools for “uncertainty processing”, i.e. the systematic and quantitative numerical rep-
resentation of uncertainty in input data and its propagation to the output of a FE
simulation. This requires new developments in several areas of applied mathematics
and engineering: input parameters are replaced by random variables resp. by random
fields with known or estimated statistics, and the governing PDEs must be reformu-
lated as stochastic PDEs. Traditional deterministic FE solutions must be reformulated
to allow for randomness in input data and solution.

In the present paper, we focus on this latter aspect, i.e. the formulation, design and
analysis of deterministic FEM solutions of stochastic elliptic PDEs by the stochastic
Galerkin method.

This method has been used for some time (e.g. [12, 15] and the references there)
in engineering. It is based on a Ritz projection onto a finite dimensional subspace of
the probability space.

Our model problem is an elliptic diffusion problem in a domain D with inhomo-
geneous stochastic diffusion coefficient a(z,w) which we assume for simplicity to be
isotropic.

To specify assumptions on the coefficients a(z,w), we let (2, %, P) be a o — finite
probability space and D C R? a bounded open set with Lipschitz boundary ' = 0D.
We assume that a € L®°(D x ) is strictly positive, with lower and upper bound « and
[ respectively,

a<a(z,w) <B, AXP—ae (z,w)€DxQ. (1.1)

We consider the following model problem, with stochastic Lh.s.,

{—div(a(m,w)vxu(z,w)) = f(z) inD

, P—ae weq. 1.2
w(z,w) lacop = 0 (1.2)

The coefficient a(z,w) as well as the solution u(x,w) are random fields in D C R?, i.e.
jointly measurable functions from D x € to R.



We assume that the known information about the diffusion coefficient a includes
its mean field and its two-point correlation, given by

E,(x) ::/Qa(ac,w) dP(w) and C,(z,z') ::/Qa(a:,w)a(a:',w) dP(w), (1.3)

i.e. that E,(z) and Cy(z,z') are explicitly and exactly known (this is a rather opti-
mistic assumption since often a functional form of C,(z,z’) is postulated with a finite
number of free parameters which are statistically estimated from the available data).
We emphasize that we do not assume ergodicity of the random field a(z,w).
An equivalent assumption is that the mean field F, and its covariance V, are known,
since by definition,
Va(z,2') i= Co(z,2') — Eo(z)Eo(a'). (1.4)

Given this information on a(z,w) and a known deterministic source term f(z) (this
could be relaxed as well, see e.g. [20, 21]) our aim is to solve (1.2).

Whereas the random field u(z,w) is, under assumption (1.1), a mathematically
well-defined object, the task ‘compute u(z,w)’ is less obvious to realize numerically
and of limited interest in practice. In applications only certain statistics and moments
of u(z,w) are of interest, and this is also our goal of computation: given statistics
E, and C, of the data, compute statistics of the random solution u, like E,,C, or
probabilistic level sets,

D’ :={z e D|P(u(z,-)| >0 <e} (1.5)

if £,8 > 0 are given.

Note that for C,, V, to exist, a(z,w) must have finite second moment, and this
follows immediately from (1.1).

The simplest approach to a numerical solution of (1.2) is Monte Carlo (MC) simu-
lation. This means to generate numerous samples of a(z,w) with prescribed statistics,
solve (1.2) for each sample, and to determine the statistics of u(z,w) from the set
of solutions. Due to the generally slow convergence of MC methods, this approach
requires a rather large number of ‘samples’, i.e. a large number of solutions of deter-
ministic, three-dimensional boundary value problems. Conceptually, MC corresponds
to a ‘collocation in w’.

Perturbation methods (see e.g. [3]) to solve (1.2) represent the stochastic solution
as an exponentially convergent infinite series, in which each term solves a problem with
the same deterministic coefficient (that is, independent of w) but different stochastic
loadings. It turns out that in order to compute exactly even the simplest statistic of u,
namely E,, one has to know the distribution function of a(x,-) at any x € D, a very
strong requirement.

Here, we develop and analyze a stochastic Galerkin method for the numerical solu-
tion of (1.2) which can be understood as Galerkin discretization in probability space.
Stochastic Galerkin methods have attracted considerable attention in recent years, we
mention here only [1, 2, 7, 12, 13, 15] and the references there. Unlike the ‘colloca-
tion’ type MC approaches, in stochastic Galerkin FEM the stochastic ‘variable’ w is



discretized by an orthogonal projection with respect to the probability measure P onto
a finite dimensional subspace of (2, %, P).

The idea of reducing a stochastic partial differential equation to a high dimensional
deterministic one is not new — see, e.g. [12, 13, 23, 24] and the references there.
The feasibility of a stochastic Galerkin discretization of (1.2) strongly depends on the
availability of a basis of L2(£2, dP). In numerous works [12], [13], the use of a so-called
Wiener Chaos expansion [23] has been advocated. Here, we use the Karhunen-Loéve
expansion of the random field a(z,w) to generate coordinates in (2,3, P) with certain
optimality conditions for the deterministic approximation of the random solution. To
realize this computationally, for general covariance kernels and in general domains, we
propose a kernel independent Fast Multipole Method to compute the eigenpairs of the
covariance operator for a(z,w) in log-linear complexity per eigenpair.

The stochastic Galerkin FEM is, like the deterministic FEM, based on a variational
formulation of (1.2). To define it, we introduce the Hilbert space H}(D) of Hg(D)-
valued random fields with finite second moments H}(D) = L*(Q,dP; H}(D)). The
variational form of (1.2) reads: Find u € H(D) such that for every v € H}(D)

/Q</Da(w,w)vmu-vwvdx> dP(w):/Q(/Df(a:,w)v(x,w)dm> dP(w)  (1.6)

Under assumption (1.1), existence and uniqueness of a solution u to (1.6) follow from
the Lax-Milgram Lemma.

Acknowledgement The authors would like to thank Dr. Raul Tempone for helpful
discussions.

2 Karhunen-Loéve (KL) expansions

To reduce (1.2) to a deterministic (albeit infinite dimensional) problem, we separate, in
a sense, deterministic and stochastic variables in the coeffcient a(z,w). The theoretical
tool to this end is the so-called Karhunen-Loeve (KL) expansion.

2.1 Properties of the Karhunen-Loeve expansion

If the random diffusion coefficient a € L?(D x Q), then V, € L?(D x D) and its
covariance operator

Vo: L*(D) = L*(D), (Vou)(x):= /D Va(z, 2" )u(z")dz' Vu € L*(D) (2.1)

is a symmetric, non-negative and compact integral operator. It therefore has a count-
able sequence (A, ¢p)m>1 of eigenpairs with

R3 A, 0, asm— o0 (2.2)

(we assume here that the KL eigenvalues are enumerated in decreasing order of mag-
nitude: A\ > Ay > ... > 0 with multiplicity counted).



Moreover, there exists a sequence of random variables (X, )m,>1 such that

/ X, (w) dP(w) = 0, / X (@) X (@) dP(@) = by Vmom>1,  (23)
Q Q
and a(z,w) can be expanded in a Karhunen-Loéve expansion:

a(z,w) = Eo(z) + > V Am¢m(z) X (). (2.4)
m>1
The KL expansion converges in L?(D x Q) (see [14]) due to

o0

mz;lkm = /D/Qa(ac,w)2 < 0. (2.5)

Remark 2.1 The convergence rate of the KL series in L?(D x Q) is equal to the one
of the eigenvalue sum in (2.5) (see also Figure 1).
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Figure 1: Convergence rates of the KL series in 1D and 3D.

If, however, the sequences (¢m)m>1,(Xm)m>1 are uniformly bounded in L*°(D)
and L%°(Q; dP) respectively, and if

i VAm < 00, (2.6)
m=1

then the Karhunen-Loéve expansion (2.4) converges uniformly on D x .

Below, we approximate a(z,w) by a deterministic function ay(z,w) of the first M
random variables (X,,)1<m<nm by truncating the KL expansion (2.4). Since truncation
of the KL expansion after M terms will later be seen to lead to an M + d dimensional
deterministic problem, the complexity of our approach strongly depends on the size of
M which in turn (compare (2.6)) depends on the decay of the KL eigenvalues Ap,.



2.2 KL eigenvalue decay

Decay criteria for the KL eigenvalue sequence (A, )m>1 are crucial, since KL eigenvalue
decay determines the stochastic regularity and the complexity of the stochastic Galerkin
FEM as we shall see below.

We state decay rates for the KL eigenvalues in terms of regularity of the covariance
kernel V,. Roughly speaking, the smoother the covariance kernel of the coefficient,
the faster the KL eigenvalue decay, with analyticity implying exponential decay and
finite Sobolev regularity giving rise to algebraic decay. Remarkably, these results hold
true already for piecewise (in the sense of the following definition) regularity of the
covariance kernel. For proofs, we refer to [21] and [22].

Definition 2.2 If D is a bounded domain of R, a covariance function V: DxD — R
is said to be piecewise analytic/smooth/HP? on D x D if there exists a finite family
(Dj)i<j<a C R? of open hypercubes such that

J
pc|Jm; (27)
7j=1

D;NDjy =0,Vj#j' and V|p;xp; has an analytic/smooth/H? @ HY continuation in
a neighbourhood of Dj x Dj for any pair (j,j').

2.2.1 Analytic regularity

Proposition 2.3 Let V € L?(D x D) be a symmetric covariance kernel defining a
self-adjoint, non-negative and compact integral operator via

V:IX(D) - IXD), (Vu)(z)= / V(' )u(e) da'. (2.8)
D

If V is piecewise analytic on D x D in the sense of Definition 2.2, and if (Am)m>1
is the eigenvalue sequence of its associated operator (2.8), then there exist constants
c1,c2 > 0 such that

0< Am <cre @™’ Ym>1. (2.9)

One is often interested in Gaussian covariance kernels of the form
Va(z,2') = o? exp(—|z — 2'|*/(v*A?)), V(z,2') € D x D, (2.10)

where o, > 0 are real parameters and A is the diameter of the domain D. Note that o
and «y are in this case referred to as the standard deviation and the correlation length of
a respectively. Since this kernel admits an analytic continuation to the whole complex
space C?, the eigenvalues decay is in this case even faster than in (2.9) (compare Figure
2).



Proposition 2.4 Ifa € L*(D x Q) and V, is given by (2.10), then for the eigenvalue
sequence (Am)m>1 of V, it holds

(1/y)™ /" +2
['(0.5mnl/d)

2 Vm > 1. (2.11)

0<AIpSo
Note that the decay estimate (2.11) is subexponential in dimension d > 1, and this is
essentially due to the higher multiplicity of the eigenvalues in dimension larger than
1. To visualize this effect, we plot in Figure 2 the largest 2000 eigenvalues of the 3D
factorizable kernel V,(z, ') = exp(—10|z —z'|?),z € (—1,1)? together with an estimate
obtained by dropping the (asymptotically negligible) numerator in (2.11).
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Figure 2: Eigenvalue decay for analytic covariance kernel in 3D.

2.2.2 Sobolev regularity

Many covariances which occur in engineering practice are piecewise analytic in the sense
of Definition 2.2 (see [17]). If, however, V(z,z') admits only finite Sobolev regularity,
for instance if

Vo(z, ') := o? exp(—|z — «'|*0 /(v P AM9))  V(z,2') € D x D, (2.12)

for some 0 < § < 1, algebraic decay of the KL eigenvalues can be shown (compare
Figure 3).

Proposition 2.5 If V € L?(D x D) is symmetric and piecewise HP® with p > 0,
then for the symmetric, non-negative and compact Carleman operator defined by (2.8)
it holds

0< A Sm7P% Ym > 1. (2.13)



Note that in this case a small correlation length v can deteriorate the eigenvalue decay
rate only by a multiplicative factor.

Note also that the symmetry and regularity assumptions on the covariance kernel V
ensure via interpolation that V is piecewise HP''P2, Vp,,ps > 0 with p; + ps = p, too.
For further details and typical examples of covariance kernels satisfying such regularity
asumptions we refer the reader to [20], section 4.3.

For D = (—1,1) we plot in the Figure 3 the first 10 eigenvalues of the analytic kernel
V(z,z') = exp(—|z — z'|?), whose decay is well approximated by the inverse of the
factorial (dashed line). The second plot shows the largest 14 eigenvalues of the kernel
V(z,z') = exp(—|z — z'|'t%) for various values of §, as well as the corresponding
asymptotic estimate (2.13).
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Figure 3: Eigenvalue decay in dependence on the regularity of the kernel.

2.3 KL eigenfunction estimates

The pointwise convergence of the KL expansion is essential for the error control in
(1.2) when truncating the KL expansion after M terms. So, beside criteria ensuring a
fast decay of eigenvalues, we need to estimate also the eigenfunctions of the covariance
kernel in the L*°(D) norm.

Proposition 2.6 Let V € L?(D x D) be symmetric and piecewise smooth in the sense
of Definition 2.2 and w.r.t. the covering (2.7). Denote by (Am,Pm)m>1 the sequence
of eigenpairs of the associated covariance operator via (2.8), such that ||mllr2(py =
1,Ym > 1. Then for any s > 0 and any multiindez o € N% it holds, with a constant
depending on s,a and V,

10%bmllLeo(p;) S [Am| %, VI<j < JVm >1. (2.14)



3 Fast Multipole Computation of KL expansions

In order to use the (truncated) KL expansion (2.4) in practice, we must be able to
compute efficiently and accurately its first M eigenpairs in arbitrary domains D. In
one dimension, for particular kernels, explicit eigenfunctions are known (see, e.g., [12]).
These can be used to obtain explicit eigenpairs also for multidimensional tensor product
domains D, if V,(z,z') is separable. This is often the case in subsurface flow problems,
where D is a box and the covariance kernel V, of Gaussian type (2.10).

To deal with random coefficients in arbitrary geometries, however, an efficient nu-
merical approximation of the eigenpairs of the operator associated to the covariance
kernel via (2.8) is an essential step in the efficient numerical solution of problem (1.2).
Note that only the eigenpairs (Ap,,un) with A, # 0 are of interest. The eigenvalue
problem reads in variational form: Find 0 # A € R and 0 # u € L?(D) such that

/ Va(@, ") pm (2 v(x) do’ dx = /\m/ bm(z)v(z)dz Yo € L*(D). (3.1)
DxD D

Since the eigenpairs of V, are used to approximate the diffusion coefficient a, L*
approximations of the eigenfunctions are needed. To compute KL eigenpairs, we use
finite element (FE) discretizations of (3.1) with piecewise constants on a shape regular,
quasi-uniform triangulation 7, of D with meshwidth h (which will later also be used
for the FE approximation of (1.2)). To avoid technicalities, we assume that 7}, is
subordinate to the covering {D; }1<j<s of D, i.e. that each D; N D is a finite union of
closed simplices in 7. Let 52 denote the FE space of discontinuous, piecewise constant
functions on 7. The Galerkin approximation of (3.1) with the FE space S C L?(D)
reads: find 0 # A, ¢l € 52 such that

/ Va(z, 2" " (2")v(z) dy dz = )\fn/ ot (z)v(z)dz Vv € S). (3.2)
DxD D

For the eigenpair approximation error we have the following pointwise bound (see also

[16]).

Proposition 3.1 Suppose that a € L®(D x Q) such that V, € C*(D, L?(D)).
Let (A, um) be an eigenpair of V, with Ay, # 0. Then it holds, with constants depending
on Vg and m,

_ h
{ | prm ¢m||L°°(D) as h — 0. (3.3)

< h
‘)‘m - ’\gv,l 5 h
We remark that in the proof it is not essential that the eigenfunction approximation is
piecewise constant — higher order approximations can be obtained provided that ¢, (z)
is sufficiently smooth piecewise in D and that S is replaced by SP (see [21] for details).

The calculation of KL eigenpairs involves the solution of the dense matrix eigen-

problem corresponding to (3.1), i.e. of

V= A\M¢. (3.4)



Here both matrices V and M are symmetric and positive definite, with M being diag-
onal if we choose as basis of ,5'2 the characteristic functions of the elements K € T,

For physical domains D in dimension d = 3 and realistic meshes 7, the size N of
the eigenproblem can be as large as 10% and standard eigensolvers are not applicable.

We compute eigenpairs corresponding to the largest eigenvalues by an iterative
Krylov subspace eigensolver [11] which requires only matrix vector multiplies. This is
feasible for large N since the multiplication ¢ — V¢ can be done in O(N log N) oper-
ations and memory using a variant of the fast multipole method for general, piecewise
analytic correlation kernels V,(z,z’), with a cluster tree subordinate to the partition
of D introduced in Definition 2.2 of the piecewise smoothness (see [18], [19]).

1st Eigenfunction of C(x,x’) = exp(-4|x-x|?) on L-shaped Domain

6th Eigenfunction of C(x.x') = exp(~4|x-x|?) on L-shaped Domain
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Figure 4: Eigenfunctions of the Gaussian covariance kernel on the L-shaped domain
for correlation length 0.5, computed using a full matrix on a regular triangulation with
4096 elements.

4 Stochastic Galerkin Method

Throughout this section we assume that the diffusion coefficient a satisfies (1.1) and
possesses a Karhunen-Loéve expansion (2.4) such that



1st Eigenfunction of C(xx) = exp(~4jx-x|?) on L-shaped Domain - clustering 6th Eigenfunction of C(x.x') = exp(~4|x-x|?) on L-shaped Domain - clustering
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Figure 5: Eigenfunctions of the Gaussian covariance kernel on the L-shaped domain
for correlation length 0.5, computed using clustering on a regular triangulation with
4096 elements.

Assumption 4.1 The family X = (X;)m>1 of random variables is uniformly bounded
in L*(Q,dP), i.e.

E'CX > 0, ||Xm||L°°(Q,dP) S cx € R, VYm Z 1. (41)
Assumption 4.1 coupled with the eigenvalue and eigenfunction estimates derived in
Propositions 2.3, 2.5, 2.6 allow then a good control of the truncation error in the KL
series.

4.1 Truncation of the KL expansion of a

Under Assumption 4.1 we give next sufficient conditions for the uniform convergence
on D x Q of the KL expansion of a.
For any M € N we define the truncated coefficient

M
an (2, 0) = Ba(@) + > vV Amtm (@) Xom (w). (4.2)
m=1

We have the following pointwise error estimates for the truncated coefficient in depen-
dence on the smoothness of a(z,w).

10



Proposition 4.2 [piecewise analytic/smooth kernel] If V, is piecewise analytic/smooth
on D x D and (4.1) holds, then the KL expansion of a converges uniformly on D x Q
at the rate

e—c2(1/2—s)Mm/4

if Vi, pw analytic
la —anmllze(pxa) S { M l-p(1=s)/d S ,

VM € N, 4.3
if Vo pw smooth (43)

for any s > 0,p > 0 and with a constant depending on d, s, c1,co,cx, J.

Note that since p can be chosen arbitrarily large and s arbitrarily close to 0 in (4.3),
the tail of the KL series of a is rapidly decaying, uniformly on D x Q.

The well-posedness of the stochastic pde with truncated diffusion coefficient a s follows
easily from Proposition 4.2.

Proposition 4.3 If V, is piecewise smooth on D x D, then the random field ap(z,w)
is bounded and positive for M large enough, depending on o, in (1.1) and V,

a2 <apy(z,w) <28, AXP—ae (z,w)€DxN. (4.4)
A Strang-type argument allows the control of the error in the solution w.

Proposition 4.4 [Strang] Assuming (1.1), let u and ups be the unique solutions in
HY(D) := T, dP; H(D)) of

—div(a(z,w)Veu(z,w)) = f(z) in L*(Q,dP; H (D)) (4.5)

and
—div(ay (z,w)Veun (z,w)) = f(z) in L*(Q,dP; H™' (D)) (4.6)

respectivley. Then

e = warllyoy < (/) - lla = aarlL oo pey * lllsg oy (@)

Combining Propositions 4.2, 4.4, we obtain that the error due to replacing the diffusion
coefficient a by its truncated KL expansion aps in (1.2) is rapidly decaying as M — oo,
at least in the case of piecewise analytic/smooth covariance kernel V,. This is essential
since the number M of terms retained in the KL expansion will later on determine the
deterministic dimension necessary for the stochastic Galerkin method.

Corollary 4.5 Consider a diffusion coefficient a satisfying (1.1) and such that V, is
piecewise analytic/smooth on D x D. If u and ups are the solutions of (4.5) and (4.6)
respectively, then

e—c2(1/2—s)M1/?

f Vi lyti
llu = unrllagg oy < lullago) - {  p-s)d if Vo pw analytic (4.8)

if Vo pw smooth,

for M large enough and any s > 0, p > 0.

11



4.2 Associated deterministic problem

In this section we study the equation (4.6) obtained by truncation at level M of the KL
expansion of the diffusion coefficient a in (1.2). Without loss of generality, we suppose
in the following cx = 1/2, so that for (X;)m>1 in (2.4),

Ran X,,, C I :=[-1/2,1/2], VYm> 1. (4.9)

The reduction of the stochastic boundary value problem (1.2) with truncated diffusion
coefficient aj; to a deterministic elliptic problem will be achieved under

Assumption 4.6 The family X = (Xp)m>1 of random variables is independent.

We denote by p,, the probability measure associated to the random variable X,,,
pm(B) :== P(X,, € B) for any Borel set B C I (4.10)
and, for all M > 1, we define a probability measure on IM by
Pi=p1 X P2 X...Xpp. (4.11)

To apr we associate the (M, 1) PC expansion a,s by

M
av DX IM R, an(z, 91,9, - - Ym) = Ea(z) + Z VAmém(T)Ym-  (4.12)
m=1
We consider the following deterministic elliptic problem, in variational form: Find
@iy € Hi (D) ® L2(IM, dp) such that
—div(an(z,y)Vau(z,y)) = f(z) in H- (D) & L*(I™, dp). (4.13)

The uniform ellipticity of all truncates ap; ensures the well-posedness of (4.13). The
solution of (4.6) can be then obtained from the solution of (4.13) by backward substi-
tution, as follows

Proposition 4.7 If Gy is the solution of (4.13) and ups solves (4.6), then
up (z,w) = ap(z, X1(w), Xo(w), ..., X (w)), (4.14)
AXP— ae. (z,w0)€DXxQ.

4.3 Stochastic Regularity

In this section we study the deterministic elliptic problem (4.13), assuming, for sim-
plicity, that p ~ A, the Lebesgue measure on I™. The solution @js solves then also:
Find @iy € H (D) ® L2(IM) such that

~div(an(z,y)Vam(z,y)) = f(z)  in H(D) ® LX(IY). (4.15)

12



If the number M of terms retained in the truncated KL expansion is large, the number
of degrees of freedom necessary for the accurate solution of Problem (4.15) appears to
be prohibitive. However, this is not so in general due to favourable regularity properties
of the solution i (z,y) with respect to y.

We formulate here a result on ’stochastic regularity’ which will allow us below to
show that the computational effort in solving (4.15) is moderate, even for large M.

We assume the covariance kernel V, to be piecewise analytic in the sense of Defini-
tion 2.2. Obviously, due to definition (4.12), aas(z,y) has, as a function of y € I™, an
L>®(D)-valued analytic extension on C™. The solution #ys posseses also an analytic
continuation to a cylinder-neighbourhood of I™ in the complex plane, as follows from
the next result. To precisely describe this neighbourhood, we introduce the quantities

Vm = V Amlldmllpeo(py, Vm > 1. (4.16)

By Propositions 2.3 and 2.6, we have, for piecewise analytic V,(z,z') and any s > 0,
the decay estimate

_ _ 1/d
0<up, 5 e ca2(1/2—s)m :

Vm > 1. (4.17)

Due to the decay estimate (4.17), the size of the domain of analyticity of @y, increases
in each direction y,, as m increases from 0 to M. More precisely, it holds

Proposition 4.8 Let uys be the solution of (4.13). Then, for all M > 1, Gy can be
analytically extended, as an H&(D)—Ualued function on IM to

M
GM .= {(21,22,. .. ,ZM) ecM | Z Vm|zm| < C}a (418)

m=1

where ¢ > 0 depends on the diffusion coefficient a.

4.4 Polynomial Chaos Discretization

The analyticity of @ as a function of y ensures an exponential convergence rate of
its finite element (FE) approximations obtained by a p-method w.r.t. y which is the
projection onto a “polynomial chaos” subspace of the probability space.

To this end we define, for r € N, the space of polynomials of degree at most r,

P := span {Lt,tQ,""tr} - LZ(I) (419)
and, for r = (r1,79,...,727) € N an anisotropic polynomial space by
'Pr = PT1®P72®"'®PTM CL2(IM), (4.20)

Further, for r € N™  we denote by up,e the solution of the y-semidiscretization of
(4.15) in the subspace H} (D) ® Py: Find Gy € Hj (D) ® Py such that

/ / an(z,y)Veumr(z,y) - Vev(z,y) dedy —/ / f@)v(z,y)dxdy, (4.21)

13



Vv € H} (D) ® Py

Based on the quasi-optimality of any Galerkin projection of (4.15) and on Proposition
4.8, we estimate the convergence rate of the y-semidiscretization of (4.15) in terms
of the overall number N, of deterministic problems to be solved, independently of the
number M of terms retained in the truncated KL expansion ap(x,y).

Theorem 4.9 Let a € L (D x Q) satisfy (1.1). Suppose that V, is piecewise analytic
so that (2.9) holds with two strictly positive constants c1,cy. Define

o = [MY4mY4), v1<m < M. (4.22)

Then, with constants depending only on c1,ce and with an absolute constant cs,

N, := dim P, < e3M (4.23)
and 1/d —1/d 1/d
lanr — Gnrell gy pyor2 oy S e M S 672 (log Ne)'/%, (4.24)

Remark 4.10 Due to the y-analyticity of tpr, one can show that the asymptotic error
estimate (4.24) holds also in H} (D) ® L™ (IM).

Remark 4.11 The convergence rate (4.24) is, for d = 1, algebraic and, for d > 1,
sub-algebraic, which makes the computation in the latter case rather expensive. Using
different polynomial FE spaces for the y-discretization, the convergence rate can be
improved.

Remark 4.12 Theorem 4.9 assumed ezact eigenpairs (Apm, dm)1<m<m of the KL ea-
pansion. However, a similar result also holds for computed eigenpairs (A, qf)ﬁln)1§m§M
after choosing M ~ |logh|¢, in order to balance the KL truncation and eigenvalue
discretization errors (see [22] for details).

Remark 4.13 Figures 6 to 9 show strong dependence of the constant co in (2.9),
(4.3),(4.8) on spatial correlation length v in (2.10); (4.22) gives a sound basis for se-
lection of variables and orders in the polynomial chaos approzimation (4.31) of the
random solution u.

4.5 Adaptive Selection of Stochastic Degree

Proposition 4.9 gave an error estimate of the spectral discretization in the stochastic
variable based on the assumption of piecewise analyticity of the covariance function
Va(z,2') in D x D and based on the a-priori selection (4.22) of the stochastic polynomial
degrees 7, which is based on the stochastic regularity result Proposition 4.8.

Alternatively, one can determine numerically the polynomial degree r, using the
following Algorithm which successively identifies the coordinates y,, in which the largest
change in the FE solution occurs when the polynomial degree r,, is increased.

14



Algorithm 4.14
1. Choose a steering parameter 0 < § <1
2. Choose an overkill level K € N (in practice K <15)
3. Compute
UM k-em VI<kE<K,1<m<M,

with (e1,es,...ey) the standard basis of RM
4. Compute the decay rate of the relative error (size of domain of analyticity of tnr)
w.r.t. Yk

Nncke := %ns ke — Bt (k—1)-em |l
m,k ‘=

% as,(k—1)-em |l

foralll<kE<K,1<m<M
5. Initialize the polynomial degree r := (0,0,...,0) € NM
6. Determine the ’active’ stochastic dimensions

Mo :={m | thngpt1 2 0+ 8% o1}

7. Compute the new polynomial degree (raise vy, for all m € My)
Tpew '=T + Z €m
meEMg

8. If max,, r,, < K goto 6 else stop

Remark 4.15 One can use a simplified (algebraic) version of the Algorithm (4.14) to
generate the adaptive polynomial degree r, by replacing the stochastic pde to be solved
in step 3 by a stochastic algebraic equation,

M
(:60 + Z ﬂmym)u =1

m=1

where
Bo := i%fE'a, B = \//\m||¢m||Loo(D) ~\/Am, m > 1.

Remark 4.16 Moreover, one can compute (Nmk)i<k<k only for a small value of K
and use a-priori knowledge (exponential decay in k) to predict 0y, for all k > K by
linear regression on (log(Mm.k))1<k<K -

The next figures show the results obtained using the algebraic version of Algorithm
4.14 (see Remark 4.15) for different correlation lengths  in (2.10), on the unit square
and the L-shaped domain, respectively.
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Figure 6: Exponential eigenvalue decay and adapted polynomial degree (obtained using

the algebraic version of the algorithm) on the unit square and L-shaped domain for
correlation length 1.

4.6 Algorithms

The analyticity of the covariance kernel V, can be exploited to semidiscretize (4.21)
w.r.t. y. We show next that the solution of the semidiscrete problem (4.21) can be
obtained numerically by solving a large number (depending on r) of independent de-
terministic elliptic bvps with different data and we derive the corresponding algorithm.
Consequently, to compute the solution of (4.21), one can use any of the already avail-
able deterministic solvers combined with the algorithm we derive in the following.
The semidiscretization of (4.21) w.r.t. y can be done using any basis of P,, but this
results in general in a coupled system of deterministic elliptic bvps. There exists, how-
ever, a choice of basis which leads to a decoupled system. To describe it, let us denote,

for 1 <m < M and r,, € N, by (14j,r,.> Pjrm )Jo<j<r,, the eigenpairs of the symmetric
bilinear form
1/2

(u,v) — u(t)v(t) tpp, (t)dt

(4.25)
—-1/2
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the algebraic version of the algorithm) on the unit square and L-shaped domain for
correlation length 0.5.

over P, := span{l,t,t2, ... t'm}.
For notational convenience we define on the index set N the ordering
j€r = 0<jm <rmm,V1<m <M, (4.26)
Vj= (j1,42,---,4m), T = (r1,72,...,707) € NM_ We further set
Pr:=Pjr @Pjr, @ - Q Pjyyrus (4.27)
for j <r € NM. Clearly, Pj, is a polynomial in y = (y1,¥2,...,yum) and
Pr = span{P;; | 0 < jmm <7y, V1 < < M} (4.28)

(P;r)j<r is then the basis of P we use to decouple the semidiscrete problem.
Inserting (4.12) and (4.31) in (4.21), we find

Proposition 4.17 For a given r € NM | [et Upr,r be the solution of (4.21). For every

multiindez j < r we denote by iy ; € H{ (D) the solution of the deterministic diffusion
problem in D

—div(an; Vi) = f;  in H (D), (4.29)
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the algebraic version of the algorithm) on the unit square and L-shaped domain for
correlation length 0.2.

with u
C’iM,j(iv) = Ea(iv) + Z \/ﬂ ¢m(x)ﬂjm,rm
Mm:11/2 (4.30)
fitw) = f@)- ] P (t) dl
m=1 *1/2
Then
inre(2,y) = Y iiar(@) Pie(y)- (4.31)
j<r

The semidiscretized problem (4.21) requires therefore the numerical solution of Ny (com-
pare (4.23)) deterministic problems for the accuracy (4.24).

The statistics of ups solution to (4.6) can be then obtained by backward substitution,
via Proposition 4.7. For the simplest statistics, the mean and the correlation, it is easy
to verify
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Figure 9: Exponential eigenvalue decay and adapted polynomial degree (obtained using
the algebraic version of the algorithm) on the unit square and L-shaped domain for

correlation length 0.1.

Proposition 4.18 If uy solves (4.6) and Gy solves (4.29) for all j <r, then

M e1/2
(@) = Y ars(o) [] / Pt 4m) o)
m=1 -1/2

i<r

Cun(2,2") =) tnrg(@)in(")

j<r

M
m=1

We summarize the steps of the algorithm we developed for solving (1.2).

1/2 \
A
—1/2

Algorithm 4.19

(4.32)

(4.33)

1. [Computation of the deterministic part of the KL expansion of a]

Given V,
Choose truncation order M

Compute the first M KL approzimate eigenpairs (A%, ¢l )1<m<nr of Vo by gen-

eralized FMM
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2. [Computation of the basis for PC semidiscretization]
Compute anisotropic polynomial degree r = (rm)i<m<m € NM by (4.22) or
Algorithm 4.14
Compute for m = 1: M eigenpairs (1., Pjrm)o<j<rm Of

(u,v) = /1/2 Ppm (t)dt (4.34)

in Py, = span{l,t, 1%, ...t}

3. [Semidiscretization]
Given F,
Given f
Compute ﬂg‘ﬁ solution of the deterministic diffusion problem in D approzi-
mately, using F'E in D

—div(ay, ;Vah;) = f;  in H (D), (4.35)

where

M
W@ = Bal)+ > A @t

N (4.36)
Ao = 111 / L

and for all j = (j1,52,---,Jm) € NM with 0 < jp, <7, VI <m < M

4. [Post-processing]
Given (Xm)ISmSM
Compute statistics of up(z,w) via backward substitution

o) = 3 il () Hpgm,rm () (4.37)

i<r

5 Implementation

The stochastic Galerkin FEM described above can be implemented efficiently on parallel
processors of BEOWULF (see [5]) type. There are three key computational tasks: i)
computation of the KL eigenpairs (3.1), ii) determination of the orthogonal polynomial
basis (4.27) and iii) the solution of the deterministic FE problems (4.29).

In our implementation, we use for i) a generalized Fast Multipole Method ([18, 19]).
This step is performed serially since the complexity of the FMM is log-linear in N,
the number of degrees of freedom in domain D. We are able to treat reasonably
large FE meshes with several hundred thousand degrees of freedom with this serial
implementation. As Ansatz functions, piecewise constants or piecewise linears are
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used. The eigenproblem is solved using JDBSYM by Roman Geus and Oscar Chinellato
[10, 11].

The computation of the orthogonal polynomials (4.27) amounts to solving matrix
eigenvalue problems of the type Az = ABx with symmetric and positive semidefinite
matrices A, B of size r,,. Due to the product form (4.27) of the shape functions in
the stochastic variable, only the univariate form (4.25) needs to be discretized. Since
in the adaptive algorithms for the selection of the stochastic polynomial degrees the
optimal degrees are apriori unknown, the univariate generalized eigenproblems need to
be solved for polynomial degrees r,,, which could possibly occur. In our implementation
this was done in MATLAB for degrees r,,, between 1 and 20 and univariate probability
densities py,(t) = 1, for all 1 < m < M. The eigenpairs were then stored on disk for
the main calculation.

For the deterministic FE solutions (4.29) in step iii), we assume that they are per-
formed on the same mesh for all coefficients a,s; which was also used for the eigenvalue
computations (or a uniformly refined version of this mesh).! This is done using the
C++ class library Concepts [9, 6, 8]. We use linear FEM on the same triangular mesh
as for step i) . The resulting linear system is solved using a a diagonally preconditioned
CG. As the deterministic FEM problems are all completely independent, they can be
solved in parallel. This parallelization is achieved by a simple shell script (referenced
as the master script) which runs on the administration node of a BEOWULF cluster.

The master script is given the total number of deterministic problems to be solved,
the input data and the size of the blocks in which the deterministic problems should be
grouped. Using this data, the master script sets up a job for every block of problems in
the queueing system of the Beowulf cluster using a job script. 2 The queueing system
calls the job script when enough CPUs on the cluster are available. As we only request
one CPU per job, this is not a problem.

The job script sets up an archive including the input data (which is received from
the master script), the FEM solver itself and the indices of the problems to be run. This
archive is then sent to the allocated CPU, unpacked and run. One block of problems is
solved by executing the FEM solver once. It reads in the mesh and additional data and
computes othogonal polynomial basis (step ii)) at start-up. Then, all the deterministic
problems are solved serially one after the other. For every problem, the system matrices
and the load vector have to be computed separately. Every deterministic FEM solve
generates one vector of coefficients. The resulting data of all deterministic problems in
the block is again archived and sent back to the administration node of the cluster.

When all jobs generated by the master script have run, a result archive from every
block should have arrived on the administration node. It is up to the queueing system
to parallelize the whole process. If enough CPUs are available, all blocks are solved in

!Note that this assumption was made only for convenience of implementation—if an adaptive FE
solver for the equation (4.29) is available, then for each j, a different mesh adapted to the coefficient
au,; could be created. This, however, would require more sophisticated postprocessing when computing
mean and variances of the stochastic Galerkin solution.

2A typical size of a block gives a run time of an hour or less, depending on the total number of
problems.
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parallel. If the cluster is nearly full (only very few CPUs available at the same time),
it might even happen that the whole problem is solved serially - this is the worst case.

6 Numerical Experiments

We present here some numerical results we have obtained using Algorithm 4.19 in a two-
dimensional physical domain D (compare Figure 10 and Figure 11 for D the L-shaped
domain and the unit square respectively). In each case the input data (E,,V,, f), as
well as the number of dofs in D and the adaptive polynomial degree r are mentioned in
the caption. Note that the same physical mesh in D has been used for the computation
of the Karhunen-Loéve expansion (step 1, Algorithm 4.19) and for the discretization
of the deterministic diffusion problems (step 3, Algorithm 4.19). We have used the
postprocessing formulas in Proposition 4.18 to compute the mean field and the trace
of the standard deviation on D of the stochastic solution. The corresponding plots are
in the top left and bottom right corners of each figure respectivley. The second plot of
the top row represents the solution of only one deterministic problem in D with E, as
diffusion coefficient. The relative difference between this solution and the mean field
of the computed stochastic solution (which is due to the stochastic fluctuation of a) is
plotted (pointwise, and set to zero on dD) in both cases in the top right corner. Note
that this difference is usually significant if the correlation length is small, reaching for
instance 20% in the case presented in Figure 10. The same relative difference does
not exceed 4% in the second example (Figure 11) and this is a consequence of the
fact that E, is large, compared to the fluctuation (since the spatial correlation length
is large, only a few terms in the KL expansion are relevant). Further, plots of the
min/max values of the solutions computed in step 3, Algorithm 4.19, as well as of
the autocorrelation of the stochastic solution are to be found on the bottom line (left,
middle) of each figure.

An overkill solution in the case of a Gaussian covariance kernel and correlation length
v = 0.2 has been computed on the unit square with M = 17 and r = (1,1,...,1) € N7
by solving 2!7 = 131072 deterministic diffusion problems on a triangulation of the unit
square with 8192 elements. The error in the mean field between the overkill solution
and solutions corresponding to M = 3, M = 8 are plotted in Figure 12.

7 Conclusion

The present work allows the following conclusions. Stochastic elliptic problems with
random diffusion coefficients a(z,w) € L?(; L% (D)) whose spatial correlations are
known explicitly can be numerically solved by a deterministic Finite Element Method
in the physical variable x as well as in the stochastic variables. To this end, we represent
the random field a(z,w) as a Karhunen-Loéve series.

A generalized Fast Multipole type algorithm is proposed which allows the Finite
Element approximation of the first M eigenpairs of the spatial covariance operator for
a(z,w) in log-linear complexity per eigenpair, in polyhedral domains D C R
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Figure 12: Error in the mean field

Adopting the independent random variables X,,(w) in the KL expansion as new
coordinates and truncating it after M terms, we approximate the random diffusion
coefficient by a Wiener PC expansion of degree 1 in M deterministic variables y1, ..., yas-

Piecewise analyticity of the covariance kernel of a(z,w) in D x D implies exponential
decay of KL eigenvalues and exponential convergence in M of the (M, 1) Wiener PC
approximation of a(z,w); the rate of exponential convergence is shown to depend on
the spatial correlation length of a(z,w).

Equilibration of this PC truncation error with an O(h?) h-version FEM error es-
timate allows to approximate the stochastic elliptic problem by a deterministic one in
d + M dimensions with error O(h?) where the number of extra, stochastic variables
equals M = O(|log h|?).

The exact solution ups(z, y) of this approximate, deterministic problem is analytic in
the stochastic variables y,,, which suggests approximating uys by a (M, r) PC expansion
in y and by a standard h-version FEM in z.

The size of the domains of analyticity of uas w.r. to y, is shown to increase
rapidly with m which allows to derive sharp apriori bounds on the polynomial degrees
r necessary in the PC approximation of up/(z,y).

Orthogonalization of the PC shape functions w.r. to the probability measure is
shown to decouple the linear system for the PC solution, reducing the solution com-
plexity to that of a Monte Carlo expansion. An implementation on a BEOWOLF type
architecture is described and numerical examples are presented in physical dimension
d = 2 with PC expansions of degree r up to 4 in up to M = 13 stochastic variables, for
spatial correlation lenghts down to 0.1.

Mean fields and second moments of the randon solution and its derivatives are
computable throughout the physical domain D within minutes.
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