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1 Introduction

For a bounded domain D C R? we consider a symmetric kernel K € L?(D x D) defining
a nonnegative compact integral operator

K : I(D) — L3(D) (ICu)(x):/DK(x,x')u(x')dx' vzeD.  (11)

Such operators arise frequently in statistics and the theory of random fields as co-
variance operators (a typical example is given by the gaussian kernel K(z,z') =
exp(—|r — z'|?)) and the computation of their spectral decomposition (eigenelements)
is relevant e.g. for an economical random field representation via the Karhunen-Loéve
expansion (see e.g. [9]). This in turn has an impact on the complexity of many prac-
tical algorithms based on the Karhunen-Loéve expansion of a random field, including
e.g. solving pde’s with stochastic data via polynomial chaos and stochastic Galerkin
methods (see also [5] and the references therein for details and further examples).

The discretization error analysis of the eigenvalue problem for K in the presence of
a Galerkin scheme follows in general from abstract results on compact operators in
Hilbert spaces (see e.g. [3], section 6.2 or [11] for similar results in Banach spaces).
Denoting by 7 € $ C R the discretization parameter, by P, the L?(D) orthogonal
projection onto the finite element space Si and by (Am, ¢m)m>1/(Asms Phm)m>1 the
exact/discrete eigenelements of K, the exact asymptotics of the eigenvalue convergence
rates are ([3]):

0 < A — M = el (I = P) B,y bhmlli2pyAm  Ym > 1,Vh € S, (1.2)

where Ef is the spectral projector of I onto the Borel set A C R and the positive
constant cj,, — 1 as the finite elment space S gets refined.

Note the rather strong asymptotic character of (1.2): for a fixed m > 1, (1.2) holds
in general only for fine enough finite element spaces depending on m (h € $,,) and
with a constant cp ., depending again on m, and in fact on the spectrum gap around
Am: the smaller the gap, the larger the estimated constant cp,, for i ¢ $,, and the
pre-asymptotic domain $) \ .

The purpose of this work is to provide robust eigenvalue convergence rates in (1.2)
for the particular case under consideration, that of an integral operator with smooth
kernel, if standard finite element spaces (corresponding to the h/p version of FEM) are
employed. The main result is a robust quasi-relative error estimate

0 < A — A < Cr s *®s5(h) Vm > 1,Vh € §,Vs > 0, (1.3)

where the functional ®; : $§ — R qualitatively preserves the approximation rate of the
finite elements used (algebraic or exponential for the h or p method respectively), but
the parameters involved are allowed to depend on s.



Questions regarding possible generalizations of (1.3) to the case of a kernel K with only
finite differentiable regularity, as well as similar estimates for eigenspaces (known to be
more sensitive to perturbations than the eigenvalues) will be addressed in a forthcom-

ing paper.

The article proceeds as follows. After reviewing standard eigenvalue decay rates in de-
pendence of the kernel regularity (finite differentiability or analyticity), we investigate
eigenfunction oscillations for smooth kernels, which are shown to be milder than the
eigenvalue decay rate. The result is a direct consequence of the Gagliardo-Nirenberg
inequalities (see e.g. [1]). A refinement of these inequalities for analytic functions,
showing in particular that any interpolation space between complex analytic functions
in a given neighbourhood of D and any Sobolev space on D consists of analytic func-
tions in a smaller neighbourhood of D (Theorem 2.23), is needed in the context of the
p FEM. The third section is devoted to a proof of (1.3) in an abstract setting, for an
arbitrary nonnegative compact operator in a Hilbert space with a fast eigenvalue decay
((Am)m>1 € Np>olp), if the discretization spaces used by the Galerkin scheme approxi-
mate the eigenspaces at a convenient rate (Assumption 3.2). As a direct consequence
we obtain robust eigenvalue convergence rates for arbitrarily small positive powers of
K.

Concerning notations, throughout this work generic constants are denoted by ¢ and all
the quantities on which they depend are included as subscripts.

2 Properties of the Spectral Decomposition

2.1 Eigenvalue Decay

We begin with a review of eigenvalue decay rates in terms of the kernel regularity.
The results are standard (see e.g. [8], [12]), following from the abstract theory of
Weyl/approximation/entropy numbers and from kernel approximation (by discrete,
finite rank operators). Roughly speaking, the smoother the kernel the faster the eigen-
value decay, with analyticity implying quasi-exponential decay and finite Sobolev reg-
ularity giving rise to algebraic decay.

Remarkably, all these results hold for piecewise regular kernels on product subdo-
mains of D, in the sense of Definition 2.1 below. Note that general piecewise regularity
allowing singularities on the diagonal set of D x D ensure in general only a slower
eigenvalue decay (see e.g. [8] and [5] for examples with known exact eigenelements).

Definition 2.1 If D is a bounded domain in R and p,q > 0, a measurable function
K :D x D — R is said to be piecewise HP? on D x D if there exists a finite family
D = (Dj)jcg of subdomains of D such that

i. DjNDj =0 Vj,j' €T with j # j'

ii. D\ Ujcs Dj is a null set in RY



iti. D CUjes Dj
0. K‘DjXDjle Hp’q(Dj X DJ") AV SIVE

We denote by H%Q(DZ) the space of piecewise HPY functions on D X D in the sense
given above.
Moreover, if there exists also a finite family G = (G;)jes of open sets in R? such that

. Fj C Gj Vj eJ
i. K\D,-xDj, has an analytic/HP? continuation to G; x G V4,5’ € J,

then we say that K is piecewise analytic/H?? on a covering of D X D and we
denote by AD,G(DQ)/H%?Q(D2) the corresponding spaces.

Similarly we introduce spaces of piecewise regular functions defined on D, which we
denote by Hi(D), ’H%,g(D) etc.

For analytic kernels it holds

Proposition 2.2 Let K € L?(D x D) be a symmetric kernel defining a compact non-
negative integral operator via (1.1). If K € Ap g(D?) and (Ap)m>1 denotes the eigen-
value sequence of K, then there exist constants ci k,co,x > 0 such that

0< Ay < cl,Ke_”’Kml/d VYm > 1. (2.1)

One is often interested in gaussian kernels of the form
K(z,z') = o? exp(—|z — 2'|?/(v*A?)) V(z,z') € D x D, (2.2)

where 0,7 > 0 are real parameters (standard deviation, correlation length) and A is
the diameter of the domain D. Since this kernel admits an analytic continuation to the
whole complex space C%, the eigenvalue decay is in this case even faster than in (2.1).

Proposition 2.3 If K € L?(D x D) is given by (2.2), then for the eigenvalue sequence
(Am)m>1 of K defined by (1.1) it holds

a/ym™"

0< A < Ca,ym

Vm > 1. (2.3)
Proposition 2.4 Let D C R? be a bounded domain and K € L?(Dx D) be a symmetric

. . . . 0
kernel defining a compact nonnegative integral operator K via (1.1). If K € ’H%,g(DQ)
for some p > 0, then there exists a constant cx > 0 such that

0< Am < cpgm Pt ¥m>1. (2.4)

Corollary 2.5 Let D C R¢ be a bounded domain and K € L?>(D x D) be a symmetric
kernel defining a compact nonnegative integral operator K wvia (1.1). If K is piecewise
smooth (i.e. piecewise ’H%’?Q(D2) Vp,q > 0) on a covering of D x D and (Am)m>1
denotes the eigenvalue sequence of K, then for any s > 0 there exists a constant cx s > 0
such that

0<Ap<cgsm ® VYm>1. (2.5)



2.2 Eigenfunction Oscillations

We show next that the smoothness assumption on the kernel allows also a good control
of the eigenfunctions and their derivatives in the L>°(D) norm. Roughly speaking, the
eigenfunctions are shown to be bounded from above, asymptotically as m — oo, by
any negative power of the corresponding eigenvalue. In other words, the eigenfunction
oscillations are much weaker than the eigenvalue decay rate.

We start by noting that the piecewise regularity of the eigenfunctions follows from that
of the kernel K.

Proposition 2.6 If K € AD,g(Dz)/H%?g(D2), then the eigenfunctions of K given by
(1.1) corresponding to nontrivial eigenvalues belong to .AD,g(D)/H%,g(D).

Proof. The conclusion follows at once from the eigenvalue equation

Z K (z,2")pm () dz' Vz € D, (2.6)
™ jreg
which can be naturally extended to G; by replacing K by Kjj. |

Remark 2.7 Similarly, if K € H%Y(D?), then the eigenfunctions of K corresponding
to nontrivial eigenvalues belong to HY (D).

2.2.1 Smooth Kernel

The following result due to Ehrling-Nirenberg-Gagliardo (see [1], Theorem 4.14), is
essential for our analysis.

Theorem 2.8 Let D C R? be a bounded domain having the uniform cone property
and g9 € (0,00), n € N, p € [1,00). Then there ezists ccynpp > 0 such that for any
e € (0,e],1€{0,1,...,n—1} and u € W™P(D),

|u|lap — cEO:”apzD {8|u|nap + g_l/(n_l)|u|0,p} ? (27)

where

ul?, ::/ S (0%u(a) P da

la|=t

Theorem 2.9 For D C R? a bounded domain and K piecewise smooth on D x D such
that the domains D; in Definition 2.1 all have the uniform cone property, we denote
by (Am, dm)m>1 the eigenelements of the associated integral operator K via (1.1), such
that ||pmll2(py = 1,Ym > 1. Then for any s > 0 and any multiinder o € N there
erists cx s, > 0 such that

||8a¢m||Loo(Dj) <cksaldml P Vm>1Vje J. (2.8)



Proof. We first note that the eigenvalue equation (2.6) implies (by differentiating and
applying the Cauchy-Schwarz inequality to estimate the resulting integrals) for any
a € N¢ the existence of a constant CK,o > 0 such that

10bmll oo (;) < ckalAm|™" ¥m >1,Vj € J. (2.9)

We apply now Theorem 2.8 on D; with p = 2, ¢g = maxy,,>1 |Am| and choose in (2.7)
€ = Am, U = ¢, for an arbitrary m > 1. It follows that for any n € N there exists
Cen,p; > 0 such that for all [ € {0,1,...,n — 1}

|¢m|Dj |l,2 S Cso,n,Dj {Am|¢m|n,2 + /\T—nl/(n—l)|¢m‘0’2}
< Ceom,Dj K {1 + ,\T—nl/(nfl)} < Cso,n,Dj,K)\;nl/(nil)’ (2.10)

due to (2.9).
Now, for any s > 0 and a € N% we choose I = [d/2] + |a| and n > [ such that
[/(n—1) < s. From (2.10) and the Sobolev embedding theorems we deduce then

l
10°bmllLoep;) < Can;lldmllm(n,) < can; D émlp; [k2
k=0
l
< Ceo,n,Dj,K,a Z A;nk/(nik)
k=0
S cso,n,Dj,K,aAr;zl/(n_l) S Cao,n,Dj,K,o)\;zs
for all m > 1, and the proof is concluded. |

Remark 2.10 Under the regularity assumptions of Proposition 2.9 the estimate (2.8)
is optimal in the sense that for any o it fails to hold with s = 0. This can be seen
e.g. on D :=]0,1[ by taking K := 3", < A * dm ® b, with A, := ™™ and ¢p(x) ==
me¢(m2z —m) Yz €]0,1[,Ym > 1, where ¢ € C$°(10,1]) satisfies 91201 = 1-

Remark 2.11 [t can be shown that further assumptions, like stationarity of the kernel
i.e. K(x,z') =k(z —1x') for some k: D — R, lead to the uniform L boundedness of
the eigenfunctions (but not of their derivatives).

Remark 2.12 If K is not piecewise smooth in the sense of Definition 2.1 (for instance,
if the singularities of K lie on the diagonal set of D x D, as it is the case for some usual
stationary kernels like e.g. K(z,2') = k(z — z') = exp(—|z — 2/|'T%) with 0 < § < 1),
then estimates of type (2.8) hold true only for s > ¢, > 0, where the constant ¢ €]0,1]
depends on the Sobolev regularity of k in D (see also [5] for further ezamples with
known ezact eigenelements).



2.2.2 Analytic Kernel

We prove in the following a refinement of Theorem 2.9 for analytic functions, which
allows us a better control (explicit dependence on ) of the constant cx s in (2.8).

Theorem 2.13 Suppose that K € Apg(D?) is a symmetric kernel and denote by
(A, Bm)m>1 the eigenelements of K defined by (1.1), such that ||¢m||r2(py = 1,Vm > 1.
Then for any s > 0 there exist constants cx s,7k,s > 0 such that

10%bmllLe(p;) < €K, sAm TKMa' Vae N Vje J. (2.11)

Theorem 2.13 will be a direct consequence of an interpolation result (Theorem 2.23
below) which we prove in the following.

We start with a lemma of Gagliardo-Ehrling-Nirenberg type. Note that the statement
is global, therefore weaker than that of Theorem 2.8, but at the same time stronger,
allowing a better control of the constant involved (inspection of the induction proof
of Theorem 2.8 as presented in [1] reveals that the estimated c., mp p increases with
m,p — 0o at a pessimistic super-exponential rate).

Lemma 2.14 For any a € N k € Nk > 1 and u € H¥I®(R?) it holds

6% ul| 2 gy < V210" ull g el 5 " (2.12)

Proof. Tt suffices to check that for any a € N4, k € N,k > 1, ¢ > 0 and u € HFl®/(R9)
it holds
1022 gy < el 2a gty + €D 2 g (2.13)

since we can take then ¢ := (||’U,||L2(Rd)/||8ka’U,||L2(Rd))2_2/k and obtain (2.12).

To this end, we note that sup,sqz/(z* 4+ 1) €]0,1[ and set here z = ¢"/(k=Dg2 for
¢ € R%. Upon multiplying the resulting inequality £2¢ < g2k 4 ¢~ 1/(k=1) 1y |4 (€)|?,
integrating d¢ and taking inverse Fourier transforms we obtain (2.13). |

We localize Lemma 2.14 using cut-off functions which are analytic up to a given order
(see [6], Theorem 1.4.2 for a proof of Lemma 2.16 below, or [13], Proposition 1.4.10).
Definition 2.15 If G C R%, we define for § > 0 the 6-neighbourhood of G by

Gy = R® | inf 8},
s =A{z € IylgGlmaXI:vn Yn| < 6}

Further, for a bounded domain D C R?,
Op :=inf{éd > 0| D C (0D)s}-

Lemma 2.16 If D C R% is a bounded domain, then for any o € N® there exists
P50 € C°(D) such that 0 < 154 <1, 954 =1 on D\ (0D)s and

|B]
109450l 0y < (@) VieN, B <a (2.14)

where |a| == a1 + ag + -+ + ag.



We turn now to the proof of a local version of Lemma 2.14 for analytic functions.

Definition 2.17 For D bounded domain in R? we define for r > 0 the set U, as the
open neighbourhood of D in C?* given by

Uri={z = (21,2,...,22) € C*| inf max |z —an| <7}

By A(U,) we further denote the space of all complex analytic functions on U,.

Lemma 2.18 If D C R? is a bounded domain, then for any r >0, ¢ € A(U,), § > 0,
a € N and k € N* it holds

10°$llz2(orop)s) < V2EHIND) YIS 11 ) (u/32kd) et (2.15)
where p := min{d, 2rd}.
Proof. We first note that, due to the Cauchy integral formula,
10° ¢ (p) < N9l (0~ Vo € N, (2.16)

For § > 0, € N% and every k € N, we construct Y5 ka o0 D as in Lemma 2.16 and
then apply Lemma 2.14 with u := )5 - (/)‘D. It follows

10% Bl L2(p\(oD)s) < N0%(Wska - B p)ll2(ray <
V200" Wi ka - ] p) | o 1015y " (217)

But, using (2.14) and (2.16),

ka _
105 (s kad| pllrco@ay = |l 0715 o0 OF* P B|| oo ()
B

B<ka

< Ndlim 3 ("“g‘) (3k]a])A 591y 1ka=bl (key — )1

B<ka

Further the obvious inequalities n™ < (n + m)!/n! < m!2"*™ (with n = 3kla|, m =
18)), 18]! < dIP18! V3 € N® and (ka)! < (a!)*E*le! ensure

104 (o] )l emty < Illequny 3 (’“;“)ﬂm%a'”'(d/a)ﬁ'r-'ka-ﬂ'(ka—ﬁ)!

B<ka

< |¢llpoe (o, () *EHI(r/8) Ml S 7 (2rd/6)l. (2.18)
B<ka

The sum on the r.h.s. of (2.18) can be estimated by

i )ma.x{l,(2rd/5)k|"‘} < gklaltd+io, sorg)=klel  (2.19)
B<ko

Inserting (2.19) in (2.18) and using the resulting inequality in (2.17), we obtain the
conclusion. [



Lemma 2.19 There exists a constant ¢i,q > 0 such that if D C R is a bounded
domain, then for any r >0, ¢ € A(U,), 6 >0, a € N? and k € N* it holds

8% @ll e (D@05 < 1A DY (/B[ 11L 0 1S5 ) (1 64k) =l

(2.20)
where p := min{d, 2rd}.
Proof. Clearly,
a+06 ! -
0%(z) = Z m(a) — 2"\ Va,2' €D, sup |z, —zl| <, (2.21)

et B! 1<n<d

where the series converges absolutely. We consider 0 < p < r to be chosen later and an
arbitrary z € D\ (0D)s4,- Integrating (2.21) w.r.t. =’ on the d dimensional hypercube
centered at x and of size 2p we obtain via the Cauchy-Schwarz inequality

88| 12
2o < Y | ¢”Z,(D\(6D)“2”‘/2,0'5'”/2- (2.22)
BeNd )

From (2.15), (2.22) and with g := min{4, 2rd} we deduce that

10°0(2)| < e1,a (D) p= | Bl| 8 1 81 o)

- (n/32kd)™1* Y~ (1/320kd) ™"
BeNd

a+ [)!
§_7§_l- (2.23)

where ¢ ¢ = 2(473)/2. Since (a+ B)!/6! < al2/21+18/ the conclusion follows from (2.23)
by choosing p = p/128kd < r/64. [ |

Theorem 2.20 Let D C R? be a bounded domain. If r > 0 and s €)0,1], then there
exist Vp s open neighbourhood of D in C% and a constant cp,s,r > 0 such that for any

¢ € AT,)

)||¢||L2 (D) (2'24)
Proof. Consider ¢ € A(U,.) arbitrary. From the Cauchy integral formula we have

18°@llzee(p) < ¢l noeqyr™ et Vo € N, (225)
Applying Lemma 2.19 we find that for any 6 > 0, @ € N% and k € N* it holds

k (k—1)/k _
1%l Lo (0 @D) < 10D (a2 SILE 181 Y (e f64kd) "l (2:26)
where p := min{é, 2rd}.
For a given s €]0,1] and k£ > 1/s set t := (ks—1)/(k—1) €]0, s|. Interpolation between
(2.25) and (2.26) with logarithmic weight ¢ yields
||8a¢||L°°(D\(6D)25) < c%;itA(D)(lft)/Qk(M/k)*d(lft)/Q.
@ l1500 0, 10112 ) (1 64kd) =Dl (2.27)



for any o € N¢ and 6 > 0.
Consider now z € Uys arbitrary. For any 0 < § < min{r/4,p/2} the analyticity of ¢
implies the existence of an z € D\ (0D)2s such that

0%¢(x
OEDY 25 ) (2 = ). (2.28)
acNd '
From (2.28) and (2.27) we obtain (x = ¢ in this case)

[9(2)] < el MDY @R 9l 91200y D (64kdr/8)'/256kd) ™
aENd

(2.29)
for any 0 < § < min{r/4,5p/2} and o € N¢.
Choosing § = min{64kdr/(512kd)'/* ,6p/3} < min{r/4,5p/2} the sum on the r.h.s. of
(2.29) is finite and we obtain the desired estimate (2.24) with Vp s, = Uss and
CDsr = QdC%;tA(D)(lft)/Qk (5/k)fd(17t)/2 )
|
From Theorem 2.20 and the Cauchy integral formula it immediately follows

Corollary 2.21 Let D C R? be a bounded domain. If r > 0 and s €]0,1], then there
exist constants c1,p sy, C2,p,s, > 0 such that for any ¢ € A(U,) and o € N¢ it holds

10°llzo2(D) < 1,,8. | Bl 50w (0, | B11 7y o - (2.30)

Theorem 2.13 follows now as a consequence of Corollary 2.21.
Proof of Theorem 2.13. Let us fix j € J and note that the eigenvalue equation on D;

1
dm(z) = —/ Z K(z,z")xj (z")pm(2’) dz’ Vz € Dy, (2.31)
Am Jp;
ijleg
where x; denotes for j € J the indicator function of the set Dj, can be analytically
continued to G by replacing K in (2.31) by K,;. Denoting by ¢, the extension of
gbm‘ p. to G we clearly have, for rx > 0 small enough,
J

gZNSm S A(UTK)a ||§1~5m||L<>0(UTK) < CK)\;LI VYm > 1. (2.32)
The desired estimate (2.11) follows using (2.32) in (2.30), since ||¢m||z2(p,) <1. W

Remark 2.22 Using an appropriate version of Lemma 2.14, the L? norm on the r.h.s.
of (2.24) or (2.30) can be replaced by any norm of ¢ on the Sobolev scale.

In view of Remark 2.22, Theorem 2.13 can be reformulated as an interpolation result,
as follows (for definitions, standard notations and general results we refer the reader
to [14]). The proof is straightforward, in view of Lemma 2.5.1. in [2].

Theorem 2.23 Let D C R? be a bounded domain and let v > 0, 6 € [0,1] and t € R
be arbitrary parameters. Then there exists rp ;g > 0 such that

(A(U,) N C(T,), H(D))gp — AWUrp,6.) NCUrp,0.) (2.33)

for any p € [1,400], where all spaces are equipped with usual norms.



3 Eigenvalue Computation

3.1 Discretization of the Eigenvalue Problem

Using the minimax principle we investigate in the following the convergence of the
discretized eigenvalues of the integral operator K given by (1.1).

Let A € $ be a discretization parameter and let S := (Si)pes C L?(D) denote an arbi-
trary finite element space family. The discrete eigenvalue problem reads, in variational
form: Find (Apm, Prm)m>1 C R x Sy, such that

K (2, 2')pm (2 (2) di'dic = Ay /D brm(@)p(x)de Ve Sn  (31)

DxD

(3.1) shows that the sequence (A4 m, Prm)m>1 is nothing but the eigenvalue sequence
of the compact nonnegative operator PyKPy in L?(D), where P; denotes the L?(D)
orthogonal projection onto Sj.

We derive in the following discretization error estimates for the eigenvalue problem
(3.1) for arbitrary compact nonnegative operators with a fast eigenvalue decay, acting
in a separable Hilbert space (H, (,)r). The results will be then seen to apply to the
case of an integral operator with smooth kernel. Concerning notations, B(H) will
be the space of bounded linear operators acting in the Hilbert space (H,(,)r), and
we will occasionally use traditional subscripts (e.g. Buo, Booyp, Bsym) for spaces of
operators with additional properties (compactness, compactness and £, summability of
the eigenvalue sequence for p > 0, symmetry).

As a straightforward consequence of the minimax principle it holds,

Proposition 3.1 If (H,(,)n) is a separable Hilbert space, K € Boo(H) is nonnegative
and Sy, is an arbitrary closed subspace of H, then

Am < Am Ym > 1, (3.2)
where (/\h,m)mzl denotes the eigenvalue sequence of PR/ Py in H.

Lower bounds for As 4, in terms of A, follow from the approximability of the eigenfunc-
tions (¢m)m>1 through the finite element family S. We make therefore the following

Assumption 3.2 The eigenelements (Am, m)m>1 of K and the finite element space
family S have the property that for any s > 0 there exists cx 55 > 0 and @5 : H — R
such that

(I — Pr)pmlla < ck,s,s7, ®s(h) VYm > 1,Vh € §. (3.3)

Remark 3.3 Later we will see that Assumption 3.2 is satisfied in the case of an integral
operator (1.1) with a piecewise smooth/analytic kernel K and in the context of the
standard h/p methods. Moreover, the functional ® : $ — R qualitatively preserves the
convergence rate of the finite element spaces employed (algebraic or exponential, with
parameters allowed to depend on s).

10



Based on Assumption 3.2 we prove next that the trace discretization error is optimal
for the class of compact operators with fast eigenvalue decay.

Theorem 3.4 If K € Np>oBoop(H) is nonnegative and Assumption 3.2 is satisfied,
then for any 0 < s < 1/2 there exists a constant cx s > 0 such that

0<Tr K—Tr PoKP; < cx,5,5P5(h)*> VheES$H. (3.4)

Proof. Fix h € $. The lower bound follows immediately from Proposition 3.1.
Further, the obvious identity

K—PiKP,=(I—-Py)K+K(I—-Py)— (I —Pp)K(I— Py) (3.5)
and the fact that K is nonnegative ensure that (H := L%(D))
(K = PaKPp)¢, p)u < 2[(K¢, (I — Pr)p)u| Vo€ H. (3.6)

Using (3.6) and Assumption 3.2 it follows
Tr K —Tr PikPy = > (K — PikPh)ém, bmdu <2 (K, (I — Pa)m) a|

m>1 m>1
< 2 Ml = Pdully < oxss® (2 SO ATE (37)
m>1 m>1

The assumption K € Np>oBoop(H) ensures the summability of the series on the r.h.s.
of (3.7) for s < 1/2, which concludes the proof. [

We derive in the following individual discretization error estimates for the eigenvalues.

Theorem 3.5 If K € Np>oBoop(H) is nonnegative and Assumption 3.2 is satisfied,
then for any s > r > 0 there exists a constant cx ss, > 0 such that

0 < A — M < cxe,5.50(@r(B)2 A 2 + @, (B)*AY¥)  Vm > 1,Vh € 6§, (3.8)

where (Ap)m>1 and (Apm)m>1 are the eigenvalue sequences of K and Ky := PyKPy
respectively.

Proof. Fix m > 1 and h € $). From the minimax principle,

Mm= max min {(K¢,d)u +((Kn— )6, S} (39)

dimU2m ||gllg=1

The identity (3.5) and the fact that K is nonnegative ensure then

(Kn —K)p,#)r > —2[(K, (I — Pr)p)u| Vo€ H. (3.10)
Using (3.10) in (3.9) we obtain

Ahgm > max lglei}} {{K,d)r — 2[{Kp, (I — Pr)d)ul}

UCH
dimU2m ||9]l g=1

> max min {(Ké,8)m —2|(1 — POKSal( - Pglu}. (3.11)

dimU2m ||¢]| g=1
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At this stage we choose U to be the subspace of H spanned by the first m eigenfunctions
1,02, ...,b, of K. Expanding ¢ = Z;"Zl a;j¢; and using (3.3) we obtain

m m
1= PKdlln < cxse®e(®) Y AT < e B (A Y lagl; (3.12)
j=1 j=1

for any r > 0. Similarly, (Amm)m>1 € Np>ofp ensures

m

II=Pglla < ccse®r(B)D oylA;"
j=1
1/2

m
cksa®e(B) [ DN <exsrs®r(BAL 0 (3.13)
j=1

IA

for any 7,6 > 0. From (3.11), (3.12), (3.13) we obtain

m m
Anm > mn|11n|2 1 D Al = 2ek,50%0 (1) AT " Nl ¢ V8> 0.
G=119717=2 | i j=1

(3.14)

—2r—é
m .

Fix r,0 > 0, choose also an arbitrary p > 0 and define ¢ := c;c,g,r,(;(I)r(h)Q)\
If £ > 1//m then ®, ()2 > cx grophem 7, s0 that it holds, with s :=r + (8 + p) /2,

)‘ﬁ,m 2 0 Z >\m - CIC,S,S,TQT(h)QAyln_ZS- (315)

Otherwise € < 1/4/m and we apply Lemma 3.7 below to obtain from (3.14)

M > Am = Cxc.8.r.5V M 2T 08, (h)?—
— cx,8,m0,p MAX{Cr 5 s M AT TP D (R) A PO B, ()}

which is equivalent to the desired estimate (3.8), with s = r + (6 + p)/2, since §, p are
arbitrarily small. [ ]

Corollary 3.6 If K € Np>oBoop(H) is nonnegative and Assumption 3.2 is satisfied,
then for any s > r > 0 there exists a constant cx s s, > 0 such that

0 < >\m - )\h,m < ClC,S,s,r((I)r(h)2)\rlni2s + cI)r(h)Lm)‘iniaillsa) (3'16)

Vm > 1,Vh € 9,Va € [0,1], where (Am)m>1 and (Ag,m)m>1 are the eigenvalue sequences
of K and Ky, := PyK Py, respectively.

Proof. Consider an arbitrary ¢ > 0. If ®,.(h)** > Al | then clearly

A > 0> Ay — @ (R)* AL (3.17)

12



Otherwise ®,.(R)** < Al and (3.8) becomes
0 < Am — Mm < ck.8.50 (D ()AL 25 + B, (B) 1K) a—dsy, (3.18)

Choose now t to balance the estimates (3.17) and (3.18), that is, t = (1 + 4s)a. It
follows then from (3.17) and (3.18) that

0 < Am = Apm < ClC,S,s,r((I)T(h)Qk}n_Qs + (I)r(h)4a)‘rln_(1+4s)a)
for any m, h, o as in (3.16), which concludes the proof. [ |

Lemma 3.7 If \{ > Ao > ... > A\, > 0 is a non-increasing sequence of nonnegative
real numbers and € € [0,1//m[, then

min Z A (t5 — 2etj) > Ay — VmeAy, — me max{ie, Ay} (3.19)
] 1 t]2 1

Proof. Obviously, the minimum on the Lh.s. of (3.19) is attained at a location ¢ :=
(t1,t2,-..,ty) on the unit m dimensional sphere, with nonnegative coordinates. Using
Lagrange multipliers for f,g: R™ — R given by

m m
)= Aj(t; —2etj) and g(t):=) 5 —1
j=1 j=1

we obtain the existence of a real A # 0 such that for the location ¢ of the minimum of
f restricted to g~({0}) it holds Vf — AVg = 0, that is,
EAj
tj = —
TN =
Imposing g(t) = 0 we obtain that A solves the equation

1
21
Jz::l Aj —)\ T (3.21)

In order to estimate A, we first remark that ¢; > 0,V1 < j < m implies that X is the
unique solution of (3.21) situated in the interval | — 0o, A, [ Further, the assumption
on ¢ ensures the positivity of A, therefore we have A €]0, A;,[. As a consequence, the
m-th term of the sum in (3.21) is the largest one, which implies then

— Vmern <A< A — X (3.22)
In view of (3.22), computing f at ¢ given by (3.20) yields,

V1<j<m. (3.20)

m 2)\2 22

> _ J
%ﬁf =A- Z)\—)\ > Am = VmeAn 8m11<%a<’§n,\ Y

> A — Vmel, — ¢ mmaX{Al,)\gm},

due to the convexity of z — x2/(z — ) on ]\, oo]. [

Remark 3.8 In the case of an integral operator (1.1) with smooth kernel K, the reg-
ularity condition K € Np>oBoop(L?(D)) follows from Corollary 2.5.
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3.1.1 Smooth Kernel - h FEM

For an integral operator (1.1) with smooth kernel K, we consider a fixed polynomial
degree k € N, i := h €]0,00] and S = S}, := S,’f, the space of discontinuous piecewise
polynomials of total degree at most k on a regular mesh in D of width h and subordinate

to D, i.e. to the covering (D;);jcs. With this choice it holds,

Proposition 3.9 If K € L?(D x D) is piecewise smooth on D x D defining a compact
nonnegative integral operator K via (1.1) and k € N, Sy = S,’j Vh = h €]0,00], then
Assumption 8.2 holds with ®4(h) = ®(h) := h**1 (independent of s > 0) and the

assumptions of Theorem 3.5 are met.

Proof. In view of Remark 3.8, we only have to check (3.3). To this end, we note that
the standard »h FEM approximation property holds for S,

6 — Padllr2py < ce,ph* T gler1 VR >0, Vo € HETH(D), (3.23)

where

Bl i=, Y, 10°¢ll72p,) Vo€ HE(D).

JET |al=k+1

The conclusion follows then by applying (3.23) to ¢ := ¢, € HE(D) (in view of
Remark 2.7), and using Proposition 2.9 to estimate |¢p,|x+1 in terms of a given s > 0
and A\, [ ]

3.1.2 Analytic Kernel - p FEM

For the case of a kernel K piecewise analytic on a covering of D X D we consider
h:=p € N and S; := SP the space of discontinuous piecewise polynomials of total
degree at most p on a fixed mesh 7 in D subordinate to D, i.e. to the covering
(Dj)jes- We further assume that each element of 7 can be included in a hypercube
which is in turn contained in one of the sets (G;);cs in Definition 2.1 (this can be
ensured by a mesh refinement).

The p FEM error estimate we shall use in the following reads (see [10], Lemma 3.2.7
and [4], Theorem 12.4.7)

Lemma 3.10 If T € R? is a hypercube and ¢ is analytic on T satisfying therefore with
some cg, 7 =1y >0

10| oo (1) < cgr™ el Va € N4\ (0,0,...,0), (3.24)
then there ewist ¢, 7,b = b7 > 0 such that

¢ — Ppollzoor) < errege P, (3.25)

where P, denotes the L?(T) orthogonal projection on the space of polynomials in d
variables and of total degree at most p (restricted to T).
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Using Lemma 3.10 and Theorem 2.13 we immediately check Assumption 3.2 if the
kernel K is piecewise analytic on a covering of D x D.

Proposition 3.11 If K is piecewise analytic on a covering of Dx D defining a compact
nonnegative integral operator K via (1.1), then Assumption 3.2 holds with h =p € N,
®4(h) := e b%.55P and the assumptions of Theorem 8.5 are met.

3.2 K¢ Spectrum Approximation

For a given € > 0, a simple argument based on the Lipschitz continuity of ]0,00[>
xz — z¢ €]0, 0o and Corollary 3.6 shows that the computable eigenvalues of K¢, namely
(Afm)m>1, are good approximations of the exact eigenvalues (A7, )m>1 of K°.

Theorem 3.12 If K € L?(D x D) is piecewise smooth on D x D defining a compact
nonnegative integral operator K wvia (1.1) such that Assumption 8.2 is satisfied and
0 <e<1, then for any r < €¢/2 and a €]0,¢/(1 + 4r)[

o0
<Y (N — M) < €k 5.0 max{®, (), &, (R)"*} VA€ H. (3.26)
m:

Proof. From the Lipschitz condition
)‘:n - )‘;‘L,m < )\gn_l()\m - )‘h,m)

and (3.16) we obtain that for any s > r > 0 there exists a constant cx s, > 0 such
that
0 < AG — Ao < k5,50 (Rr(R)PAG % + @1 (R)* NG, @7 49) (3.27)

Vm > 1,Vh € $,Va € [0,1]. We fix r < €¢/2 and a €]0,¢/(1 + 4r)[ and take s €
Ir,€/2[ N ]0, (e — @) /4a[ arbitrary. Summing (3.27) over m > 1 we obtain (3.26). N

Remark 3.13 For the finite element spaces considered in sections 3.1.1, 3.1.2, (3.26)
becomes

o
<) ) < ek, s,ohETDmIn{ZAa}l g 5 0 Vo < ¢, (3.28)

m=1
for the h-version, and
o
0< D (A, = A5 < cksee 5P VpEN, (3.29)
m=1
for the p-version respectively.
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