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Abstract

We present an approach to solve high dimensional Dirichlet problems in bounded domains
which is based on a variant of the Feynman-Kac formula that connects solutions to elliptic partial
differential equations and functional integration. We integrate the resulting system of stochastic
differential equations numerically with the Euler scheme. To correct for possible intermediate
excursions of the simulated paths and to find good approximations for first exit times, we extend
to higher dimensions a strategy which we have introduced in [1] for stopping problems in 1d. In
addition, for Dirichlet’s problem, good approximations of the first exit points are needed to evaluate
the boundary condition. To this end, we sample a random point on the tangent hyperplane of the
boundary of the domain once a first exit was estimated. To detect excursions and adequately
compute first exit times, we apply the same local half space approximation. We therefore assume
that the domain is smooth enough such that these approximations are possible.

Numerical experiments in dimensions up to 128 show that resulting approximations are of very
high quality. In particular, we observe that first order convergence behavior of the Euler scheme
can be maintained.



1 Introduction and notation

In this work we present an approach to solve numerically Poisson’s equation in high dimensional
domains. Our approach is based on the stochastic representation of the solution which is given by
some variant of the Feynman-Kac formula. Numerically, we have to integrate a system of stochastic
differential equations and will approximate mathematical expectations by finite sum arithmetic
means (Monte-Carlo approach). In the stochastic formulation, a Brownian path starting from a
point (z) in the domain is simulated until it reaches the boundary for the first time and the exit
point must be estimated to compute the boundary contribution to an average of a functional. It
is this special feature (stopping at first exit) that makes the problem especially interesting from
a numerical point. Namely, the numerical approximation of the first exit time and the first exit
point is essential for good convergence properties of the resulting algorithm.
In more detail, we consider the following boundary value problem for v : R" — R,

%Au(x) +g(x)=0 for z€D, and wu(z)—>¢Y(zr) as = — 0D. (1)

Here, D denotes a bounded domain in n-space. We will assume throughout this work that D,
9OD, the inhomogeneity g and boundary condition 7 (both functions are R® — R)) are such that a
unique solution exists which is sufficiently smooth, see for example [2]. Then u(z) is given by the
Feynman-Kac formula

u(z) =E [zb (X (7)) + /0 " g(x(9) ds] : (2)

In (2) X is an n-dimensional Brownian motion starting at t = 0 at z € D and 70 is the first exit
time of the process X (¢t) from D (which by continuity is also the first passage time to 8D),

™ = inf {X(t) ¢ D} = inf {X(t) € oD}, X(0)==z € D. (3)

Consequently, X (7P) is the first exit point of the process from D (the point where the boundary
0D is hit for the first time).

Throughout this paper we will write & ~ D if a random number £ (or a random variable) has the
distribution (or density) D. In particular we will make use of the distributions N(m,v) (normal
with mean m and variance v > 0) and ZG(v, ) (inverse Gaussian with parameters v > 0, § > 0,
see [3]).

2 Weak approximation of stopped diffusions in dimension
one
We have presented an algorithm to simulate stopped diffusions (in a weak sense) in [1, 4, 5]. In

order to make this article self-contained we summarize it here briefly.
Let D = (a,b) C R be a bounded interval and suppose we wish to approximate E[f(7)] where

flr) = /OT g(X(s))ds for some g¢g:R — R. (4)

We again assume that the function g is such that the integral in (4) is well defined. In (4), X (¢),
t > 0, is a one dimensional Brownian motion starting at « € D and 7 = inf {t >0 : X(¢) ¢ D}
(see (3) in §1).

The following formulation in terms of stochastic differential equations is equivalent:

dX(t) = dW(t) and df(t) = g(X(®))dt, 0<t<, (5)

with initial conditions X (0) = z and f(0) = 0. A weak approximate solution of system (5) is
nowadays standard (see for example [6, 7]).



Our algorithm is based on the simplest possible scheme to numerically integrate the system
(5), the Euler-Maruyama scheme. For a fixed final time T' < co Euler’s method takes the following
form: We partition T into K intervals, T = Kh, each of size h. Then we set Xy = 0 and fo = 0,
and compute for k=0,..., K —1

Xiy1 = X +VRE, €~N(0,1), (6a)
Jre1 = fr + hg(Xy). (6b)

If we apply this strategy to approximate E[f(7)] (see (4)), the main difficulty presents itself im-
mediately. In (4), stopping time 7 is not known but must be determined by equation (3). On the
other hand, we are only interested in finding a good approximation of the expecation of f(7) (as
in equation (2)). Suppose that we can approximate f(7) and denote corresponding realizations
f@ = fl((i%i) (the number of steps changes from realization to realization and will be made precise
in what follows: see Algorithm 2.1) . We then approximate the expectation by a finite mean over
the N realizations as

N
E[f(D)] ~ 5 3 1. (7

Our algorithm takes advantage of the fact that we only want the mean of the approximation
of f to be close to E[f(7)], but do not need pathwise convergence. In other words, we need good
approximations in a weak and not strong (or mean-square) sense. The better the approximate
distributions are, the better the approximation of Ef will be.

To describe our method, consider the one dimensional case D = (—o0,b) with < b. Then 7 is
the first hitting time of level b of the process X (¢). Our algorithm extends a method to approximate
killed diffusions [8, 9] in a natural way: For the weak approximation of killed diffusions if suffices
to know if 7 < T where T' > 0 is a fixed (deterministic) value. In that case a path is killed if
7 < T, i.e. it does not contribute to an expectation at T if it reached level b before T'. For stopped
diffusions, however, an approximation of 7 is needed because we need to know when the first hitting
of b actually occured. Algorithm 2.1 gives this approximation and we can add a last Euler step of
appropriate length (either 77 or 73) to the approximation of the integral (4).

Clearly, we start for every path with Xg = z and fo = 0. For £ = 0,1,... we proceed as
described in Algorithm 2.1.

Remark 1 In n—dimensional cases, locally we apply a half-space approximation of D close to the
boundary, which enales us to reduce our problem to this one dimensional situtation [9].

Algorithm 2.1
1: Set y « Xy, generate & ~ N (0, h) and set z < y + &. {preliminary Euler step}
2: if z < b then {depending on the value of z there are two possibilities}
3:  Generate u ~ U(0,1) and set 71 < —2(b—y)(b—2)/logu
if 71 < h then {compare with the step size h: test for excursion}
Set f(1) < fr + Tig(y) {last Euler step of length 7;.}
stop
else
Set fr+1 < fr + hg(y), Xp41 < z and goto item 1 {continue integrating}
end if
10: else {z > b implying 7 < tg41}
11:  Generate s ~ ZG((b —y)?/h, (b—y)/(z — b)) and set T2 + hs/(1 + s)
12: Set f(7) « fr + T2f(y) {(last Euler step of length 77).}
13: stop
14: end if

© % ST,

Algorithm 2.1 is executed for N independent sample paths (the sample size) and then the math-
ematical expectation is approximated by the finite mean, see (7) (Monte-Carlo method, see [10]
and references therein).



After having stated our method, let us summarize briefly the formulae on which it is based.
This will motivate our approach in higher dimensional settings (§3), see [1] for the derivation. Let
Py 1,2[-] be the law of a Brownian bridge pinned at time-space coordinates (tx,y) and (tg41, 2)
(where tg11 =t + h). Recall that we set y = X, and z = X141 and suppose D = (—o0,b) with
z <b,ie.

r = Hy(z) := inf {X(t) = b, X(0) = 2} (8)

is the first hitting time of level b. We then have [11]

e For y,z < b:
Py,n,z [Hy(y) < 1] = exp (—%(b —y)(b- z)) , t>0. (9)

e Fory<z<b:

y,h z

h(b—y) —t(z —y))° (10)
\/27\/ h—1) exP( 223&(ht—(i‘) S )1{°<t<h} &

and after the substitution z = ¢/(1 — t) > 0 (hence t = z/(1 + x))

z —6)>
= 27;3 exp (—%) 1(ps0y dz (11)

where v = (b—y)?/h and § = (b—y)/(z — b). We recall that a random variable ¢ follows the
inverse Gaussian distribution with parameters v,0 > 0 if it has the density (11). In this case,
we write & ~ ZG(y,d). We refer to [3] for a review on this distribution and to [12] for an
algorithm to generate random variables £ ~ ZG(~,d). This allows us (using (11)) to generate
a random variable with density (10).

Remark 2 In the case that z = b (which has probability zero in theory but might occur in
finite-precision arithmetic on a computer) we set 7 & tx11 and hence stop the integration as

F(1) = fr + hg(Xy).

3 Higher dimensions

We now turn our attention to the approximation of the solution u(z) of (1) with x € D C R™ with
n > 2. From (1) we see that we need approximations of both 7 and X (7). We first describe how
to extend the Algorithm 2.1 presented in §2 to higher dimensions and then show howto find X (7).

3.1 Reduction to one dimension: half-space approximation

We assume that for any two points y, z € R"™ there is a unique point on the boundary 8D which is
“closest” to y and z in some sense (we make this statement precise later on). Denote this point by
X and suppose further, that 9D is sufficiently smooth in a sufficiently large neighbourhood of Xp,
such that we can approximate 9D locally by a tangent hyperplane. For a bounded domain D C R",
every point X, € D can be mapped by a simple scaling and rotation to (b,0,...,0)T with >0
(see §3.4 for an efficient implementation of these rotations using Givens tranformations). To derive
our algorithm, we therefore assume such a transformation has been done and that near 0D, D
is given by the half-space {v € R™ : v! < b} with boundary (hyper plane) {v € R™ : v! = b}.
Suppose ! < b. We then have (compare with (8))

7= Hy(z) := inf {X"(t) = b, X(0) ==} .



3.2 Approximation of the first exit time

For y,z € R™ with y!, 2! < b we have (compare with (9))

2
Puns [00) <1 =exp (=50 9)0 =), t>0
whilst for ' < b but 2! > b it holds that (compare with (10))

Py n,-[He(y) € di]

_boy )k (hb—y") ~ 1(=' =4"))’
T Ver \[Bh-0 7P <_ 2ht(h — t) ) L{o<t<ny dt.

The following observation is immediate:

Remark 3 In the case of a boundary connected to only one of the components of an n-dimensional
Brownian motion (and assuming that the boundary is locally flat, i.e. (locally) a hyperplane), the
fact that these individual components are n independent one dimensional Brownian motions leads to
formulae as simple as in the one dimensional setting. Furthermore, only the components connected
to the boundary show up in the equations.

Therefore, extension of Algorithm 2.1 to higher dimensions is evident and we shall skip the
details. Only the exit point estimation requires further elaboration.

3.3 Approximation of the exit point

In the previous section we described how to approximate the first exit time 7 = 7p of Brownian
motion from a domain D in n-space. As noted earlier, in order to approximate the solution
u(z) of Poisson’s equation (1), by its stochastic representation (2) u(z) = E[¢(X (7)) + f(7)], an
approximation of the exit point X (7) is required as soon as the boundary condition % is no longer
a constant.

Using the notation introduced earlier, we cite the result which is the starting point for the
approximation of X (7), see [11, Lemma 7]. We recall that 7 = inf;~o{ X () > b}. Assume 2! > b.
Given X1(s), s € [0,7], the joint distribution of X?(7) conditioned on X (t) = z is given by [11,
Lemma 6] (with X (0) = 0)

z’;+ T(l—%)-gi where ¢'~ N(0,1), i=2,...,n. (12)

The assumption that 2! > b (or equivalently that z! > b) can be replaced by the assumption that
T < t (or T < t respectively). We can therefore apply (12) as soon as the integration process is
stopped (as soon as an approximation of 7 is found by the extension of Algorithm 2.1 to higher
dimensions using localy half space apprximations of D). The extension to the general case with
y = Xy and 2z = Xjpy1 with 7 < tg41 is then straightforward and yields for the resulting joint
distribution of X(7)

y"+(z"—y")%+,/r(1—%)-§i where & ~N(0,1), i=2,...,n. (13)

It only remains to incorporate the rotation of the map X, — (||X3]|,0,...,0)T. This rotation
can be described by multiplication with an orthogonal matrix R, but we used a more efficient
implementation using Givens rotations, described below. We then have ||Xp|| = ||X3|| because

R is orthogonal. The exit point of the transformed vector X can be found from equation 13 by
replacing z* — %' and y* — ¢*. With this formula for the #,§ coordinates, we can thus sample



an approximation for X(7) on the tangent hyper-plane through (||X3|],0,...,0)7. Once X, is
generated, we project back to D via equation 17.

Rotating back, (||Xs]l,0,...,0)T — Xp, is easily affected by the inverse R~! = RT, gives us
the approximation for the exit point as X (7) =~ R~1X,, where this inversion is applied by n—1
pair-wise rotations of equation (17).

Algorithm 3.1 Simulate one path (with index (7)) to get an approximation @® for u(d =
(XD (D)) + fO(7) with u(z) = E[u?]. We assume that D is the unit-n-sphere and further
omit the sample index (i) for better readibility.

1: y < z, f < 0 {initialize with initial conditions of SDEs}

2: for £k =0,1,2,... do {integrate until 7, see Algorithm 2.1}

3 2=yl +VhE E~N(O,1) fori=1,...,n

4: X < a point on 9D closest to y and z

5: ¢+ Ry and Z + Rz, see §3.4

6: if Z! > 1 then {D was clearly left}

7: Generate T3 according to (10,11) with input variables ', ! and b = 1.
8: f(r) « f+T29(y)

9: stop

10:  else {check for an intermediate excursion}

11: Generate 77 (see (9) with input variables g, 2! and b= 1)
12: if 71 < h then {excursion detected}

13: () < f+Tg(y)

14: stop

15: else {continue integration}

16: f< f+hgly) and y « 2

17: end if

18:  end if

19: end for

20: X' + 1 and for i = 2,...,n generate X* according to (13)

21: X « X/|X]| {project back on 9D}
22: X(7) + R71X, see §3.4
23: @+ P(X (7)) + f(7)

3.4 On the implementation of the rotations

Once a suitable X3, € 9D is found, we have to map the situation to the case where
Xy = (|| X3]],0,...,0)T.

Then, above operation is a rotation in n-space which can be written as RX, = X, with an
orthogonal (n x n)-matrix R. In particular, we need § = Ry and 2 = Rz to generate 71 and 75
respectively.

Of course, one could simply calculate R and perform two matrix-vector-products, but this would
result in an algorithm scaling like O(n?). Because these rotations have to be done in every step,
this is clearly too expensive computationally, especially if the dimension n increases. Also, suppose
that we have some point 4 in the transformed system and we additionally need the “original” point
u, u = RT4. This would be another O(n?)-operation.

We therefore used a procedure which has O(n) operations. It uses Givens rotations [13, Section
3.4] and is described below. Because each of a sequence of Givens rotations is unitary, the inverse
rotation is simply the sequence of transposes applied in reverse order. Both directions are norm
preserving.

To illustrate, let X = (X},...,X}") =: by € R™ and define updated versions of Xy by b,
for k > 2. Subscripts (k) indicate that the k—th element of the updated b vector is zeroed. The



k—th rotation to compute the update bz) = R(x)bx—1), for k = 2,...n having cos, sin parameters
in the 1—st and k—th rows, uses

cos(P(x)) —sin((x))
1
1
Ry = . 14
(#) sin(g(k)) cos(p(x)) ) (14)
1
with ) .
b k—1 . —b k-1
cos(¢r)) = w((kil)) and sin(py) = ﬁ
and
W(g-1) = ((b%k—l))z + (b?kfl))z)i- (15)
Proceeding in the same way, after n — 1 such rotations, we have
bn) = Bn)B(n-1) - R(2)Xo- (16)

It is easy to see that each Ry (14) is unitary, Ra)R(k) =1= Ry, R%’;c), so the inverse transfor-
mation is performed in the reverse order:

-1 _ pT _ pT T T

The rotations § = Ry and Z = Rz can be computed simultaneously, and likewise their inverses.
The calculated trigonometric tables cos(¢(;)),sin(¢(;)) from equation (16) are stored for the
connected inverse transformation (R~! = R”) stored in two arrays ¢ and s. These arrays thus
have length n — 1.
The procedure used in our experiments used Givens rotations, but Householder transformations
[14] would do as well. Namely, X; may be projected into direction e; = (1,0, ...,0)” by a rank-one
update H:

|| Xs]|
0
HXy = .
0

where T
VU

H=1-2 , (18)
[[v][?

and vector v = X;—||X;||e1. The Householder transformation is also unitary, in fact H = HT. This
transformation, H X}, again requires O(n) operations. Givens rotations have a slight advantage
on distributed memory machines (like our Beowulf) because inner products, which require global
communications to get [|v|| and || Xp||, are not required.

4 Numerical experiments

We show results from extensive tests performed with the method developped in the previous
sections. We first show results from experiments performed when the boundary condition % is
constant (w.l.o.g. we took ¥ = 0). Then, sampling of the exit point is unnecessary and we can
concentrate of the approximation of E[r]. We next show results from experiments with non-constant
boundary conditions, hence sampling X (7) on the boundary.



4.1 Constant boundary condition

We concentrate on the exit problem, i.e. Poisson’s equation (1) with ¢ = 1 and ¢ = 0. Then
u(z) = E[rP] is the mean first exit time. Note that for this problem numerical integration using
the Euler scheme is exact and any errors in numerical simulation (beside of the statistical error)
are due to the stopping at first exit.

4.1.1 Two dimensional square

Our first test is such that no error arising due to the (local) approximation of 8D by its tangent
hyper-plane at the point X} is present. The flatter D, the smaller this error will be. We therefore
start with a simple two dimensional domain without local curvature, i.e. a square.

We set D = (—1,1) x (—1,1) and consider Au = —2 with a zero valued boundary condition.
Expanding u(z,y) in eigenfunctions, cos(mwz(2k + 1)/2) cos(my(2l + 1)/2), we find

128 & (=1
w0) =77 k;g (2k +1)(20 + 1) ((2k + 1) + (21 + 1)2)

)

~ 0.5893708. ...

to compare with our numerical approximations.
When computing the closest boundary point, we did not take into account more than one
boundary segment for an excursion test in each step, even if two boundaries were equally far away:

If z € D, we simply took (one of) the boundary segment(s), that minimize(s) the sum of the
eucledean distance of y and z to 0D.

If 2 ¢ DUOD, we assumed that (X (¢)); crossed the boundary 0D at the same point as a linear
interpolated version of the discrete path (Xj); would.

In doing so, we introduce an additional error. We neglect this error and do not try to correct for it,
see [8] for a discussion and possible solutions to this problem. From our results it will be aparent
that for sufficiently small h, these errors can indeed be neglected: asymptotically we get (at least)
the desired O(h)-behaviour of the error (see Figure 1 and the conclusions thereafter).

In this first test, we compare the following methods:

(T): This method stops only if z ¢ D. In this case, it approximates 7 & tj.

(K): This method applies a killing test and stops always (if z € D or if an intermediate excursion
is detected) at tr. In other words, this method is similar to ours, but it ignores the last
integration step of length 7; or 73 respectively.

(SK): This method is a mixture between methods (K) and (S): In the case of an excursion,
integration is stopped at t + 71 and at ¢y if 2 ¢ D (the random variable 73 is not generated).

(S): This is the advocated method which samples both 7; and 7s.
From the results shown in Figure 1 we draw the following conclusions:

e The trivial stopping procedure as applied by method (T) is clearly not satisfying. Integration
stops much too late on average (as the true solution is approached from above, see the left-
hand plot) and resulting convergence order is only one half.

e Applying some sort of a posteriori test to detect intermediate excursions remedies the main
difficulties. Convergence of all three methods (K), (SK) and (S) is much better.

e Method (K) stops integration too early on average (it always stops at the beginning of a
time step). The same holds for method (SK), although applying a stopping test instead of a
killing test to detect intermediate excursions reduces corresponding errors by approximately
a factor of two.
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Figure 1: Results for two dimensional square with ¢ = 1 and ¥ = 0. On the left, approximate
solutions are shown versus step size h together with the exact solution (which is indicated by a
solid line). On the right corresponding relative errors are shown versus step size h. Three lines are
added: a dash-dotted with slope one half, a dashed one with slope one and a solid one with slope
three halfs. In both plots - -x--- is method (T), ---o--- is method (K), --- x - -- is method (SK)
and ---0--- is method (S).

e Method (S) is clearly superior to all the other methods tested: The approximation of «(0)
is very good and connected errors converge with an order higher than one (approximately
three halfs).

e Method (S) stops integration for large step sizes (as did method (T)) too late on average.
We speculate, that this is due to the fact that we always test only for an excursion across
the closest boundary, even in situations when two boundary segments are close. This is for
example the case when y and z are close to a corner.

4.1.2 Unit n-spheres

We next show simulations for unit n-spheres (unit n—ball), i.e. weset D = B = {z e R" : |z| <
1}. The closest point on 0D was chosen as follows (we denote it by Xp):

z € 0D: We set Xy = 2.

z € D: We set X3 to be the minimizer of the sum of the square of the distances to the boundary.
For the unit n-sphere this yields X « (y+2)/|y+ 2| — which is computationally very efficient
and produces for h small enough adequate choices.

z € DUOD: We set X to the point where the line connecting y and z crosses 0D.

We show results obtained with method (S) when applied to the exit problem in various di-
mensions. Results for dimensions n = 2,4, 8,16 are in Figure 2, those for n = 64,128 in Figure
3. Sample size was always N = 4e6 and confidence intervals were always smaller than the plot
symbols.

From the results in Figures 2 and 2 we see, that for the exit problem in unit n-spheres, aymptot-
ically a convergence order of one can always be observed. This is encouraging, as it shows that the
local approximation of 8D by a tangent hyper plane seems to work, independent of the dimension.
Note, however, that for increasing dimension n, a sufficiently small step size h is needed to get
clear evidence of first order convergence behavior.



u(0) and approximations vs. step size h

Relative errors vs. step size h
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Figure 2: Results for exit problem in unit n-spheres. On the left, approximate solutions are shown
versus step size h together with corresponding exact solutions (which are indicated by a solid line).
On the right corresponding relative errors are shown versus step size h. Two dashed lines with

slope one are added. In both plots ---o0---isn =2, ---4+--- isn =4, ---0--- isn = 8 and
-%--- ism = 16.
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Figure 3: Results for exit problem in unit n-spheres.On the left, approximate solutions are shown
versus step size h together with corresponding exact solutions (which are indicated by a solid line).
On the right corresponding relative errors are shown versus step size h. Two dashed lines with
slope one are. In both plots ---0--- isn =64 and --- x --- isn = 128.

4.2 Non-constant boundary condition: Experiments in n = 32 dimen-
sions

We show results from simulations in unit 32-spheres, see §4.1.2 for definitions and details concerning
n-spheres. In particular, we look at three different problems which we describe next. The discussion
of the individual results is postponed to §4.2.4.

4.2.1 Constant inhomogenety, linear boundary condition

We consider the problem

32 32
g(z) =1 and %(z) = Zmi = u(z) = 31—2 (1-|z?) + sz (19)



For this problem, integration is still exact (as again g(z) = 1), but in contrast to the exit problem,
an approximation for X (1) is required in order to evaluate the boundary condition for every path
as soon as ¢ # (0,...,0)”. The boundary condition does not vary significantly and is linear.

For this problem we show results for u(z) with = (@/32);=1,... 32 with @ = 0,1, 2,4. Note that
for higher a, z is closer to the boundary dD and therefore the probability that a point X, € 0D
is the first exit point of a path starting at x is no longer uniformly distributed on 8D (as it is the
case for z = (0,...,0)7). To better distinguish the individual results for different values of a we
show plots of the absolute error, see Figure 4.

Absolute errors vs. step size h, N=4e6 Absolute errors vs. step size h, N=1.6e7
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Figure 4: Results for test problem (19). Absolute errors vs. step size h for two different sample
sizes N = 4e6 on the left and N = 1.6e7 on the right. Solution is evaluated at = (z!) with
r=q/32fori=1,...,32. ---0-+- isa=0,---x---isa=1,---0--- isa=2and - -+ +--- is
a=4.

4.2.2 Quadratic inhomogenety, quartic boundary condition

We make g(z) harder to integrate and choose a non-linear boundary condition. We show results
of two variants of this problem:

32 32

2 1 4
g(z) = —Z (z°)" and 9y(z) = 5 Z (') = u(z) =y(2) (20a)
i=1 i=1
This problem has still an intrinsic symmetry: g(-) is constant on the spheres |z| = ||z||2 = r = const

and 1(-) is constant when ||z} = }_,(z')* = R = const respectively. We therefore consider the
following extension:

32 32
g(z) = —Zi (ac’)2 and ¢(z) = éZz (:L‘i)4 = u(x) = Y(x) (20b)

We show relative errors obtained versus step size h in Figure 5.

4.2.3 General (transcendental) inhomogenety and boundary condition

The last example we use to test Algorithm 3.1 is defined as follows: We set for k* = 1,2,..., with
k= (k")i=1,. 3

32
g(z) = Hcos(Zwkixi) and ¢(z) = % (21)

Then u(z) = ¢(z), r € DU D.
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Figure 5: Results for test problems (20): The plot on the left shows results for test problem (20a)
whilst on the right results for problem (20b) are shown. Relative errors vs. step size h for the
sample size N = 4e6. Solution is evaluated at z = (z') with ¢ = 5/100 and z¢ = 1/10 for
i=1,...,32. ---0O--- is x* = 5/100 and --- x --- is * = 1/10. In both plots, two dashed lines
with slope one are added.
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Figure 6: Results for test problem (21) when solution is evaluated at z = (z') with z* = 0 for
i =1,...,32 for N = 1le6 paths. On the left hand we show the approximate solutions versus
step size h and indicate the exact solution with a solid line. On the right hand side, we plot
corresponding errors versus step size h and add a dashed line with slope one. In both plots, ---0---
are the results obtained for k = (1,...,1) whilst --- x - -- are those for k = (3,2,1,1,...,1).

4.2.4 Discussion of the numerical results for 32-dimensional spheres

Problem (19) results show that there is some absolute error increase as the initial point moves out
from the center. This is not surprising since the solution (19) increases approximately linearly as
the |z| = r = initial radius increases. Thus the relative error is approximately constant in this
range. Plots in Fig. 5 of the relative error for problems (20a) and (20b) confirm this assessment.
Additionally, the expected O(h) accuracy of our Euler method is evident.

5 Conclusions and final remarks

We have outlined a general procedure for estimating exit times and exit points for Monte-Carlo
solutions of elliptic partial differential equations in n—dimensional spaces. Since the Feynman-Kac
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Figure 7: Results for test problem (21) when solution is evaluated at x = (z%) with #* = 5/100 for
i=1,...,32 for N = 1e6 paths. See the caption of Figure 6 for further information.
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Figure 8: Results for test problem (21) when solution is evaluated at x = (z*) with ¢ = 1/10 for
i=1,...,32 for N = 1e6 paths. See the caption of Figure 6 for further information.

representation requires good estimates for these statistics, an accurate sampling method seems
essential. In our procedure, two situations are evident:

First, both X € D and X1 € D, but possible excursions are estimated as in (9); and

second, X € D but X1 € D the sample path has clearly exited domain D so an estimate of
Pty < 7P < t41, is required.

In both cases, X(7P) must be sampled if an excursion has been determined in the first case,
and always in the second case (definite exit). For this exit point, a bridge process (13) is used,
via a transformation to a local tangent hyperplane coordinate system then pulled back to yield
an exit point X (7) in the original coordinates. These local hyperplane <+ original coordinate
transformations can be done with Givens rotations (16) or Householder reflections (18) in O(n)
arithmetic operations.

What remains to do, particularly for problems similar to our test in section 4.1.1, is a better
analysis of corners or cusps. A subject of future work, but data in Figure 1 show encouraging
results by a crude procedure which simply chooses the nearest side, at least for near-center values
of z.
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