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Abstract

FETI methods are among the most heavily tested domain decomposition methods.
The purpose of this thesis is to analyze a dual-primal FETI method for hp edge
element approximations in two dimensions on geometrically refined meshes. These
meshes are highly anisotropic, where the aspect ratio grows exponentially with the
polynomial degree. The primal constraints are here averages over subdomain edges.
We prove that the condition number of our algorithm grows only polylogarithmically
with the polynomial degree and is independent of the aspect ratio of the mesh and
of potentially large jumps of the coefficients.
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1 Introduction
In this thesis, boundary value problems of the type

Lu:=curl(acurlu) + Au = f in Q, (1)
u-t = 0 ond

are considered, with Q a bounded polygonal domain in R? and t its unit tangent.
For the definition of the curl operators see Subsection 2.4. Problems of such a
type are derived for instance from reformulations of Maxwell’s equations, see [10],
Subsection 3.1 for a detailed discussion. It is well known that solutions of boundary
value problems have corner singularities. In addition, boundary layers may also arise
when small parameters are present. To achieve an exponential rate of convergence
of hp finite element methods, meshes that are geometrically refined towards corners
and edges are employed. These meshes are highly anisotropic and therefore many
standard results for hp finite element discretizations do not hold. In this thesis,
a dual-primal FETT method for the solution of the finite element approximation
on these type of meshes is proposed and analyzed. It turns out that the condition
number of the method grows only polylogarithmically with the polynomial degree
k and is independent of possibly large aspect ratios of the mesh. This thesis is
a generalization of [19] to the problem 1 for hp finite element approximations on
anisotropic meshes.

1.1 Overview

In Subsection 1.2, the problem treated in this thesis will be introduced and its vari-
ational formulation be derived. In Section 2, the spaces needed for the variational
formulation of the problem are introduced, together with some basic properties that
will be used throughout the thesis. The construction of boundary layer meshes and
the hp discretization of the problem on such meshes is then given in Section 3; this
section is ended with a first important result: the discrete Friedrichs’ inequality on
anisotropic meshes, which will be used in order to prove an important decomposition
result, see Subsection 4.4. Section 4 then introduces the dual-primal FETI method.
In Subsection 4.2 we describe the method, whereas in Subsection 4.3 the condition
number bound is proved. Finally, in Subsection 4.4, a decomposition result for geo-
metrically refined meshes is proven. This last result is the second important result
of this work.

1.2 Description of the problem

We consider problem (1). The coefficient matrix A is a symmetric, uniformly pos-
itive definite matrix-valued function with entries A;; € L>*°(Q), 1 < i,j < 2, and
a € L*°(Q) is a positive function bounded away from zero.

By multiplying (1) with a test function v, integrating over Q and using Green’s
formula (6) we obtain the variational formulation:

Find u € V, such that

/acurlucurlvdm+/Au-vdm:/f-vdx Vv ey, (2)
Q Q Q

where V is a curl conforming space with vanishing tangential component along 0f2.
Such a space is Ho(curl, Q) and will be introduced in Subsection 2.4. For any D C
we can define the bilinear form

ap(u,v) := / (acurlucurlv+ Au-v)dz, u,vevV (3)
D



and the linear functional
Ip(v) ::/f-vda:, veW. 4)
D
The variational problem (2) can now be rewritten as:
Find u € V, such that
aq(u,v) = lo(v), Vvev. (5)

2 Function spaces

In this section, we introduce some function spaces that will be used throughout
this thesis. They are presented together with some basic properties and well-known
results that will be employed in this work. For a detailed discussion of these spaces
we refer to [1], [4] and [14].

2.1 [P-spaces

In the following, we assume that {2 C R” is a bounded and open set with Lipschitz
continuous boundary.

Definition 2.1 The boundary 002 is Lipschitz continuous if there exists a finite
number of open sets O;, i = 1,...,m that cover 0N), such that, for every i, the
intersection OQ N O; is the graph of a Lipschitz continuous function and QN O; lies
on one side of this graph.

LP(Q) is the space of Lebesgue measurable functions u with |[u||L»() = |[u|lo,p,0 <
0o where the norms are given by

1
P
lullope = (/ |u|de) ,

lulloss = esssuplul.

L?(Q) is a Banach space and for p = 2 it is in addition a Hilbert space with the
inner product

(u,v)0,0 = / uv dx.
Q

For simplicity, the norm || - || 2,o will be denoted by ||-||o,@- If p > 1 and g satisfies
5 + 2 =1, then the dual space of LP(() can be identified with L?(Q?) in a natural
way.

2.2 Sobolev spaces

Let a = (ay,...,0,) € N® be a multi-index. The norm of « and the a-derivatives
for a sufficient smooth function u are defined as
o] = a1+ + an,
D% = 0p}!...0;™u.
To define the Sobolev spaces, weak derivatives need to be introduced:

Definition 2.2 A function u: Q — R is called k times weak differentiable if, for
all |a| < k, there exist functions vy : Q@ — R such that

/ uD% dx = (-1)°/ / Vot dx, Vo € C§°(Q).
Q Q

The function v, is then called the a-th weak derivative of u.



The space C§°(f2) consists of functions in C* () with compact support in Q. The
Sobolev spaces W#P(Q) are then defined as the space of functions u € LP(f) for
which the weak derivatives up to order k exist and belong to L?(€2). The norm on
Wkr(Q) is given by

Bl = 1l = 3 D%l 0
|| <k

With an abuse of notation D is in the following understood as the a-th weak
derivative. A seminorm on W*?() is given by

[ulfpa = 22 D% 0

|oe|=k

The Sobolev spaces are Banach spaces and for p = 2 they are Hilbert spaces with
the inner product
(U, U)k,Q - Z (Daua Da'U)O,Q)
la| <k
and are denoted by H*(Q) := Wk2(Q). If s is a non-negative real number and not
an integer, the Sobolev spaces W*?(2) are defined in the following way:

Definition 2.3 Let O C R” and let s > 0 be a non-integer number. Write s as
s=|s| +0 witho € (0,1). Then u € W*?(Q) if and only if u € Ws1:2(Q) and for
the seminorm it holds |u|s 0 < 00, where

Pa = [D%(z) ~ Du(y)|?
| |,p, - Z / |SL'— |n+op d.’E dy,
lal=s]
D°u(z) — D%
e = T s, gl 2D

lor|=Ls]

As before H*(2) := W#2(Q). The spaces WP (Q2) and H§(2) are defined as the
closure of C§°(f2) with respect to the ||-||s,p,o-norm and || - ||s,o-norm, respectively.
One can prove that Wy'*(Q) is a proper subspace of W*?(Q) if and only if s > 1
The spaces with a negative s are defined by duality. Hence,

W) = (W)
HQ) = (H@).

2.3 Trace spaces

In this subsection, Sobolev spaces on a set ¥ C 9N are defined. Similar as by the
last subsection, the spaces W*?(X), s > 0, are defined as the space consisting of
functions on ¥ such that

||u||€vs,p(z) = ||“||€VLsJ,p(E) + |u|€vsm(2) <00,

where the norm and seminorm on the right hand side are defined as in the previ-
ous subsection with the obvious changes. Denote by -y the operator that maps a
function in C(Q) into its boundary values in C(99). The following theorem can be
found in [9], Section 1.5.2.

Theorem 2.4 (Trace theorem) Assume that Q is Lipschitz continuous and s >
%. Then the mapping o has a continuous extension to an operator

H*(Q) — H*"2(89Q),



Remark 2.5 With the same assumptions as in Theorem 2.4, there exists a con-
tinuous lifting operator Ro : H*~2(0Q) — H*(Q), such that vo(Rou) = u, u €
H*~2(09).
Hence, by mapping from Q to 012, we have a loss of regularity of order %

The extensions by zero to dQ of functions in H? (X) do not in general belong to
Hz(Q). The space HO%O(E) is therefore defined as

HE (S) := {u € H¥(Z)|Eu € HE(00)},

where u is the extension by zero of u to 9f2. The corresponding norm is defined
by
llull1,00,2 = lI€ull3 50

2.4 The space H(curl,{2) in two dimensions

Let u be a two-dimensional vector field and ¢ be a scalar function. The vector and
scalar curl operators are defined, respectively, by

(a2
curlg=( —,—— |,

6.732, 33]1
and
curlu = % — %
- 63]1 8%‘2 )

H(curl, ) is then defined as
H(curl,Q) := {u € (L*(Q))?|curlu € L*()}.

It is a Hilbert space with the inner product

(0, V)curl ,0 =/u-vd:1:+/ curlucurl v dz,
Q Q

and the associated norm

[lal e 0 = [[ullf o + [[curlulfg o

Let t and n denote the unit tangent and unit normal vector, respectively, on the
boundary 9€2. As in the previous subsection, a trace operator ; can be defined,
mapping vectors u on 2 onto their tangential component on the boundary, v;(u) =
u-t. A similar trace theorem as in the previous subsection holds as well, see [8],
Theorem 1.2.11:

Theorem 2.6 Let (2 be Lipschitz continuous. Then the operator v; can be extended
. 1

continuously to an operator 7y, : H(curl,Q) — H~2(09Q).

Remark 2.7 Under the same assulmptions as in Theorem 2.6, there exists a con-

tinuous lifting operator Ry : H 2(0Q) — H(curl,Q) such that v(Riu) = u,

u e H-2(89).

For u € H(curl,Q) and g € H'(Q) there holds the Green formula:

/curluqda:—/u-curlqd:c:/ u-tqds. (6)
Q Q a0
The following subspaces are well defined:

Hy(curl,Q) = {ue H(curl,Q)|u-t=0o0n00},

H(curly,Q) = {ue€ H(curl,Q)|curlu =0},

Hy(curlg,Q) = {u € Hy(curl,Q)|curlu = 0}.



2.5 Helmholtz decompositions

The Helmholtz decompositions are orthogonal decompositions of the spaces H (curl , Q)
and Hy(curl, Q). The decompositions are based on the following decomposition re-
sult for (L%(Q))™:

Lemma 2.8 The space (L*(Q))" allows the following orthogonal decompositions:

(L*(Q)" = H(dive, Q) ® gradH; (),
(L2(Q)" = Hy(dive, Q) @ grad H'(Q)

where div denotes the divergence operator and

H(divp,Q) = {ue (L*(Q))?*|divu = 0},
Hy(divg, Q) {u € H(divg,)|u-n = 0on 9N}.

Proof See Proposition 1 on page 215 of [6].
Since H(curl,Q) C (L?(Q))? and grad H' () C H(curl, ), Lemma 2.8 gives rise
to the following decompositions of H(curl, ) and Hy(curl, Q):

Proposition 2.9 (Helmholtz decomposition of the curl-spaces) The curl graph
spaces allow the following orthogonal decompositions:

H(curl,Q) = gradH'(Q)® H(curl,Q),

Ho(curl,Q) = gradH} () ® Hy (curl,Q),
where

H*(curl,Q) = Hy(divg, Q) N H(curl, Q),

Hi (curl,Q) = H(divo, Q) N Hy(curl, Q).

Remark 2.10 For a simply connected Q) it holds
H(curly,Q) = grad H'(9),

and
Hy(curl g, Q) = grad H} ().

Hence, in this case, H(curl,Q) and Hy(curl,Q) can be decomposed into the kernel
of the curl operator and its orthogonal complement.

For a simply connected  C R2, the following deRahm diagram holds

curl

rad
H'(Q)/R Z25 H(curl, ) 25 £2(Q). (7)
The section is ended with

Theorem 2.11 (Friedrichs’ inequality for H'(curl,Q)) IfQ is simply connected,
the following inequality holds for u € H*(curl,Q):

llullo.o < CHallcurlulo,0.

The same inequality holds for the space Hg-(curl, Q).
See, e.g., [10], Theorem 2.6.



3 Discretization of the problem

3.1 hp-finite element approximation

We recall that we want to solve the variational problem (5):
Find u € V, such that

ag(u,v) =lo(v),  VveV. ®)

V is a Hilbert space and aq(-,-) the bilinear form on V x V given by (3). The right
hand side lg(+) is the continuous linear form on V' given by (4). In the problem
discussed in this thesis, the space V is Hp(curl,). The aim of this section is to
introduce discrete curl -conforming spaces to solve the variational problem (8) with
finite element approximations on a given triangulation.

For iterative substructuring methods, which are considered in this work, we
start from an initial mesh 7g where the elements of 7T are then refined to obtain
a triangulation 7. The refinement procedure used in the present work will be
discussed in the next subsection. The mesh Tz is also called the coarse mesh and
the elements of Ty are called substructures or macroelements and are denoted by
; throughout this thesis. The local interfaces are defined as I'; := 09;\09Q. The
interface is then defined as the union I' = Ufil I';. The coarse mesh is assumed to
be shape-regular and the fine mesh 7 is assumed to be regular, i.e. it contains no
hanging nodes.

After introducing a triangulation of the domain 2, local finite elements spaces
X C Hp(curl,Q) can be defined and the variational problem (8) can now be ap-
proximated as

Find u € X, such that

a(u,v) = I(v), Vv e X. 9)

By introducing a basis for the finite element space X, the problem (9) can be written
as:
Find u € X, s.t.
Au=1 (10)

The matrix A is called the (global) stiffness matrix and is the representation of the
bilinear form agq (-, -) in terms of the given basis while the right hand side 1 is called
the load vector and is the representation of the linear form lo(-) in terms of the
given basis.

3.2 Geometric boundary layer meshes

In order to resolve boundary layers and/or singularities, geometrically refined meshes
can be used. They are determined by a mesh grading factor o € (0,1) and by a
refinement level n. A two-dimensional boundary layer mesh 7y}’ is constructed by
refining an initial shape-regular triangulation 7g into edge or corner patches. In
the following the refinement will be given for the reference square K = (—1,1)2.
For an arbitrary element §2; € Ty the patches can be obtained by using the affine
mapping Fo, : K — Q;.
An edge patch is given by an anisotropic triangulation of the form

Te :={I x Ky|K, € Ty},

where I denotes the interval (—1,1) and 7, is a mesh of I, geometrically refined
towards for example y = —1 with grading factor o € (0,1) and n layers, see Figure
1, left.
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Figure 1: Edge and corner patches for K with 0 = 0.5 and n = 4.

A corner patch is then given by an anisotropic triangulation of the form
T := {K:c X Ky|Kz € Tz, Ky € 7;/}7

where 7, and 7T, are meshes of I geometrically refined towards one vertex with a
grading factor o € (0,1) and n layers, see Figure 1, right.

The number of elements in an edge or a corner patch is O(n) and O(n?), re-
spectively. The thinnest layer has a width proportional to ¢™. We note that every
element K of 7, and 7. can, after a possible translation and rotation, be written in
the form (0, h;) x (0, hy). The aspect ratio of K is then the maximum of the ratios
ha/hy and hy/h,. The aspect ratio of the mesh is therefore proportional to ¢~".
For further properties of boundary layer meshes it is referred to [19].

3.3 Gauss-Lobatto nodes

The aim of this subsection is to provide a nodal basis for spectral finite element
functions on an element K € 7,1°. As in the previous subsection, the nodes will
be defined for the reference square K and for an arbitrary element K € o they
are obtained by the mapping F : K-> K.

The family of Legendre polynomials L,(x) on (—1,1) is defined by the following
recursion:

Lo(ﬂf) = ]-a Ll(x) =,
2n+1 n
n+1 oLa(@) n+1
L, (z) is a polynomial of degree n and it holds L, (1) = 1 for all n > 0. Furthermore
they form an orthogonal family, i.e.

Lpyi(z) = Lp_1(z), form >1.

1
2

The set of Gauss-Lobatto points are now defined by GLL(k) = {&]1 < i < k}

where the &;’s are the distinct and real zeros of (1 — z?)L},_, (). For the reference

square K = (—1,1)? the Gauss-Lobatto nodes are given by GLL(ky, ks) = {&; =

(&,&)1 < i < ki,1<j < ko}, where the &’s and ;s are defined as above. Let

Qk1,k, (i) denote the set of polynomials on K which are of order k; in the first
and of order k2 in the second variable. Given the nodes GLL(k1,k-), the basis



functions on Qg, x, are given by the tensor product of k;-th order and k»-th order
Lagrange interpolating polynomials on GLL(ky) and GLL(kz) respectively, defined
by 1:(€;) = di;. A scalar function u(z,y) € Qk, , on K can then be written as

k1 ko
9 =33 6, )i @)l ).

i=1 j=1
This defines an interpolation operator I*1:¥2 on the reference element

k1 ko

ok, y) =" " u(&, &)li(@)l; ().

i=1 j=1

The nodes GLL(k, k) are simply denoted by GLL(k)?.

3.4 Nédélec elements in H(curl, )

To solve the discrete problem (9), it is necessary to define curl-conforming finite
element spaces. Such spaces can be chosen as the Nédélec spaces. They were
originally introduced in [16] and extended to the three-dimensional case in [15].
The Nédélec elements are sometimes also called edge elements. For the reference
square K the Nédélec elements of order k are defined as

ND(K) = Qp_1,5(K) x Qpi_1(K), k>1,

with basis functions associated to the Gauss—Lolgatto nodes on K. These spaces are
defined in such a way that for every u € NDy,(K)

curlu € Qg_1,4-1,

and
u-t, € Qkfl(e),

for any edge e of K where t, is the unit tangent vector of e. The associated degrees
of freedom are given by

/(w -te)p ds, Vp € Qr_1(e), e COK, k>1, (11)

/A w - p dX, Yp € Qk—1,k-2 X Qp—2,4-1, k>1. (12)
K

In the case k = 1 the space NDy(K) has the form

Py — _ [ a1+ bz Y .
NDy(K) = {u = ( dy + Doty ) |ai, b; constant for i = 1,2}.

Its curl and tangential component are constant along each edge. The degrees of
freedom consist only of the edge moments (11).

For an arbitrary element K € 7,1"%, the Nédélec elements ND(K) are obtained
by using the affine mapping Fk : K — K. The following result is well known

Lemma 3.1 A vector function u: Q — R? belongs to H(curl, Q) if and only if the
restriction of u to every K € Toy? belongs to H(curl,K), and, for each common
edge e = K1 N K3, K1,K> C T, we have

ll-tK1 =11-tK2

on e with, e.g., t =tg, = —tk,.



Given the local spaces NDg(K), the global ones, conforming in H (curl, Q) and with
respect to a given triangulation 7 are then defined by

NDy(Q,T) = {u € H(curl,Q)|u|x€ NDy(K), K € T}, (13)

i.e. they preserve the continuity of the tangential components along the element
edges.

To obtain elements that are conforming to Ho(curl,{2) one can proceed in the
same way just using now the local spaces

NDg (K) = {u € NDi(K)[u-t. =0, e C 9K NN}.

The resulting global space is then denoted by NDg (2, T).
The Nédélec interpolant IIyp : H2+¢(K) — NDy(K) on the reference square
is defined by

/(w —npw) - tep ds =0, Vpe Qu_1(e), e COK, k>1, (14)

/ (w —Txpw) - p dk =0, Vp € Qp—1,k—2 X Qr—2k—1, k>1, (15)

K
and has the properties

Lemma 3.2 (Unisolvency and diagonality) The degrees of freedom (11) and
(12) are unisolvent and the interpolant Iinp is diagonal, i.e. for w = (w1, w2),

np (wig;) = (Mnpw)ié;, =12, (16)

where (€1,&3) denote the standard basis vectors.
Proof The proof follows the one of [5] where the unisolvency and diagonality is
proven for a tetrahedron in three dimensions.

The number of degrees of freedom is 4k + 2k(k — 1) which is equal to dim ND;, =
2k(k + 1). To prove unisolvency one has to show that if w has all its degrees of

freedom equals to zero then w = 0 on K.
(From (11) it follows that

/ w;p ds = 0, Vp € Qr-1(é;), 1=1,2,

for every edge é; of K parallel to &;. Choosing p = w; |¢; leads to
Wi |e; = 0. (17)

;From (12) it follows by choosing p = (92, w1, 92 w») and integrating by parts

0 = /W-pdfc
K

- /wla§2w1 d§c+/ ws &2, wy dX
i i

= / [wlawzwl]l_l ds+/ [w26z1w2]1_1 ds
él é2

—/ (6$2’11)1)2 dx — /A (awl’IU2)2 dx.
K K



Since the boundary terms are zero due to (17) one obtains
6351’11)2 = 0, 6352’11)1 =0. (18)

This means that w; is a polynomial in z; and ws is a polynomial in 5. Hence it
follows that w € Qg—_1,0 X Qo x—1- This allows p to be chosen as p = w in (12)
and leads to the final result w = 0, i.e. the degrees of freedom (11) and (12) are
unisolvent. .

Now set HND(w,éz) = ¢ with W; € Qk—l,k X Qk,k—l- For Y; = ((pil,(pﬂ) and
j # 1 it follows from (11) and (14)

/(ﬂpijéj)'téjpds =/

Vp € Qi_1(é;), and from (12) and (15)

goz'-té].pdS:/ ﬂND(wiéi)-téjpdSZ/ wiéi-téjpds:o,
i é é;

3 J

/ (pij€;) -pdx = / Tnp(W - €;)é;p; dk =0, Vp € Qpo1,5-2 X Qp_op1.
K K

This implies that ¢;; for j # ¢ verifies 2k+k(k—1) constraints which are independent
since (11) and (12) are unisolvent degrees of freedom. Since ¢;; € Qg1 Or Qg k—1,
respectively and the dimension of each one of these spaces is equal to k(k +}), ie.
to the number of independent constraints, ¢;; = 0 for all j # i. Therefore llyp is
diagonal. O

3.5 Discrete Helmholtz decomposition

In Proposition 2.9 it has been shown that the space H(curl,{) allows a decom-
position into the kernel of the curl operator and its orthogonal complement. As
the following proposition will show, a similar decomposition holds for the discrete
curl-conforming Nédélec spaces as well. Let

Sk, T) = {ge H(Q)lq |xe QpsVK C T},
S(),k(ﬂ,'r) = {q€ H&(Q)lq k€ QrrVK C T},

be the H'(Q)-conforming and Hg (2)-conforming spaces, respectively, with conti-
nuity across the interface.

Proposition 3.3 (Helmholtz decomposition of ND(2,7T)) The Nédélec spaces
allow the following orthogonal decompositions
NDy(Q,T) = gradSi(Q,7T)® NDi(Q,7),
NDox(Q,T) = gradSo:(Q,T)® NDy(Q,7),

where

NDE(Q,T) = {u€ ND(Q,7T)|(u,gradpi)o =0V p € Sk(2,T)},
NDg(Q,T) = {u€ NDox(,T)|(u,gradp)o =0V pi € So,x(2,T)}-

In general, the spaces NDi- (2, 7) and NDg (2, T) are not included in H-(curl,, 2)
and Hg"(curl, ), the analogous spaces of the continuous Helmholtz decompositions.
If Q is simply connected, the deRahm diagram (7) can be adapted in the follow-
ing way:
grad curl
Sk(QaT) — NDk(QJT) E— kal(QaT): (19)

where Y_1(Q,T) is a L?(Q)-conforming space of piecewise polynomials of degree
k—1.

10



3.6 Discrete anisotropic Friedrichs’ inequality

For some calculations in the following, a discrete version of the Friedrichs’ inequality
will be needed. As the present work deals with highly anisotropic boundary layer
meshes, the inequality must hold for such meshes. Since no such result seems to exist
in published form, a proof is added. The next paragraph will give some preparations
for the proof, while in the following paragraph the theorem will be formulated and
proven.

3.6.1 Anisotropic interpolation error

The aim of this paragraph is to derive an hp-interpolation error for the Nédélec
interpolant defined by (14) and (15) for anisotropic meshes. This is done by mapping
a p-interpolation error for the reference element K on an arbitrary (not necessarily
shape regular)A element K by using similar techniques as in [5].

Let Fx : K — K denote the affine element mapping. Scalar functions map like

qo Fg = (ja (20)
whereas vector fields transform like gradients, i.e.
vo Fi = DFgT%. (21)

The local system of Cartesian coordinates on K is given by x¥ = (z¥ z&) =

Fr(%1,%2). In general, the mapping Fi can be represented as Fxx = DFgX + ck
and for the following calculation it is required that the matrix DF satisfies the
assumption

Assumption 3.4 For any K € T, there exists a diagonal scaling matriz

[ d 0
Hy = ( 0 d )
uujhere di and dy are the characteristic dimensions of K, and two matrices Bx and
By which, together with their inverses, are bounded independently of K, such that

DFyx = Hxk B = Bi Hkg. (22)

It is immediate to prove that Assumption 3.4 holds for our meshes.
The following interpolation error estimate on the reference square has been
proved by Monk [13].

Proposition 3.5 Let i € (H"(K))? and r > +. Then the following error estimate
holds on the reference square

~ i ~ —(r—1 ~
o —Tapilly & < Ck02|la]], 4.

Proof See [13], Theorem 3.5.
Choosing = 1 in the above proposition yields

[ = Twnlly g < C2{[al], - (23)
With the last equation it is possible to prove the main result of the current paragraph

Theorem 3.6 Let K € T be an arbitrary element and let Assumption 3.4 be sat-
isfied. There exists a positive constant C such that for all functions u € (H'(K))?
the following interpolation error estimate holds:

2
llu —Tnpullf & < Ck ' ([ulfg & + D dFl10ul[f )
=1

11



Before proving the theorem, there is a corollary of it which will be of use later:

Corollary 3.7 Let K € T, Hg, = 1 and the assumptions of Theorem 8.6 be satis-
fied. Then )
|lu = npullo,x < Ck™2||ull1 x, (24)

with C' independent of the aspect ratio of K.
Proof Use that max; d; < 1. O

Proof of Theorem 3.6 ;From the definition of the L2-norm and the transfor-
mation property (21) it follows that

|lu — Tnpulfg & [u—TInpuf® dx
’ K

/A |uo Fx — (TIxpu) o Fi|?| det DF | d%
K

| det DF | / |DFg"t— DF " Tinpal? dx.
K

By Assumption 3.4 use the first equation of (22) and the fact that Bk is bounded
to obtain

lJu — Tnpul? x < C| det DFx| / \H! (6 — Tinpd) | di.
K

From the dlagonahty (16) of the interpolation operator Inp it follows for i =
(@1, U2) and @; = 4;€; that (HNDu) é; = IIxpiy; and therefore

— apiy; = (4; — (ypiy);)é;.

This fact can be used to obtain

2
|[u—Tnpul|y x < C|det DFk]| Z/ |Hy' (; — Tnpin)|? dx

< C’|detDFK|Z / Ly — Tt ? dx.

Using (23) yields

2
det DF, N
= Tipul < o Y VST (] jage asr [ e ax).
’ = (d) K K
Now apply (21) on 1;:
9; = DF{E(u; o Fi).

With the definition 1; := BIT{ui and the factorizations (22) the gradient V can be
transformed as

@fl = v}; ((Vui)OFK)HKBK:HK ((Vﬁi)OFK)HKBK.

12



The interpolation error can then be estimated as

2

1
||'l.l — HND'I.IHS K < Ck_l Z 2 (/ |HK'EIZ|2 dx —|—/ |HK(VﬁZ)HKBK|2 dX>
’ = (di) K K
21
< Okt (/ d;; |2 dx+/ d; (Vi) Hy |2 dx)
izzl (dz)g K | | K | ( ) K|
2 2
= Ck7! Z (/ |B};u,-|2 dx + Z/ |dlalB};ui|2 dx)
i=1 \VK i=1"K
2 2
< Ck™! Z (/ lug|? dx + Zdl?/ |Oyu;|? dx)
i=1 \"K =1 K
2
= o1 (Il + o)
=1
This ends the proof of the theorem. m|

3.6.2 Friedrichs’ inequality

The steps to prove the discrete Friedrichs’ inequality follow those of [10], Theorem
7.18. To prove the anisotropic discrete Friedrichs’ inequality, the following Lemma
will be used:

Lemma 3.8 Assume that the bounded and convexr domain ; with Ho, =1 has a
Lipschitz boundary and is covered with an edge or corner patch. Assume also that
u € Hy (curl,Q;). Then the Nédélec interpolant satisfies the following L?-bound.

1
||11 - HNDUHO,Qi <Ck™>2 ||cur1u||0,gi,

with C' independent of o,n and p.

Proof Corollary 3.7 yields
|lu = Tnpulf§ < CEH[u|f? -

Summing over the elements K C 2; and using that maxhg < Hg, = 1 leads to
|lu — Tnpul[§ o, < CEHulf o,

For the norm on the right hand side it can be used that the space Hy-(curl, ;) is
continuously embedded in H!((2;); see e.g. [2], Theorem 2.12. We therefore have

llalli0: < C(|[ullo,0; + [lcurlulfo,q,).

By the continuous Friedrichs’ inequality ||u]|o,0; < C||curlu||o,o; the lemma follows.
0O

Theorem 3.9 (Anisotropic discrete Friedrichs’ inequality, hp-version)
Assume that the bounded and convex domain Q; has a Lipschitz boundary and is
covered with an edge or corner patch. Let @ be a discrete divergence-free edge
element function of degree k in NDd:k (Q,T). Then there exist constants C and C',
both independent of o,n and k, such that

1@k lo,0; < CHi(1+k™/?)||curl @ llo,0, < C"H;l|curl ®¢]joq,-
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Proof The second inequality follows trivially from the first, since the coefficient
is a function that decreases with k.
The first inequality is proven in several steps. We assume that ; has unit
diameter since the explicit dependence on H; is found by a scaling argument.
Define v € H{ () as the solution of the generalized Dirichlet problem

(gradv, gradq)o = (¥, gradg)e Vg € Hy ().
Then, w := &, — gradv € Hg-(curl , ;) and thus satisfies
curlw = curl @, divw =0, w-t|so,=0.

By Proposition 3.7 of [2] it follows that w € H2%¢, for an & > 0. This means
that, thanks to Theorem 2.4, the edge moments are defined and therefore IIypw
is defined. Since ® is in the Nédélec space, its interpolant is defined, and there-
fore IIyp(gradv) is defined. The appropriate version of the commuting diagram
property shows that there is a piecewise polynomial v such that

Inp(gradv) = gradwy,

and therefore ®p = MInp P = lIypw + gradvg. We have (P, gradgg)o = 0 for all
qr € H}(Q;) and therefore for gy=vy,. This gives that (®y, ®y)o = (Inpw, )0 +
(gradwg, 1 )o = (IInpw, Pk)o and an application of the Cauchy-Schwarz inequality
gives

[|@kllo,0; < [[MnpwW|[o,0;-

We next use Lemma, 3.8 and the triangle inequality to show

[[Inpwlloe: < [[W]lo: +[|W — Inpwllo,0;
< CO+E?)||curlwllog,-

In the last step we have used again the continuous Friedrichs’ inequality. The proof
is completed by recalling that curlw = curl ®. O

4 A dual-primal FETI method

In this section, a dual-primal FETT method for the solution of the linear system (10)
is introduced. Dual-primal FETI methods were originally introduced in [7] and the
first theoretical results for two dimensions were given in [12]. A dual-primal FETI
method for (1) has already been developed in [18] for h and p approximations on
isotropic meshes in two dimensions.

4.1 Definition and notations

Let Tx denote the coarse triangulation into subdomains ©; and 7 = 7,7 its refine-
ment into edge and corner patches. The set of internal edges of T is denoted by
Em. The set Z(i) consists of indices j such that ; shares an edge with ;. The di-
mension |Z(7)] is uniformly bounded. The edge shared by two adjacent subdomains
2; and Q; is denoted by E;;.

The coarse space X g is defined by

XH(Q) = ND071(Q, TH) C Ho(curl , Q,)
The local spaces defined on each subdomain €2; are given by

X,’ = {11 € NDk(Q“T)hl -t=0o0n 691 N 89} C H(Curl,Q,-).
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Next, the product space

is considered, which consists of vectors that have in general a discontinuous tan-
gential component along the subdomain edges. The subspace of vectors with a
continuous tangential component along the edges is given by

X := X N Hy(curl , 0).

Now, we introduce some trace spaces consisting of the tangential components on
the boundaries of the subdomains. A scalar function u, defined on 9;\992, belongs
to W; if and only if there exists a vector u € X; such that, for each edge,

u

E,'j:u'tE,'j) Ez_] EC‘:H, JGI(Z)

These are piecewise polynomials of degree k — 1 along the edges E,] The product
space of functions defined on the interface I' is defined by W := [[, W; and its
continuous subspace W consists of tangential traces of vectors in X.

Throughout this section, the following notations are used. A vector function
in X; is denoted by a bold letter with superscript (), e.g. u®, and the same
notation is employed for the corresponding column vector of degrees of freedom. Tts
tangential component u(?) is an element of W; and is defined by

u® = u® . te;;, Eij € Eu, jeI(i).

It is uniquely defined by the degrees of freedom u(® involving the tangential com-
ponent along 8Q;\09Q. The same notation u(? is used for the column vector of
these tangential degrees of freedom. It is remarked that a vector u belongs to the
continuous space X (and consequently its tangential component to W) if

u(’l) |Eij: u(]) |Eij7 Eij € 5H (25)

Given a function u(® € W; it can be extended in a unique way into the interior
of Q; such that it is discrete harmonic with respect to the bilinear form agq, (-, ).
The extension operator is denoted by

HM W, — X,

and is referred to as the Mazwell discrete harmonic extension. We recall that
u® = HMy® minimizes the energy ag, (u®,u®) among all the vectors of X; with
tangential component equal to u(* on 9;\09.

4.2 Description of the method
We start from the linear system (10)

Au =1, (26)

where the stiffness matrix A and the load vector 1 are obtained by assembling the
local stiffness matrices A, relative to the bilinear form ag, (-,-), and the local load
vectors l(i), where the 2;’s are elements of the coarse triangulation 7x. The local
stiffness matrices satisfy the assumption

0 < Bilx|* < x"4;ix < yi[x[?, x € R?, (27)
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for i =1,...,N. The local stiffness matrices and local load vectors can be written

in the form ) . .
A0 — ( A% A(%) ) O ( l?.; ) ,
Arr Arr Iy

Hence, the local degrees of freedom are divided into degrees of freedom associated
to the interior of 2; and to the tangential component on the interface I';. By block
Gaussian elimination, the internal degrees of freedom can be eliminated and the
system (26) is reduced to an equivalent system involving u, the vector consisting of
the components associated to the interface. We introduce

) u® FO
S = - ) u = ) f = )
() ™ F)

with S@ = A% — A AN =149 and O =1 — 4D (4)=1) . The solution
to the discrete problem can then be found by minimizing the energy

%(U,SU) - (fau)a
subject to the constraint that u is continuous, i.e. belongs to W. In all FETI-DP
algorithms, only a relatively small number of continuity constraints across the inter-
face are enforced in each step. This means we work in a subspace W C W of func-
tions satisfying a certain number of continuity constraints. Here, only constraints
on the degrees of freedom associated to the averages of the tangential components
over the subdomain edges are enforced in each iteration, i.e. they belong to the
so-called primal degrees of freedom (primal variables). Hence, the primal space

Wn C W is a space of constant functions on the subdomain edges:

Wi := {u € Wlu |, € Qo, Eij € En}-

The space W can then be decomposed into the sum
W = /Wn D WA,

with the primal space T//V\n and the dual space WA given by

— N —
Wa = HWA,i;

i=1

where the spaces WAJ are spaces of functions associated to the corresponding sub-
structures for which the functional given by the primal variables vanish:

— 1
Wa,i := {u € Wilug,; := m/ u-tg, ds=0,j€7Z(i)}
ij ;

Therefore, W consists of functions that have a continuous average along the sub-
structure edges, i.e., the averages are the same regardless of which substructure is
considered for the calculation. The primal degrees of freedom are then eliminated
together with the internal ones, at the expense of solving one coarse problem. This
means that the problem reduces to one involving interface functions with vanishing
mean value along the subdomain edges. Let S : Wa — Wa and fa be the cor-
responding Schur complement and right hand side, respectively. The minimization
property _

(ua, Sua) = min(u, Su) (28)
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holds, where the minimum is taken over all the functions u = ua + wn, wn € WH.
This property ensures that S is also positive definite. The reduced problem is

min %(UA,g’U/A) - (fA,UA),
(29)
s.t.  Baua =0,
where the equation Baua = 0 expresses the continuity constraint. Ba is con-
structed from {0, —1,1} and evaluates the difference between all the corresponding

tangential degrees of freedom on ', c.f. (25). The same matrix as in [17] is employed.
The matrix Ba has the following block structure:

Ba =[BY,BY,....,BM),

where each block corresponds to a subdomain. By introducing a set of Lagrange
multipliers A € V' := range(Ba) to enforce the continuity constraints, a saddle point
formulation of (29) can be obtained:

Sua +BIX = fa,
Baua = 0,
with ua € WA. Since the Schur complement S is invertible, an equation for A can

easily be found:
F)\=d, (30)

with _ o
F:=BaS7'BY, d:=BaS 'fa. (31)

Once A is found, the primal variables are obtained by back solve:
ua = 87 (fa — BAN).

In order to define a preconditioner for (30), we need to define scaling matrices and

functions defined on the subdomain boundaries. For each substructure, 5;[ € W; are
defined such that on the edge E;;, j € Z(4)

st = 00
A

for an arbitrary but fixed x € [1/2,00), see (27). By an elementary argument it can
be proven that

7i(61)? < min(vi, 7). (32)

For each substructure (1;, we introduce a diagonal matrix DX) : V— V. The
diagonal entry corresponding to the Lagrange multipliers that enforce the continuity
along an edge E;; is set equal to the (constant) value of 5;[ along Ej;

gy

stoi=6l|p.= —L .
ji j |Em ,Yz?(+,yj)_(

Next the scaled matrix
Bpa=[DYBY, DYBY, ..., DY B : Wa — V.

is defined. The dual system (30) is then solved using the preconditioned conjugate
gradient algorithm with the preconditioner

N
M~ = BpaSBL A =3 DY B 5O BOTDY. (33)

=1
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A method for an efficient implementation of a preconditioned dual-primal FETI
algorithm on shape regular meshes is given in [18], Section 6. The implementation
aspects do not rely on the mesh type and are therefore applicable to the boundary
layer meshes discussed in this work.

4.3 Condition number bounds
4.3.1 Auxiliary results

The analysis of the dual-primal FETI method presented here relies on a decompo-
sition result for u € X; which will be stated in the next lemma. We note that the
tangential traces of functions in X g are restrictions of functions in the space Wy to
the boundary of ;. The following result can be found in [20] for h-approximations
and in [18] for p-approximations. The proof for the hp-version on anisotropic meshes
is given in subsection 4.4. Let Xg(Q;) denote the space Xg(Q) restricted to the
subdomain 2; and

Qi = Sk(Q, T) N {p € H (Q)|¢ = 0 on 82 N 9}

Lemma 4.1 Let Q; be a substructure. Then, for every u € X; there exists a unique
decomposition

u=uy + Z u;; +u™t
JEL(d)
such that

1. ug € Xg(;) is a coarse function;

2. u;; = Vé;;, with ¢;; € Q; a Laplace discrete harmonic function that vanishes
on 6QZ\E” s

3. u'™ € X; with vanishing tangential component on 05;.

In addition, for j € Z(i),

/ (u—ug)- tg,; ds= Vi - tp,; ds =0, (34)
E;j Eij

and
V3115 0, < Cw?llull2un a;: (35)

with w = (1 —0)~*(1 +logk) and C independent of H;,o,n,k, and therefore of the
aspect ratio.

The following result can be found in [19], Corollary 7.10:

Lemma 4.2 Let Q; and Q; be two adjacent subdomains that share an edge E;j. Let
¢ € Sk(Q,T) be a piecewise Laplace discrete harmonic function that is identically
zero at all nodal points in T\E;;. Then there ezists a constant C' such that

1IVéll5.0, < CA =) VS5 0 (36)

In the analysis of the FETI-DP method it turns out that the condition number
bounds rely on one stability estimate for the jump operator

P :=Bb \Ba W — W;

see e.g. [11]. It has the following properties (see [11] and also Lemma 4.3 of [18]).
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Lemma 4.3 The operator Pa is a projection and preserves the jump of any func-
tionw € W, i.e.
BAPAw = BAw.

If v := Paw, for w € W, then on every edge E;; of a substructure §;, it holds
o® = 5;[(w(i) —wW).
Finally, PAw =0, if w € w.
The following fundamental result can be found in [11], Theorem 1:
Theorem 4.4 Let Cp, be such that
|PAU}A|§ < CPA|UJA|2§, wa € WA.
Then, zf§ and M~ are invertible,
(MM A) S (FX\A) <Cpy (MM A), XeV.

The norms used in the theorem are given by

N
o[ = (v, Sv) = Y (D, 8Dv®), Ju[% = (v, Sv).

i=1

4.3.2 Main results

The aim of this paragraph is to prove the assumptions of Theorem 4.4. The first
lemma ensures that S and M ~! are invertible while the second provides the stability
estimate of the jump operator.

Lemma 4.5 The Schur complement S and the preconditioner M~ are invertible.
Proof seee.g. [18], Lemma 4.5.
Lemma 4.6 There is a constant C, such that, for wa € WA,

|Pawals < Cn(1 —0)~° (1 +logk)*|wa %,

. H2~;
n::max% (1+’—%).

t i a;

where

Proof Using the minimization property in (28), the element w = wa + wm, wi €
Wh is considered such that
lwalf = [wl§. (37)

We note that, since wry is continuous,
v := Pawa = Paw.
The aim is to calculate
N N
|Pawlg =Y 0D e =D ao, (MM oD, 1M o).
i=1 i=1
On an edge E;; of a substructure (;, the representation in Lemma 4.3 is em-

ployed.
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It is recalled that the function 5;- is constant along an edge E;; and (5;-1. is this
value. v(® is then decomposed into contributions supported on single edges:

@ = Z O, 5L w® — w(]))
JEZL(%)

where 6g,; € W; is a cut-off function that is identically one on E;; and vanishes on

0Q;\ E;j. Each contribution in this sum is considered separately. Since, in addition,

w is an element of W, its average wg;; is the same whether it is calculated using
w or w@). Therefore it can be written as

0,01 (W —w)) = O, 8t (w' — g, )= oEuaj, WP —@g,;).  (38)

' ~

II

]

The two terms in (38) are considered separately:

In order to bound I, the decomposition in Lemma 4.1 is employed for the vector
u = HMw®. Tt is recalled that the tangential component of u;; = V¢;; vanishes
on 99; \ E;; and, thanks to (34), it is equal to 0, (w'¥ — wg,;). Using (32), the
minimizing property

D = (@, SDuD) = ag, (HMul®, HMul))
of the Maxwell discrete harmonic extension, (27) and (35), one obtains
< 7illVeish .o
< Cviw’([ulfg o, + H |leurl ulff ,)
< Onw®ag,(HY w1} w®) = Cnw? [wD f,.

105,61 (W — @, 3o

Then IT in (38) is considered. The vector
ul? .= ,wa(aE” (w(j) - wEij))

can be decomposed according to Lemma 4.1, into the sum of two contributions
u;; = V¢;; and u'™. Next, Lemma 4.1 is applied to the function ’ij[ w¥) to obtain

u? = HMwD —ug + 3wy + G
kEZ(j)

We note that the functions uj; = V¢j; and u;; = V¢;; have the same tangential

component along the common edge E;;, which is equal to g (w'9) — wg,;). Using

(32), the minimizing property of the Maxwell discrete harmonic extension, Lemma,
2, (27) and (35), one finds

10,01, (wD —@p,) 2 < %lIVeisla,
< C(1—-0) 5lIVe5ills q,
< C(1—o0) 'y (|u |G o, + Hyl[curlu|3 o )
< Cl-0)"tnuw? an(Hyw(j),Hflw(j))
Cc(- ‘7)_1 7)‘*12 |w(j) |25(J')-

Combining (38), the bounds for the terms I and II and summing over the edges E;;,
one finally finds

|U(i)|?g< ) <Cnw’ |w |5< h+C(1—o0) Z |w(J)|S(J)
JEZ(4)
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Wi V2

Figure 2: Edge patch Q; = (0,1)? used in the proof of Lemma 4.11.

Summing over the substructures 2; yields

N
|Paw| = ZW“)@U)
i=1

< Cn@?lwls +C(1—0)" nw? Mlwlg
< C(1—0) 'nw? w2
M is the maximum number of adjacent subdomains, which is bounded. The proof

is then concluded by using (37). O
Combining Lemmas 4.5 and 4.6 and Theorem 4.4 leads to the final result:

Theorem 4.7 The condition number of the preconditioned system M ~'F satisfies

k(M'F)<Cn(l—0)"?(1+1logk)>.

4.4 Proof of Lemma 4.1

The proof follows that of [18] for the p-version and is adapted to an hp-version on
boundary layer meshes. It deals with orthogonal decompositions of edge element
functions into gradients of scalar functions and discrete curl free functions. Let

X()’i = NDovk(Qz’,T) C X;

be the local space of vectors with vanishing tangential component on the whole
boundary 99; and
Qo,i := So,k(,T) C Qi

be the subspace of functions that vanish on the boundary 0€;. Then Proposition
3.3 implies that Xo ; can be decomposed into

Xo,i = gradQo; ® X(fi- (39)
The discrete Friedrichs’ inequality, Theorem 3.9, for u € X&i yields
[[ullo,0; < CHj||curlullo,;, (40)

with a constant that is independent of the aspect ratio of 7. For the proof of the
following Lemma 4.9 we will need the following auxiliary result that can be found
in [3], Lemma 6.6:
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Lemma 4.8 Let I denote the interval (0,1) and u be a polynomial of degree k with
u(0) =u(1) = 0. Then, for all k > 0,

Il g0,7 < [uli ; + C(1 +logk)lull3, ;

The following lemma will be used in the proof of Lemma 4.1:

Lemma 4.9 (edge patch) Let Q; be a subdomain refined as an edge patch. Let
o € Q1,1(Q;) and, for j € I(i), ¢i; € Q; be a Laplace discrete harmonic function
that vanishes on 0Q; \ Ey;. If

=+ Y b

JEL(4)

then A
¢i; 13 0, < C(1—0)* (1 +10gk)*|9lF o, -

Proof For simplicity we assume that ; is the unit square, i.e. Q; = (0,1)2. The
case of a more general §); can be treated with a scaling argument. The proof is
then performed in two steps. We first prove the lemma, for the edge E;3, see Figure
2. In the second step we prove it for the remaining edges E;; and E;3. As the first
step deals with Laplace discrete harmonic extensions we have to recall a well-known
property. Let w; be a piecewise linear function defined on 9%; and v; € @); such
that v; |a;= w;- The minimization property says that Laplace discrete harmonic
functions minimize the energy among all functions with the same boundary values:

[Hi(wi)lr,a: < vila:- (41)

Step 1 Let ﬁi denote the unique element of the edge patch which contains the
two vertices of (2; that do not lie on 012, see Figure 2. Let ¢;3 denote the function
that is Laplace discrete harmonic in 2; with boundary values

Bis |m. = Pis _on Ejs,
B3 160~ 0 on 691 \ Eig,

and is extended by zero to the rest of €2;. Since 5,»3 is a Laplace discrete harmonic
bilinear function in ;, we can equivalently work with the norms on ; and on its
boundary. Thus, a scaling argument yields

|¢13| < (1 - ‘7) 2|¢13|1 ,00,E;3° (42)

(From the minimizing property (41),(42), and Lemma 4.8 it follows that

ldisli o, < |$i3|i~
< C(l-0)? |¢13| 00, Fis
< Cl-o)” 2(|¢i3|2%,Ei3 (1+logk)||disll% 5,s)
< C-0)2(l¢ = duli g, + (1 +logh)Igl2 5)
< C(-0)(¢13 5, +18uli 5, + (1 +1ogk)l[lI2 &) (43)

For the first term in (43) we use the trace Theorem 2.4 for H(;). This leads to

|¢|2%,E13 S

(44)
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The second term |¢pgr|% &,, can be bounded directly: Since o (z) = ¢(V1)+(p(Va)—
¢(V1))z on E;3, then

_ |pr (x) — du (y)|?
ba ]y = / 5 / 5 |$_y|2 dady
// o0%) — 6V -y ;4
E;3 JE;3 'Z'_y)|

= |p(Va) — ¢(V1)[?
< ClelL s
From [19], Lemma 7.6 it follows that
19112, 5, < C(L—0)~*(1 +1logk)[|¢ll] &,
Therefore it holds
|6uli 5, <CA—0)*(1+1ogk)l4llF o (45)

Inequality (43) together with (44), (45) and Lemma, 7.6 of [19] gives

|$islio, < C(1—0)~*(1 +1ogk)[|4lI% o,

We note that if a constant is added to ¢;;, the left hand side does not change. A
Poincaré inequality then allows to replace the full norm with the seminorm on the
right hand side to obtain

|$isli 0, < C(L—0) (1 +1logk)’|4[% g, (46)

Step 2 The main result used in this step is a result from [19], Lemma 7.2: Let u €
Q; be a piecewise bilinear function on Q;. Given § € W1>°(€);), with ||6||c.0; < C,
then

[Hi (0wl 0, < Cluff o, +1IVOIl%,0, 1ull5.0,) (47)

Let (5 be the sum y
¢ = di1 + iz,
and 9{,4{, , be the linear function in x with value 1 on E;; and 0 on Ejs, i.e.

05 (z)=1-m.

Then it holds ¢;1 = H; (0{3{15) and therefore it follows by using (47)

[9ar |5 o, < C(] I12 o))
Since it holds
IVOE,, |0 < C,
it follows . .
bali 0, < CUIVEIR q; + 119115 0.)- (48)
As (I) vanishes on a part of 02;, a Poincaré inequality yields
915,02, < IVEII3 - (49)
Therefore it remains to bound the first term in (48):
[IVol[5 .0 | — diz — dml3 g, (50)

< Pl g, + 19l + 19H1 g,

23



Figure 3: Corner patch Q; = (0,1)? used in the proof of Lemma 4.10.

In Step 1 we have already found a bound for |¢[] o, therefore it only remains to
find a bound for [px |} g

6ulto, < Cliélleg,
< Cl—-0)72(1+loghk)ll¢llF o (51)

C(1 - 0)"2(1 +logk)|4f2 g,

Here, Lemma 7.6 of [19] as well as a Poincaré inequality were used again. Combining
(48) with (49),(50) and (51) gives

|$ialf 0, < C(L—0)~*(1+1logk)’|4[% g, (52)

With similar arguments, the same bound can be found for |¢:| g, -
Hence, by comparing (46) with (52) we find the final result for the edge patch:

|9ij]3 .0, < C(1—0) (1 +1logk)?|¢l; q.- (53)

O
A similar lemma holds for a corner patch

Lemma 4.10 (corner patch) Let ; be a subdomain refined as a corner patch.
Let ¢ € Q1,1(8%) and, for j € I(i), ¢i; € Q; be a Laplace discrete harmonic
function that vanishes on 0; \ E;;. If

p=du+ Y b
JEL(3)
then
|¢ij|f,91- <C(1—-0)"%(1+1og k)2|¢|igi-

Proof The proof for the corner patch relies on the result for the edge patch. It
is carried out for the edge E;s, see Figure 3. For simplicity assume that (2; is the
unit square (0,1)2. As usual a scaling argument gives the result for a more general
Q;. Let ﬁi denote the layer of points in Q; within a distance (1 — o) from E;5. Let
0g,, be the function

(1-0)tz - Q;.

—0a

0 Qi \ Qi
050 ={ \ &

24



We define ¢ := Hg, (0E.,¢), where, we recall, Hg denotes the Laplace discrete
harmonic extension. It follows by using (47):

6l 5, <CUdl 5, + A=) *1I4lI] ,)- (54)
We can decompose ¢7 on the dilated edge patch §~2i according to Lemma 4.9:

¢ := $H+Z$ij-
J

We note that ¢;> and ¢1,2 both vanish outside E;» and have the same value on this
edge. Since (2; can be obtained from an edge patch Q= (0,1)? by a dilation of
(1 — ¢) in z-direction, it follows from (41) and Lemma 4.9 together with a scaling
argument

pialio, < |¢"2|i§i

< C(1—0) (1 +logh)2[3 5 . (55)
Combining (55) with (54) and a Poincaré inequality leads to the final result

|$i2l7 .0, < C(1 = 0)75(1 +logk)?|¢li o, -

Comparing Lemma 4.9 with Lemma 4.10 leads to

Theorem 4.11 Let Q; be a subdomain refined as an edge or corner patch. Let
o € Q1,1(Q;) and, for j € I(3), ¢i; € Q; be a Laplace discrete harmonic function
that vanishes on 0Q); \ Ey;. If

¢ = ¢H + Z ¢ij7
JEL(3)

then
|¢u|1 o S C(l-o0)~ (1 + log k)2|¢|%,9i'

Proof of Lemma 4.1 Once the discrete Friedrichs’ inequality of Theorem 3.9
and the stability estimate of Theorem 4.11 are established, the proof follows that of
[18], Lemma 4.1. Tt is given here for completeness. The coarse space X (Q;) was
defined in Subsection 4.3. Now the coarse interpolant

PH : X,' — XH(QZ)
is introduced. Here, pgu is the unique vector that satisfies
[ (eru=w) b, s =0, je1). (56)
E,’j
We also define X;; C X; as the space of functions V¢;;, where ¢;; € @; is Laplace

discrete harmonic and vanishes on 9Q; \ E;;.
It is immediate to see that, for the substructure ; and for j € Z(i), | € Z(3),

J#L
XH(QZ) n X()’,' = XH(QZ) n Xij = Xz'j n XO,i = X,'j NX;= {0}

Counting the degrees of freedom, it can be seen

Xi=Xu()® Y Xy ® Xo,
JEZ(d)
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is a direct sum. We have therefore proved the existence and the uniqueness of the
decomposition in Lemma 4.1.

The first equality in (34) is a consequence of the fact that the tangential com-
ponent of u; := u'™ and of uy, for I # j, vanishes on the edge E;;. The second
comes from the fact that ¢;; vanishes at the end points of E;;.

We are then left with the proof of the stability property (35). Since the decompo-
sition is unique, thanks to (56), we find ug = pgu. Now each term is decomposed
into the gradient of a scalar function and a remainder. Since the coarse space
Xu(Q) is ND1(Q;), we can write

ug = V¢H + ( i/__y; ) = V¢H + llj-_},

where ¢ € Qq,1(£;) is bilinear and (z;,y;) is the center of gravity of ;. By direct
calculation it can be found that this is an L? orthogonal decomposition and that

[uzz|lo,0; < CHjllcurlug|lo.q;- (57)

For the term u; := u'™ € X, the orthogonal decomposition in (39) is employed
and we find
u; = Vé; +uj.

Finally, by definition, u;; = V¢;;, for each edge E;;j. We then group the gradient
terms and the remainders and set
¢:=¢n+ Z¢z‘j+¢i; ul = ug +uj
JEL(Y)
We therefore have the decomposition
u=Ve+u. (58)

We need to bound the V¢;;’s in terms of u. Since ¢x and the {¢;} are Laplace
discrete harmonic, Theorem 4.11 can be used and we find

2

1930, < Cl—0)(A+1ogk)? |bm + X ez Pu Lo, (59)

< C1=0)7%(1 +logk)?|4[i q,-

For the last step the fact has been used that ¢; vanishes on 0€2; and is thus orthog-
onal to Laplace discrete harmonic functions.

The last step is to bound V¢ in terms of u. We first note that, using (57) and
(40), we obtain

w30, < CH([eurlug|[f o, + |leurlug |3 ,)-

Since curlug; is constant and curlu; has a vanishing mean value on ;, these two
functions are L? orthogonal and thus
[[ut][3.0, < CLHZeurlut([5 g, (60)

Using (57), (60), and the Young’s inequality, we find

[[u] |gur1 Qi

162 g, + 0|2t 0, +2 / Vé-ub do

> (1-¢)lofiq, + 1+ Q- )OH||curlut |5 g,
for € € (0,1). The choice e = C1 /(CL + 1) gives

|61 o, < (C+ Dl[ullEun 0

which, combined with (59), concludes the proof. O
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