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Abstract

Prices of European plain vanilla as well as barrier and compound options on one risky
asset in a Black-Scholes market with stochastic volatility are expressed as solution of
degenerate parabolic partial differential equations with two spatial variables: the spot
price S and the volatility process variable y.

We present and analyze a pricing algorithm based on sparse wavelet space discretizations
of order p > 1 in the spot price S or the log-returns z = log S and in y, the volatility
driving process, and on hp-discontinuous Galerkin time-stepping with geometric step size
reduction towards maturity 7'.

Wavelet preconditioners adapted to the volatility models for a GMRES solver allow to
price contracts at all maturities 0 < ¢ < 7" and all spot prices for a given strike K in essen-
tially> O(NN) memory and work with accuracy of essentially O(N?) in essentially O(N)
operations, a performance comparable to that of the best FFT-based pricing methods for
constant volatility models.
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1 Introduction

The pricing of options by means of partial differential equations has become standard
practice in quantitative finance, either by means of explicit solution formulas or by nu-
merical methods.

In the standard Black-Scholes model the volatility o of the risky asset is assumed to be
constant or a function of time and explicit pricing formulas are available for European
Vanillas, see [3]. Such models are generally too crude to match observed log-return prices
well.

A more flexible class of models assumes that the volatility is a stochastic process. A widely
used model is the Heston model in which the square of the volatility follows a familiar
square-root process (used by Cox, Ingersoll and Ross (1985)). Alternatively, consider the
volatility oy = f(Y;) as a function of a mean reverting Ornstein-Uhlenbeck process Y;.
While for European Vanilla options closed form pricing formulas are available [12], other
types of contracts, as e.g., barriers, exotics or compound-style options have to be priced
numerically.

The no arbitrage principle leads to a parabolic partial differential equation (PDE) for the
value function V(¢,S, y) which depends on the time ¢, the spot price S; of the underlying
asset, and on the volatility process y(t). These parabolic pricing PDEs have degenerate
coefficients in the S variable, and, depending on the volatility model, possibly also in the
y variable.

Numerical solution requires truncation of the PDE to a bounded computational domain.
In our analysis, the localization is justified by a variational analysis in weighted Sobolev
spaces following [1].

We emphasize that we neither advocate nor discourage the use of stochastic volatility pro-
cesses — the goal of the present paper is to show design and analysis of pricing algorithms
for stochastic volatility that have complexity comparable to the best FFT-based methods
for Black-Scholes [5].

The paper is organized as follows: in Section 2 we introduce the pricing problem in terms
of parabolic partial differential equations. Several models of volatility are considered, as
well as non-vanilla contracts as e.g. compound options are discussed. The variational
formulation (set in weighted Sobolev spaces) of these PDEs is performed in Section 3,
where we also give an analysis of the domain truncation error. In Section 4 we describe
the discretization of the problem, both in space and time. We briefly review the wavelet
multiresolution analysis in terms of full and sparse tensor product spaces, and we consider
hp-dG time-stepping with geometric step size reduction towards maturity to discretize in
time. We also show how one can construct optimal diagonal and block diagonal pre-
conditioners based on wavelet norm equivalences in weighted Sobolev spaces. Numerical
experiments are presented in Section 5. There we solve several pricing PDEs and, in
particular, we price compound options numerically.



2 Pricing European Vanillas with Stochastic Volatil-
ity
In ”pure” stochastic volatility models the asset price (S;)i>o satisfies the stochastic dif-

ferential equation (SDE)
dSt = ,LLStdt + O'tStth, (21)

where, contrary to the log-normal model [3], the volatility o; is supposed to be non-
deterministic. The process (0;);>0 has to be positive and is called the volatility process,
1Sidt is the drift term and W; is a Brownian motion.

Evidence that the volatility process is not perfectly correlated with the Brownian motion
(Wi)i>o suggests (see e.g. [10] and the references therein) to model (o¢); to have an
independent random component of its own, which is a different approach from models
based on implied deterministic volatility (or local volatility) in which oy = o(t,S;) with
o(t,S) being a deterministic positive function.

2.1 Models of volatility

We discuss two volatility models, namely a mean-reverting Ornstein-Uhlenbeck process
and a Cox-Ingersoll-Ross process.

2.1.1 Mean-Reverting Ornstein-Uhlenbeck (OU)

One assumes that o; is a function of a mean reverting Ornstein-Uhlenbeck process, i.e.
o= f(Y), dY,=a(m—Y,)dt+ 8dZ, (2.2)

with «, 3, m positive constants and 7 being a Brownian motion. The parameter « is
called the rate of mean reversion, and the ratio %2 is the limit of the variance of Y; as
t — 0o. The Brownian motion Z; may be correlated with W;, that is, it can be written
as a linear combination of W; and an independent Brownian motion Z;

Zt = th + YV 1-— pQZt, (23)

with a correlation factor p € [—1,1].

Considering a European derivative with underlying asset S;, maturity 7" and pay-off func-
tion h(St), its price at time ¢ depends on %, on the price of the underlying asset S; and
on Y;.

Denote by U(t, S, Y;) the price of the derivative at time ¢ and by r(¢) the risk-neutral
interest rate. Then it can be shown [10, Chapter 2] — by the no arbitrage principle and



the two dimensional It6’s formula — that there exists a function v such that the option
value U satisfies the following parabolic partial differential equation:

oU 1 9 282U oU aQU
1 _,0*U oU ouU .
27 o2 — Il = 24
+ Qﬂ B + a(m —vy) oy BA(t, S, y) 9 0in (0,7) x (0,00) x R (2.4)

together with the terminal condition at maturity

U(T, S,y) = h(5), (2.5)
and with A being given by
Mt&w=p“_dﬂ+ 1= p*(t, S, y). (2.6)
f)

The so-called risk premium factor v can be any bounded, measurable function. In the
perfectly correlated case (|p| = 1) the function 7 does not appear, and we are in a Black-
Scholes market which is complete. If |p| < 1, the second source of randomness that drives
the volatility renders the market incomplete. The risk premium factor v can be viewed
as parameterizing the set of equivalent martingale measures.

The first line in (2.4) is the standard Black-Scholes operator with volatility o = f(y),

pﬂf(y)%gy is due to the correlation between W, and Z,, %ﬂ2%27g + a(m — y)%—z is the

mean-reverting Ornstein-Uhlenbeck part and SA(t, S, y)%—g is the premium for the market
price of volatility risk (see also [10]).

There are several possible choices for the function f, depending on the volatility model.
For a mean reverting Ornstein-Uhlenbeck process the models f(y) = |y| (Stein and Stein)
and f(y) = e¥ (Scott) are two examples. Unless explicitly stated otherwise, we will focus
on the degenerate case when f(y) = |y|. We treat in the following only the case of
constant interest rate r(t) = r and assume that v = 0. The assumption that v = 0 is not
an essential limitation, parameterizations of v of the form v = Ay, with A € R lead to a
similar PDE in (2.4) with & = o + fA/1 — p? and m = am/a.

Furthermore, we consider two types of terminal conditions, namely
h(S) = (S - K), (2.7)

and
h(S) = (K = 8)+ (2.8)

corresponding to European call and put options, respectively; K > 0 denotes the so-called
strike or exercise price.



2.1.2 Cox—Ingersoll-Ross (CIR) process

In the Heston model [12], the volatility o; is given as o; = v/Y;, where the driving process
Y, satisfies R
dY; = k(m — Y;)dt + 0+/Y,d Z,. (2.9)

The stochastic dynamics of the risky asset S; are given by the SDE
dSt = TStdt + V Y;Stth (210)

Any European contingent claim U satisfies the following PDE

oU 1 Lo°U oU 2
ou 1 oU _ 2.11
o T2¥ e T (Sas U) TPOYS 558 (2.11)
1, 0 ou ,
t50 Yoz + (k(m —y) = AL, S, 9)) 0 in (0,7) x (0,00)

U(T,S,y) = h(S) in (0,00)>. (2.12)

The term A(t, S, y) represents the price of volatility risk. A possible choice of \ is given
by considering consumption-based models, which generate a risk-premium proportional
to y, i.e. A(t,S,y) = Ay.

The pricing of options within stochastic volatility models for general pay-offs or contracts
requires numerical solutions of the generalized Black-Scholes equations (2.4), (2.11). Stan-
dard discretizations applied in this context face a) an increase in the spatial dimension
S — (S,y) as compared to standard Black-Scholes setting and b) degenerate coefficients
at zero which cause serious ill-conditioning problems.

2.2 Change of variables and unknown

In order to get rid of the degeneracy with respect to S one can switch to logarithmic price
z = In(S). The transformed PDE problems have coefficients which are constant with
respect to the log-price variable x. We mention however that this effect does not arise in
case of more sophisticated dynamic models of S;, as e.g., constant elasticity of variance
(CEV) models [7, 8]

dS; = pSidt + aS;dWy, k€ (0,1).

Numerical solution of (2.4)—(2.5) and (2.11)—(2.12) requires restriction to a bounded com-
putational domain. Based on the observation due to [1] that the price U remains bounded
for all y, we expect U(t, S, y)e™¥"/2, w > 0, to decay exponentially as |y| — co. Likewise,
the excess to discounted pay-off U(t, S,y) — e "T=Dh(Se" =) decays to zero as S — oo
and S — 0. We therefore derive the equivalent PDEs after these transformations and
truncate these to a bounded domain.



2.2.1 OU-model in real-price

We switch to time to maturity ¢ — 7" — ¢ and perform the following transformation in
(2.4)
U(t,S,y) :=U(T —t,8,y)e v, (2.13)

with the parameter w > 0 to be fixed later.
With the notations in (2.13), U solves the following parabolic partial differential equation

ou

at Erea,l,pU = 0 in (0, T) X R+ X R (214)
U0,) = Uyin Ry xR, (2.15)
where the operator L2} , takes the form
L U 2 2U au
ou
wB® — a) T—i—ozm]— 2.16
- |ws? - ol + am| (2,16

At 202 2 H— 2
[(2w I3 aw)y + (awm wﬁpf(y))y+ —wf 7":|U

and the initial condition Uy is given by Uy = h(S)e=“¥*/2.
To prepare the truncation in the S coordinate and to justify the artificial essential bound-

ary conditions, we calculate instead the excess to pay-off value
w:=U — e "h(Se™)e “¥’/2 as solution of the following parabolic PDE

‘Zt +£2% u = Fin (0,7) xRy xR (2.17)

u(0,-) = 0in Ry X R, (2.18)
where the right hand side F' is given by

t 2/2 1 2 0 t
F=¢ e v/ (55 (f()? aSQh) (Sem).

2.2.2 OU-model in log—price

The degeneracy of the coefficients with respect to S can be removed by switching to log-
price x = In(S). We aim again to transform the resulting PDE (set now on (RxR)x (0, 71)
into an equivalent one which can be localized to a bounded domain and proceed as in [1].



We change to time to maturity ¢ — T'—¢ and to log-price z = In(S) and obtain from (2.4)
the following parabolic PDE for u(t, z,y) := e “¥’2[U(T —t, e®,y) — e " T Op(ert7(T1)]

i LYY u = Fin(0,T) xR (2.19)
u(0,-) = 0in R’ (2.20)
where L7 is given by
ov, _ _1 2 @ _Ou) 1,0 0%u
[’logp - Q(f(y)) axg ax ﬁ pﬂf( )Gxay
ou 9 p—r } ou

—|w +r|7—— (W —a)y— pp——~ +tam| — 2.21
[weByf(y) +r] 5 [( T 5 (22

1 w—=r 1
— [<§ﬂ2w2 — aw) y: + (awm whp=— W) )y + §wﬂ2 — r} u

The right hand side F' takes in case of put or call contracts with strike K the form

1
F(t,y) = SKe " f(y)°e™ oz (2.22)
Remark 2.1 The case r # 0 can be reduced to the case r = 0 via the transformation
u(t,r,y) = e "w(t,z +rt,y). (2.23)

2.2.3 Heston-model

Performing the same changes of variables as before (i.e. changing to time to maturity
t = T —t and to logarithmic price z = In(S)) and writing u(t, z,y) = e W R[U(T —
t,e®y) — e "I Op(etr TN \(t,z,y) = AT —t,e%,y) in (2.11)—(2.12) leads to

ou :
N +Lggu = F in (0,T) xR x (0,00) (2.24)
u(0,z,y) = 0 in R x (0,00), (2.25)
with the operator L]}, defined as follows
1 (0%°u Ou 1, d%u
Liogt = —§y<@ - %) — (wpoy 1) 5 — 505
2 ~

_’ana(?;aux — [w02y2 + /i(m —y) — A, z, y)) g—z (2.26)

1
— [5w02y(wy2 +1) 4wy (/{(m —y) — /\(t x y)) ]u
For put and call contracts the right hand side F' takes the form

1
F(ty) = 567“"1’2/2}(67”95111(1()7”- (2.27)



2.3 Compound options
2.3.1 OU-model

Let V¢ denote the value of a European derivative (without loss of generality assume it
is a call option) providing the right at its maturity 7" to acquire, with exercise price K,
another European option V on an asset S; with dynamics described by (2.1), maturity
T > T'" and exercise price K. With stochastic volatility process of S; being as in (2.2) we
write V¢ as a function of (¢, S,y). The function V¢(t, S, y) solves the parabolic PDE (2.4)
together with the terminal condition V¢(T",S,y) = U(T", S,y)+. The usual transforma-
tions yield for v(t, z,y) = e “¥’12[Ve(T' —t,e*,y) — (U(T" —t,e",y) — K’e‘T(T'_t))Jr] the
PDE

% +Logv = F in (0,T) x R? (2.28)
v(0,2,5) = 0 in R? (2.29)
where the operator L7 is as in (2.21) and the right hand side F" is
F= %ewy”? ) \/wg—g(? —t,3%,Y) 8, (dz)
- (T 0 (230
+pf - £ Z (T~ 1,07 )6

T+ @) 9y
with z*(T" — t,y) being such that U(T" — t,e* "=%¥) y) = K’ and U solves the PDE
(2.4)—(2.5).

2.3.2 Heston model

Similar considerations apply also to e.g. the Heston model. We assume again that the
option under consideration is a call option. Performing the same transformations as in
Section 2.3.1 above, the transformed PDE for v(¢, z,y) is

0
a—;’+£ﬂgv = F in (0,7) x R? (2.31)
v(0,2,9) = 0 in R? (2.32)



H

log 18 as in (2.26) and the right hand side is given by

where the operator £

2/9 1 oU
_= — y -
2° i @) o
_ 10_2ye—wy2/2 "E*I(y) a_U
2 V1+ (2(y))? Oy
ou (T' —t, 7", y) O

1
T W) oy

with 2* (1" — ¢, y) being such that U(T" —t,e* (T'"t¥) ) = K'. In (2.33) the function U
is the solution of (2.11)—(2.12).

F=—-e%

(T" = t,z*,y) 0y~ (dz)

(T —t, 2", y) 6, (2.33)

3 Variational Formulation

We recapitulate shortly the variational formulation of abstract parabolic problems and
summarize the assumptions under which existence and uniqueness of the (weak) solution
are ensured.

3.1 Abstract parabolic setting

Given Hilbert spaces V S H = B <% v* with dense injection and F € L*(0,T;V*), find
u € L*>(J; V)N H'(J;V*) such that

(Lu(t,-),v) +a(u(t,-),v) = (F(t),0)y-xy YveV (3.1)
u(0,-) = 0.
The derivative % in (3.1) is understood in weak sense, and (-,-)y+xy denotes the usual

duality pairing in V* x V. The following general result for the existence of weak solutions
of the parabolic problem (3.1)-(3.2) holds [13].

Proposition 3.1 Assume that the bilinear form a(-,-) in (3.1)

(1) is continuous, i.e. there exists a constant M > 0 such that

la(u, v)| < Mllullv[lollv  Vu,veV,

(7) satisfies the Garding inequality, i.e. there exist constants ¢1, co > 0 such that

a(v,v) > cilvllyy — esllvlly Vv eV (3.3)



Then (3.1)—(3.2) admits a unique weak solution uw € L*(J; V)N H'(J;V*) and there holds
[ullz2crvy + lullmr vy < ClIF||2v)- (3.4)
Moreover, (3.4) implies that u € C°([0,T]; H) and

lullcoqo,rysmy < C (llullz2vy + llullarve) -

To describe decay of functions at oo we use weighted Sobolev spaces. We start by proving
existence and uniqueness of solutions of (2.17)—(2.18), (2.19)—(2.20) in such weighted
Sobolev spaces.

3.2 Variational formulation in log—price

To fix ideas, let us consider first the mean-reverting OU-model of Stein-Stein. If p # 0,
the risk premium becomes singular as y — 0 due to the presence of the excess return to

risk ratio % Consequently, the price of the option does not depend on volatility near

0, i.e., %—g ~ (0 as y — 0 and one has to solve two independent boundary value problems

in (0,7) x RxR_ and (0,7) x R x R, and to impose Dirichlet boundary conditions at
y=0.
3.2.1 Uncorrelated case (p = 0)

In the following, we assume in (2.19) p = 0 and f(y) = |y|. Let ¢, € W,o°(R), ¢,% > 0
and denote by

L2, (R?) := {v | v(z,y)¢(2)d(y) € L*(R?)}. (3.5)
Furthermore, let V%% be the weighted Sobolev space defined by

ov Ov
Ve = {v \ <\/1 +y2v,y%, 8_y) € (Li’w(RQ))s}, (3.6)

and let (V#?)* denote its dual. The space V%V is equipped with the norm

2 ) (3.7)

2
Lsmb

ou

ou
L e T e

dy

| ‘
Lo
We need the following result:

Lemma 3.2 Let ¢(y) := em’ /2, > 0, be a weighting function. Then the semi-norm

2 ) (3.8)

2
L«w

ou

ou
N e =

oy

| '
2
L%¢

is a norm on V&Y.



Proof. We have to estimate the term ||yu||Li , n (3.7). We have ¥'(y) = myy(y) and thus

lully, = [ el dady = [ @) )dady

R2
1 0
= Rza—y(yﬁ)wz(fcﬁ/ﬂ(y)dxdy
1 2 9 2 1/ ou o 2
= —— U z dzdy — = U—p dxd
27 Jon ¢°(2)y"(y)dady o (2)¢*(y)dady
1 oul|? )
< == ) ,
e .

where in the last inequality we have used the Cauchy-inequality with ¢ = % We conclude

oul|?
dy

||y“||%2 S —2
PR

L2

and the assertion follows. O

Consider the operator ‘ClogO given in (2.21). We associate to ‘ClogO the bilinear form

af)’go( <) which is given by

af? o (u, v) = / (Logow) (@, y)v(z,y)¢’ (@) (y)dady,  u,v e CF(R?). (3.9)

With standard density arguments it can be shown that a}? 0( -) can be extended contin-

uously to a bilinear form on V¥ x V¥ which we denote again by alogw 050
We arrive at the following variational formulation of (2.17)-(2.18) when p = 0: Given
€ (Ve¥)*, find u € L?(0, T; V¥¥) N H'(0,T; (V¥¥)") such that

(St ):0) 12 gy + aligo (ut ) 0) = AF0)wosysvew, VW EVHY  (310)

u(0,-) =0, (3.11)
where (F,v) stands for
(F,v) = §¢*(In(K)) /Ry?v(ln(K), y)¥*(y)e 2V dy, (3.12)

and the bilinear form alog 0" VoY x VoY 5 R is given in Appendix A.1.

Theorem 3.3 Let o(z) = e’1?l and (y) = e™*/? with v,7i > 0. Assuming w < ﬂ then
there exist vy > 0 and T, > 0 such that for all v € [0,19) and i € [0,7,) the bilinear

10



form alog o(+s ) satisfies a Garding inequality in V¥ x V¥ Precisely, there exist positive

constants C,c > 0 such that for all v € V¥ there holds
Ao(0,0) > Clolffms = ellols e (313)

As a direct consequence of (3.13), we obtain the following existence and uniqueness result:
there exists a unique weak solution u € L*(0,T; VS¥)NH(0,T; (V#¥)") of (5.10)-(3.12).

Proof. The proof of (3.13) is given in Appendix B. O

3.2.2 Correlated case (p # 0)

In (2.19) assume f(y) = |y| and denote by @+ the half-planes @+ := R x R. Similarly
to the uncorrelated case, we introduce Sobolev spaces of functions with exponential decay
at infinity

————Ill 0,
Vwﬂ/’ — CO (Q ) Voq,’ji_’b (3.14)
where the norm || - |2 Lo 1S given by
i
Wl = IVl on+ 2] w2, e
e e(Q2) 0y L? ,(Qx) Oz L} ,(Q+)
We denote by u* the solution of the parabolic PDE
Ou* ou =+ .
W + ‘Clogp = Fin (0, T) X Q:I: (316)
u*(0,7,y) =0 in Q (3.17)
ui(t, £,0) =01in (0,7) x R, (3.18)

where the operator L), and the right hand side F' are given in (2.21) and (2.22), re-
spectively. We associate to the infinitesimal generator ,Clog , the weighted bilinear forms

(2R (

Qo p, (s -) Which are defined as

aif)gwp,:l:(u’v) = /Cj) ('Clog,p ) (l‘,y)’l)(ﬂf, y)gpQ(ac)l/J2(y)da:dy VU, CAS C(C;O(Qi) (319)

P, (_

log,p,+£\"s -) is given in Appendix A.1. Here

An explicit presentation of the bilinear forms a

wﬁ(

again aff; . (+,-) can be continuously extended to bilinear forms on %‘f’f X VO‘f”i’p

Theorem 3.4 Assume that
Alpllp — |

>
o> =4t

(3.20)

11



and that w = 2na/ B with n € (0,1). Let o(z) = e’1*! and 1(y) = e™’/2. Then there
exist vo > 0 and fig > 0 sufficiently small such that for all v € [0,15), i € [0, fig) the
bilinear form af)’g’p, L (+,-) satisfies a Garding inequality in %‘ff X V};f’f. More precisely, for
0 <m <n<n <1 there exist positive constants C,c > 0 such that for all v € [0, vy),
i € [0, fig) there holds

i (0,0) > Cllo]1? o0 — cll]l] (3.21)

Uog,p,£\Vs V) = LIV vey Clivilzz Qe :
Consequently, the variational formulation of (3.16)—(3.18):
Given F € (V{)*, find u* € L2(0, T; V) 0 HE(0,T; (Vi)*) such that

(Lu™(t,-), U)Li L(@2) + ai‘;ﬁp’i (u™(t,-),v) = (F, U>(%‘fﬁ)*><%“‘ff Yo € Vo‘f’f (3.22)
u®(0,z,y) = 0 (3.23)
u®(t,z,0) = 0 (3.24)

admits a unique weak solution.

The proof of Theorem 3.4 is given in Appendix C.

3.3 Variational formulation in real-price

Due to the presence of the excess return to risk ratio ’;(_yr which becomes singular as
y — 0 if p # 0 we distinguish again between p = 0 and p # 0. The variational analysis
is similar to the log-price setting, i.e., based on weighted, degenerate Sobolev spaces.
Garding-inequalities as in Theorems 3.3, 3.4 follow by similar arguments. The difference
is that the decay of the solution of (2.17)-(2.18) with respect to S is algebraic, and not
exponential as in the log-price case. This circumstance is not surprising since we have
shown that the decay in z = In(S) is exponential, one expects an algebraical decay in S.
In [1] it was proven that the the bilinear form in real price satisfies a Garding inequality,
both for the uncorrelated an correlated case. In the correlated case, the result in [1] holds
under restrictive conditions on w and p. We remove the above mentioned restrictions on
w and p.

3.3.1 Uncorrelated case (p = 0)
Let f(y) = |y| and consider the problem (see also (2.17)—(2.18))

Ou +Lou = Fin (0,T) xRy x R, (3.25)

ot
u(0,) = 0in Ry xR. (3.26)

12



Let Q := R, x R and denote by W*#¥ the weighted Sobolev space
0 0
WY — {v | <\/1 + y?v, a—z, S|y|%> € (Liyw(Q))s}, (3.27)

where p € W,o°(R,), ¥ € W®(R) and

loc loc

L3, 5 () == {v | v(S,9)0(S)d(y) € L*(2)}.
We equip W#¥ with the norm

ol = IVTFP0IR: o \

We now multiply the PDE (3.25) by the test function v(S,y)p(S)¥(y), v(S,y) € C(Q)

and integrate by parts to get the following variational formulation: Given F € (W¥¥)*,
find u € L2(0,T; W#¥) N H'(0,T; (W#¥)*) such that
(%u(t’ .)’ U)Lszo,w(ﬂ) + CLrealo(u(tv ')7 v) = <F7 U)(W“’"p)*xw“”“’” Vo e wev (3'29)
u(0,-) = 0. (3.30)
R

The expression of the bilinear form a7 (-, ) is given in Appendix A.2. For weighting
o (

real,0

2

ov

5 (3.28)

H g2

12,(@) 39 12,

exponents w in (2.13) satisfying w < 245 it can be proved that a -, -) satisfies a Garding

inequality in W% x W9,
Theorem 3.5 Let ¢(S) = S” and (y) = e™'/? with v,i > 0. Assume w = 24

n € (0,1), then there exist vy > 0 and fiy > 0 such that Vv € [0,v,) and Vi € [0,5,) th
bilinear form a? (-,-) satisfies a Girding inequality in We¥ x We¥: For 0 <m <n §

real,0
1y < 1 there exist positive constants C,c > 0 such that
a5 o(0,0) 2 Cllolys = cllbllZ; ) Vo€ WA, (331)

Consequently, there exists a unique weak solution u € L? (O, T; WWp) NH! (0, T; (WW/’)*)
of (8.29)-(3.30).

Proof. In the proof, the same techniques as in Theorem 3.3 are applicable, therefore we
omit the details. O
3.3.2 Correlated case (p # 0)

Denote by €2, the quarter—planes €2, := R, xRy. We consider two independent boundary
value problems

%JFLOU vt = Fin (0,T) x Q (3.32)

ot real,p - ) E=%) .
u*(0,S,y) = 0in Qy, (3.33)
u®(t,5,0) = 0in (0,T) x R,. (3.34)



Consider the weighted Sobolev space

T
WeY = O () "o (3.35)

where the closure is w.r.t the norm

ol = VI 901 s+

2 2

ov

oy

v

e (3.36)

o

+
L? ,(Qx) L} ,(Qx)

The weighted L? space is defined as
Ly, ,(Q2) = {v ]| v(S,y)¢(S)¥* (y) € L*(Q)}

with ¢ € WE®(R,), v* € W,2*(R.). To the infinitesimal generator £V  we associate

loc loc real,p

the weighted bilinear forms afé;pl, pa (s +) defined as

Aot i (U, 0) = /Q (Lrear,,w) (S, 9)v(S, 1) (0(9))* (¥ (y))?dSdy  u,v € C5°(Qa).

(3.37)

2% (-,-) we refer to Appendix A.2.

For the explicit representation of the bilinear form ag, , .
Analogous to the correlated case in the log—price setting the bilinear forms a?? (+,°)

real,p, £
satisfy a Garding inequality.

Theorem 3.6 Assume that the parameter B satisfies the condition (3.20) and let w =
ona/B?, ne (0,1). Let o(S) =S and (y) = e"°/2. Then there exist vy > 0 and iy > 0

such that for all v € [0,1) and all i € [0,71,) the bilinear form ai’;ﬁ,p’i(-, -) satisfies a

Garding inequality in W(f f X W(f f : For0 <n <n<mn <1 there exist positive constants
C,c > 0 such that
a5 (0,0) 2 Cllollyey = cllvllZ; o,y VveWEY. (3.38)

The variational formulation of (3.82)—(3.84):
Given F € (W(ff)*, find u® € L*(0,T; W(ff) NH (0, T; (Wépf)*) such that

(Lu*(t,-), ”)Li,wmi) +afh L (uE(t),v) = (F,0) ey gy YV € W (3.39)
ut(0,)) = 0 (3.40)
u®(t,5,0) = 0 (3.41)

admits then a unique weak solution.

Proof. The proof of the Garding inequality (3.38) follows as in Theorem 3.4, therefore we
omit it here. 0O
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3.4 Variational formulation for the Heston model

We assume without loss of generality in (2.11) that the price of volatility risk A = 0. Let
Q =Rx(0,00), ¢,1 € W;o2*(R2), ¢,% > 0 and denote by L2 () := {v|v(z,y)p(x)1(y) €
L*(Q)}. Similarly to (3.6) consider the weighted Sobolev space

pew o {v| <v,\/§g—i,\/§g—z> ¢ (Li,w(ﬂ))g}

and let (V#?%)* be the dual of V¥,

Multiply (2.24) by v(z,y)¢*(z)Y?(y), v € C(Q2), and integrate by parts to get the
variational formulation:

Given F € (V¥¥)*, find u € L2(0,T;V¥¥) N H'(0,T; (V¥¥)*) such that

(%u(t’ ')’ U)Li,¢ + ai)‘(’;g,H (u(ta ')a U) = <Fa U)(V*’"ﬂ*xV“’”" Vv e V‘Pﬂﬁ (342)
u(0,-) = 0. (3.43)

The bilinear form ai";’gH(-, -) is given by

1 ou Ov 1 ou Ov
QY — = 2,/,2 Zo2 22 o2 .44
Gogu(U,0) = 5 /anx 5y Y dady + 5o /any 9" Y*dzdy (3.44)

1
+ / y%wd—gpw?dxdy - / — Sy +wpoy®+r a—uvs02¢2d$dy
q Oz "dx Q 2 ox

1 d
+/ (—02 —wo?y? — k(m — y)) %mp%ﬁ?dxdy + o2 / y@vw2w—¢dxdy
o \2 dy o Oy dy
+po ya—u%go%fdxdy + 2,00/ ya—uvgod—@dedy
q Oyozx q Oy "dzx

1
— / <§w02y(wy2 +1) +wys(m —y) — r) uvp®yidady.
Q

3.5 Localization

In Theorems 3.3, 3.4, 3.5, 3.6 we have proved existence and uniqueness of solutions in
appropriate weighted Sobolev spaces. In particular, such solutions are exponentially de-
caying at infinity both in x and y, or have algebraic decay when S — oo. For numerical
solution it is essential to localize the corresponding PDEs to bounded domains and to
impose artificial boundary conditions. We prove next that the truncation error decays
exponential with respect to the size of the domain. The decay of solutions at infinity and
the well posedness in weighted spaces are crucial in the truncation error estimates below.
Exemplarily, we derive these estimates for the model problem (3.10)—(3.12), but the same
techniques can be applied to all other cases as well.
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For numerical solution we truncate the parabolic PDE (2.19) to a bounded compu-
tational domain Qg := Q; x Qy = (—Ry, R;) X (—Rs, Ry) with Ry, Ry > 0 sufficiently
large and solve (2.19) in J x Qg (where J = (0,7)) with homogenous Dirichlet boundary
conditions on 0€2p

8UR

W + Elog RUR = F‘QR in J X QR (345)

U,R( )|BQR = 0Oon 8QR (346)
’LLR(O, ) = 0in QR, (347)

where Ljog r denotes the restriction of L{F to Qg and F is as in (2.22). Let

o 9
Vo= {u | (\/1 +y2v,y£,6—2) e (I2(R))", vlsan = 0} (3.48)

and denote by V* the dual of V. For a variational formulation of the truncated PDE
(3.45)—(3.47) we denote by aiog,r(-,-) : V X V — R the bilinear form induced by Liog,r

Qiog,R(U, V) := (Liog,RU, V)v=xV Vu,v e V. (3.49)

The variational formulation of (3.45)—(3.47) reads: Given F € V*, find ug € L*(J;V) N
H(J;V*) such that
(Sur(t, ), v)r2@p) + Gog,r(ur(t,-),v) = (F,v)ysxy YOEV (3.50)
UR(O, ) = 0.

The bilinear form ajoq g (-, -) can be alternatively interpreted as the restriction of allf;é,o(-, )
to V x V and for convenience we give its expression below

Qiog,r(U, V) = Q/QRy Py axdxdy-l-Q/QR o vdzdy

1 Ou Qv
+- 3 ——dady — (wh® — « / —vdacdy
2" Jq, Oy Oy On

—am 8—vdfvdy - <—ﬁ2w2 - aw) / v uvdzdy (3.51)
Qg dy 2 Qr

1
—awm yuvdrdy — —wﬁz/ uvdxdy.
Qpr 2 Qr

By Theorem 3.3, the bilinear form ajz r obtained as restriction of the bilinear form
all(;éjo(-, -) to V' x V is continuous and satisfies a Garding inequality. Note that the trans-
formation vy = e Mup leads to the following parabolic PDE for vg

61}R

6t (Elog,R -+ A- ld) /\tF|QR in J x QR,
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where Liog,r + A -id is, for all A > ¢ as in (3.13), coercive.

We can prove now that the localization error can be controlled by an exponentially de-
caying function. Precisely, let v denote the solution of (3.10)—(3.11) and let ug be the
solution of (3.50). Denote by ug the zero extension of ug to R? and let eg := g — u
be the localization error. Our energy error estimates below are given in the domain

QR/2 = (—R1/2,R1/2) X (—R2/2,R2/2)

Theorem 3.7 Let ¢ = ¢(z,y) € C(QAr) be a cut-off function with the following prop-
erties
$>0, ¢=1o0nQgsp and ||[Vo||ro@my < C

for some constant C > 0 independent of Ry, Ry > 1. Then, there exist constants ¢ = ¢(T),
a > 0 independent of Ry, Ry such that the following error estimate holds

t
Iper(t, )72 +/ Iger(s, )lds < cemethe), (3.52)

Proof. Inserting v = u(t,-) in (3.10)—(3.11) and integrating from 0 to ¢ yields the a-priori
estimate

t
Oy, + [ (o) osds < Py, Vi€ (3.53)

for some constant ¢ = ¢(T) > 0 1ndependent of Ry, Ry. Here we exploited the Garding
inequality (3.13) satisfied by af; Y (+,+). Likewise it holds

n%mmm+4n%@mw@s¢m&w* vieJ (3.54)

with the same constant ¢ = ¢(T) as in (3.53). In particular, ¢ is independent of R, Rs.
On the other hand, eg satisfies the Galerkin orthogonality

<%€R(t) v) + alogo(eR( ,v)=0 YvelV. (3.55)
L2(R?)
Inserting v = ¢?(z, y)eR(t z,y) in (3.55) we obtain
5 dt||¢eR( MZ2(n) + aiog,r(Ser(t), der(t) = pr(?), (3.56)

where the residual pg(t) is given by pgr(t) := tiog,r(Per(t), Per(t)) — allf;é’o(eR(t), P?er(t)),
ie.,

P 2
o) = [ (Gren) dsy+ g [ yogfehoaoay
2
+%ﬂQ . y° (g—jelg(t)) drdy — (af® — a) /R2 yqﬁg—(ﬁe%ﬁ(t)dxdy (3.57)
e o
g2 0y

17



The integral terms in the expression of the residual pg(t) are supported by Qg \ Q2z/2 and
can estimated as follows

1

1
et < 5 [ IVOlen(t)Pdudy + 5 [ 40IV8en(t)Pdady
R2 R2

1
430" [ 1PIV0Plen(t) dady + a8 ~ af [ yoIV]len(t)Pdady
R2 R2
+lam| / 6|V 6l [en(t) Pdzdy
Rz

< C/ ler(t, z, y)|2e?* e’ e~ 217l =BV qrdy
Qr\Qr/2

< Oller®on / o2Vl 4y

Qr\QR/2
< Ce Bt len (1|30

Integrating from 0 to ¢ in (3.56) and using the previous estimates on pp we obtain

1 t t
S10en( 0 + [ dugalben(s), den(s)ds < e [ fen(s)[f, s
0 0

Using the a-priori estimates (3.53)—(3.54) and the Garding inequality for the bilinear form
iog,r completes the proof. O

4 Discretization

4.1 Space discretization

In Section 3 we introduced weighted Sobolev spaces and supplied a variational analysis
for the pricing problems (2.17)—(2.18),(2.19)—(2.20). The Sobolev spaces involved in our
analysis account in particular for solution behaviour at infinity and are a qualitative tool
for the justification of the truncation of the pricing problem to a finite domain and in the
derivation of guaranteed error bounds for the truncation error. figure[ht] The variational
formulations (3.10)(3.11), (3.22)—(3.24), (3.29)~(3.30) and (3.39)—(3.41) do all fit into
the abstract setting (3.1)—(3.2). In particular, the same holds for their localized variants.
We aim now to solve numerically the truncated PDEs. To this end, we discretize them
by a Finite Element Method (FEM) in space.

The abstract FE semi-discretization of (3.1)—(3.2) reads: for a given finite dimensional
subspace V, C V of dimV}, = N < oo, find uy, € L*(J; V) N HY(J; (V4)*) such that

(%uh(t, '), ’Uh) + a(uh(t, '),’Uh) = <F(t), Uh)V* <xv Vv, €V, (41)
uh(O, ) = 0.

18



The FE formulation (4.1)—(4.2) is equivalent to a finite system of ODEs. Indeed, by fixing
a basis B := {®;} Y, of Vj, (4.1)~(4.2) is equivalent to a system of ODEs for the coefficient
vector U, of u; with respect to the basis B: find U, € RY such that

MU, + AU, = F,
where M is the mass matrix and A is the moment or stiffness matrix

M = ((cb,-,@j)m> ., A= <a(q>j,<1>,.)> . (4.3)

1<i,j<N 1<i,j<N

4.2 Sparse Tensor Product Spaces
4.2.1 Wavelet Finite Elements in R

We describe wavelet Finite Elements in the interval I = (0,1). Define the mesh 7 given
by the nodes k27¢, k = 0,...,2¢ with mesh-width h,. Let V, be the space of piecewise
linears on the mesh 7¢ (higher order polynomials of degree p > 1 are also possible, see [6])
which vanish at endpoints 0,1. We write N¢ := dimV;, N~! := 0 and M¢ := Nt — Nt 1,
We employ a wavelet basis ¢, k =1,..., M* £=10,1,2,... of V;, with the properties:

Vp =span{yf |0 <L <L; 1<k< M,  diam (suppef) <C27%  (4.4)

Any function v € V7, has the representation

L Mt

v = Z Z Ok 0k (4.5)

£=0 k=0

with the coefficients v, = (v,9!), where the 9 are the so-called dual wavelets. For
v € L?(I) one obtains the series

v = Z Z Ok (4.6)

which converges in L?*(I) and in H](I). Moreover there holds the norm equivalence

oo Mt

allolli: <30 2% oel® < eolvlfpe, 0<s <1 (4.7)
{=0 k=1

For v € L?(I) we define a projection Pr, : L?(I) — V7, by truncating (4.6):

L Mt

Po:=> Y vy,  Pq:=0. (4.8)

£=0 k=0
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This projection satisfies the approzimation property (Jackson-type estimate)
lu — Prul|gsy < 27 lullgegy, 0<s<1,s<t<p+]l. (4.9)
The increment or detail spaces W, are defined by
Wy :=span{yt |1 < k< M}, £=1,2,3,..., Wy:=V,. (4.10)
Then ,
Ve=Via@W, for £>1, and Vo=@QW;, £>0, (4.11)
j=0

and Q, := P, — P,_; is a projection from L?(I) to W,.

We give an example of wavelets vanishing at the endpoints 0,1 which we will use in
Section 5. For £ > 0 let 7* be the mesh given by the nodes zf := k271 k= 0,...,2¢.
Then we have N = 24! — 1 and M* = 2%

We define the wavelets ¢f for level £ =0,..., k = 1,..., M*% for £ = 0 the function 1!
takes the value 1 at the node z9 = % For ¢ > 1 we let ¢, := 2¢2. Then the left boundary
wavelet 1/¢ has values ¥ (2%) = 2¢,, ¥{(2%) = —c; and zero at all other nodes. The right
boundary wavelet wfw has values wf\/ﬂ (val) = 2¢, wﬁ/ﬂ (vaLl) = —¢; and zero at all
other nodes. The interior wavelets ¢f with 1 < k < M?* have values ¥\ (25, ,) = —cy,
Vi(xh, ) = 2¢q, YE(28,) = —cp and zero at all other nodes.

4.2.2 Sparse Tensor Products

In this section we introduce tensor product spaces and tensor product matrices in an
abstract setting, see also [4, 16]. To this end, assume that {V/}{°,, k = 1,2 are two
dense hierarchic sequences of finite dimensional subspaces of the Hilbert spaces V*

VocVfFCc---CcVprC---C VR

To employ this hierarchy in the context of wavelet Galerkin Finite Element Methods we
also assume that V7 admits a wavelet basis as in (4.4). The full tensor product space
Vi := V! @ V2 is defined by
WL = @ W} @ Wg.
0<LL<L
and we define the sparse tensor product space Vi at level L as being given by
VL - @ Wel ® WZQI, (412)

0<+0 <L

where the increment spaces W[, k = 1,2, are as in (4.10), see also Figure 1 below.
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Figure 1: Schematic of full tensor product space V4, (left) and tensor products W} ® W7
of the increments, right the sparse tensor product space V1. For both spaces the bi-
orthogonal spline wavelets are displayed.

-

y y

Assume given continuous bilinear forms a*(-,-) : V¥ x V* — R and denote by A" the
stiffness matrices defined as

A'(ek’g)’(k/’gl) = Uln(wg;l/,wg’z). (413)

Let Ay, denote the block matrix with entries {Af ) 4 o} yz1. wegor,.. e~ We use the
same notation when we refer to the matrix of same size as A* but with zero entries except
the block matrix Af,. With this convention, A* can be written as

AF= D" Af,.

0<6,0<L

The full tensor product matrix is then defined as

1 2 § : 1 2
0<eq,84<L
0<y,th<L

and the sparse tensor product matrix takes the form

15 A2 2 : 1 2
0< £y +45<L
0< e +e4<L
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Let us give an example for a sparse tensor product matrix. We consider the bilinear forms
at (-, ) and allo’;p(-, -) defined in (3.37) and (3.19), respectively. The stiffness matrices

real,p
1,1 . ¥ .
A ca of areal p( 1), Ajog of Uiog, p(-, -) in the sparse tensor product space Vi, are given by

Areal 552 EMY: + B G [MY), — wppMyl) — 6pB()) — M’
= AT (4.16)
Alog %S?@M";’% + B§“)®[ 1\/1‘(?/|2 — wﬂpMmy' ﬂpB(y) _ TM( )}

where the matrix A reads as

A = M?’@[ﬂ;s?) — (% — aw)MSé) — ame?Sy) + wPBp(p — r)M(lj’L‘)
Yy

(4 =M — (@ — 0)BY + fp(u —1)BY — amB"].
[yl
In (4.16) we use the notation

¢ ¢ — (b
= ()" () D) e ey Mo = (W Ykrdo) 00
Bw = (<( ) ,l/)k‘> ) (k01
with (u,v), = [w(z)u(z)v(z)dz being the (l-dlmensmnal) weighted L? scalar product.

The full tensor product space Vi, has O(2°%) = O(h~?) degrees of freedom, whereas the
sparse tensor product space Vi, has considerably smaller dimension Nj = dim(VL) =
O(L2Y) = O(h™!|logh|). Thus, wavelet sparse tensor product discretization applied to
univariate stochastic volatility models yields degrees of freedom of size O(h™!| log h|). This
should be compared to standard Finite Element discretizations applied to deterministic
volatility models with O(h™!) degrees of freedom. We emphasize that wavelet sparse
tensor product discretizations can be easily extended to more than just d = 2 space
dimensions. We mention the pricing of contracts on baskets of d assets and multiscale
stochastic volatility models, see [11], [18] for details.

4.3 Time discretization

We exploit the time-analyticity of the semigroups generated by the diffusion process
(S:,Y:) in (2.1),(2.2) by an exponentially convergent hp discontinuous Galerkin (dG) time
discretization [15, 16, 18]. For a description of the well known low order #-scheme and
related convergence results see (von Petersdorff, Schwab 2003) [17].

4.3.1 hp-dG time stepping

We start from the space semi-discrete problem (4.1)-(4.2).
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For 0 < T < ocand M € N, let M = {I,}™ | be a partition of J = (0,7) into
M subintervals I, = (tm-1,tm), 1 < m < M with 0 =ty < t; < to < ... < ty =
T. Moreover, we define the time-partition M, which is geometrically refined towards
maturity with M steps and grading factor o € (0,1) by t,, = ToM~™.

For u € HY(M,V,) :=={v € L3(J,V},) : v|1,, € H' (1,5, Vi),m = 1,2,..., M}, define the
one-sided limits

ulb = lim u(t, +5), 0<m< M —1, U, = lim u(t, —s), 1 <m < M,

s—0t s—0~

and the jumps [u], = v} —u,, 1 <m < M — 1. In addition, to each time interval
I, a polynomial degree (approximation order) r,, > 0 with linear growth (slope p) in
the sense that r,, = |um| is associated. These numbers are stored in the degree vector
r = {rm}M_,. Then the following space being used for the discontinuous Galerkin method
is introduced:

SE(M, Vh) = {u € L2(J, Vh) : U|Im € Prm(lm, Vh),m = 1,2, .. .,M},

where P, (I, V) denotes the space of polynomials of degree at most r,, on I, taking

values in V/,.
With these definitions, the fully discrete dG scheme reads as follows: Find Uf¢ €
SZ(M, V},) such that

M
BdG(U,?G,W)z(uO,W;)JrZ/ (F,W)yesydt, VYW € S5(M,V}), (4.17)
where
M-1
Bag(u, ) Z/ (u',v) + a(u,v dt—i—Z [©)my vh) + (ug, vf). (4.18)
m=1

Now let V}, = Vi, with mesh-width hy = 2L L > 0, and choose the dG time stepping with
uniform degree vector r. We further choose y© = 1 and a geometric time-step sequence
My in (0,7) with grading factor o € (0,1) and M = r time steps. Proceeding as in
[16, Thm. 5.1], there exist constants C, b > 0 independent of M, L such that

lu(T) = UZE (D)2 < C(h° + e ). (4.19)
Essential ingredients to derive (4.19) are the regularity assumption
u(t,") € H? == {v € Hy(Qr) | D*v € L*(Qr), 0< 0; < 2,i=1,2}, te€(0,T),

and the approximation property (4.9). If we choose r = O(|log hr|) it follows that ||u(T") —
URS(T)||p» < Chy”.
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4.3.2 Approximate Solution of Linear Equations

If rp, =7 = O(|loghrl|), the hp-dG time stepping (4.17) requires after decoupling in each
of the r time steps the solution of r + 1 linear systems of size Nj. These systems are of
type

AjM+ gA)ij =f, j=rr—1,...,0 (4.20)

-~

=:B

with \; € C, see e.g. [16]. For a standard finite element basis, the matrix B is ill con-
ditioned and efficient preconditioning is necessary. The wavelet basis which we proposed
so far is, due to multilevel norm equivalences in standard and weighted Sobolev spaces,
ideal to build optimal preconditioners.

Consider the weighted mass matrix

Mo = <f0 w(2” /f) (2 ”’(‘v"))dx)w,e),(kxe'f

The wavelets vf and the weighting function w are assumed to satisfy the following as-
sumptions

(A1) The wavelets have one vanishing moment: fol Yt (x)dz = 0.

(A2) The wavelets belong to W*°(0,1). Furthermore the wavelets with 0 € supp(%)
have the following decay condition at x = 0:

Wp(z)] < C22(2%2)°,  |(4y) (2)| < C2%2(2°)°!, ze[0,27Y,8€ N,
for 6 > —% — Q.

(A3) The nonnegative weighting function w(-) belongs to W*(g, 1) for every € > 0 and
satisfies

!
e <™ <, ¥ o,
T

e
for some C,, > 0 and o € R as in assumption (A2).

Under the assumptions (A1)-(A3) it has been proven in [2] that the (infinite) weighted
mass matrix M, is bounded in 2. A direct consequence of the #2 boundedness of M,, is
the equivalence between the L2 norm of a function

=Y upyg € L3, ([0,1])

{=lp k

and the discrete £2 norm of its wavelet coefficients uf € R, i.e., with
[Tl Zzw 27k) |,

24



That is, for v € L2 (0,1) there holds
ull?, = [[u |15 (4.21)

Analogous to (4.21) higher order weighted norm equivalences are valid. Denote by
H,, ,(0,1) the weighted Sobolev space

Hy(0,1) = {u e L*(0,1) | wu' € L*(0,1),u(1) = 0}.

For u =372, >, upty € Hy 0(0,1) holds the norm equivalence
o2~ 224w (27 k) g . 4.22
w k
¢k

We now define preconditioners for the weighted mass matrix
M, = (fol w?(z) i (z)vh (z)dz) (5,0), (k101 and for the weighted stiffness matrix

Su = (fy w? (@) (WF) (@) () (2)dx) o g

(C:

2(6—4 I 20 2764
maw) oy = OkkOeew* (27K),  (Con) o ey = Ok Oee 2w (27 k). (4.23)

Then, by norm equivalences (4.21),(4.22), the quantities rs((Cl,,,) /*M,(CL, )~ /?)
and

K2((CL,.) " *Su (Chy ) ~1/?) are bounded uniformly with respect to the multiresolution
level L. U
In addition to the diagonal preconditioners in (4.23) we define the preconditioners Cs.u

ng and C},IW with entries given by

(D), (g Y k=K =1

~1I 2 ’ .
(Cowlemner) = § (), Wp))e ifk=k=1 (4.24)
0 else,
2 ’
(Cowemer))” = rrdee((Wr), W) )ws (4.25)
2 !
(Cow)whnewn) = Okwboe{Uh, Y- (4.26)
We then define preconditioners Cf, and Cy,, k = L II, for Ay and Ajeq, respectively:
feal %C:,ﬂ@cfn:kyp
= Cf+ , (4.27)
Cﬁ)g %C?J@Cnm,\w

where C* = Cf, ,® %20;1 — (L aw)Cy, > —awmCr,  — (“’Tﬂ2 —r)Cr |, and C} , =

2 s,x2 T
C!' .. Note that C],, C|

real» Clog are diagonal matrices. The main difference between case I
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and II is that in case II the preconditioner for the weighted stiffness matrix S,2 is not
a diagonal matrix, but it has some additional entries corresponding to the wavelets 1/),‘2
with 0 € supp w,‘;, i.e. the wavelets at the left boundary x = 0 are taken into account.
Numerical experiments (see [2]) show that the condition numbers of the preconditioned
stiffness matrices are substantially smaller in case II than in case I.

For the matrices Biog := AM+ gAlog and Biea := AM+ %Areal of the fully discrete scheme
we now consider the preconditioners

Sfeg := (Re(AI + £Cfe )72, ra = (ReWI+£CE)'?, k=LIL  (4.28)
The preconditioned matrices Blog and Breal are

Blog = (Sllc )717 Breal = (Sfeal)ilBreal(Sfeal)il' (429)

log

)71Blog(sn

log

Proposition 4.1 Let B be any of the matrices in (4.29). Then
A(B) = Amin((B+ B7)/2)) B < ¢ < oo

where the constant c¢ is independent of A, L and time-step size k.

Proof. We prove the result for the full tensor product and consider only Elog. The proof
for Byea is analogous. From the norm equivalence (4.7) with s = 0 it follows that every
v € V4, with coefficient vector v = (vf)

Ci|lv]| € v¥Mv < Colv|| (4.30)

with constants Ci,C, independent of L. Assume w.lo.g. that bilinear form aiog(-, ")
satisfies aiog(v,v) > Clv||}. Then (4.7) with s = 0,1, (4.21) and a tensor product
argument imply

C’lvHCI

log

with constants Cj,Cy independent of L. Since Re(xiIm(A\)Mx) = 0 we obtain from
(4.30), (4.31) that

v < VHAlogV < CQVHC{OgV (4.31)

Re(x"Bx) > Cx"8%x, vx € CHm™L,

which reads with y = Sx as
Re(y"By) > Gslly|®, vy e CH™'%, (4.32)
with C5 independent of L. We have

x"By| < [Xx"My] + &x" Aoy | < CAIIx[llly [l + CEII(Clog) /*x[1(Clog) 1.
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With D := |AI+ £C]

log We obtain

x"By| < C(x"Dx)"*(y"Dy)"%.
From Re(\) > C|A|r~2 (see [16, Lem. 5.5]) we deduce
|XHBy‘ < CT2(XHSZX)1/2(yHSZy)1/2
or X
[x"By| < Cur?|x||[ly|l- (4.33)
Inequalities (4.32) and (4.33) can be stated as

Amin(B + BH) > Cj, IB|| < Cyr?.

The sparse tensor product matrices are obtained from the full tensor product matrices by
deleting appropriate rows and columns. Then inequalities (4.34) are still valid (with the
same constants). O

4.3.3 Complexity

We solve the systems (4.20) approximately with the incomplete GMRES iteration, yielding
an approximation U, for u. For the linear system Bx = b let % X; be the iterates obtained
by the restarted GMRES(my). According to [9] it follows from Prop. 4 1 that the non-
restarted GMRES method for the matrix B yields iterates x; = S™'%; and residuals

j:Sb Bx; satisfying
C«g 3/2
Il < (1- 55 ) .
J rtC?

This together with (4.19) implies that O(|logh|’) GMRES iterations are sufficient to
achieve an accuracy O(N~?) at maturity 7 of the Lo-error ||[u(T) — U (T)||z>. For the
derivation of this result, see [16, Sec. 5].

The iterative solution of the linear systems with GMRES requires the matrix-vector prod-
uct of the form (3, X Y(y))(xé)y), compare with (4.16). Each of those products can

be performed in C Ny, operations by an iterative scheme (see [16, Sec. 5.6]). We obtain

Theorem 4.2 The fully discrete Galerkin scheme with uniform order r = O(|loghyz|),
geometric time step sequence My, in J = (0,T) and sparse grids in space with mesh-
width hy, = 27" yields an approzimation Up(T) with accuracy ||u(T) — UL(T)||r> < C’hi/3
which can be computed with at most Ch;'|loghy|® operations.

Proof. For each of the O(r) time steps we solve r+1 linear systems. Each of these systems
can be solved in n = O(|loghr|®) GMRES iterations. Each GMRES iteration involves
a matrix-vector product using CNy, operations. Hence the total number of iterations is
bounded by Cr’>nNy, with r = O(|logh,|) and N, = O(h;'|loghy). O
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5 Numerical experiments

In all computations we use the wavelets described in Section 4.2.1, normalized such that
|vE]lz: = 1. Note that these wavelets do not belong to W1*(0,1) (Assumption (A2)).
Nevertheless, numerical experiments show that they seem to have the property described
in Prop. 4.1.

5.1 A model problem

For the PDEs we solve here numerically no explicit solution formulas are available in
general. To verify our pricing methodology and to investigate the impact of sparse grid
on the accuracy of the computed prices, we introduce a model problem for which the
solution is explicitly known.

For Q= (0,2) x (—3,2), Qr =% (0,T), T > 0 and S = 92 x (0,T) let us consider

T 202
the following model problem

1 1 )
up — §x2|y|2um - éﬂzuyy — pBlyluye — 7 (zuy —u) —a(m —y)uy, = f inQr
U 0 onXr
u(-,0) = wup in Q,

I

We set the exact solution u to u(t,z,y) = e @ ¥gsin(Zz)(: — y) cos(ry) and adapt the
right hand side f(t, z,y) such that the PDE is satisfied. We consider the constants o = 1,
0 = %, p = —0.5, r = 0.05 and m = 0.2. The variational formulation of the above

problem is the one in (3.39), with the bilinear from aiéil,p(-, -) in (3.19) with g = r and
w =0 (i.e. we do not apply the variable transformations described in Section 2.2 to this
problem). The stiffness matrix of the fully discrete problem is (instead of Ap-dG time
stepping we use the f-scheme to discretize in time for this example)

K = 8% oMY +0BY @ MY, - M - 5B

2~z | ]

+M @ [ (5 + MY + 280 + aBY, |
We only consider the preconditioner of type II

(C")” = el @Cl . +0Ch, ® [(&+r)Cl, + Zcl).

We choose § = : and time step k& = 1072 in the f-scheme and the levels L = (¢,¢),
¢ =4,...8, for the approximation on the full grid (yielding linear systems of size N :=
(241 —1)?), and the levels L = (£, /), £ = 5,...,9, for the approximation on the sparse

grid (which produces linear systems of size NV := 271 +1). In all cases, the linear systems
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are solved with the restarted GMRES(200) to a relative residuum ¢ = 107'%. For each
level ¢ and time ¢ = 0.1 we compute the functional (the maximal nodal error)

h

where u is the exact solution and upg is the Finite Element solution, and plot the values
of £, against N and N, see Figure 2.

max|u — uFE|

10 10 10* 10 10
degrees of freedom

Figure 2: The maximal nodal error of the FE-solution at maturity 7" = 0.1 on the full
grid (o—marker), and on the sparse grid (V—marker).

Another result in this direction is the following. For the Heston model (see (2.11)-(2.12) for
the pricing PDE, and (3.42)-(3.43) for its variational formulation) a closed form solution
in terms of integrals is available [12]. We use this availability to compare the exact values
to the values stemming from numerical simulation. To this end, we consider a European
call option with the model parameters K =1, k = 2.5, A =0, m = 0.06, p = —0.5, r = 0,
o =0.5and T = 0.5. To get the numerical solution, we choose 2z = (0,8) x (0,3.2). In
Tables 1 and 2, we denote by u., the exact value of the option at the point (S,y) and
by uqy), Uqy the approximated value obtained by using level L = (I,1) in the spatial
discretization on the full grid and the sparse grid, respectively. The superscripts €, hpdG
refer to the f-scheme respectively to hp-dG time-stepping. For the f#-scheme, we choose
0= % and the time step £ = 0.01. In the hp-dG case, the geometric partition M, for
the time interval J = (0,7) isset to M =5and 0 =0.3,ie. 0=ty <t1 < ... <ty =T
with t,, = ToM ™ m=1,..., M. We assume the corresponding polynomial degree vec-
tor r to be r = (0,1,1,1,2). To solve the linear systems, we use restarted GMRES(200)
and iterate to a relative residual of 1077.
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The values obtained on the sparse grid are less accurate than the ones obtained on the full
grid, independent of the method of time discretization. For example, the relative error
of u?s,s) at the point (S,y) = (1,0.2) is approximatively 3.9 - 1074, whereas at the same
point the relative error of ﬁ?&s) is about 5.5- 1072, We obtain solutions on the sparse grid
about 20 times faster than on the full grid with comparable accuracy.

We remark that with our choices of the time discretization parameters, the hp-dG time-
stepping yields less accurate values than the f-scheme. On the other hand, at comparable
accuracy hp-dG time-stepping was about 50% faster than the #-scheme.

(S,y) | (1,02)  (1,04) (1.504) (S,y) | (1,02)  (1,04) (1.5,04)
Uer | 0.102052 0.138267 0.532889 Uex | 0102052 0.138267 0.532889
ug&&.’) 0.101093 0.137553 0.532635 agw 0.076182 0.134385 0.531107
) 0.101792 0.138090 0.532825 raés’ﬁ) 0.091135 0.139603 0.532686
ur) 0.101972 0.138226 0.532873 %7’7) 0.100682 0.139215 0.532779
ulg | 0102012 0.138244 0.532885 il 5 | 0102614 0.138095 0.532857
ugrsy | 0.101057  0.137505 0.532672 dgrey | 0.076171 0.134348  0.531152
uieg | 0101758 0.138043 0.532863 iiegy | 0-091105 0.139536 0.532733
ugpyy | 0101939 0.138180 0.532911 acps)’ | 0100673 0.139259  0.532816
uteg | 0101990 0.138214 0.532923 ifeg)’ | 0102741 0.138357 0.532896
Table 1: Values of a Call option Table 2: Values of a Call option

in the Heston model: full grid. in the Heston model: sparse grid.

5.2 European vanilla put options

Let us now return to the problem of numerical pricing of option contracts. We shall first
solve for the price of a European put in an uncorrelated case (p = 0) using the real price
S of the underlying asset as well as the log-transformed price z = log(S) and compare
the results. Then we shall consider a correlated case (p # 0). We consider in all cases the
Stein-Stein model f(y) = |y| as the function of the Ornstein-Uhlenbeck process.

5.2.1 An uncorrelated case

The following parameters are taken K = 20, o = 1, § = %, p=0m=202 r=
0.05 and 7' = 1. We want to approximate the value of the option U in the domain
Q = (0,150) x (—1.5,1.5). For the real price we compute the approximative solution
in the domain Qg = (0,600) x (—4,4) and restrict this solution to the smaller domain
Q. The reason for solving in the larger domain € is that the homogenous Dirichlet
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boundary conditions (3.46) at y = +4 and at 5 =600 are not satisfied by U, producing a
boundary layer at y = +4. The solution U in 2 is not affected by these artificial boundary
conditions.

To discretize the variational formulation (3.45)-(3.47) in Qg, we take L = (8, 6) for the full
tensor product space, i.e. 8 levels in z-coordinate direction and 6 levels in y-coordinate
direction are used. For the #-scheme we choose ff = % (Crank-Nicholson) and time step
k = 0.01 leading to a linear system with 64897 unknowns which has to be solved M = 100
times. To solve the linear systems we use the preconditioner of type II and apply the
restarted GMRES(200), which iterates until the relative residuum is smaller than ¢ = 108
in each time step. In Figure 3 we plot the numerical solution U in the domain Q. To

Figure 3: The approximated solution of U restricted to the domain Q at T = 1.

compare the approximated solution U obtained in the real-price setting, we perform the
same simulation changing to log—price of the underlying asset. We use the computational
domain Q = (=7,7) x (—4,4). We choose the same discretization parameters as in the
real price setting, and again the preconditioner of type II. Figure 4 shows the option value
obtained by solving the problem in real-price (top) and in log-price (bottom).

5.2.2 A correlated case

We solve for a European put in a correlated case with the following parameters K = 20,
a=1,0= %, =015 p=—-0.5 m=0.2,r =0.05 and T = 1. The computational
domain is Qz = (0,600) x (0,4), again larger than the domain Q = (0,150) x (0,1.5)
of interest. The discretization parameters are as in the uncorrelated case. The stiffness
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S S

150

Figure 4: Option prices of European vanilla put at 7" =1, p = 0. On the left top, the
solution in (0,600) x (—4,4) obtained by solving the real-price equation, right the same
solution restricted to (0,150) x (—1.5,1.5). On the left bottom the solution in the domain
is (e77,€7) x (—4,4) obtained by solving the log-price equation is displayed. On the right
bottom, again the solution restricted to (0,150) x (—1.5,1.5). In both cases, the boundary
layer produced by the artificial boundary condition can be observed.

matrix K ., of the arising linear system is preconditioned with the preconditioner of type
IT. In Figure 5, we show the solution at 7' = 1.

5.3 Compound options

We show that our numerical scheme does also apply for options which are more sophis-
ticated than simple European options. As an example we consider a compound option,
also called “option on an option”, i.e. compound options have underlying assets which
are themselves options: for example, a call on another call.

We now price a call compound option for the case that the underlying option is also a call.
We choose the following parameters: a =1, § = %, p =0 (i.e. uncorrelated), r = 0.05,
m=0.2, K =20, K¢ =12, T = 0.5 and T° = 0.4. The discretization parameters are the
restricted domain Qg = (=7,7) x (—4,4), time step k£ = 0.01 and § = £ for the #-scheme.
Furthermore, the levels L = (7,6) for the full tensor product space are taken, leading to
32385 unknowns in each time step.
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A The bilinear forms

X
8,0t

o5 o5 50

We give here the explicit expressions of the bilinear forms af; o, a7y, ., afy and af)

A.1 Bilinear forms ai@ﬁo(-,-), alo’gjp’ ()

Integration by parts in (3.19) gives

0 d
v 5o ve(e) v ()dady (A1)

ou ou Ov
+1 / =S () (y)dady + 152 ¢ (z)?(y)dzdy
Qr Oz Q:l:a dy

0 d o 0
+6° /Qi a_ZUSOQ(x)Q/)(y)%dxdy + pﬁ |y a“ BU ()02 (y)dady

5 Ou Ov
wﬁ _ 1 2 2
) = 5 [ VS sy [

ou do , ou 2
) il - - il
+2p3 o Iylayw(w) dxw (y)dzdy — wpB .. y|y|axw (z)1*(y)dzdy

ou 2 2 2 Ou 2 2
_p /Q @ (z)9? (y)dzdy — (wB? — a) /Q R (2)9"(y)dzdy
au 2 1 au 2 2
—om | 5,0 2(z)v? (y)dzdy + Bp(p — 1) /Qi P (z)9* (y)dady

—awm [ yurg?(a)ER(y)dedy
Q+

—(3w°° = aw) /Q y?uvg?®(z)y? (y)dady
wBp(u—1) / g )02 5)dady
—(3wp? - 7“)/Q wvp? () (y)dzdy.

In the case when p = 0 (uncorrelated variants) the bilinear form alogo(- -) is given by

(A.1) in which the terms containing the factor p are dropped and the integration domain
is R? instead of Q..
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A.2 Bilinear form aﬁﬁ)p)i(-, )

Again with an integration by parts we get from (3.37)

ipulen) =} [ P TCAOwISay+ | 1S Sue(s) SEuwasay
+ [ sggrenmasay s it [ Sl )asay
[ g—Zw?(SW(y)%deywﬁ WS G Gt (S sy
+208 [ 1y Ggnet(S)u) G asdy (A2

Au
+pp3 sign(y)Sng(S)wz(y)dey

Qr

ou ou
—wn [ alSGgee S WSy~ [ STeos () Sy

Q4 Qy

0
(W~ a) / eSSy

_am g—;msmmwy

Qg

ol — 1) / LU, (S (y)dSdy

Q4 ma_y
—awm [ yuvg?(S)pA(y)dsdy

Qx
— (3w — aw) / y?uve®(S)y? (y)dSdy
Qyt
+whp(— 1) /Q L (S)* sy

~(bwB ) / g (S)4? (y)dSdy.

35



B Proof of Theorem 3.3

Proof. With u = v, integration by parts and the definition of the Lfo,w-norm we obtain
from (A.1):

aﬁ)ﬁo (U’a U’) =

5

50 ! 1 !
v up?? Ldzdy — — / yu’ o L dady
12, Rz ox %, 2 Jre ©
B3| u|® 2 ou 5 0¥ wh —a,
2= udil Zdedy + 22— —
513y , + B R2yayuwwyw zdy + ———lullzz,

+(wp? — a)/ 20 %) djwdxdy —am /R2 a—ugo 22 dady

,62(,02
(5 — )y, - [ ooy — ol

We estimate the integrals using the Cauchy-inequality:

| g ay < |© ol e
—-— U X — 3 - -— u
R2y oz ¥ vo= 0 || oo HY 5z 2, e, WLy, )
@,
¢’ ¢’
| Sany < |2y
R oo e,
ou w Y ( oul|” 1 )
—uptp? —dady < || = Eo|l=— + —lyu ,
/1;2 ay v w y¢ Lo ? ay L?Nb 452“ ”Li’d’
2 Y ' 2
U —dzdy < ||— U ,
/R2 2% yodrdy <) Lmlly Izz
ou 4 4 du||? 1
— dzdy < &5 —
| Gruivddy < e il

2,212 2 2
[idviasdy < el + -l

Collecting the terms yields

1 ¢ 2 1 P
1 / 1 I 2 !

[—— 20 == £ L — (Wh* + a) i
481 (10 Loo 2 SO Loo 482 yw Lo y/l/J L
i |yl

2 aw gq0w|m yu Liﬂ/’
(0]
—|5 + alm|-— — aw|m)| [l

36



Let v := ||‘p ||z and 7 := || ||Loo Choose &1 = 45, &2 41N €3 = and let w = 77—

for some n € (0,1). Then the coefficient in front of ||yu|?, is given by:
s«mﬁ

16a\m|

) 2
2(%) n(1—n)—aﬁ(2n+1)—”2_g_52ﬁ2_2(%> b om0

for v, 1, 4 sufficiently small. Hence we have

aif)’g’o(u u > Cl(

2
u
Ou ) — Gyllull
L2 %111
@,

L2 H

Hyax
for some constants C7, Cy. With ¢ > Cy we conclude
af? o (u, u) + C||U||%i = min{C1, ¢ — Ca }|ulyy.v,

and the Proposition follows with C' = min{C}, ¢ — Cs}.
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C Proof of Theorem 3.4

Proof. Let w = 2an/B? with n € (0,1). Taking v = u and using 2%v = 1.2(v?),
g’y’v = %ai( %) in (A.1) ylelds

Gelvi0) = v

v ¢'(z)
2 2 2
Y —vp(x)Y°(y) ——dzdy
- /Q 5" W o
ov|*
dy

2.2 2 2, P (@) L oo
_E/Qiy”()”’ (1) Z o dady + 35

V' (y)
Y (y)

(2)y*(y)dzdy

Li,¢(Qi)
2 81} 2
w8 | vge )

ov v
+pf3 y 2
p Qi||ayaw

8 [ sign()e* (@) E 2 dady
Qx

. 2 2 P'(y)
2pp o ylylv**(z)* (y) ” y)dxd

+2%77p o ylylv*e® ()Y (y )Z((j))dxderr/Qi v*¢? (2)¢* (y)dzdy

1 9 2,2 2 2
+502n=Dvlz u) + (21 -1) /Qy Ve @yvily )fw(@))
ov

—om | 5yv¢ ©*(z)? (y)dzdy

dzdy

dzdy

~2(5) m [ yv%?(x)w?(y)dxdyw(%) n(t = lll:q
#2501} / [ e+ - anlvl; .y

With ¢(z) = €’ and ¢(y) = e¥'/2, v,7i > 0 to be fixed later and by applying the
Cauchy-Schwartz inequality we obtain the estimates for the above integrals

81} ¢ (z) v
(@) ()¢ dxdy\ <vly2 ol
‘Ai 90( ) or L2 (@s) L ,(Qx)
1 a'l) 2 i l/2 || ||2
=95 Yo, 2¢, WL (@)

Li,q’p (Q+)
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for arbitrary (; > 0. Likewise,

ov 0v ov
o [ iggese W2 )dody| < |p|ﬁH
‘ Ay Oz »(Qx) 8y Lz (Qi)
2
S—C2 o il 8_1)
8$ »(@Q+) 2C2 |0y L% ,(Q)
for all (5 > 0 and
Y'(y) ¢'(x)
Qpﬂ‘/ ylylv*o*(z) dzdy| < 2|p|Bav|lyvl}z
| QiH ()()yw(y) o(2) B lyollz2 Q.-

Furthermore,

2

O Y (y) _||0v 2
2 2 2 dzdul < 8251|122 ,
s /Qiyayw () (y)yw(y) Y| < PR oY llzz ,(Qq) Ivlzz @
1 ow||? B 2
< =[2G || =— + —— |lyv||z2
S 25 € By 1w 2s lly ||LM(Q¢)

for arbitrary (3 > 0 and

2am

P'(y) _
[ e S aay| < 2ol

Finally,

ov
ol | [ Shog @) ()| < folls o
Qs Y @ T

m? (o>
+_
o (5) 10122

s
/ yo2e? (z)v2(y dxdy‘g ( > |771|77‘9||3/U||L2 Q:i:)+
Qx

2(5) min vl

hold for any (4 > 0 and ¢ > 0. Next, Hardy’s inequality

IN

1
LA

3y

2 (g) Im|n
B

ov
0y

v

YlizzQu)

<2|%

L2(Qx)
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implies

ov

oy

(Y

Y

2 <2 (‘ 2 + M||y0||Li,¢(Qi)) : (C.1)
Ly (Q+) L3 4 (Qx)

By (C.1) and by the Cauchy-Schwartz inequality we deduce that

2

1 owv 1 ov
Blpllw—r] —a—vsoQ(x)wz(y)dxdy < (2ﬂ|p||u —r|+ §ﬂ265) ‘ 5
Qs Yl 0y Yllez (@q)
20 =V o
+ T”yUHLi,w(Qi)
holds for any (5 > 0. Summing all these estimates we obtain
ov ||? ov||?
A s (0,0) > o [y + allyolls L u) + 05 | 5 ool qu
L? ,(Qx) ’ Yz ,@q) ’
where
1
a1 = 5(1 —Cl —C2)
V2 v o 1 o 2
= —— — = — 2|p| B — 2|p|= y—ﬂ2‘2—+2(—> 1—n)—ajfi
2 26 9 | BR Ip\ﬂn "5 3 n(l—mn) —ap
2 2 22
o pip—r)p _
-2 =) mne - 2———— —2ani
(5) :
1 pB)?
=200 G-t — PO ol
2 2C,

_ (alm[)* 1 o
o = lelpy = S5 g _50‘_2<B

In order to ensure a3 > 0, the parameter § needs to satisfy the following inequality
B> %. If (3.20) holds, we can find (3, (4, (5 sufficiently small and (; € (0, 1) sufficiently
close to 1 such that ag > 0. If (; is next chosen sufficiently small then «; > 0. Finally, with
(1, 2,y (3, (4 and (5 fixed and for 0 < 7y < mo < 1 there exists a constant ¢y = ¢y(11,72) > 0
and vy, fip and € > 0 small enough such that ay > ¢q for all g, < n < ny and all v € [0, 1),

JTRS [07 /7'0)

2
1
) lmndnge =25l = -+ =)

O

40



References

[1] Y. Achdou and N. Tchou: Variational analysis for the Black and Scholes equation
with stochastic volatility. ESAIM: Mathematical Modelling and Numerical Analysis,
Vol. 36, N°3 (2002) 373-395.

[2] S. Beuchler, R. Schneider and C. Schwab: Multiresolution weighted norm equiva-
lences and applications. Numerische Mathematik 98 (2004) 67-97.

(3] F. Black and M. Scholes: The pricing of options and corporate liabilities. Journal of
Political Economy 81 (1973) 637-654.

[4] H.J. Bungartz and M. Griebel: Sparse Grids. Acta Numerica 13 (2004) 147-269.

[5] P. Carr and D.B. Madan: Option Valuation Using the Fast Fourier Transform. Jour-
nal of Computational Finance, Vol. 2, N°4 (1999) 61-73.

6] A. Cohen: Numerical Analysis of Wavelet Methods. Studies in Mathematics and its
Applications, Vol. 32, Elsevier publ. (2003).

[7] J.C. Cox and S.A. Ross: The Valuation of Options for Alternative Stochastic Pro-
cesses. Journal of Financial Economics 3 (1976) 145-166.

[8] F. Delbaen and H. Shirakawa: A Note on Option Pricing for the Constant Elasticity
of Variance Model. Asia-Pacific Financial Markets 9 (2002) 85-99.

[9] S.C. Eisenstat, H.C. Elman and M.H. Schultz: Variational iterative methods for
nonsymmetric systems of linear equations. SIAM Journal on Numerical Analysis 20
(1983) 345-357.

[10] J.-P. Fouque, G. Papanicolaou and R. Sircar: Derivatives in financial markets with
stochastic volatility. Cambridge University Press, Cambridge (2000).

[11] J.-P. Fouque, G. Papanicolaou, R. Sircar and K. Solna: Multiscale stochastic volatil-
ity asymptotics. Multiscale Modeling & Simulation 2 (2003) 22—-42.

[12] S.L. Heston: A closed form solution for options with stochastic volatility with appli-
cations to bonds and currency options. Review of Financial studies 6 (1993) 327-343.

[13] J.-L. Lions and E. Magenes: Problémes aux limites non homogenes et applications.
Vol. I and II, Dunod, Paris (1968).

[14] A.-M. Matache, T. von Petersdorff and C. Schwab: Fast Deterministic Pricing of
Options on Lévy Driven Assets. ESAIM: Mathematical Modelling and Numerical
Analysis, Vol. 38, N°1 (2004) 37-71.

41



[15] D. Schétzau and C. Schwab: Time discretization of parabolic problems by the hp-
version of the discontinuous Galerkin finite element method. STAM Journal on Nu-
merical Analysis 38, (2000) 837-875.

[16] T. von Petersdorff and C. Schwab: Numerical solution of parabolic equations in high
dimensions. ESAIM: Mathematical Modelling and Numerical Analysis 38 N°1 (2004)
93-127.

[17] T. von Petersdorff and C. Schwab: Wavelet-discretizations of parabolic integro-
differential equations, SIAM Journal on Numerical Analysis 41 (2003) 159-180.

[18] T. Wihler, A.-M. Matache and C. Schwab: Fast Numerical Solution of Parabolic
Integro-Differential Equations with Applications in Finance, Reseach report No. 1954
IMA University of Minnesota (2004).

[19] P. Wilmott, S. Howison and J. Dewynne: The Mathematics of Financial Derivatives.
Cambridge University Press, Cambridge (1995).

42



