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1. Introduction. A dielectric object (scatterer) of finite extension occupies the
region {2, of three-dimensional space. Its surface I' := 99, is supposed to be piecewise
smooth and Lipschitz-continuous: s is a curvilinear Lipschitz polyhedron in the
parlance of [13]. This assumption will hold for all relevant CAD-generated geometries
in industrial applications. We can distinguish two parts of the surface: a connected
part T'g coated with a thin metallic “mirror” layer that can be regarded as perfectly
conducting, and a non-coated part T',,, the so-called aperture(s), see Fig 1.1. The latter
part is to consist of a few connected components, whose closures in I' are disjoint.
Moreover the common boundary of T'g and T, is assumed to be a union of curvilinear
Lipschitz polygons.

F1G. 1.1. Cross-section of partly coated dielectric object

The object is composed of a linear, homogeneous, isotropic material with dielectric
constant €, and permeability u,. Outside, in the “air region” ' := R?\ Q,, we assume
the electric properties of empty space. The scatterer is illuminated by a time harmonic
plane wave of angular frequency w > 0. Since all fields will exhibit the same harmonic
dependence on time, the scattering problem can be modeled in the frequency domain.
Hence, the unknown quantities will be complex amplitudes (phasors). Those of the
exciting electric and magnetic field read

e;(x) =pexp(ik-x) , h;(x) = w_l,u k x pexp(ik - x) . (1.1)

Here k € R® determines the propagation direction and p is the polarization of this
incident wave [11, Sect. 6.6].

What we have described above is an electromagnetic compatibility problem, if
the PEC coating is viewed as a shielding layer pierced at the aperture(s). We are
interested to what extent the incident wave will penetrate through I', and trigger
electromagnetic fields inside Q. Quantitative information about their strength at
points in ©; has to be provided by numerical simulation.



2 B. Cranganu-Cretu and R. Hiptmair

A typical arrangement that fits the above abstract setting is provided by a metal
container filled with a fluid. Some parts of the container’s wall have been removed and
replaced by glass or plastics “windows” that do not interfere with the propagation of
electromagnetic waves.

In the setting outlined above it is natural to employ a boundary integral equation
method, which transforms the field equations in space to integral equations on I'. This
approach can easily accommodate the unbounded exterior air region and relieves us
from meshing Qs and (parts of) Q. These advantages account for the huge popularity
of boundary integral equation methods for the simulation of electromagnetic scattering
in the frequency domain [11, 34].

Boundary integral equation methods come in many different flavors: direct and
indirect formulations and their discretization based on the Nystrém technique, collo-
cation or a Galerkin approach. We are going to focus on Galerkin boundary element
discretization of a direct boundary integral equation. The main reasons are

e that the direct method features tangential components of electromagnetic
fields as primary unknowns, the very same quantities that occur in the trans-
mission conditions across the aperture.

e that the structure of the resulting discretized equation perfectly matches the
inherent symmetry of the coupled scattering problem. This paves the way for
theoretical analysis.

We are not the first to tackle the aperture problem outlined above numerically
(see [33] and the references cited therein). Approaches based on expansion into spher-
ical harmonics are presented in [29], [22]. However, this only works for very special
geometries. More flexibility is offered by the scheme proposed in [33], which is based
on the equivalence principle [18]. Yet, this methods is of little practical value, because
it entails inverting a large dense matrix.

In this article we outline an approach that is based the Poincaré-Steklov operators
associated with Maxwell’s equations in free space. These operators are also known as
the electric-to-magnetic mappings. They will be expressed through boundary integral
operators and give rise to a coupled variational problem featuring traces of the electric
and magnetic field on I' as unknowns.

Our focus will be on both the derivation of the coupled variational problem and
its Galerkin discretization and the performance of the resulting scheme in numerical
experiments. We will sketch the theoretical justification for the validity of the coupled
problem, but details will be skipped. A comprehensive exposure of the theoretical
techniques is given in [7, 8].

2. Mathematical model. In the time-harmonic setting the behavior of the
complex amplitudes of the electromagnetic fields in both Qs and ' is governed by
the homogeneous Maxwell equations. Across the aperture ', the usual continuity of
tangential components of electric and magnetic field have to be enforced, whereas
the tangential component of the electric field phasor vanishes on I'y. The model is
summed up in the transmission problem, [23, Sect. 5.6.3]

curle = —jwph , curlh =idwee in Q,UQ, (2.1)
7we=0 , 7,e=0 only, (2.2)
Ye—ve=-e , wWh-ryh=—h onT,, (2.3)
lim hxx+|x|e=0 uniformly. (2.4)

|x|—00
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Here € = €9, p = po in ', and € = €, p = p, in Q. Moreover, we write n for the unit
normal vectorfield pointing from €2, into ' and ~u for the tangential trace uxn of a
vectorfield u on I'. Note that e and h stand for the scattered fields in £': the total fields
are obtained by adding the incident wave fields e; and h;, respectively. The scattered
fields have to satisfy the Silver-Miiller radiation conditions (2.4). As a consequence
of Rellich’s lemma and the unique continuation principle, the transmission problem
(2.1)-(2.4) has a unique solution [9,19].
Introducing the wave numbers (with physical unit m—1)

K_ = wy/€stls , Kt =w/€lg , (2.5)

and eliminating the magnetic fields altogether, we end up with the electric wave
equations

curlcurle — k2e =0 in Q'/Q, , respectively. (2.6)

Due to the elimination of h we have to resort to the magnetic trace operator, 'ﬁ\? =
k~14E o curl, which is related to tangential traces of the magnetic field. Traces of
Maxwell solution will be given a special name

DEFINITION 2.1. Two tangential vectorfields €&,X on T are called (inte-
rior/exterior) Maxwell-Cauchy data, if € = vfu, A = 'y]j\t,u, where u solves (2.6)
in Q' /g, respectively.

In terms of wave numbers, electric field and magnetic traces, the transmission
conditions at I', become

_ K K_ _
e—ve=—7'e; |, u—:ﬁe — e = —%h; onT,. (2.7)

A crucial tool will be the Maxwell Poincaré-Steklov operators T~ and T, aka
electric-to-magnetic mappings, that take tangential components of the electric field on
I', to the magnetic traces of the associated Maxwell solutions in 2, and Q', respec-
tively. In order to define them properly, we have to establish a suitable framework
of function spaces. For a more detailed discussion we refer to [7, Sect. 2] and the
references cited therein.

The natural energy spaces for the electric wave equations (2.6) are

H(curl;Q,) := {u:Q, = C? ue L?(Q), curlu € L*(Q,)},
Hy,o(curl; Q') := {u: Q' = C3 ue L (), curlu € LY (2},

loc

where H(curl; Q) becomes a Hilbert space when equipped with the natural graph
norm ||-||H(curl;93).

Let B C R® be a “big box” such that Q, C B. Green’s formula for the
curl-operator reveals that the tangential traces 7; : C®(Q,) — TL3(I), v :
C*(QNB) — TLAT), TL*(T) := {¢ € (L*(T))?, ¢ - n = 0}, can be extended to
continuous mappings v, : H(curl;Q,) — (H 2(T))® and ~; : H(curl; Q' N B) —
(H3(I))3, respectively. Therefore,

Hrp,(curl; Q) := {u € H(curl;Q;), %y u=00nTq}

defines a closed subspace of H (curl; ().
The characterization of the range of 7, and +;", in other words, the issue of trace
spaces for H (curl;2), turns out to be a mathematical challenge. Only recently, a
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comprehensive answer even for non-smooth domains was given in [4-6]. We summarize
the results in the following theorem:

THEOREM 2.2 (Trace theorem for H(curl;Q)). There is a Hilbert space

_1 —
H 2 (divr,T) of “tangential vectorfields” on T such that vy, : C*® () — TL*(T)
and ;" : C°(Q' N B) = TL*T) can be extended to continuous and surjective map-
1 _1
pings vy : H(curl; Q) — H ?(divr,T) and v : H(curl; Q' N B) — H 2 (divr,T),
respectively.
_1

Crucial is the self-duality of H, 2 (divr,I'): based on the bilinear anti-symmetric

pairing

(Bom),p = /(u xn)-ndS, p,me Ly ), (2.8)
r

the following result can be shown:
1
THEOREM 2.3 (Self-duality of H, *(divr,I')). The pairing {-,-), p can be ez-

_1
tended to a continuous bilinear form on H, *(divr,T). With respect to (-,-), p the

space H;%(divr,l") becomes its own dual.

Since the aperture T',, is a special part of the boundary, we need the results of [5]
about traces of functions in H (curl; ) onto parts of the boundary. We write r, for
the restriction operator TL?(T") — TL*(T,). Following [5, Sect. 5] we define

H 2, (divr,T,) :=r,(H  ?(divy,T)),
_1 1 . .
H 2 (divr,T,) == {¢ € H, %y(divr,T.), ¢ € H, *(divy,T)},

~ 1
where ¢ is the extension by zero of ¢ on I'. It turns out that H , 2 (divy,T';) is a trace
space [5, Thm. 5.3]: B
THEOREM 2.4. The tangential trace v, : C™(Qs) — TL*(T') gives rise to a
1

continuous and surjective mapping v, : Hr,(curl; Q) — H, 2 (divr,T,).

The expected duality also holds [5, Prop. 5.2]:

THEOREM 2.5. The Hilbert spaces H;%O(divr,Fa) and H;%(divr,f‘a) are dual
to each other with respect to the duality pairing (-,-), r, which emerges from (-,-)_ r
by restriction to T'y.

Remark. The duality results of Thms. 2.3 and 2.5 seem to be of mere theoretical
value. Yet, at second glance, they provided crucial hints on how to set up proper
variational formulations. This will be elaborated below.

As announced above, we will now introduce the electric-to-magnetic mappings

- { H3@ve, L)~ HH(divr,T) 2.9)
¢ = Y€,
where
curlcurle —k2e=0 inQ, , v e =¢ onT, (2.10)

Z being the trivial extension of ¢ to I', and

1 . —3/q
Tt - H > (divr,T) ~ H+><2(d1VF7F) ’ (2.11)
C = 7Nea
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where e satisfies the Silver-Miiller radiation conditions (2.4) and
curlcurle—x3e=0 inQ, , e=¢ onT. (2.12)

It is important to note that T~ does not necessarily make sense: If k2 coincides with
a Dirichlet eigenvalue of the differential operator curl curl, then the boundary value
problem (2.10) will not have a unique solution. So, whenever using T~ we will tacitly
make the assumption that

the wave number k_ does not coincide with the square root (2.13)

of an interior Dirichlet eigenvalue of curl curl in Q. ’
the wave number x_ does not coincide with the square root of an interior Dirichlet
eigenvalue of curl curl in 2.

Using the transmission conditions (2.7) along with the definition of the electric-
1

to-magnetic mapping, and setting ¢ := v, e € H, % (divr, ), gives us the equation

K_ K . -1 .
r, (u_TC - M—ZTWC — Y% ei) - %Jrhz) =0 in H, jo(divr,Ta) . (2.14)
S

_1
We have emphasized that this equation is posed in H, %, (divr,T'y) to elucidate that
_1
the dual space H , *(divr,T',) provides the right test functions for a variational for-
_1
mulation. This finally reads: seek ¢ € H, 2 (divy,T,) such that

K— __ K ~ 1 .
<—T ¢— =T+ —%*ei),u> ={(%hi,p) Ve H,*(divr,T,).
s Ho T, e
(2.15)

)

Strictly speaking, the restriction operator r, should be put in front of T~ and TT.

COROLLARY 2.6. If assumption (2.13) is satisfied, then ¢ solves (2.15) if and
only if it agrees with the tangential trace v, of the solution e of (2.1)-(2.4) on T,.

Proof. Let ¢ solve (2.15) and let e be composed of the unique solutions of (2.10) (in
;) and (2.12) (in ©'). Then e satisfies the transmission and boundary conditions on
" and solves (2.6). The variational equation (2.15) ensures the transmission conditions
for the related magnetic field.

If we have a solution e of (2.1)-(2.4), then, as a consequence of the transmission
conditions, ¢ := rq (v, e) will solve (2.15). 0

3. Electromagnetic Calderdn projector. The starting point of the derivation
of boundary integral equations are representation formulas involving potentials, that
is, mappings of functions on I" to functions on Q;UQ'. Well known are the scalar and
vectorial single layer potentials, whose integral representation is given by (x ¢ I')

W5 () (%) == / (¥) Ex(x — y) dS(y) ,

Vo (0)() = [ nly)Bux =) dSG)
T
with the Helmholtz kernel

exp(ik|x — y|)
En(x_y) = ﬁ .
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It is shown in [7, Sect. 4] and [11, Sect. 6.2] that, if € € Hjoc(curl; Q; U Q') satisfies
curlcurle — ke =0 in Q,UQ’, (3.1)

and the Silver-Miiller radiation conditions, then the field e can be represented by the
so-called Stratton-Zhu formula: using the jump operator [-].. defined by [y]p := vt —v~
for some trace v onto I', it reads

u(x) = —¥h ([reulp) (x) - U5, (avulp)(x), x€Q U, (3-2)

where we have introduced the (electric) Mazwell single layer potential according to

P " 1 /1
s (x) = ¥y ()(x) + - grad, ¥y (divrp)(x) , x ¢ T, (3.3)
and the (electric) Mazwell double layer potential

T, (1)(x) = curl ¥ (p)(x), x¢T. (3.4)

Both Maxwell potentials provide radiating solutions of (3.1). They also allow the
application of electric and magnetic trace operators from both sides of I" [7, Thm. 5].
This paves the way for defining the boundary integral operators

Sk =A{n¥srlr ={wW¥brlr , Cr={n¥pr}r ={W¥s}r ,
where {-}. is the average {y} := 2(y" — ™) for some trace y onto I'. The operators

S, and C, furnish continuous mappings S,, Cy : H;% (divp,T) — H;% (divr,T), [7,
Cor. 2].

From (3.2) it is clear that not all traces can be continuous across I'. More precise
information is provided by he jump relations [7, Thm. 7]

[’Yt‘I’gL]r = [’YN‘Ilf)L]F =0, [’YN‘I’gL]r = [’Yt‘I’f)L]r =-1d.

Now, let us apply the exterior and interior trace operators to the representation for-
mula (3.2) and use the jump relations. This gives

Yeu= 1y ut+Cu(y, W+S.(yyn), Y u=ivu-C.(yu)-S.(viu),
v =Sk (g u)+iyyutCu(vyu), iu=-S.(yiw) +iyvfu—Cu(viu).

A concise way to write these formulae relies on the Calderon projectors, c.f. [8, Sec-
tion 3.3], [14, Formula (29)], and [23, Sect. 5.5],

lld+c, S lld-c, -8
-._ (2 K K +._ (3 K K
P o= ( Sw %Id+C,i> » Pei= ( s, lud —cn) - 39)

1 1
By construction, the operators Py, P} : H 2 (divr,I)? — H 2 (divr,T)? are pro-
jectors, that is,

P, oP, =P, , PfoPf=P}. (3.6)

K

Also note that P,, + P} = Id and that the range of P} coincides with the kernel of
P, and vice versa. The next result promotes Calderon projectors to a pivotal role in
the derivation of boundary integral equations, c.f. [32, Thm. 3.7].

THEOREM 3.1. The pair of functions ({,u) € H;%(divr,l") X H;%(divr,l") are
interior or exterior Mazwell Cauchy data (of a radiating solution of (3.1)), if and
only if they lie in the kernel of Pt or P, respectively.
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4. Coupled boundary integral equations. Next, we aim to find expressions
for the Poincaré-Steklov operators using the boundary integral operators S, and C,
introduced in the previous section. First, we introduce the scaled traces

€A =(e fEake) o (C,A) = (e Toye).
With these notations the transmission conditions on I', read
1
¢ =¢t+~te; in H 2 (divy,Ty), (4.1)
1
A™ =A" 4+ hy in H, 3o(dive,Ty) - (4.2)
For the sake of completeness we note that
¢ =0 , C+=—'yt+ei only.

From Thm. 3.1 we conclude that

_11d+C beg -
5 K— o PK_ _

( 5§, —L1d+C,. ()\_) =0, (43)
Ws

_11d-C,, -ing o
2 K+ K4 K4 —

Three different equivalent formulas for the operators T~ and T+ can be extracted
from these identities. We could use either the top or bottom equation of (4.3) and
(4.4) and formally arrive at the non-symmetric expressions, e.g.,

A~ S;l(A1d-CL)¢, (4.5)
A~ (—31d+C,)7'Sk( . (4.6)

Ao
==
k-
=
However, starting with the work of M. Costabel [12] on scalar second order elliptic
boundary value problems, numerical analysts realized that fundamental structural
properties of the Poincaré-Steklov operator are much better preserved in the varia-
tional context, if a symmetric expression by means of boundary integral operators
is used. This insight made it possible to come up with new formulations for coupled
acoustic and electromagnetic scattering problems [8,21, 32].
First, we use the bottom equations in (4.3) and (4.4), and get
AT =058, )¢ + (3Id+C )N, (4.7)
AT = (558, )¢ + (51d —C )AT . (4.8)

Then, we rely on (4.5) and (4.6) to eliminate the magnetic traces remaining on the
right hand side:

A= (528u. —(FLA+C. ) (28, ) (-} 1d+C,)) ¢ (4.9)
A= (=58, + (1d-Cy ) (£28,,) 7 (~41d=C,.)) ¢F . (4.10)

Strictly speaking, this formal manipulation is only valid, if the invertibility of both
Sk_ and S, is guaranteed. This is the case, when assumption (2.13) holds for both
k™ and kT, see [7, Thm. 10]. Summing up, we have the representations

T =728, — (31d+Cx_)(£= Sk ) ' (-i1d+C,.), (4.11)

THi= -5, 4 (31d —CK+)(g—isn+)—1(_%Id —Cy,) - (4.12)
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As expected, these operators map continuously
1 1
T,7t: H ?(divr,T) = H, 2 (divp,T) .

In principle, we could simply plug (4.11) and (4.12) into the variational equation
(2.15). However, the presence of inverse operators in the definitions of T~ and T+
rules out this straightforward approach, because the resulting equation would not be
amenable to a direct Galerkin discretization. The usual trick to avoid these undesirable
inverses is to use (4.7) and (4.8) and switch to a mixed formulation. It amounts to
using (4.5) and (4.6), in the process undoing the derivation of (4.9) and (4.10)

T ¢=(7Sa )¢+ (GId+Ce )A™, A7 = —(£8, ) '(-51d+C,_)¢,

THCH = (=3280, )¢ + (1A —C )T, AT = (£28,, )M (=3 1A =Ciry )¢,

Kt

1
where A7, A" € H. ?(divr,T) can be regarded as auxiliary unknowns defined on all
of I'. Merging with (2.15) we end up with the equations

WSk +5ES., 31d4+C._ 31d-Cyl\ /¢ W hi+ 5ES., (v ei)
—31d+C,_  f=S, 0 A=
L1d4C,, 0 ws,, ) \* (31d+Cy,) (1 er)

_1

The first equation is posed in H, % (divr,T's) (as before, we omitted the restriction
_1

operator r,), while the second and third equation live in H , ?(divr,I"). Recalling the

dualities of Thm. 2.3 and Thm. 2.5 we arrive at the equivalent variational problem:

seek ¢ € H * (divp,Ta), A\~ € H 2 (divy,T), At € H, 2 (divp,T) such that

(528 )¢ + (528, )(C — vifei) 1)

T,
+ <(%Id+CN_)A_,l,I,>T,F
- <(%Id _CR‘F))\ 7p‘>‘r,F = <71—:'—h’ial'l’>r,1" )
(-314+C. )6 m),p +  ((E=S)A"7) =0,
<(%Id+cﬁ+)c’0>r,f‘ + <(s__(isfi+))‘+’0>_’_r = <(%Id +Cn+)’}’j_ei,0>_’_,r .

(4.13)

1 _1 _1
for all p € H,*(divy,T,), 7 € H,*(divy,T), 8 € H,? (divy, T).
LEMMA 4.1. The variational problem (4.13) has a unique solution ({~, T, A7) €
_1 _1 _1
H_ 2*(divr,T,) x H, *(divr,T) x H, *(divr,T), provided that t does not coincide
with an interior electric Mazwell eigenvalue of 5.
Proof. We study a solution (¢, A", A7) of the homogeneous system with ;" e; =

and v;'h; = 0. Then set
<+
C — %Id _AC”— _il;i S”— C (4 14)
AT\ -8, fd-C. ) \W ) ‘
¢

- l1d+C, Log
B = 2 PN + L K4 + C+ , (415)
X ®=S,, $1d+C A
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Please note that the operators in (4.14) and (4.15) are the (scaled) exterior Calderén
projector for the interior wave number x_ and the interior Calderén projector for

+
the exterior wave number k., see (3.5) This means that (§+) are exterior Maxwell

Cauchy data, whereas (§_) turn out to be interior Maxwell Cauchy data.
From the second and third equation of (4.13) with zero r.h.s. it is immediate that

~+
Thus, the unique solvability of the exterior scattering problem yields A = 0. If x
is different from an interior electric Maxwell eigenvalue, then we can also conclude
A = 0. Hence, we have shown

%IdtCn_ LS, ¢\ _ (¢
=8, $Id+C._ ) \x )\ )

(s ) (9) - (8)
—=Se,  31d-Cy, ) \X* At

This means that (f_) are Cauchy data for the the interior scattering problem with
wave number r_ and (,%) play the same role for an exterior scattering problem with
wave number & .

Moreover, from the first equation of (4.13) we can infer that

AT At = (58, +58, )¢+ (31d+C, )X = (31d—C, )AT =0 onT,.

Summing up, the boundary data (¢, A~, A1) are the traces of the electric field and the
magnetic field, respectively, that solve the scattering problem for the coated dielectric
object 2. Since we considered the case of zero excitation, the unique solvability of the
scattering problem enforces { = A~ = AT =0.0

Remark. The assumption on k* of the Lemma seems odd in light of assumption
(2.13). Yet, taking into account the unique solvability of the transmission problem,
both assumptions are undesirable. They are related to the phenomenon of “forbidden
frequencies” [15] or “spurious resonances” that haunt most variational formulations
of scattering transmission problems. A profound analysis of the impact of spurious
resonances in the case of electromagnetic scattering is given in [10].

In fact, when facing a spurious resonance, the solutions for A~ in (4.13) may no
longer be unique, but the fields recovered through the representation formula (3.2)
will. Nevertheless, spurious resonances are worrisome, because they involve a loss of
stability that will lead to singular or extremely ill-conditioned linear systems after
discretization.

An elegant way to avoid spurious resonances in the case of a purely exterior scat-
tering problem are combined field integral equations [11, Ch. 3 & 6]. Unfortunately,
an analogous stable formulation for the transmission problem has hitherto not been
found.

Remark. The proof of existence of solutions for (4.13) hinges on a generalized
Garding inequality satisfied by the bilinear form underlying (4.13) and employs the
Fredholm alternative. The technique is elaborated in [7, Sect. 7].
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5. Galerkin boundary element discretization. We aim to use a conforming
Galerkin boundary element discretization of (4.13). To that end, T will be approxi-
mated by a triangulation I', composed of flat triangles. We assume that the boundary
of T, is approximately resolved by edges of T'y,.

N

F1G. 5.1. Local shape functions of Wy, .

_1
Next, we have to construct a finite dimensional subspaces Vy, C H , *(divr,T,)

_1
and Wy, C H ?(divp,T') that contain piecewise polynomial surface vector fields and
possess locally supported basis functions. To motivate their construction, we look at
H (curl; Q,)-conforming finite element schemes for the approximation of electric and
magnetic fields. The simplest is provided by the so-called edge elements [20]. Keeping

in mind that H;%(divr,l“) = v, (H(curl; Qy)), see Thm. 2.4, we simply take the
tangential traces of edge element functions on a mesh €2 with Qpp = I'y, as space
W;,. This will give a space of piecewise linear vectorfields on ', whose “surface normal
components” are continuolus across edges of triangles. This is a well-known sufficient

condition for Wy, C H, ?(divr,T). The local shape functions on a triangle T are
given by the formula

by, := Aicurlp\; — Ajeurlp); 1<i<j<3, (5.1)

where \;, i = 1,2, 3, are the local linear barycentric coordinate functions in T'. These
basis functions are sketched in Fig. 5.1. They are associated with the edges of T'j, so
that dim W, will agree with the total number IV of edges of I'j,. Note that W), agrees
with the lowest order div-conforming Raviart-Thomas elements in 2D, ¢f. [1, Ch. 3].
In electrical engineering W, is known as the space of Rao-Wilton-Glisson (RWG)
boundary elements [24].

In order to find V} recall that an edge element subspace of Hr,(curl;{;)
can be obtained by dropping all basis functions associated with edges on I'g. As
1
H 2 (divr,T,) = v, Hr,(curl;Q,), V) will be spanned by all basis functions (5.1)
belonging to edges in the interior of T',. Let N, denote their number.

To compute the linear system of equations arising from the surface edge element
discretization of (4.13) we need an explicit integral representation for the boundary
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integral operators S, and C,: for p, & € (L®(T))? N LE(T) holds [25]
(Sert &), =5 [ / ¥) 1ly) - £() dS(y, %) + (5.2)
T
s / y) dive p(y) diveé(x) dS(y, %) ,
T

(Cuttr ), 1 = / / grad, Bp(x —y) - (u(y) x £))dS(y,x) . (5.3)

In the case of S, we encounter a weakly singular integral operator, whereas C, is
Cauchy singular on non-smooth surfaces. Special quadrature techniques are required
in order to evaluate S, and C, for pairs of basis functions (5.1). If the supports of
the basis functions are disjoint (“far field” ) the evaluation will be based on Gaussian
quadrature rules. Otherwise (“near field”) a technique making use of Duffy trans-
forms is used [17,27,29]: By a suitable coordinate transformation an integral with an
analytic integrand is obtained. For details we refer to [28, Ch. 5].

Eventually, the transmission problem has been converted into a square linear
system for the 2N+ N, unknown coefficients corresponding to surface currents crossing
edges of I'y: on Ty each edge bears two unknowns, each interior edge of I', has three
of them.

Remark. Surface edge elements enjoy a number of unique stability properties owed
to their nature as discrete differential forms, see [7, Sect. 8] and [2]. This makes it
possible to show the quasi-optimality of Galerkin solutions provided that the mesh
T}, is fine enough [3].

6. Numerical experiments. The new discrete boundary integral formulation
is tested numerically for several different arrangements, namely a metallic hollow
sphere with a circular aperture, a metallic rectangular container, partially covered
and filled with sea water, and, finally, a metallic box with one, two and four slots,
respectively.

Throughout the linear systems of equations arising from the boundary element
Galerkin discretization were solved iteratively using GMRES for complex matrices
[26]. Its termination criterion was a relative drop of the Euclidean norm of the residual
by a factor of 10%. This seemed to be sufficient to suppress any visible impact of the
iteration’s truncation error. Neither preconditioning nor acceleration of matrix-vector
products by means of fast multipole techniques has been used, because the focus was
on assessing the accuracy of the method.

Remark. All computations were done on rather uniform surface meshes consisting
of flat triangles. Neither anisotropic elements nor local refinement was employed.
However, we point out that, in fact, the use of anisotropic meshes graded toward the
edge of the aperture is highly advisable.

Remark. In a series of experiments we used €; = €p and s = po. In this case the
the problem boils down to scattering at a PEC screen and can be solved by means of
the so-called electric field integral equation (EFIE) [3].

6.1. Metallic Hollow Sphere. We first investigated scattering at a metallic
hollow sphere (radius 1m) that possesses a 60° circular aperture (angle measured
from the center of the sphere, see Fig. 6.1). The excitation is a plane wave, linearly
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PEC Surface

Aperture Surface

Incident wave

F1G. 6.1. Geometry of the first arrangement. The incident plane wave is propagating toward
the aperture. Transmitted field computed on blue surface.

i
Y

F1G. 6.2. Meshed geometry of the problem (medium sized mesh - 3440 unknowns). Cyan marks
PEC coating, red the aperture.

polarized and propagating in positive €,-direction:
, " " N
e;=pexp(—ik-x) , k=ké,, p=pé, p:l;. (6.1)

This type of excitation was used for all numerical tests. Both in the exterior and in
the interior of the metallic sphere we have € = €9, u = -
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F1a. 6.3. Modulus of tangential electric field on the surface of the aperture [V/m]. Normalized
wave number Kk = 2.75.
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F1G. 6.4. Modulus of inner tangential magnetic field [A/m]. Normalized wave number k = 2.75



14 B. Cranganu-Cretu and R. Hiptmair

F1G. 6.5. Modulus of outer tangential magnetic field [A/m]. Normalized wave number k = 2.75

.8000
.7000
L6000
.5000
.4000
.3000
.2000
.1000
.0000
.9000
L8000
.7000
L6000
.5000
.4000
.3000
.2000
.1000

O 0O 00 0O 0000 B B B B B B e e

L8000
.6000
.4000
.2000
.0000
.8000
L6000
.4000
.2000
.000o0
.8000
L6000
.4000
.2000

F1G. 6.6. Modulus of transmitted electric field [V /m]. Wave number k = 2.75.

We performed scattering simulations for various frequencies covering the first
resonance (at k ~ 2.75m~!). Note that, since T, is flat, see Fig. 6.1, the actual
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F1G. 6.7. Sphere: influence of mesh refinement on accuracy of solution. Es = scattered (trans-
mitted) field along diametrical line.
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F1G. 6.8. Sphere: scattered (transmitted) field along diameter for different incident wave around
first resonance of the complete sphere. Left vertical line - aperture surface, PEC surface at 1.0 on

abscissa.

interior resonant frequencies of (2, are expected to be slightly different from those of
a perfect sphere.

For the approximate resonant wave number & = 2.75m~! we plotted the modulus
of the tangential electric field in the aperture (Fig. 6.3) as well as of the modulus of
the tangential magnetic field inside and outside of T'y (Fig. 6.4 and Fig. 6.5). Fig. 6.6
presents the modulus of the transmitted field on a surface parallel to the propagation
direction (blue surface in Fig. 6.1). In all the plots smoothing and averaging was
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Fic. 6.9. Shielding efficiency of the hollow sphere with aperture - measured in the center of the
sphere.
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F1G. 6.10. Sphere: transmitted field along a diameter inside the sphere: comparison with [30]
(The left vertical line denote the aperture and the right vertical line denote the end of the interval
on which transmitted field was evaluated).

performed for the sake of visualization.

We also performed a series of experiments to assess the convergence of the
Galerkin solutions. To that end we relied on three meshes ranging from coarse (800
unknowns) to fine (5400 unknowns). The results are presented in Figure 6.7, which
hints at convergence to a limit solution.

For a discretization comprising 5400 unknowns the scattering simulation was car-
ried out for various wave numbers around the first resonance of the configuration. The
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F1G. 6.11. Sphere: transmitted field along a diameter perpendicular to the aperture for various
incidence angles of the plane wave excitation. Left: wave number k = 1m~1!, right: wave number
Kk =2.75m~1.

results are presented in Fig. 6.8 (To avoid problems arising from singular integrals the
representation formula was not evaluated very close to T'.).

Figure 6.9 presents results for the electric field shielding factor (EFS) at a point
x € ()5, computed according to

EFS(x) = —20log

e(x)
e ‘ [dB] . (6.2)

Here, x was the center of the sphere.

We compared the results obtained by the new coupled boundary element method
with the quasi-analytical formulation used by Senior and Desjardins in [30] (for the
sphere with circular aperture), see Fig. 6.10. A maximum relative difference of 7.6 %
is observed.

Finally we considered several different angles of incidence of the plane wave on
the plane of the aperture. The angle was measured between the wave vector k and
—&, (normal to aperture). The results are presented in Fig. 6.11

e for wave number k = Im~!: monotone dependence of strength of transmitted
field, starting from 0° (incident plane wave perpendicular to the aperture) to
90° (incident plane wave parallel to the aperture).

e for wave number k¥ = 2.75m~! corresponding to a frequency close to the
first resonance of the sphere: the coupling into the sphere no longer depends
monotonically on the incidence angle.

6.2. Metallic rectangular container, partially covered, filled with sea
water. The second geometry considered was a metallic rectangular container filled
with sea water. The upper part is partially covered with a metallic lid as can be seen in
figure Fig. 6.12. The dielectric constant of the water was assumed to equal €; = 80¢g.
This leads to a situation beyond the scope of the EFIE.

A convergence study on four meshes ranging from very coarse (471 unknowns)
to fine (4858 unknowns) is reported in Fig. 6.13 (x = 1lm1). Obviously, away from
any resonance frequencies, the solution on the coarse meshes is satisfactory already,
whereas on a resonance frequency fine meshes yield significantly better results.

Plots of the electromagnetic field on the surface of the cube are presented in
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F1G. 6.13. Influence of mesh refinement on accuracy of solution for a metallic container filled
with sea water. Left: wave number k = 3m~1, right: wave number kK = 4.5m™!

Figs. 6.14-6.15. Field singularities at edges are conspicuous. A section of the trans-
mitted field is shown in (Fig. 6.16 for a wave number x = 4.5m L.

6.3. Metallic box with slots. Eventually, we tested the method for four simple
geometries (rectangular cavity with PEC walls) with one, two or four thin slots,
respectively, as can be seen in Fig. 6.17. Wave incidence is perpendicular to the slot
faces and €5 = €g, s = po-

Such configurations have been investigated before [16,31]. We compare our
method (1440 unknowns) with the results of [16] (horizontal polarization of incident
wave), see Fig. 6.18. The shielding efficiency according to (6.2) is computed for the
center of the box.

The rectangular cavity with two thin slots presented in Fig. 6.17 is also analyzed
under plane wave incidence, perpendicular to the plane of the slots (situated at z = 0
and z = 30cm). Our results (using 1470 unknowns) is compared with computations
from Deshpande [16], see Fig. 6.19.

In Fig. 6.20 results for a PEC box excited through four slots are presented (2330
unknowns), including a comparison with [16] In general we observe a rather good
agreement of the results.
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FIG. 6.16. Container: modulus of transmitted electric field [V/m]. Wave number k = 4.5m™!,
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F1G. 6.17. Rectangular cavity with one, two, four slots
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F1a. 6.18. Shielding efficiency of a metallic box of dimensions (30 X 12 x 30)cm, with a slot
opening placed at (15,6,0)cm, measured in the center of the boxz.
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F1g. 6.19. Shielding efficiency of a metallic box of dimensions (30 X 12 x 30)cm, with two slot
openings placed at (15,6,0)cm and (15, 6,30)cm, respectively, measured in the center of the boz.
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F1G. 6.20. Shielding efficiency of a metallic box of dimensions (60x12x30)cm, with four slot
openings of (20x8)cm placed at z = Ocm and z = 30cm, respectively, measured in the center of the
enclosure (30,6,15)cm.
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