Communication Efficiency of Parallel 3D FFTs

A. Adelmann!, A. Bonelli2, W.P. Petersen and C.W. Uberhuber?

Research Report No. 2004-04
May 2004

Seminar fiir Angewandte Mathematik
Eidgenossische Technische Hochschule
CH-8092 Ziirich
Switzerland

1Paul Scherrer Institut, Villigen, Switzerland
2Institute for Analysis and Scientific Computing, Vienna University of Technology



Communication Efficiency of Parallel 3D FFTs

A. Adelmann!, A. Bonelli?, W.P. Petersen and C.W. Uberhuber?

Seminar fiir Angewandte Mathematik
Eidgenossische Technische Hochschule
CH-8092 Ziirich
Switzerland

Research Report No. 2004-04 May 2004

Abstract

This paper describes the empirical investigation of the communication to com-
putation time ratio of three-dimensional parallel FFTs. Different problem sizes,
number of processes, and various communication networks are considered. Re-
sults are given on algorithms developed at the Vienna University of Technology,
the Paul Scherrer Institut, and ETH Zurich. All transposition algorithms of
this study were portably implemented in MPI. Thus, the communication perfor-
mance on specific networks reflects the efficiency of these MPI implementations.

1Paul Scherrer Institut, Villigen, Switzerland
2Institute for Analysis and Scientific Computing, Vienna University of Technology



1 Introduction

Topic of this paper is the three-dimensional fast Fourier transform (FFT) on a
cube. For 0 < p,q,r <n — 1, the transformation can be written as

n—1n—-1n—1

Ypgr = Z Z Z wj:(ps-i—qt-‘rru)x&t’u (1)

s=0 t=0 u=0

where n = 2™ (binary radix) and w = exp(27i/n) is the nth root of unity. One
dimension (z) is distributed over slabs corresponding with the processors on
which the computation is carried out (see Fig. 1).

The computation of (1) is performed in three steps: first by the independent
rows, then the independent columns:

n—1

ZM, = Y ., s=0,1,...,n-1, t=01,...,n-1,
u=0
n—1

1

ZB, = Y izl s=01,...n-1 r=01,...,n-1,
t=0
n—1

Ypagr = D WPZP . q=0,1,...,n-1, r=0,1,...,n—1.
s=0

Since the data in z-direction are distributed across processors, a transpose
must be performed to redistribute the z-direction vectors so that each z-vector
completely resides on one processing node. In effect, the transpose is two-di-
mensional, with the third dimension x forming pencils out of two dimensional
y-z blocks within the slabs. A detailed discussion of the transposition algorithm
is given in [1].

Using the MPI command MPI_Sendrecv_replace, non-diagonal blocks are
exchanged using an ezclusive or exchange address computation. Then every
block, now CPU memory resident, is locally transposed. To preserve the input
z,y, z order, this transpose is done twice: (i) to do the z-direction, and then
(4¢) inversely transpose back to the original order. Thus, the input data are
replaced by the denormalized counterpart of transform (1).

The aim of this paper is to analyze the communication to computation time
ratio of various 3D FFTs. Different FFT algorithms, problem sizes, and numbers
of processes were run on various machines. To characterize machine balance,
this paper investigates how the ratio of communication and computation time
changes depending on communication infrastructure and topology.

2 Numerical Experiments

The Computer Systems. Numerical experiments were carried out using the
following machines.



R — x

X-direction FFT Y-direction FFT Z—direction FFT Original Data

Distribution
Transpose Transpose

Figure 1: Data distribution during the three steps.

Alvarez is a Linux cluster installed at the National Energy Research Scien-
tific Computing Center (NERSC). It consists of 80 two way SMP nodes
equipped with Pentium ITI processors running at 866 MHz. The nodes of
Alvarez are interconnected by Myrinet 2000.
(http://www.nersc.gov/alvarez/)

Asgard is a 480 processor Linux cluster installed at the ETH Zurich. The
compute nodes are dual Pentium IIT boards, each provided with 1 GB
memory. 192 nodes have 500 MHz clocks and 48 nodes run at 650 MHz. 24
nodes constitute a frame connected by a 100 MBit/s Ethernet switch. The
10 frames of the system are connected with each other and with the login
and file servers by 1 Gbit/s optical links. (http://www.asgard.ethz.ch/)

Quad is a Linux cluster at the University of Bristol with 16 AMD Opteron 144
processors running at 2.2 GHz. The machine consists of four 4-way nodes
with 4GB memory each. The network is Quadrics Eland with a QMS8A
switch. (http://quad.bris.ac.uk/)

Regatta is an IBM machine at the Swiss Center for Scientific Computing
(CSCS) in Manno which is part of ETH Zurich. It consists of 8 Regatta
and 2 Nighthawk SMP nodes. Each Regatta node has 32 IBM Power4
processors (running at 1.3 GHz) and between 64 and 128 GB memory.
The Nighthawk nodes are equipped with 16 IBM Power3+ processors
running at 375 MHz and are provided with 16 GB memory. The network
infrastructure is a double IBM Colony SP switch. Basically Regatta is
the name of the architecture of this machine and not the machine itself.
However, for simplicity the machine will be referred to as Regatta too.
(http://www.cscs.ch/)

Seaborg is an IBM RS/6000 SP computer system at NERSC. It has 380
compute nodes with a total of 6080 CPUs. The nodes have between 16
and 64 GB of memory and are equipped with IBM Power3 processors
running at 375 MHz. The network switch is IBM’s Colony connected to
two GX Bus Colony network adapters per node.

(http://hpct .nersc.gov/computers/SP/)



zBox was built at the University of Zurich. It consists of 288 CPUs of type
AMD Athlon MP 2200+ (1.8 GHz) installed on 144 nodes. The network
is an SCI 2D 12 x 12 torus.
(http://krone.physik.unizh.ch/~stadel/zBox/)

Table 1: Communication Network Parameters.

Network Latency Pt.-Pt. Rate
Ethernet 175 psec 10 Mbit/s
Fast Ethernet 175 psec 100 Mbit/s
Myrinet 6 psec 3.9 Gbit/s
SCI (Scali) 5 — 6 usec 5.3 Gbit/s
IBM Colony SP Switch 2 psec 2.4 Gbit/s
Quadrics 2 psec 7.2 Gbit/s
Infiniband 2 psec 10 — 30 Gbit/s

The FFTs. The following FFT programs were tested: (i) FrTw 2.1.5 [3],
(73) PooMA rl [5], and (i73) wpp3DFFT that uses a generic implementation of
Temperton’s in-place algorithm [2] for n = 2™ and the simple MPI transpose
in [1].

The Process of Measurement. Because of the different operating system
parameters, the codes were instrumented manually using the timing routine
provided in sys/times.h.

The observed run times vary between one millisecond and 10 seconds. To
guarantee consistent timing even for very short run times, repeated forward/back
transforms were run on a zero-matrix for a given time interval to calculate the
average run time for one transform. This procedure has the advantage that
timer resolution becomes less critical. In the experiments described in this pa-
per, wallclock time, system time, and user time were measured.

3 The Results

Of particular interest is the ratio r of communication time to total run time.
Communication time is the time required for the two matrix pencil transposes,
including local transposition, needed to compute the FFT.

The basic transpose operation is a simple case of matrix transposition. Few
communication problems are easier in principle, but more difficult to perform
effectively in practice. Both the linear algebra package ScaLAPACK [4] and the
FFT package FFTW [3] require a multitude of such transpositions.

Because of the huge amount of data gathered in more than 1000 runs, only a
small number of significant results were singled out for the presentation in this

paper.



3.1 A Comparison of FFT Routines

An interesting example showing the differences of various FFT routines running
on Seaborg is a complex FFT of size 643 (Figs. 2 (a), (c), and (e)).

In this case the overall run times of wpp3DFFT and FFTW are quite simi-
lar. FFTW’s computation part is more efficient because of the large effort that
FrTw devotes to its planner function which optimizes the codelets (algorithm
parts) used for a given machine. In particular, radix-2 transforms are usually
less efficient than radix-4 or radix-8. Thus, computing most of the n = 2™
transform as radix-4, radix-8, or even larger radices, is potentially much faster.
A generic radix-2 procedure is less efficient as larger radices reduce the surface
(input/output data traffic) to volume (actual floating point computation) ratio.
Furthermore, if the number of processes is too large for a given job, the planner
function does not use all of them but chooses a smaller number for efficiency
reasons. In our case, the 256 processor job does not use all given processors
because it needs approximately the same overall and transpose time as the 128
processor job.

For a small numbers of processors, POOMA is slower than the other FFT
programs, but it does much better with an increasing number of processes.
Fig. 2 (¢) shows that POOMA’s transpose implementation works well on this
machine so in this case the bulk of the work is the calculation part. POOMA’s
times get better for larger numbers of processes as the calculation part becomes
less important for overall run time.

Fig. 2 (e) shows the communication to computation time ratio r in percent.
PooMA’s values are low because of the reasons just described. FFTW spends at
least 60 percent of its overall time in its transpose part. The computation part
of FFTW is fast, but its transpose operations are slow.

Surprisingly, transposition time on Seaborg is relatively high, taking into
consideration that it has many CPUs/board, a strong network, and compar-
atively slow processors (see Section 2). Generally, most of the massively par-
allel machines have slower networks than Seaborg and—especially on Beowulf
clusters—faster processors.

To compare things, Figs. 2 (b), (d), and (f) show the same test cases inves-
tigated on Asgard which has slightly faster processors than Seaborg but a much
slower network and dual-processor nodes (see Section 2).

If only two processors are used, the computations’ on-board performance
varies significantly. When off-board network communication is needed, run
times become much worse on Asgard than on Seaborg. The time required for the
transpose part increases by an order of magnitude. The ratio plot in Fig. 2 (f)
shows that wpp3DFFT and PooMA spend much more time in the transpose
parts when run on Asgard than on Seaborg. On Asgard at least 70 percent of
the total run time is needed to transpose the data array when the network is
involved.

Although POOMA’s computational parts are inefficient, as compared with
FrTw or wpp3DFFT, it is the fastest of the three tested FFTs on Asgard.



3.2 A Comparison of Machines

Fig. 2 (h) shows the communication to computation ratio r (in percent) and
overall run times for wpp3DFFT doing a 256% FFT on a multitude of different
machines.

The run time graphs in Fig. 2 (g) reflect the bandwidth of the network
infrastructures (see Table 1). Asgard and Alvarez—both using Ethernet—are
the slowest machines followed by Alvarez with Myrinet enabled. Next is zBox
with Scali and Seaborg with SP Switch. The fastest machines are Regatta (SP
Switch) and Quad (Quadrics).

Even on machines with slow processors and fast networks like Seaborg the
program wpp3DFFT spends at least 40 percent of its overall run time for com-
munication.

4 Conclusions and Outlook

The numerical experiments described in this paper show that on all the networks
tested, the transposition needed to move the distributed z-direction vectors to
be resident on one processor and back requires a substantial portion of the
overall time needed to compute a 3D FFT. On a well balanced machine, the
communication to computation ratio r & 1 or less on a powerful network. We
found that r is never below 40 percent, and grows when the number of processors
increases. Some networks are more efficient for transposition than others, cf.
Fig. 2 (h). We also saw that some algorithms are more efficient than others. For
example, the simple MPI_Sendrecv_replace procedure of wpp3DFFT is quite
efficient. This procedure applies only to cases where both the dimension n and
the number of processors are powers of two, and thus is too inflexible for most
purposes. However, this algorithm can be modified for more general cases as
follows.

From the discussion of the slab layout in Fig. 1 it follows that the transpo-
sition is essentially two-dimensional. One other dimension (the X-direction in
Fig. 1) may be chosen to form pencils making up blocks. Let the size of the
2D array be Ny x Nz (Y x Z in Fig. 1), where Nz is distributed into p slabs,
where p is the number of processors, i.e., p|Nz (p divides Nz). In addition, if
p|Ny, the block transposition of [1] can be done by an index digit permutation
[6]- Let 0 < b < p—1 count the blocks (of size (Nz/p) X (Ny /p) x Nx complex
data) in any slab numbered CPU, and B number the blocks in the y-z array:

B=CPUXp+b,

where 0 < CPU < p — 1. Using MPI_Sendrecv_replace, block B must be ex-
changed with its corresponding block B’, given by the permutation

B' =bxp+CPU

That is, block b on processor CPU is to be swapped with block ¥ = CPU on
processor CPU' = b. When b = CPU, the blocks are diagonal and only local



memory transposition is required. A total of p(p—1)/2 block pairs are swapped.
For non-commensurate cases (when p does not divide Ny), either the number
of processors p must be changed, or padding data are required.

It has been demonstrated that the transposition time in 3D FFTs requires
a significant share of the total computation time. On some networks, Ethernet
or even Gigabit Ethernet, transposition even dominates calculation.

Much more work on general cases for Nx, Ny, Nz, as outlined above, has
still to be done.

References

[1] W. P. Petersen and P. Arbenz, Introduction to Parallel Computing, Oxford
University Press, 2004.

[2] C. Temperton, Self-sorting In-place Fast Fourier Transforms, SIAM J. Sci-
entific and Statistical Computing, vol. 12, pp. 808-823, 1991.

[3] M. Frigo and S. G. Johnson, Fast Fourier Transforms in One or More Di-
mensions, available from NETLIB or http://fftw.org.

[4] L. S. Blackford et al., ScaLAPACK Users’ Guide. STAM Books, 1997, avail-
able from http://www.netlib.org/scalapack/.

[5] J. C. Cummings and W. F. Humphrey, Parallel Particle Simulations using
the POOMA Framework, 8th SIAM Conf. Parallel Processing for Scientific
Computing, Mar. 14-17, 1997, CD available as ISBN 0-89871-395-1.

[6] H. W. Johnson and C. S. Burrus, The Design of Optimal DFT Algorithms
Using Dynamic Programming, IEEE Trans. Acoust. Speech Signal Process-
ing, vol. 31, pp. 378-387, 1983.

Acknowledgments

One of the authors (A.A) acknowledges the used resources of the National En-
ergy Research Scientific Computing Center, which is supported by the Office
of Science of the U.S. Department of Energy under Contract No. DE-AC03-
76SF00098.

Part of the work described in this paper was supported by the Special Re-
search Program SFB F011 AURORA” of the Austrian Science Fund FWF.



0.3 ¥ T T T
Wpp3DFFT —+—
fitw ---x-—- |
pooma ------
0.2
A\(\
0.1
v
e ¥ T
o - émn R el
2 4 8 16 32 64 128 256
(a) FFT time on Seaboryg
T T T
WPp3DFFT —#==--
0.04 PP i e
i pooma ;% |
003
0.02 P A
g // ) *
0.01 T :
e X
0
2 4 8 16 32 64 128 256

(c) Transpose time on Seaborg

100
Wpp3DFFT —+— %77
fftw ———x-—- F .
80 | pooma %% X
B -
60 = J
x
40 / -
20 X
LK
I SERCER *-
0
2 4 8 16 32 64 128 256
(e) Ratio r (%) on Seaborg
20 T T T
18 4 Asgard —— |
Alvarez Ethernet ---x---
16 Alvarez Myrinet ------ —
14 zBox | i
Seaborg —-m--
2F Regatta -0~
10 Quad e
8%
6 ; N
4 F Ny
0 SRR,
2 4 8 16 32 64 128

(g) Overall Run Times

256

pr3DlFl—‘I' -
04 < fitw —x— ]
. pooma ---%--- |
03} ¢
o
02 : ¢
T
01 ! =
*
0
2 4 8 16 32 64 128
(b) FFT time on Asgard
0.4 T T
wpp3DFFT —+—
AN fitw —x—
/ pooma - -~
03 [
02
01 k
| *
*- .
I S
0
2 4 8 16 32 64 128
(d) Transpose time on Asgard
100 R R S
e
80 ! e
// L —
=
60 X
¥
40
20 Wpp3DFFT —+—
ftw -
pooma - -
0
2 4 8 16 32 64 128
(f) Ratio 7 (%) on Asgard
100 r
/
%--mm x>
Lk /',Ill(l
e e T

~® “Asgard —+—

“Alvarez Ethernet —--x---
ZBOoX ---%---
Quad &
20 Alvarez Myrinet —-®— —
Regatta - -0~
Seaborg - -
0 1 1 1 1 1
2 4 16 32 64 128 256

8
(h) Ratio r (%)

Figure 2: (a), (b):Overall run times (in sec.); (c), (d): transpose times (in sec.);

(e), (B):

ratio r (in percent) vs.

of processors for Seaborg and Asgard

running FFTs of size 64%; and (g),(h): run times (in sec.) and ratio r on various
machines for wpp3DFFT computing FFTs of size 256°.



