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Abstract
The main result of [3] (Lemma [[3) asserting that a p-uniform discrete Friedrichs
inequality ([ZJl) ensures the asymptotically spectrally correct approximation of
Maxwell eigenvalues in the context of a Galerkin discretization by means of the p-

version of edge elements is wrong. The error can be traced back to a spurious formula
in [6, Sect. 4.3].

1. The error. Let us recall the definitions of T : L*(Q) — Zg(e, Q)

(p~ ! curl Tu, curl u')L2(Q) = (ew,u) o) YU € Zo(e, Q)

and of Ty, : L*(Q) — Z,0(€, M},) by
(b~ curl Tju, curl uﬁL)LmZ) = (ew,up) 2 YU, € Zyo(e, Mp) .

By the very definition of the spaces, we cannot expect Z,, o(€, M) C Zo(€, ). There-
fore it is not possible to add both variational equations, which means that

(™' curl(T, — T)u, curluy,) =0 Vu, €W, (),

L2(Q)
cannot be true. As a consequence
Tp#F,o0T. (1.1)

There is another argument that instantly refutes equality in ([ITI): We have Ker(T) =
H(curl0; ), but, of course, the kernel of Ty, is much smaller.
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2. Counterexamples. The fact that a discrete Poincaré-Friedrichs inequal-
ity is not sufficient for convergence of Maxwell eigenvalues has been observed repeat-
edly. In [1, Sect. 6.2] numerical experiments confirm a discrete Poincaré-Friedrichs
inequality for nodal elements on criss-cross meshes, but, nevertheless, spurious eigen-
values crop up. In [4] another couterexample is given for the p-version of nodal ele-
ments.

3. Related work.

e In [2] a rather general theory of spectrally correct approximations of Maxwell
eigenvalues has been developed. The authors give necessary and sufficient
criteria. In particular a discrete Poincaré-Friedrichs inequality is identified as
a necessary condition, but it is not sufficient. Only discrete compactness of
the trial spaces is shown to guarantee convergence of the eigenvalues.

e Considerations similar to those in Sects. 6 and 7 of the report can be found
in [5].

REFERENCES

(1] D. Borrl, P. FERNANDES, L. GASTALDI, AND I. PERUGIA, Computational models of electro-
magnetic resonators: Analysis of edge element approximation, STAM J. Numer. Anal., 36
(1999), pp. 1264-1290.

[2] S. CaoRsl, P. FERNANDES, AND M. RAFFETTO, On the convergence of Galerkin finite ele-
ment approzimations of electromagnetic eigenproblems, SIAM J. Numer. Anal., 38 (2000),
pp. 580-607.

[3] Z. CHEN AND R. HIPTMAIR, Convergence of p-FEM for Mazwell eigenvalue problems, Report
2004-02, SAM, ETH Ziirich, Ziirich, Switzerland, 2004.

[4] M. COSTABEL AND M. DAUGE, Computation of resonance frequencies for Mazwell equations
in non-smooth domains, in Computational Methods in Wave Propagation, M. Ainsworth,
ed., Springer, New York, 2003, pp. 127-164.

(5] J. GOPALAKRISHNAN AND L. DEMKOWICZ, Quasioptimality of some spectral mized method, Re-
port 03-32, TICAM, University of Texas at Austin, Austin, TX, 2003.

, Finite elements in computational electromagnetism, Acta Numerica, 11 (2002), pp. 237—

339.

[6]



Convergence of p-FEM for Maxwell Eigenvalue
Problems

Z. Chenl] and R. Hiptmair

Research Report No. 2004-02
March 2004
Seminar fiir Angewandte Mathematik
Eidgenossische Technische Hochschule
CH-8092 Ziirich
Switzerland

1LSEC, Institute of Computational Mathematics, Academy of Mathematics and System Sciences,
Chinese Academy of Sciences, Beijing 100080, People’s Republic of China. This author was supported
in part by China NSF under the grant 10025102 and by China MOST under the grant G1999032802.
(zmchen@lsec.cc.ac.cn).



Convergence of p-FEM for Maxwell Eigenvalue Problems

Z. Cherl] and R. Hiptmair
Seminar fiir Angewandte Mathematik
Eidgenossische Technische Hochschule

CH-8092 Ziirich
Switzerland

Research Report No. 2004-02 March 2004

Abstract
The paper considers the solution of Maxwell eigenvalue problems by the p-version
of curl-conforming finite elements on tetrahedral meshes. The asymptotic quasi-
optimal convergence of discrete eigenvalues and eigenvectors as p — oo is proved.
The proof relies on a novel technique combining tools from the calculus of differential
forms with techniques for simplicial complexes.

Keywords: Maxwell eigenvalue problem, p-version of edge elements, discrete
Poincaré-Friedrichs inequality, Poincaré map

Subject Classification: 656N30, 78M10

L1LSEC, Institute of Computational Mathematics, Academy of Mathematics and System Sciences,
Chinese Academy of Sciences, Beijing 100080, People’s Republic of China. This author was supported
in part by China NSF under the grant 10025102 and by China MOST under the grant G1999032802.
(zmchen@lsec.cc.ac.cn).



4. Introduction. Resonant electromagnetic modes of a bounded dielectric
cavity Q C R3 with perfectly conducting walls can be computed as solutions of the
eigenvalue problem

1 2

curle = w-ee in Q,
exn = 0 on 0N,

curl p~= (4.1)

that belong to non-zero eigenvalues w?. Here, n is the exterior unit normal vector
on 01, e is the electric field, and u, € are the magnetic permeability tensor and the
dielectric tensor, respectively. The metric tensors p,e € (L>(Q))3*3 are assumed
to be uniformly symmetric positive definite and piecewise smooth with respect to a
Lipschitz partitioning of €2. Moreover, the computational domain 2 itself is supposed
to be a polyhedron with Lipschitz continuous boundary. This assumption is merely
made for the sake of simplicity: using parametric finite elements the results can easily
be extended to curvilinear Lipschitz polyhedra.

The Maxwell eigenvalue problem () is special in the sense that it features a
large eigenspace of “unphysical solutions”, namely the eigenspace for w = 0. This
compounds difficulties in the analysis of conforming finite element schemes for ()
compared with eigenvalue problems associated with positive definite second order
differential operators like —A.

Meanwhile, much insight has been gained into the convergence of the h-version of
curl-conforming finite elements for ([E]). Starting with Kikuchi’s work [22], the bulk
of the studies centered on the the concepts of discrete compactness and collective
compactness [1]. Among others, the works [24, 11, 17, 16] fall in this category. An
approach based on a mixed formulation of (E]) was pursued in [7], based on techniques
introduced in [5]. Later, in [4, 3] a more refined analysis was given. However, all
attempts to establish the crucial discrete compactness property for spectral curl-
conforming finite elements have failed so far, see [6] for preliminary two-dimensional
investigations.

In this article we study the pure p-version of curl-conforming finite elements for
the Galerkin discretization of () based on a uniform polynomial degree p € Ny
(Np is the set of non-negative integers). We are mainly interested in establishing the
convergence of approximate eigenvalues and eigenvectors as the polynomial degree p
of the local finite element trial spaces becomes large, while the triangulation is kept
fixed. In other words, asymptotic estimates for p — co will be the main focus of the
paper.

Local interpolation estimates are instrumental for establishing the discrete com-
pactness property for the h-version of curl-conforming finite elements (cf. [20,
Sect. 4.4]). However, the lack of suitable inverse estimates in spaces of polynomi-
als [28, Sect. 3.6] foil this approach to the p-version. Thus, we are forced to resort to
completely different techniques, that combine tools from the calculus of differential
forms with techniques for simplicial complexes. The drawback of these arguments is
their inherent non-locality, which renders these ideas irrelevant for an investigation of
the hp-version of finite elements, see [14].

The main result will be a proof of asymptotic quasi-optimal convergence of eigen-
values and eigenvectors as p — oco. By this we mean that, provided that p is large
enough, the best approximation of eigenmodes in the finite element space will deter-
mine the discretization error in eigenvalues/eigenspaces.

5. Variational formulation and function spaces. Subjecting ([EI) to
integration by parts, one derives the e-based variational formulation: find e €

1



2 Z. Chen and R. Hiptmair

H(curl;Q), w # 0, such that

(p~ ! curle, curl e’)LQ(Q) = w? (ee,€)p2q) Ve’ € Ho(curl; Q). (5.1)

Here, we adopted the usual notation Hg(curl;Q) for the Hilbert space of L*(Q)-
vectorfields with curl in L*(Q) and vanishing tangential components on 9.

As can be seen by testing with irrotational functions, due to w # 0, (&1l) can be
equivalently stated on the Hilbert space

Zo(e,Q) :={u € Ho(curl; Q) : (€u,z) 2 =0Vz € Ho(curl0;Q2)} , (5.2)

where Ho(curl0; ) = Ho(curl; Q) N Ker(curl). This results in: seek e € Z(€, ),
w # 0, such that

(n~" curle, curl e’)LQ(Q) = w? (ee, e)r2) Ve € Zo(e,Q). (5.3)
For the analysis of the variation problem (B33)) we have to rely on the Hilbert spaces

X n(€e,Q) :={ue€ Hy(curl;Q) : div(eu) € L*(Q)},
Xr(p™' Q) :={ue Hy(div;Q) : curl(p'u) € L*(Q)} .

Importance is bestowed on these spaces by the following embedding result, see [29,
27, 21, 13] and [20, Sect. 4.1].

LEMMA 5.1. The embedding X y(€,Q) — L*(Q) and X7(un=',Q) — L*(Q) is
compact.

Then standard arguments yield the following estimate, ¢f. [20, Thm. 4.7].

COROLLARY 5.2 (Poincaré-Friedrichs-type inequality). With a constant C > 0
depending on ) only, holds true

[ullg2o) < Clleurluf[zzq)  Vu € Zo(e, ) .
Following [24], for the analysis of the eigenvalue problem (B3 it is convenient to
introduce the operator T : L%(Q) — Z(€, Q) by

(p~ " curl Tu, curl u')LQ(Q) = (ew, )2, YU’ € Zo(€,Q) . (5.4)

By Corollary B2 it is well defined, continuous and L?(Q)-selfadjoint.
LEMMA 5.3. The operator T : L*(Q) — Zo(€,Q) is compact.
Proof. By its variational definition (), the vectorfield Tu, u € L?*(Q), satisfies

curlp tcurlTu = eu in Q,
div(eTu) = 0 in Q, (5.5)
Tuxn = 0 on 0f) .

This yields, thanks to divo curl = 0 and curl(Tu) - n = divp(Tu X n), that
Tue Xn(e,Q) , curlTue Xr(p ', 9Q). (5.6)

Since Zj(e, ) is a closed subspace of H(curl; ), Lemma BTl implies the assertion.
a
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By means of T the eigenvalue problem (B3)) can be recast as

(b ' curle, curle’) =w? (' curl Te, curle’) Ve' € Zy(e,9),

L2(Q) L?(Q)

and converted into the operator eigenvalue problem
Te=w"2e. (5.7)

Thus, the Riesz-Schauder theory for the spectrum of compact, self-adjoint operators
in Hilbert space implies that (il has an increasing sequence 0 < w? < w3 < ... of
nonzero real Maxwell eigenvalues tending to co. They all have finite multiplicity and
the corresponding eigenspaces are mutually L? (Q)-orthogonal. Hence, by switching to
the complement Z (e, ) of Ker(curl) we have recovered a situation typical of second
order elliptic eigenproblems.

6. The discrete eigenvalue problem. Let T be a non-degenerate tetra-
hedron in R? and write P,(T") for the space of 3-variate polynomials with total degree
< p, p € Ny, on T. Ny is the set of non-negative integers. Taking the cue from [18§],
for any p € Ny, we chose the local trial space

1 [ xeT—u(x)+u(x): uy € (Pp(T))?,
W)= { uy € (Pp+1l(T))3= uz(x) "X - 0 vxeT. } .

Next, let €2 be equipped with a fixed conforming tetrahedral triangulation M and
introduce

WH(My) = {un € H(curl; Q) : uyr € WH(T) VT € My},

p

X - . . (6.1)
Wy.0(Mp) := Ho(curl; Q) N W, (M) .

This yields the first family of Nedéléc’s H (curl; 2)-conforming finite elements, see
[26] for suitable local and global degrees of freedom. These spaces are closely linked
with the space of continuous Lagrangian finite elements of degree p + 1

Wp(Mp) :={un € H(Q) : upir € Ppya(T) VT € My},

W o(Mp) == W (M) N H(Q) (6.2)

by the relationships

grad W) (Mp,) C W, (My) N H(curl 0;€) ,

. X (6.3)
grad W, (My) C W, o(Mp) N Ho(curl0;2) .

Please note that (G3)) becomes an equality, if the second Betti number of Q vanishes,
see [19, Sect. 6] and [20, Thm 3.7].

Based on W} ;(M},) the Galerkin discretization of (&) is straightforward and
leads to: seek e € W) 5(€), wp # 0, such that

1

(p~" curley, curl e%)Lz(Q) =w; (een,e)p2) Ven € W) o(Mp) . (6.4)

Parallel to the continuous case, se (B3), a variational problem equivalent to (B4 can
be posed on the space

Zpo(e, M) = {up, € W) o(Mp) : (eup, Zn) () = 0 Vzn € W, (M) N Ker(curl)} .
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Does this pave the way for studying the approximation of Maxwell eigenvalues along
the same lines as for the discrete Laplacian, namely by appealing to the theory of
eigenvalue approximation for self-adjoint positive definite operators with compact
resolvent? Unfortunately, this hope is dashed by the observation that, in general,

Zyo(e, My) ¢ Zo(€,Q) .

Bluntly speaking, in terms of (B3) the variational problem (@) when restricted to
Z, (e, Mp) is a non-conforming discretization.

7. Convergence of discrete eigenvalues. Theorem 4.7 in [20] asserts that
the following discrete Poincaré-Friedrichs inequality holds true

3C =CMp,p) >0 |upllgzq) < Clleurlup|[gzq)  Vun € W;ﬁo(./\/lh) . (7.1
Therefore, we can define meaningful operators T, : L*(Q) — Z, (€, M}) by
(™' curl Tpu, curl u%)LQ(Q) = (ew,u}) 2y YU, € Zpole, M) . (7.2)

It can be used to rewrite the discrete eigenvalue problem (E4]) in analogy to (&) in
the form
Tren =w, ey . (7.3)

We aim to appeal to the powerful abstract theory of [2, Sect. 7] that enables us to
assess the convergence of the eigenvalues and eigenvectors of T, to those of T as soon
as uniform convergence

(1T, — T||L2(Q) —0 for p— oo (7.4)

is established: Assuming ([Z4) and writing vy, ..., v, for the orthonormalized eigen-
functions of T belonging to an eigenvalue w2 > 0 of multiplicity m € N, we conclude
from [2, Theorem 7.3] that for all sufficiently large p > po, po € Noy, we will find

m discrete eigenvalues w,, f, Ce Wy 2 of T, such that, with C' > 0 independent of p,
w2 w2 < 0( > (T = To)Va Vi) oy +
n,l=1 (7.5)

(T = Tp)  Spanfvievm} Hiz(Q)HLZ(Q) ) :

Moreover, for each v, we find a discrete eigenfunction v, € W;7O(Mh) such that, with
C > 0 independent of p,

Vi = Vol ey < CIIT=T,) (7.6)

| Span{vi,...,vin} ||L2(Q)—>L2(Q)

Note that, in both cases the constants are independent of the choice of the polynomial
degree p.

To gauge the difference between T and T, we introduce a Fortin projector F, :
Zy(€,Q) — Z,o(e, M) according to [3]. It can be defined via the saddle point
problem: seek Fyu € W) o(Mp), wi € W, o(My) N Ho(curl 0; Q) such that

(N_l curl F,u, curl u;L)Lz(Q) + (euy,, Wh)Lg(Q) = (N_l curlu, curl u;l)

(eFpu, w}) 2 (g = 0,

L2(Q) °

(7.7)
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for all wj, € W, o(Mn), wj, € W) o(My) N Ho(curl0;Q). Owing to the discrete
Poincaré-Friedrichs inequality [Z1J), F,, is a well-defined continuous operator.
LEMMA 7.1. If () holds with a constant independent of p, then F, — Id
pointwise on Zy(€,Q) as p — oo.
Proof. We verify the assumption of Babuska-Brezzi theory for Galerkin solutions
of variational saddle point problems, see [8, Ch. 3]. Since

(eFpu, Wh) 2 () = 0 YWj € W, o(Mp) N Ho(curl0;Q) & Fyue Zyo(e, My)

the p-uniform “ellipticity on the kernel” is an immediate consequence of the assump-
tion of the lemma and the uniform positivity of p. Moreover, with C' = C(€) > 0, we
get for all wy, € W) o(My) N Ho(curl 0; Q),

(€Vh, Wh) 200 (EWnh, Wa)12(q)
sup @ > @0 IWhll g (eurtio) = C lWhllL2(q) -
Vhew;,o(Mh) HWhHH(curl;Q) HWhHH(curl;Q)

This confirms quasi-optimality of solutions of ([Z7). Next, note that testing the first
equation of (1) with uj, € W} (M) N Ho(curl 0;2) reveals wj, = 0. This implies,
for u e Zy(e,Q),

Hll - Fpu”H(cur];Q) < CVhEV\Hli(Mh) ||11 - VhHH(curl;Q) )
P

with a constant C' > 0 independent of p. We know that compactly supported smooth
vectorfields in (C§°(£2))? are dense in Ho(curl;(2), see [18, Ch. 2]. Therefore, by
simple interpolation estimates,

inf u—v o — 0 as — 00 .
v EWL (M) | h||H(cur1,Q) p

This gives the assertion of the lemma. O
(From Sect. 10.2 of [23], in particular, Corollary 10.4, we immediately deduce the
following result, whose elementary proof is provided for the sake of completeness.
LEMMA 7.2. Let X,Y,Z be Banach spaces and T : Z — X be a compact linear
operator. If the bounded linear operators F,, : X — Y, n € N, are pointwise convergent
for n — oo with limit operator F': X — Y, then

lim sup{||(F, — F)Tz|ly: z€ Z, ||z|z <1} =0,

that is, (F,, — F) o T — 0 uniformly.
Proof. By the uniform boundedness principle there is C'r > 0 such that

max{||F|[xy, suppen [ Fnllxv} < CF -

Fix € > 0 and write B = {z € Z : ||z]|z < 1}. As T'(B) is pre-compact, there is M € N
and 21,...,2p € B such that

€

3CF

T(B)C | J{w e Xt |z = T(z)]x < }.

k=1

Thanks to pointwise convergence of F,, — F, there is N € N such that

|Fu(T(2k)) = F(T(z) |y < 3¢ Vk=1,...,M,V¥n>N.
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Then, for any z € B,

[Fn(Tz) = F(T2)y
< |Fa(T2) = Fn(Tzi)lly + 1 Fn(T2) = F(Tzi) Iy + [[F(Tzk) — F(Tz)|ly
< OFHTZ — TZkHX + ||Fn(TZk) — F(Tzk)||y + CFHTZ — TZk”X <e,

provided that n > N. O
LEMMA 7.3. IfF, — Id pointwise on Zy(€,Q), then T, — T uniformly on L*().
Proof. The definitions of T and T, in (&) and ([Z2), respectively, imply

(™' curl(T, — T)u, curlu)) =0 Yu, €W, (),

L2(Q)
which can be expressed through the Fortin projector as
T,=F,oT. (7.8)

From Lemma B33 we recall that T : L*(Q) — Zo(e, Q) is compact. Then, Lemma
with Z := L*(Q), X = Z(,Q), Y = L*(Q), F =1d, n := p, and F,, := F,, finishes
the proof. O

Summing up, in order to show the asymptotically quasi-optimal convergence of
discrete eigenvalues and eigenvectors according to (ILH) and ([ZH), we have to establish
that the constant in the discrete Poincaré-Friedrichs inequality ([ZIl) can be chosen
independent of p. This will be tackled in the remainder of the article.

8. The Poincaré map. The Poincaré map is an important tool in the
calculus of differential forms. Here we will review some of its properties only briefly
and refer to [12, Ch. 2] for an introduction to differential forms and more details about
the Poincaré map.

Let D be a domain in R? and write DF'(D) for the vector space of continuous
differential forms of degree [, 0 < [ < 3, on D, that is, the space of continuous
mappings from D into the space of alternating I-multilinear forms on R3.

DEFINITION 8.1. If D 1is star-shaped with respect to the origin, we define the
Poincaré map &' : DFY (D) — DF'=Y(D) by

(Rlw)(x) (v, ..., vi1) = /0 T lwo(tx)(x, Vi, ..., vi_1)dt (8.1)

for allvy,...,vi-1 € R® x € D, w € DFY(D). According to [12], Formula (2.13.2),
it satisfies

d(flw) + /M (dw) = w , (8.2)

where d is the exterior derivative.

Below, we will need the Poincaré mapping for [ = 2 only. Moreover, we will
switch from the calculus of differential forms to the more traditional vector analytic
point of view. This is possible, because vectorfields and functions provide models for
differential forms. The isomorphisms that we are going to use relate differential forms
and functions/vectorfields on D are summarized in Table

Using the translation rules, for [ = 2 we can rewrite the Poincaré map as

(R2w)(x)v = /1 tw(tx)- (x x v)dt Vv eR?,
0
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[ Differential form Related function u/vectorfield u

0 x+— wx) u(x) = w(x)

1 x e {ve w(x)(v)} u(x) - v = w(x)(v)

2 x—{(vy,v2) = w(x)(vy,va)} u(x) - (v1 X va) := w(x)(vy, va)

3 x> {(v1,va,v3) = w(x)(vi,va,v3)}  u(x)det(vy, va,vs) := w(x)(vi, va, V3)

TABLE 8.1
Relationship between differential forms and wvectorfields in three-dimensional Euclidean space
(v,v1,va,vs € R3). The operation - is the canonical inner product in Euclidean space.

where w : D — R3 is continuous. This means, in terms of vectorfields,

1
(R%w)(x) —/0 t(w(tx)) x xdt . (8.3)

Of course, we can also express ([B2) as an identity for vectorfields.
LEMMA 8.2. Let D be star-shaped with respect to the origin. If w € (C*(D))3,
has zero divergence, then
(curl B2w)(x) = w(x) VxeD.

Proof. Writing x = (21,72, 73)", we obtain by straightforward calculation and
the condition divw = 0 that

d
curl(w(tx) x x) = tzgvz tx +2w(tx) = ta w(tx) + 2w(tx) .

Thus, by integration by parts,

1
curl B2w)(x) = curl(w(tx) x x
(curl £2w) (x) /Ot 1(w(tx) x x) dt
_/0 tQ%w(tx)dt—&—/o 2tw (tx) dt = [th(tx)}é:w(z).

This completes the proof. O

We will rely on the Poincaré map because it provides a continuous mapping from
H(div 0; D) into L?*(D). This was first observed by L. Demkowicz in [15, Sect. 3] in
two dimensions and, for the sake of completeness, we repeat the arguments.

LEMMA 8.3. Assume that the domain D C R? is bounded and star-shaped with
respect to the origin. Then, with diam(D) := sup{|x — y|, x,y € D}, we have

W] 2y < diam(D) [Wl| 2y YW € (CH(D))?

Proof. The proof boils down to repeatedly applying the Cauchy-Schwarz inequal-
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ity. With u := &2w,

/ lu|? dx :/
D D

0
1
g/ 12w () [2 |2 dt dx
D JO

2

1
/ tw(tx) x xdt| dx

1
§diam(D)2/ t2/ |w(tx)|? dx dt
0 D
1
:diam(D)2/ t2/ |w(y)|?t~ ! dy dt
0 tD
1
§diam(D)2/ t/ |w(y)|* dy dt < & diam(D)? ||W||iz(D) .
o Jp

This completes the proof. O

Another key property is that the Poincaré map £2 can be used to construct the
local trial spaces W} (T) on a tetrahedron T, see [19].

LEMMA 8.4. Let Sy be a subset of tetrahedra of the mesh My, that share a vertex
(which will be assumed to coincide with the origin of a Cartesian coordinate system)
and write S for the domain triangulated by Sy. If

Wwph € {Vh S H(diV;S) D Vpr € (Pp(T))g vT € Sh} )

then 82wy, € W) (Sn)-

Proof. Tt is obvious from the definition of 82wy, in &3) that 82wy, will be a piece-
wise polynomial vectorfield on Sy, of local degree < p + 1. Moreover, it is straightfor-
ward that (82w,(x)) - x = 0 for all x € S. In short,

KWy ip EWMT) VT €Sy .

In light of definition (B) it remains to confirm the tangential continuity of &2wy,. To
that end consider a face F' shared by two tetrahedra in Sj,. Without loss of generality
assume that

Fc{xeR®: 23 =0}.

Next, remember that w; € H/(div;S) implies the normal continuity of wj, =
(w1, we,w3)T across F, in this case the continuity of ws. The components wuj,us
of u, = (u1,uz,u3)? := R2wy, are tangential to F. By () they are given by

1
up(x) = —/ tws(tx)xe dt ,
0

1
uz(x) = / tws(tx)x, dt
0

and, obviously, they only depend on the continuous function ws. This implies the
continuity of w1, us across F. O

The previous lemma gives a stable discrete vector potential on a group of tetra-
hedra sharing a vertex (a “patch”). In the next section we are going to generalize this
to the entire mesh My,.
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9. p-uniform discrete Poincaré-Friedrichs inequality. In order to ob-
tain global stable discrete vector potentials, we will make heavy use of stable polyno-
mial extensions. These have been constructed in [25], see, in particular, Theorem 1 in
this article and its proof.

LEMMA 9.1. Let T be a tetrahedron in R3. Then, for any union F of triangular
faces of T there is a continuous extension operator €L : Hz (F) — HY(T) such that

CL(Py(F)) C Py(T)
where

Po(F) := {pe COF) : pa € Pp(A) for any triangle A C F} .

LEMMA 9.2. Let Dy, be a subset of tetrahedra of My, and D) C Dy. Write D
and D' for the domains C Q triangulated by Dy, and Dj,, respectively, of which D is
assumed to be conmected. Then there is an continuous extension operator €p:, .p :

WJ(Dj,) — Wy (Dy) that fulfills
I€prp ()l g1y < Cllonllgapry  Yon € W(D})

with C' > 0 independent of p (, but, of course, dependent on Dy,).

Proof. The proof will rely on induction with respect to the number §(Dy, \ D},) of
tetrahedra in Dy, \ Dj,. To begin with, we pick some v, € W(D},).

If Dy \ D}, = {T'}, the tetrahedron T will be adjacent to D', 9T N 0D’ will be
a union F' of faces of T, and, by the previous lemma, (’E}T?vh‘ r will be the desired
extension, because

th\FHH%(F) < Clonllgrpry
where the constant only depends on D’ and T. _

If 4(Dy \ Dj,) > 1, then remove a tetrahedron T from Dj \ Dj, such that the
domain covered by Dy, \ {T'} remains connected. By the induction hypothesis there is
a Hl-stable piecewise polynomial extension of v, to D\ {T} Then apply the same
reasoning as in the case (D \ D)) = 1.0

Beside the polynomial extension results we have to invoke discrete topology in
order to glue together the discrete vector potentials on individual patches of M}. To
that end we have to fix some notions: as usual a tetrahedral triangulation 7 will
be regarded as the set of its individual tetrahedra. The simplicial complez SC(7})
associated with 7}, is the set comprising all tetrahedra, triangular faces, straight edges
and vertices of tetrahedra in 7j,.

A simplicial complex supports a co-homology of co-chains, see [20, Sect. 3]
and the references therein. If a simplicial complex arising from a tetrahedral tri-
angulation 7;, of a domain D C R?® has vanishing first Betti number, then any
edge cycle is the boundary of an orientable surface composed of faces. In this case
W3 (T) N H(curl0; D) = grad Wy (7). This topological fact forces us to assume a
special structure of our underlying mesh M.

DEFINITION 9.3. A tetrahedral triangulation Tn, of a polyhedron called frag-
mentable, if one of the following is true:

(i) ﬂ{T7 T € Tn} # 0, that is all tetrahedra of Tp, share at least one vertex.
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(ii) 73, is the union of two fragmentable subsets Ty, T C Tp, Ty # Tn, To # Ty,
such that
o there is a partition S; U ---U Sy, N € N, of the simplicial complex
SC(T1 N Ty), for which all simplicial complexes S; are mutually disjoint
and have vanishing first Betti number.
e SC(71) NSC(72) C SC(Th N Tz).

For a two-dimensional example illustrating the kind of decomposition of a mesh
required in the above definition see Figure Il The assumption that the triangulation
be fragmentable does not seem to be very restrictive for practical geometries, see
Figure for examples.

An example of a tetrahedral mesh that need not be fragmentable is a “minimal”
triangulation of a thick spherical shell: for instance, defining 77 and 75 by sets of
tetrahedra clustered around two opposite poles of the sphere will invariable leave
us with a torus shaped overlap region, whose first Betti number does not vanish.
Unfortunately, we failed to show that all triangulations of domains with vanishing
second Betti number, that is, without cavities, are fragmentable.
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F1c. 9.1. Two dimenstonal example of a decomposition of a triangular mesh. Left: valid splitting
according to Definition [3 Right: insufficient overlap of sub-meshes.

F1G. 9.2. Left: Splitting of a triangulated cube Ty = {Th, T2, T*}, T2 = {T3,T4, T*} with overlap
T*. Right: Splitting of a triangulated torus, for which the overlap (shaded) can be decomposed into
two disjoint parts with vanishing first Betti number each.

THEOREM 9.4. If My, is fragmentable, then for any

wp € {vi, € H(div0;Q) : vy € Pp(T) VT € My}
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we can find 4, € W) (My) such that
curlu, =wy,  and ||ﬁh||L2(Q) < C||Wh||L2(Q) J

where the constant C > 0 only depends on My,. In particular, C is independent of the
polynomial degree p € Ny.

Proof. The proof will be conducted by induction with respect to the number
of tetrahedra §M;, in My. First, we fix a Mj-piecewise polynomial (of degree p)
vectorfield wy, with divwy, = 0.

If My, fits case (i) in Definition @3, in particular, if M, = 1, then we can simply
invoke Lemma B3l to finish the proof.

If N{T, T € T,} = 0, then by the assumption that M, is fragmentable, it can
be split into M; and My as in case (ii) of Definition Denote by ©; C Q the
domain triangulated by M;. We point out that Definition ensures 2 = Q7 U Qs.
The induction hypothesis guarantees the existence of @j, € W}(M;) such that

Hﬁ].'LHL2(Qi) < Cl ”WhHLz(Qi) ’ (91)

with C; = Cl(./\/ll), 1=1,2.
The domain triangulated by M N My agrees with 1 N Q9. By construction

curla}, = Whio, =12,
which implies
curl(ij — 1) =0 inQNQy.

Since the connected components of SC(M; N M3) have vanishing first Betti number,
we can find 1, € Wg(/\/ll N My) such that

grad vy, = ﬁi —ﬁ,1I on 21 NNy .

By demanding vanishing mean of 1, (locally on each connected component), we can
ensure that

[9nll 1 (@unea) < C N[00 = Ball 20,00, - (9:2)

with C = C(Q1 N Q) > 0. Now, apply Lemma to extend vy, to zzh € Wg(]\/ll)
such that

HwhHHl(Ql) < Clivnllm @una,) - (9.3)

where C only depends on M; and M; N M. Then, set

/\2 . Q
Gy, == § h - (9-4)
u;, + grad ¢y, in Q1 \ Qs .

This defines a unique vectorfield almost everywhere in €.

It remains to show that Uy given by (@) is curl-conforming. Tangential disconti-
nuities can only occur at parts of 91 NI outside 21 N Q5. However, Definition
rules out such an arrangement for an admissible splitting of a fragmentable mesh.
Hence, Uy, € H(curl; ), in particular uy, € W; (M), and curluy, = wy,.
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Finally, combining (@), @2), and @3)), we get

I8nlz2oy < 188 gy + 183 5o, + [ radin]

<
L2(01) = Cliwnlzzo -
with C only depending on M, M1, M. O

The next and final theorem will give the desired discrete Poincaré-Friedrichs in-
equality that is uniform in the polynomial degree p.

THEOREM 9.5. If My, is fragmentable, then with C = C(My) > 0 independent

of p

[unllz2() < Clleurluplp2q)  Vun € Zpo(e, M) .

Proof. Pick an arbitrary uy, € Z, (€, My). By the previous theorem we can find
uy, € W) (My) such that

curlu, = curlu, and  |[Up|[g2q) < Clleurlup| g2, ,

where C' = C(My,) > 0 is independent of p.
We still have to enforce compliance with the homogeneous boundary conditions
onto the vector potential 1. To that end note that

divp(up X n) = curluy, -n=-curlu,-n=0 on 99 .

In other words, the tangential trace Uy, x n is a divergence-free surface vectorfield that
is piecewise polynomial with respect to the restriction O M} of Mj, onto 0€2. Note
that O My, is a triangular mesh covering 0f2.

Discrete co-homology theory [20, Thm. 3.7] tells us that there will always be a
H~2(9)-orthogonal decomposition

U, x n=grad g, + 1,

where ¢}, is continuous with vanishing mean and 0. M p-piecewise polynomial of degree
p. On the other hand, the co-homology surface vectorfield n;, can be chosen from a
space of 0 M ,-piecewise constant divp-conforming surface vectorfields. This space has
finite dimension equal to the first Betti number of Q). Further, it can be obtained as
the tangential trace of discrete co-homology vectorfields € Wi (My,) [9]. We do not
miss anything, because traces of co-homology vectorfields in the exterior of 2 do not
contribute to n,: for any curface cycle v C 02 that bounds an oriented surfaced
3 C 2 we know that its path integral along ~ will vanish:

/ﬁh-dé':/curlﬁh-ngdSZ/curluh-ngdSZ/uh-dE':O.
vy b)) b)) v

After choosing a basis for this space, it is clear that n; can be extended to
hy, € Wi(Mp,) N H(curl0; Q) such that, with C = C(M},) > 0,

hy, xn=m;, on 02, [[hp[|gzq) < Cllnll , S Cllan xnf (9:5)

H™ % (09 “30Q)

As far as ¢y, is concerned, we recall the proof of Lemma If confirms the existence
of gy € WS(Mh) with

Gn =@n on OV, |@nl i) < Cllenll 41 po, < Cllan x 0l (9.6)

H3 (69) = H™3%6Q) °
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where C' = C(Myp,) > 0 does not depend on p. Moreover, we recall the trace theorem
for H(curl; Q) from [10] that gives

50 =0@) >0: [ xnl, 30 <Ol e - (9.7
Then, we find that
Uy == U, — hy, —grad ¢,
satisfies
curlu, = curluy = curlu, and u, xn=0 on N, (9.8)
and, by taking into account ([H), [@H), and [@T7) we see that
[nllz2e0) < Uall L2y + el 20y + 1Pnll 1) < C lleurlup|[g2q) (9.9)

and C > 0 is independent of p.
As uy —uy, € W) 3(My,) is curl-free, the definition of Z), (e, Mp,) implies

(euh,ﬁh — Uh)Lz(Q) =0.
From this we infer
2 ~ ~
||uh||L2(Q) < O(euhvuh)L2(Q) = C(euhauh)p(g) <C ||uh||L2(Q) ||uh||L2(Q) :

Using (@) and @), the assertion of the theorem follows. O

Remark. In the case of a mesh M), with non-zero second Betti number like the
hollow sphere discussed above, it is possible to “fill up the cavities” by adding tetra-
hedra to My,. Subsequently, u, can be extended by zero to the new parts of the mesh
and, as above, a discrete vector potential 1y can then be found for the extended vec-
torfield. Finally, zero boundary values can be restored as in the proof of Thm. By
this trick a topological obstruction to a mesh being fragmentable can be overcome.
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