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Abstract

We consider best N term approximation using anisotropic tensor product
wavelet bases (’sparse grids’). We introduce a tensor product structure ⊗q

on certain quasi-Banach spaces of !q-type, q < 1. We prove, that the approx-
imation spaces Aα

q (L2) and Aα
q (H

1) equal tensor products of Besov spaces
Bα

q (Lq), e. g.

Aα
q (L2([0, 1]

d)) = Bα
q (Lq([0, 1]))⊗q . . .⊗q B

α
q (Lq([0, 1])).



1 Introduction

In this paper, we investigate the approximation spaces for best N term approximation

using tensor product bases of one-dimensional hierarchical wavelet bases. These tensor

product bases are anisotropic, i. e. high frequencies in some directions can be tensorized

with low frequencies in other directions. Subsets of these bases span the so-called sparse

grid spaces, which have been successfully applied to the numerical treatment of elliptic

PDEs, to data mining or to high-dimensional integration.

Given a basis ϕk of a function space V with norm ‖ · ‖V , a best N term approximation

gN to a function f ∈ V realizes the following infimum

inf {‖f − g‖V : g =
N
∑

i=1

ciϕki}.

The space, in which the approximation is seeked, is the nonlinear manifold consisting of

all linear combinations of the given basis with at most N terms; for this reason best N

term approximation is often called nonlinear approximation.

BestN term approximation is an important theoretical tool in the mathematical treatment

of adaptive numerical approximation, since it yields upper bounds: if the sequence (gN ) of

best N term approximations converges at a certain rate α, no adaptive scheme (using this

particular basis) can do better. On the other hand, one should strive to construct adaptive

approximation schemes which reproduce the rates achieved by bestN term approximation.

Best N term approximation has been successfully employed in the mathematical analysis

of adaptive wavelet methods for elliptic PDEs, see e. g. [5], [2], [6]. In [5], the authors

construct an adaptive scheme for isotropically supported multi-dimensional wavelet bases

which produces an approximation to a solution to an elliptic PDE at the ’optimal rate’.

The term ’optimal rate’ refers to the rate of best N term approximation using this par-

ticular basis. For instance, the alg orithm given in [5] yields an approximation rate in

the H1 norm of 1/2 for solutions to smooth uniformly elliptic PDEs on two-dimensional

polygonal domains using isotropically supported piecewise bilinear ansatz functions; the

rate 1/2 is optimal with respect to this isotropically supported wavelet basis.

However, it has been numerically observed (e. g. in the group of Zenger, see e. g. [1]),

that adaptive approximation using sparse grids spaces can approximate certain classes

of singularities arising in elliptic PDEs due to polyhedral domains at substantially higher
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rates. For the elliptic PDE from above on a two-dimensional polygonal domain, this yields

approximation rates in the H1 norm of 1 − ε for arbitrarily small ε > 0, using piecewise

bilinear ansatz functions as well.

This has been rigorously proved in an a priori wavelet context in [15]: solutions to elliptic

PDEs (with smooth data) in polyhedral domains (in dimensions 2 and 3) can be approxi-

mated by sparse grid wavelet spaces (appropriately refined towards the singular support)

built from biorthogonal spline wavelets of local polynomial degree p at any rate < p + 1

with respect to the L2-norm and at any rate < p with respect to the H1-norm.

It has already been known for several years, that sparse grid approximation can overcome

the so-called curse of dimensionality (i. e. the exponential dependence of the approxima-

tion complexity on the dimension) for sufficiently regular functions, see e. g. [4], [13], [19].

For instance, an approximation with sparse grids built from ansatz functions which are

piecewise polynomials of degree p gives a convergence rate in L2 of p + 1 (up to loga-

rithmic terms), if the function to be approximated belongs to Hp+1,...,p+1([0, 1]d) (Sobolev

space of highest mixed derivatives on the d-dimensional cube [0, 1]d), whereas a full grid

approximation would only give a rate of (p+1)/d (but a regularity of Hp+1([0, 1]d) would

suffice).

Now it has been seen for the particular class of elliptic singularities, that when it comes

to adaptive approximation, no additional assumptions on the equations (apart from the

problem geometry) are necessary to give the substantially higher sparse grid rates.

The basis dependence of optimal approximation rates together with the numerical experi-

ence and our analysis of sparse approximation of singularities described above motivated

the investigation of best N term approximation spaces for sparse grid wavelet spaces. To

establish a characterization of sparse best N term approximation spaces in terms of clas-

sical smoothness spaces of Besov type is the purpose of the present paper.

We characterize the class of functions which can be approximated in L2 orH1 by anisotropic

tensor product bases (’sparse grid bases’) at a rate α. We prove that this class is a tensor

product of appropriate one-dimensional Besov spaces. The spaces in question cease to

be Banach spaces but are only quasi-Banach spaces satisfying only a generalized triangle

inequality. A large part of this paper is therefore devoted to the construction of a tensor

product structure on this type of quasi-Banach sp ace.
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For the sparse grid spaces built from the Haar system, Oswald has already considered best

N term approximation as well as approximability of certain singularity functions, see [16].

Acknowledgement: The author would like to thank Christoph Schwab for introducing him

to this subject and lots of helpful discussions, as well as Radu-Alexandru Todor, who

contributed the proof of lemma 1.

2 Notions from Approximation Theory

We assume familiarity with the basic concepts of linear and nonlinear approximation the-

ory. An excellent survey on this topic is [11], see [18] as well. We only give here the

notation used throughout this paper.

Let H be a separable Hilbert space with norm ‖ · ‖H , and let {ψk : k ∈ I} ⊂ H for some

index set I be a basis of H, i.e. the completion of the linear span of {ψk : k ∈ I} (with

respect to ‖ · ‖H) equals H:

span {ψk : k ∈ I} = H.

We denote the nonlinear manifolds, from which approximation takes place, by

ΣN :=
{∑

k∈Λ

ckψk : Λ ⊂ I,#Λ ≤ N
}

.

The space ΣN consists of all linear combinations of functions from the set {ψk : k ∈ I}

with at most N terms.

For a function f ∈ H, the approximation error σN (f)H is defined by

σN (f)H := inf
S∈ΣN

‖f − S‖H .

For real α > 0 and 0 < q < ∞, the approximation space Aα
q (H) is defined by

Aα
q (H) := {f ∈ H : |f |Aα

q (H) < ∞},

where

|f |Aα
q (H) :=

(

∑

N∈N

(Nα σN (f)H)q
1

N

)1/q

.

We set ‖f‖Aα
q (H) = |f |Aα

q (H) + ‖f‖H .

3



There hold the inclusions

Aα
q (H) ⊂ Aα

p (H), 0 < q < p < ∞,

however, all the spacesAα
q (H) correspond to an asymptotic decrease in error likeO(N−α).

Note, that the approximation spaces Aα
q (H) depend implicitely (but decisively) on the

chosen basis {ψk : k ∈ I}.

One of the basic tasks in approximation theory is to characterize the approximation spaces

Aα
q (H), ideally, by classical spaces like Ck, Sobolev or Besov spaces. One possibility is to

prove the so called Jackson and Bernstein inequalities for some appropriate second space

X:

Jackson inequality: σN (f)H ≤ C N−r ‖f‖X for all f ∈ X and N ∈ N.

Bernstein inequality: ‖S‖X ≤ C N r ‖S‖H for all S ∈ ΣN and N ∈ N.

Then one can characterize the approximation spaces as interpolation spaces (which are

usually better understood), theorem 1 in [11]:

Theorem 1. If the Jackson and Bernstein inequalities are valid for some appropriate

space X, then for each 0 < α < r and 0 < q < ∞ the following relation holds between

approximation and interpolation spaces:

Aα
q (H) = (H,X)α/r,q

(equivalent norms).

Here, (H,X)θ,q are the so called real interpolation spaces, which consist of all functions

f , for which
(∫ ∞

0
(t−θ K(f, t))q

dt

t

)1/q

is finite, and

K(f, t) = inf
g∈X

‖f − g‖H + t|g|X

is the K functional.

For more details on interpolation spaces, see e.g. [3] or [17].
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In the following, we will encounter Besov spaces, which play an important rôle in best N

term approximation. We briefly recall their definition and basic relations. Let α > 0 and

0 < p, q < ∞. Let r be the smallest integer larger than α. Then a function f is in the

Besov space Bα
q (Lp(Ω)) if

|f |Bα
q (Lp(Ω)) =

(∫ ∞

0
(t−α ωr(f, t)p)

q dt

t

)1/q

< ∞.

We set ‖f‖Bα
q (Lp(Ω)) = |f |Bα

q (Lp(Ω)) + ‖f‖Lp(Ω).

Here, ωr(f, t)p = sup|h|≤t ‖∆
r
h(f, · )‖Lp(Ω) is the r-th order modulus of continuity and ∆r

h

is the r-th power of the difference operator ∆hf(x) = f(x+ h)− f(x).

We have

(Lp(Ω),W
r(Lp(Ω)))θ,q = Bθr

q (Lp(Ω)), 0 < θ < 1, 0 < q < ∞,

where W r(Lp(Ω)) is the Sobolev space of order r built on Lp(Ω).

We will almost exclusively be interested in the scale of Besov spaces Bα
q (Lq(Ω)) with

q−1 = α+ 1/2. Interpolation on this scale yields again a space from this scale:

(1) (L2(Ω), B
α
q (Lq(Ω))θ,s = Bθα

s (Ls(Ω)), if s−1 = θα+ 1/2.

We will further need a result on best N term approximation in (2(Nk) (theorem 4 in [11]):

Theorem 2. For best N term approximation in (2(Nk), a vector c is in Aα
q ((2(N

k)) if and

only if c is in the Lorentz sequence space (τ,q with τ−1 = α+ 1/2.

The only Lorentz sequence spaces we will need are the spaces (q,q which coincide with (q.

3 Sparse Grid Basis

In this section we describe a class of bases for which our bestN term approximation result

will hold. These bases are tensor products of one-dimensional wavelet bases. The domain

Ω under consideration will be the unit cube [0, 1]d.

Let {ψjk : j ∈ N, k = 1, . . .∆j}, ∆j ! 2j , be a basis for L2([0, 1]) such that the following

norm equivalences hold:

(2)
‖
∑

j,k

cjkψjk‖Bα
q (Lq([0,1])) ∼ ‖(2j(α−

1
q
+ 1

2 )cjk)‖$q(N),

0 < α < α0, q in an open interval around (α+ 1/2)−1

5



and

(3) ‖
∑

j,k

cjkψjk‖L2([0,1]) ∼ ‖(cjk)‖$2(N),

We will call such a basis for simplicity an α0-basis.

Any wavelet system, for which (i) ψjk ∈ Bβ
q (Lq([0, 1])) for some β > α, (ii) ψjk has r

vanishing moments with r > α and (iii) r > 1/q−1 if q < 1, satisfies the norm equivalence

‖
∑

j,k

cjkψjk‖Bα
q (Lq([0,1])) ∼ ‖(2j(α−

1
q
+ 1

2 )cjk)‖$q(N);

see e. g. [11] or [7].

So for instance the wavelet systems constructed in [9] or [10], which are biorthogonal spline

wavelets of local degree p with p + 1 vanishing moments are an α0-basis for α0 = p + 1.

The following picture shows the interior wavelet of the simplest type p = 1. This wavelet

hat two vanishing moments (r = 2), and it belongs to Bα
q (Lq) for (α, q) with α < 1+ 1/q.

Hence, the corresponding wavelet system constitutes an α0-ba sis with α0 = 2.

!0.5

0

1

In the case that α and q are related by q−1 = α + 1/2, the norm equivalence (2) simply

reads

(4)
‖
∑

j,k

cjkψjk‖Bα
q (Lq([0,1])) ∼ ‖(cjk)‖$q(N),

0 < α < α0, q = (α+ 1/2)−1.
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Note, that for α > 1/2, the according value of q is between 0 and 1. In this case we have

to deal with the quasi-Banach spaces (q (for which the triangle inequality fails to hold).

By tensorization of the one-dimensional basis {ψjk} we get a basis for L2([0, 1]d):

{ψj1k1...jdkd : ji ∈ N, ki = 1, . . .∆ji},

ψj1k1...jdkd(x) := ψj1k1 ⊗ . . . ⊗ ψjdkd(x) = ψj1k1(x1) · . . . · ψjdkd(xd).

This basis is by construction anisotropic, that is, low frequencies in some directions can be

paired with high frequencies in other directions. Certain finite subsets of this anisotropic

tensor product basis are the so called sparse grid spaces

V̂L := {ψj1k1...jdkd : j1 + . . .+ jd ≤ L, ki = 1, . . . ,∆ji}.

We aim at describing the approximation spaces for best N term approximation in the

multi-dimensional case by tensorization of the one-dimensional spaces. For this, we first

have to declare a tensor product structure on pairs of the involved spaces Bα
q (Lq) and (q.

This is done in the following section.

4 A Tensor Product Structure on certain Quasi-Banach Spaces

For the later development, we need a tensor product structure on pairs of Bα
q (Lq) and (q,

respectively. If q ≥ 1, we are in the realm of Banach spaces and such a structure is well

known. We state this result for the spaces (q(Nk) and (q(N):

Theorem 3. Let q ≥ 1. Then there is a tensor norm ‖ · ‖q on the algebraic tensor product

(q(N
k)⊗ (q(N).

We denote the completion of (q(Nk) ⊗ (q(N) with respect to this norm the tensor product

(q(Nk)⊗q (q(N). This space is a Banach space, and the following isometry holds

(q(N
k)⊗q (q(N) ∼= (q(N

k+1).

For a proof and more details, see e. g. [14].

7



However, in the case q < 1, such a structure seems not to be known. We will give a ten-

sor product structure for a special class of quasi-Banach spaces including (q and Bα
q (Lq).

First, we have to introduce some notation.

Definition 1. Let X be a linear space. A function ‖ · ‖X : X → R is a q-quasi norm, if

the following three properties hold:

(a) ‖x‖X = 0 if and only if x = 0,

(b) ‖αx‖X = |α| ‖x‖X for x ∈ X and α ∈ R, and

(c) ‖x + y‖qX ≤ ‖x‖qX + ‖y‖qX for x, y ∈ X. If X is complete with respect to the quasi

metric induced by ‖ · ‖X , we call X a q-quasi Banach space.

Examples: The spaces (q(Nd), Lq(Ω) and Bα
q (Lq(Ω)) are q-quasi Banach spaces.

Remark 1. A q-quasi Banach space possesses not necessarily a non-trivial topological

dual. For instance, the topological dual of Lq(Ω) is trivial. However, the topological dual

of (q(Nd) is (∞(Nd).

Definition 2. A q-quasi Banach space X admits a q-estimate, if there is a set of functions

{fi} spanning X, such that

‖
∑

i

cifi‖X ∼ ‖(ci)‖$q(N)

for all convergent series
∑

i cifi.

Examples: The spaces Bα
q (Lq([0, 1])) admit q-estimates.

We further need some more (q-type spaces:

(a) (q(Nd) is the space of all d-multi-indexed sequences

x = (xi1···id)(i1,...,id)∈Nd ,

for which

‖x‖$q(Nd) :=





∞
∑

i1,...,id=1

|xi1···id |q





1/q

is finite.

(b) (q(n) is the space of all n-vectors

x = (x1, . . . , xn),

8



for which

‖x‖$q(n) :=

(
n
∑

i=1

|xi|q
)1/q

is finite.

(c) (q(n,X) is the space of all X-valued n-vectors (X a q-quasi Banach space)

x = (x1, . . . , xn), xi ∈ X,

for which

‖x‖$q(n,X) :=

(
n∑

i=1

‖xi‖qX)

)1/q

is finite.

(d) (q(Nn,X) is the space of all X-valued n-multi-indexed sequences (X a q-quasi Banach

space)

x = (xi1···in)(i1,...,in)∈Nn , xi1,...,in ∈ X,

for which

‖x‖$q(Nn,X) :=





∞
∑

i1,...,in=1

‖xi1···in‖qX





1/q

is finite.

Now we have the notation to declare a topological tensor product structure on the alge-

braic tensor products between spaces of (q- or Bα
q (Lq)-type. This is done in the following

theorem:

Theorem 4. Let X and Y be q-quasi Banach spaces, 0 < q < 1, admitting a q-estimate.

Then the function

‖ · ‖ : X ⊗ Y → R,

‖z‖ := inf
z=

∑n
i=1 xi⊗yi

‖(xi)‖$q(n,X) sup
‖λ‖"q(n)≤1

‖
n
∑

i=1

λi yi‖Y ,

on the algebraic tensor product of X and Y is a q-quasi norm.

We denote the completion of the algebraic tensor product X ⊗ Y under the induced quasi

metric by X ⊗q Y and call it the q-tensor product of X and Y .

In case of X = (q(Nd)) and Y = (q(N), the function ‖ · ‖ is a cross norm, i.e. for simple

tensors x ⊗ y it holds ‖x ⊗ y‖ = ‖x‖$q(Nd) ‖y‖$q(N). Furthermore, we have an isometric

isomorphism

(q(N
d)⊗q (q(N) ∼= (q(N

d+1).

9



We will need the following lemma:

Lemma 1. Let X be a q-quasi Banach space admitting a q-estimate. Then, given x, x1,

. . . , xn ∈ X, there exists a functional φ (not necessarily continuous on all of X), such

that

φ(x) = ‖x‖X ,

and
n
∑

i=1

|φ(x)|q ≤ C
n
∑

i=1

‖xi‖
q
X ,

where C depends only on the space X but not on the vectors x, xi.

In case of X = (q(Nd), the constant C can be chosen to be 1.

Remark 2. The existence of an algebraic functional φ as in lemma 1 can be regarded

as kind of a substitute for the Hahn-Banach extension theorem. It would be interesting

to know, if lemma 1 can be derived solely from the properties of a q-quasi norm without

the assumption of admitting a q-estimate (and therefore boiling down the case to an (q-

problem).

Proof of lemma 1. We begin with the case X = (q(Nd). We identify the topological dual

of (q(Nd) in the standard way with (∞(Nd).

Let ej1···jd be the evaluation functional of the (j1, . . . , jd)-th component:

ej1···jd(y) = yj1···jd , y = (yi1···id)(i1,...,id)∈Nd ∈ (q(N
d).

Now set

Cj1···jd :=

(∑n
i=1 ‖xi‖

q
$q(Nd)

∑n
i=1 |x

j1···jd
i |q

)1/q

and consider the set of functionals

A = {φj1···jd = (sgnxj1···jd)Cj1···jd ej1···jd : (j1, . . . , jd) ∈ N
d} ⊂ ((q(N

d))′.

Note, that

φ ∈ A ⇒
n
∑

i=1

|φ(xi)|
q =

n
∑

i=1

‖xi‖
q
$q(Nd)

.
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We claim: there is φ ∈ A such that φ(x) ≥ ‖x‖$q(Nd). Downscaling then yields the assertion

of the Lemma.

Observe that
∞∑

j1,...,jd=1

C−q
j =

∞∑

j1,...jd=1

∑n
i=1 |x

j1···jd
i |q

∑n
i=1 ‖xi‖

q
$q(Nd)

= 1.

Now assume that there is no φ ∈ A with φ(x) ≥ ‖x‖$q(Nd). This implies

Cj1···jd <
‖x‖$q(Nd)

|xj1···jd |
for all (j1, . . . jd) ∈ N

d.

Summing up gives
∞
∑

j1,...,jd=1

C−q
j > 1;

this is a contradiction.

In the general case, we use the q-estimate to transfer the problem to (q: write x =
∑

k ckfk and xi =
∑

k c
i
kfk. Then choose φ̃ ∈ (q(N)′ such that φ̃((ck)) = ‖(ck)‖$q(N) and

∑n
i=1 |φ̃((c

i
k)k)|

q ≤
∑n

i=1 ‖(c
i
k)k‖

q
$q(N)

. Employing the q-estimate and rescaling of φ̃ yields

the assertion with C the product of the lower and upper constant in the q-estimate.

Proof of theorem 4. We first note, that by definition of the (algebraic) tensor product, we

have
n
∑

i=1

xi ⊗ yi =
n̄
∑

i=1

x̄i ⊗ ȳi, xi, x̄i ∈ X, yi, ȳi ∈ Y,

if and only if

for all φ ∈ X∗ :
n
∑

i=1

φ(xi)yi =
n̄
∑

i=1

φ(x̄i)ȳi.

Here we denote by X∗ the (non-trivial) algebraic dual of the q-quasi Banach space X.

We begin with the first part of the statement of theorem 4.

We have to show properties (a), (b), (c) of the definition of a q-quasi norm.

Property (b), i. e. ‖αz‖ = |α| ‖z‖ for z ∈ X ⊗Y , α ∈ R, readily follows, since the involved

quasi norms are homogeneous.

Property (a), i. e. ‖z‖ = 0 if and only if z = 0:

If z = 0 = 0⊗0, we have ‖z‖ = 0. To the contrary, assume z ,= 0. Let z =
∑n̄

i=1 x̄i⊗ȳi be a

11



representation of z with linearly independent sets (x̄i), (ȳi). (Such a linearly independent

representation always exists for every algebraic tensor product.) Fix one of the pairs

(x̄i, ȳi), say (x̄1, ȳ1), and set

ε := min{‖y‖Y : y = ‖x̄1‖X ȳ1 +
n̄
∑

i=2

αiȳi} > 0.

Now choose according to lemma 1 a functional φ with

φ(x̄1) = ‖x̄1‖X and
n̄
∑

i=1

|φ(x̄i)|
q ≤ C

n̄
∑

i=1

‖x̄i‖
q
X .

Let an arbitrary representation
∑n

i=1 xi ⊗ yi of z be given. Then we estimate

‖
n
∑

i=1

φ(xi)yi‖
q
Y ≤

n
∑

i=1

|φ(xi)|
q ‖yi‖

q
Y ≤ C

n
∑

i=1

‖xi‖
q
X sup

i=1,...,n
‖yi‖

q
Y

≤ C ‖(xi)‖
q
$q(n,X) sup

‖λ‖"q(n)≤1
‖

n
∑

i=1

λiyi‖
q
Y .

On the other hand, we have

‖
n∑

i=1

φ(xi)yi‖
q
Y = ‖

n̄∑

i=1

φ(x̄i)ȳi‖
q
X

=
∥
∥‖x̄1‖X ȳ1 +

n̄
∑

i=2

φ(x̄i)ȳi
∥
∥
q
X

≥ εq.

Combining this gives

εC−1/q ≤ ‖(xi)‖$q(n,X) sup
‖λ‖"q(n)≤1

‖
n∑

i=1

λiyi‖Y

for every representation of z. Taking the infimum over all representations yields ‖z‖ ≥

εC−1/q > 0.

Property (c), i. e. the generalized triangle inequality ‖z + w‖q ≤ ‖z‖q + ‖w‖q:

We show first

(5) ‖
n
∑

i=1

µiyi‖
q
Y ≤ ‖µ‖q$q(n) sup

‖λ‖"q(n)≤1
‖

n
∑

i=1

λiyi‖
q
Y .

12



For this purpose set θ := ‖µ‖−1
$q(n)

, such that ‖θµ‖$q(n) = 1. Then we have

‖
n∑

i=1

µiyi‖
q
Y = θ−q ‖

n∑

i=1

θµiyi‖
q
Y = ‖µ‖q$q(n) ‖

n∑

i=1

θµiyi‖
q
Y

≤ ‖µ‖q$q(n) sup
‖λ‖"q(n)≤1

‖
n
∑

i=1

λiyi‖
q
Y .

Next we show, that for m < n

(6) sup
‖λ‖"q(m)≤1

‖
m∑

i=1

λiyi‖
q
Y ≤ 1 and sup

‖λ‖"q(n−m)≤1
‖

n∑

i=m+1

λi−myi‖
q
Y ≤ 1

implies

(7) sup
‖λ‖"q(n)≤1

‖
n
∑

i=1

λiyi‖
q
Y ≤ 1.

For this let λ ∈ (q(n) with ‖λ‖$q(n) ≤ 1. We write λ = µ+ σ with

µ = (λ1, . . . ,λm, 0, . . . , 0) and σ = (0, . . . , 0,λm+1, . . . ,λn).

Then it holds ‖µ‖q$q(n) + ‖σ‖q$q(n) = ‖λ‖q$q(n) ≤ 1. Using (5), we get

‖
n
∑

i=1

λiyi‖
q
Y ≤ ‖

m
∑

i=1

λiyi‖
q
Y + ‖

n
∑

i=m+1

λiyi‖
q
Y

≤ ‖µ‖q$q(m) sup
‖κ‖"q(m)≤1

‖
m∑

i=1

κiyi‖
q
Y + ‖σ‖q$q(n−m) sup

‖κ‖"q(n−m)≤1
‖

n∑

i=m+1

κi−myi‖
q
Y .

Using (6) and ‖µ‖q$q(n) + ‖σ‖q$q(n) = ‖λ‖q$q(n) ≤ 1, it follows

‖
n∑

i=1

λiyi‖
q
Y ≤ 1.

Taking the supremum over all λ with ‖λ‖$q(n) ≤ 1 gives (7).

Now let z, w ∈ X ⊗ Y , and let ε > 0. Choose a representation z =
∑m

i=1 xi ⊗ yi with

‖(xi)‖$q(m,X) sup
‖λ‖"q(m)≤1

‖
m
∑

i=1

λiyi‖Y ≤ (‖z‖q + ε)1/q.

Du to the homogeneity of the tensor product, we can assume without loss of generality

‖(xi)‖
q
$q(m,X) ≤ ‖z‖q + ε, sup

‖λ‖"q(m)≤1
‖

m∑

i=1

λiyi‖
q
Y ≤ 1.

13



Analogously, we choose a representation w =
∑n

i=m+1 xi ⊗ yi with

‖(xm+i)‖
q
$q(n−m,X) ≤ ‖w‖q + ε, sup

‖λ‖"q(n−m)≤1
‖

n
∑

i=m+1

λi−myi‖
q
Y ≤ 1.

Then with (7)

‖(xi)‖
q
$q(n,X) sup

‖λ‖"q(n)≤1
‖

n
∑

i=1

λiyi‖
q
Y

≤
(

‖(xi)‖
q
$q(m,X) + ‖(xm+i)‖

q
$q(n−m,X)

)

· 1

≤ ‖z‖q + ‖w‖q + 2ε.

Since z + w =
∑n

i=1 xi ⊗ yi is a representation of z + w, we infer

‖z +w‖q ≤ ‖z‖q + ‖w‖q + 2ε.

Sending ε → 0, we arrive at the generalized triangle inequality.

This proves the first part of theorem 4.

For the second part, we first show that the q-quasi norm on (q(Nd)⊗q (q(N) is a crossnorm,

i.e. for simple tensors x⊗ y it holds ‖x⊗ y‖ = ‖x‖$q(Nd) ‖y‖$q(N):

Let x⊗ y =
∑n

i=1 xi ⊗ yi be any representation of x⊗ y. According to lemma 1 choose a

functional φ such that

φ(x) = ‖x‖$q(Nd) and
n
∑

i=1

|φ(xi)|
q ≤

n
∑

i=1

‖xi‖
q
$q(Nd)

.

Now set M = (
∑n

i=1 |φ(xi)|
q)1/q and λi = φ(xi)/M . Then, ‖λ‖$q(n) = 1.

We have

‖(xi)‖$q(n,$q(Nd)) sup
‖µ‖"q(n)=1

‖
n
∑

i=1

µiyi‖$q(N) ≥ ‖(xi)‖$q(n,$q(Nd)) ‖
n
∑

i=1

λiyi‖$q(N)

=

(
n
∑

i=1

‖xi‖
q
$q(Nd)

)1/q

·
1

M
‖

n
∑

i=1

φ(xi)yi‖$q(N)

=

(∑n
i=1 ‖xi‖

q
$q(Nd)

∑n
i=1 |φ(xi)|

q

)1/q

· ‖φ(x)y‖$q(N) ≥ ‖x‖$q(Nd) ‖y‖$q(N).

Taking the infimum over all representations of x⊗ y yields

‖x⊗ y‖ ≥ ‖x‖$q(Nd) ‖y‖$q(N).

14



The reverse inequality ‖x⊗ y‖ ≤ ‖x‖$q(Nd) ‖y‖$q(N) is trivial by definition of ‖ · ‖.

Finally we show the isometry (q(Nd) ⊗q (q(N) ∼= (q(Nd, (q(N)). The remaining isometry

(q(Nd, (q(N)) ∼= (q(Nd+1) is standard.

Let us first consider the mapping

Λ : (q(N
d)⊗ (q(N) → (q(N

d, (q(N)),

z =
n∑

i=1

xi ⊗ yi -→

[

f : (j1, . . . , jd) -→
n∑

i=1

xj1···jdi yi

]

.

The mapping Λ is well defined. To see this, take two representations

z =
n
∑

i=1

xi ⊗ yi =
n̄
∑

i=1

x̄i ⊗ ȳi ∈ (q(N
d)⊗ (q(N)

and denote

f : (j1, . . . , jd) -→
n
∑

i=1

xj1···jdi yi, f̄ : (j1, . . . , jd) -→
n̄
∑

i=1

x̄j1···jdi ȳi.

Let ej1···jd be the evaluation functional of the (j1, . . . , jd)-th component:

ej1···jd(y) = yj1···jd , y = (yi1···id)(i1,...,id)∈Nd ∈ (q(N
d).

Then we have

f((j1, . . . , jd)) =
n
∑

i=1

xj1···jdi yi =
n
∑

i=1

ej1···jd(xi)yi

=
n̄∑

i=1

ej1···jd(x̄i)ȳi =
n̄∑

i=1

x̄j1···jdi ȳi = f̄((j1, . . . , jd));

hence f = f̄ .

Now we show, that Λ is of norm 1: Let z ∈ (q(Nd)⊗ (q(N) and f = Λ(z). For an arbitrary

representation z =
∑n

i=1 xi ⊗ yi, we have

‖f‖q
$q(Nd,$q(N))

=
∞
∑

j1,...,jd

‖
n
∑

i=1

xj1···jdi yi‖
q
$q(N)

≤
∞
∑

j1,...,jd

n
∑

i=1

|xj1···jdi |q ‖yi‖
q
$q(N)
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=
n∑

i=1

‖xi‖
q
$q(Nd)

‖yi‖
q
$q(N)

≤
n∑

i=1

‖xi‖
q
$q(Nd)

max
i=1,...,n

‖yi‖
q
$q(N)

≤ ‖(xi)‖
q
$q(n,$q(Nd))

(

sup
‖λ‖"q(n)≤1

‖
n
∑

i=1

λiyi‖$q(N)

)q

.

Taking the infimum over all representations on the right, we arrive at

‖f‖q
$q(Nd,$q(N))

≤ ‖z‖q.

Thus, Λ has norm ≤ 1. To see the equality, take a simple tensor x⊗ y ∈ (q(Nd) ⊗ (q(N).

Then we have

‖f‖q
$q(Nd,$q(N))

=
∞
∑

j1,...,jd

‖xj1···jdy‖q$q(N) =
∞
∑

j1,...,jd

|xj1···jd |q ‖y‖q$q(N)

= ‖x‖q
$q(Nd)

‖y‖q$q(N) = ‖x⊗ y‖.

Thus, Λ has norm 1 and gives by continuous extension to (q(Nd)⊗q (q(N) an operator

Λ̃ : (q(N
d)⊗q (q(N) → (q(N

d, (q(N))

of norm 1.

Next, consider the mapping

Γ̃ : (q(N
d, (q(N)) → (q(N

d)⊗q (q(N),

which is the continuous extension of the mapping Γ defined on simple functions

f : {1, . . . , n}d → (q(N), (j1, . . . , jd) -→ cj1···jd ∈ (q(N).

With such a simple function, we associate

z = Γ(f) =
∑

(j1,...,jd)∈{1,...,n}d

χj1···jd‖cj1···jd‖$q(N)
︸ ︷︷ ︸

xj1···jl

⊗
cj1···jd

‖cj1···jd‖$q(N)
︸ ︷︷ ︸

yj1···jd

,

where χj1···jd denotes the characteristic function of the multi-index (j1, . . . , jd).
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We show, that Γ is of norm 1:

‖z‖q ≤




∑

{1,...,n}d

‖cj1···jd‖q$q(N)



 sup
‖λ‖

"q(nd)≤1
‖

∑

{1,...,n}d

λi
cj1···jd

‖cj1···jd‖$q(N)
‖q

︸ ︷︷ ︸

≤1

≤
∑

{1,...,n}d

‖cj1···jd‖q$q(N) = ‖f‖q
$q(Nd,$q(N))

.

Choosing f = χj1···jdcj1···jd with cj1···jd ∈ (q(N) and norm 1, we see ‖z‖ = 1 = ‖f‖. Hence,

Γ as well as the continuous extension Γ̃ are of norm 1.

Now consider Γ̃Λ̃ : (q(Nd)⊗q (q(N) → (q(Nd)⊗q (q(N). This mapping has norm ≤ 1. We

show, that for z =
∑n

i=1 xiyi with supp (xi) ⊂ {1, . . . , N}d, this mapping is the identity:

Γ̃Λ̃

(
n
∑

i=1

xiyi

)

= Γ̃

(

(j1, . . . , jd) -→
n
∑

i=1

xj1···jdi yi

)

=
∑

{1,...,N}d

χj1···jd‖
n∑

i=1

xj1···jdi yi‖$q(N) ⊗

∑n
i=1 x

j1···jd
i yi

‖
∑n

i=1 x
j1···jd
i yi‖$q(N)

=
∑

{1,...,N}d

χj1···jd ⊗
n∑

i=1

xj1···jdi yi =
n∑

i=1

xi ⊗ yi.

This establishes (q(Nd)⊗q (q(N) ∼= (q(Nd, (q(N)).

5 Approximation in L2

We are now ready to describe the approximation spaces Aα
q for best N term approximation

in L2([0, 1]d) using the anisotropic (’sparse grid’) tensor product basis {ψj1k1...jdkd}.

Definition 3. For d ≥ 2 and q−1 = α+ 1/2, we define

B̂α
q ([0, 1]

d) := Bα
q (Lq([0, 1])) ⊗q . . .⊗q B

α
q (Lq([0, 1])).

Using theorem 4 (respectively theorem 3 for the case q ≥ 1) and the norm equivalences

(4), we get

Lemma 2. For α < α0 and q−1 = α+ 1/2, we have

‖
∑

ji,ki

cj1k1,...,jd,kdψj1k1,...,jdkd‖B̂α
q ([0,1]d) ∼ ‖(cj1k1,...,jdkd)‖$q(Nd).
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We now prove the Bernstein and Jackson inequalities for the spaces B̂α
q ([0, 1]

d).

Lemma 3 (Bernstein inequality). For all S ∈ ΣN , we have

‖S‖B̂α
q ([0,1]d) ! Nα ‖S‖L2([0,1]d).

Proof. Let S =
∑N

i=1 ciψi, where ψi ∈ {ψj1k1 ⊗ · · ·⊗ψjdkd}. Using lemma 2 as well as the

mutual equivalence between finitely supported (q norms,

‖x‖$p(N) ≤ ‖x‖$q(N) ≤ N1/q−1/p ‖x‖$p(N), x ∈ R
N , 0 < q ≤ p ≤ ∞

we get (using (3))

‖S‖B̂α
q ([0,1]d) ∼ ‖(ci)‖$q(N) ! N1/q−1/2‖(ci)‖$2(N) ! Nα ‖S‖L2([0,1]d).

Lemma 4 (Jackson inequality). For all f ∈ B̂α
q ([0, 1]

d), we have

inf
S∈ΣN

‖f − S‖L2([0,1]) ! N−α ‖f‖B̂α
q ([0,1]d)

.

Proof. Since f ∈ B̂α
q ([0, 1]

d), we have c ∈ (q(Nd) for the coefficient vector of the wavelet

decomposition. Using (3) and theorem 2, we infer with τ = q and (q,q = (q

inf
S∈ΣN

‖f − S‖L2([0,1]) ! N−α ‖c‖$q(Nd) ! N−α ‖f‖B̂α
q ([0,1]d).

Eventually, we can apply theorem 1 to characterize the approximation spaces:

Theorem 5. The approximation space Aα
q (L2([0, 1]d)), q−1 = α + 1/2, 0 < α < α0,

corresponding to an approximation rate α in L2([0, 1]d) by best N term approximation

using the anisotropic (’sparse grid’) tensor product wavelet basis {ψj1k1...jdkd} is given by

Aα
q (L2([0, 1]

d)) = B̂α
q ([0, 1]

d).

Proof. Theorem 1 together with lemmata 3 and 4 yields

Aα
q (L2([0, 1]

d)) = (L2([0, 1]
d), B̂β

s ([0, 1]
d))α/β,q, s−1 = β + 1/2,
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for β with α < β < α0. From the isomorphism to (q-spaces and the corresponding

interpolation result,

((2, (s)θ,q = (q,

for

θ =
1/q − 1/2

1/s − 1/2
=

α

β
,

it follows that

(L2([0, 1]
d), B̂β

s ([0, 1]
d))α/β,q = B̂α

q ([0, 1]
d).

6 Approximation in H1

In this section we treat bestN term approximation with respect to the SobolevH1([0, 1]d)-

norm. The methods are similiar to the L2-case. Therefore, we won’t go too much into

detail here.

Note, that we can decompose the space H1([0, 1]2) into an intersection of tensor products

of one-dimensional spaces:

H1([0, 1]2) ∼=
(

H1([0, 1]) ⊗2 L2([0, 1])
)

∩
(

L2([0, 1]) ⊗2 H
1([0, 1])

)

,

and generally (denoting L2([0, 1]) by H0([0, 1])),

H1([0, 1]d) ∼=
d
⋂

k=1

(
d

⊗

i=1

Hδik([0, 1])

)

.

Hence, it suffices to treat the case H1([0, 1]) ⊗2 L2([0, 1]) ⊗2 . . .⊗2 L2([0, 1]).

Renormalizing the wavelet basis ψjk in the first variable by mulitplying with a factor 2−j ,

we get a basis normalized in H1([0, 1]) satisfying the norm equivalence

‖
∑

j,k

cjk(2
−jψjk)‖H1([0,1]) ∼ ‖(cjk)‖$2(N),

which will be the substitute for (3); see e. g. [9], [10].

Analogously, the Besov norm equivalences (4) read for α < α0

‖
∑

j,k

cjk(2
−jψjk)‖Bα

q (Lq([0,1])) ∼ ‖(cjk)‖$q(N), q−1 = α− 1/2.
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The spaces corresponding to the remaining variables keep unchanged. Hence, we have

norm equivalences

‖
∑

ji,ki

cj1k1...jdkdψj1k1...jdkd‖H1([0,1])⊗2L2([0,1])⊗2...⊗2L2([0,1]) ∼ ‖(c)‖$2(Nd)

as well as

‖
∑

ji,ki

cj1k1...jdkdψj1k1...jdkd‖X ∼ ‖(c)‖$q(Nd)

for the space

X = B1/q+1/2
q (Lq([0, 1])) ⊗q B

1/q−1/2
q (Lq([0, 1])) ⊗q . . . ⊗q B

1/q−1/2
q (Lq([0, 1])).

Now the Jackson and Bernstein inequalities imply a characterization of the aproximation

spaces by interpolation spaces. We skip further details (intersection etc.) and formulate

the result:

Theorem 6. The approximation space Aα
q (H

1([0, 1]d)), q−1 = α + 1/2, 0 < α < α0 − 1,

corresponding to an approximation rate α in H1([0, 1]d) by best N term approximation

using the anisotropic (’sparse grid’) tensor product wavelet basis {ψj1k1...jdkd} is given by

Aα
q (H

1([0, 1]d)) = B̃α
q ([0, 1]

d),

where the space B̃α
q ([0, 1]

d) is defined as

B̃α
q ([0, 1]

d) =
d⋂

k=1

(
d⊗

i=1

Xδik([0, 1])

)

(q-tensor product) with

X0([0, 1]) = Bα
q (Lq([0, 1]))

and

X1([0, 1]) = Bα+1
q (Lq([0, 1])).

Proof. As before, theorem 1 yields

Aα
q (H

1([0, 1]d)) = (H1([0, 1]d), B̃β
s ([0, 1]

d))α/β,q, s−1 = β + 1/2,

for β with α < β < α0 − 1. From the isomorphism to (q-spaces and the corresponding

interpolation result, it follows that

(H1([0, 1]d), B̃β
s ([0, 1]

d))α/β,q = B̃α
q ([0, 1]

d).
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Remark 3. We have shown in [15], that solutions to elliptic PDEs (with smooth data) in

polyhedral domains (in dimensions 2 and 3) can be approximated by sparse grid wavelet

spaces (appropriately refined towards the singular support) built from biorthogonal spline

wavelets of local polynomial degree p at any rate < p+ 1 with respect to the L2-norm and

at any rate < p with respect to the H1-norm. This readily implies that corner and edge

singularities in solutions to elliptic PDEs in polyhedral doma ins (at least in dimensions

2 and 3) belong to the Besov scales B̂α
q ([0, 1]

d) and B̃α
q ([0, 1]

d).

Remark 4. The examples of approximation in L2([0, 1]d) and H1([0, 1]d) have been chosen

since they are of interest to the numerical analyst. Clearly, any appropriate scale of spaces

admitting isomorphisms to (q-spaces gives rise to according approximation results.
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