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Abstract

Many boundary integral equations for exterior Dirichlet- and Neumann bound-
ary value problems for the Helmholtz equation suffer from a notorious insta-
bility for wave numbers related to interior resonances. The so-called com-
bined field integral equations are not affected. However, if the boundary I' is
not smooth, the traditional combined field integral equations for the exterior
Dirichlet problem do not give rise to an L?(T")-coercive variational formula-
tion. This foils attempts to establish asymptotic quasi-optimality of discrete
solutions obtained through conforming Galerkin boundary element schemes.

This article presents new combined field integral equations on two-dimens-
ional closed surfaces that possess coercivity in canonical trace spaces. The
main idea is to use suitable regularizing operators in the framework of both
direct and indirect methods. This permits us to apply the classical conver-
gence theory of conforming Galerkin methods.
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1. Introduction. The propagation of time-harmonic sound waves in a homo-
geneous isotropic medium that occupies the domain @ C R? is governed by the
Helmholtz equation, which, in non-dimensional form, reads

—AU - kU =0. (1.1)

Here, U designates the complex amplitude of either the density or of a velocity poten-
tial, see [8, Sect. 2.1], and x > 0 stands for a fixed wave number. In acoustic scattering
(1 is the complement of a bounded scatterer 2~ and will be denoted by QF := R*\ Q.
In this case Sommerfeld radiation conditions, see [17, Def. 9.5],

ou

E(x) —ikU(x) = o(r™') uniformly as r := |x| = oo (1.2)
have to be imposed “at 0o0”, whereas on I' := 92~ we prescribe either Dirichlet
boundary conditions

U=g onl for somegEH%(F), (1.3)
or Neumann boundary condition
gradU -n=¢ onl for somegoEH’%(F) . (1.4)

We take for granted that the boundary I' is Lipschitz continuous. Thus, it will possess
an exterior unit normal vectorfield n € L>(T') pointing from Q~ into QF . Numerical
approximation in mind, we will even assume that I" is a curvilinear Lipschitz polyhe-
dron in the parlance of [10]. This will cover most geometric arrangements that occur in
practical simulations. We emphasize that non-smooth geometries are the main focus
of this paper.

It is well known that the above exterior boundary value problems possess unique
solutions, see [17, Thm. 9.10]:

THEOREM 1.1. The exterior Dirichlet problem (1.1) and (1.3), and the exterior
Neumann problem (1.1) and (1.4), respectively, for the Helmholtz equalion have at
most one solution satisfying the Sommerfeld radiation conditions (1.2).

Integral equation methods are particularly suited for the numerical treatment of
exterior scattering problems, because they reduce the problem to equations on the
bounded surface I'. A variety of schemes is conceivable, among them direct and in-
direct methods. However, those that can be derived from an integral representation
formula for Helmholtz solutions in a straightforward fashion display a worrisome in-
stability: if k2 agrees with a Dirichlet or Neumann eigenvalue (resonant frequency) of
the Laplacian in Q7 then the integral equations may fail to possess a unique solution.
In light of Thm. 1.1 this has been dubbed a spurious resonance phenomenon.

Spurious resonances are particularly distressing for numerical procedures based
on the integral equations, because whenever 2 is close to an interior resonant fre-
quency the resulting linear systems of equations will be extremely ill-conditioned. A
wonderful remedy is offered by the combined field integral equations (CFIE), which
owe their name to the typical complex linear combination of different boundary in-
tegral operators on the left hand side of the final boundary integral equation. In the
case of indirect schemes this trick was independently be discovered by Brakhage and
Werner [1], Leis [16], and Panich [18] in 1965. In 1971 Burton and Miller used the
same idea to obtain direct boundary integral equations without spurious resonances

1



[6]. Meanwhile, CFIEs have become the foundation for numerous numerical methods
in direct and inverse acoustic and electromagnetic scattering [8, Ch. 3 & 6].

In terms of mathematical analysis many combined field integral equations are
challenging. This is particularly true for non-smooth surfaces, for which the double
layer integral operator is no longer a compact perturbation of the identity in L?(T').
Thus, in the case of the exterior Dirichlet problem, Fredholm theory can no longer
be used to settle the issue of existence and uniqueness of solutions of the traditional
CFIE. Hence, modified CFIE involving a regularizing operator have been suggested
for theoretical purposes [8,18].

Many options are available for the discretization of combined field integral equa-
tions. We will only consider Galerkin schemes, because they seem to be the only
approach amenable to a rigorous theoretical treatment so far. However, the very lack
of coercivity of combined field integral equations mentioned above turns out to be a
major obstacle to obtaining convergence results for Galerkin methods.

Hence, in this paper we take the cue from the idea to introduce regularizing opera-
tors. We derive new variational formulations that are coercive in natural trace spaces,
which guarantees asymptotically quasi-optimal convergence of Galerkin boundary el-
ement solutions. For the indirect approach two regularizing approaches will be ex-
amined, which differ in which potential is targeted by regularization. One of these
approaches could also be successfully applied to electromagnetic boundary integral
equations [5]. We will also demonstrate how it can be adapted to Burton and Miller’s
direct formulation.

2. Coercivity. In this section we briefly review the abstract theory of coercive
bi-linear forms and its implications for Galerkin discretization. In general these results
are well known, c¢f. [17, Ch. 2], but they will be supplied for the sake of completeness.
Below V' stands for a reflexive Banach space over the field C. This space has to
support an isometric, involutory, anti-linear mapping ~: V' +— V (related to complex
conjugation). By V' we denote the dual space, and by (). the duality pairing.

Let d: V x V + C be a bi-linear form, which is supposed to feature

e continuity, that is 3C >0: |d(u,v)| < C|lully ||v]l,, forall u,v € V', (2.1)
o V-ellipticity, that is Je¢>0: |d(u,a)| >c ||u||%/ forallu eV . (2.2)
Therefore, we can associate a bounded operator D : V +— V' to d(-,-) by
(Du,v)yi oy i=d(u,v) Yu,v €V .

THEOREM 2.1. Given the above properties (2.1) and (2.2) of d(-,-), the operator
D is an isomorphism.
Proof. By the definition of the norm in V' we have

(Dl — sup 1400 5 1d(0.7)
VA Telly = Tl

This implies that D is injective and has closed range. Assume that D(V') # V'. Since
D(V) C V' is closed, the Hahn-Banach theorem confirms the existence of v* € V"' =
V, v* # 0, such that (Du,v*),,, ., = 0 for all u € V. In particular d(7*,v*) = 0,
which yields a contradiction. Altogether, D has to be surjective. O

DEFINITION 2.2. A bi-linear form a : V x V > C is called coercive, if it satisfies
a Garding-type inequality

>

>cllull, VueV.

e>0:  a(u, @) + (Ku, @)y | > cllull}, YueV,
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with a compact operator K : V — V',

THEOREM 2.3. The operator A : V — V' associated with a continuous bi-linear
form a : V xV = C through (Au,v),, .\ = a(u,v), u,v € V, is Fredholm of index
zero.

Proof. Set

d(u,v) = a(u,v) + (Ku,v) 0y » w,v €V .

It is clear that the bi-linear form d is continuous. By Theorem 2.1 and (1.1) its
associated operator D : V' — V' is an isomorphism. By definition of d we have

D=A+K <<= A=D-K.

Hence, A is a compact perturbation of an isomorphism. According to [17, Thm. 2.26]
This implies that A is Fredholm of index 0.0

LEMMA 2.4. If a: V xV +— C is a continuous coercive bi-linear form for which
a(u,v) =0 for all v € V implies u = 0, then there is cs > 0 such that

sup > csllully,  and supM
vev  |Ivlly vev  |vlly

la(w, )| > cqllully VueV.

Proof. The assumption of the theorem means that the operator A : V — V
related to a(-,-) is injective. By Thm. 2.3 A is bijective and the inf-sup conditions
are a consequence of the open mapping theorem and of the fact that the norms of an
operator and of its adjoint agree [19, Thm. 4.15]. O

Next, we consider a sequence of closed subspaces V;, C V, n € N. The V,, must be
stable under conjugation. We assume that there is an associated sequence of bounded
linear operators P, : V — V), that converges to zero strongly, i.e.,

YueV: nlgr;o lu — Ppull, =0. (2.3)

If V is a Hilbert space and {V,}, oy is a family of nested finite-dimensional subspaces
such that U, V,, C V is dense, then P, can be chosen as orthogonal projection onto
Vi

Now, we consider the variational problem

weV: a(u,v)=(p,V)y.y WWEV, (2.4)

with ¢ € V'. For the remainder of this section, u will always stand for its solution.
The following theorem is the main tool in proving convergence for conforming
Galerkin approximations of coercive variational problems. A first version was discov-
ered by A. Schatz [20], see also [23].
THEOREM 2.5. If the bi-linear form a : V x V +— C is coercive, continuous, and
injective (i.e. a(u,v) =0 for allv € V implies w = 0), then there is an N € N such
that the variational problems

up € Voo : alun,vn) = (0, 0n) iy Yon € Vi s

have unique solutions uy € V,, for all n > N. Those are asymptotically quasi-optimal
in the sense that there is a constant C > 0 such that

— < C inf — .
o= unlly < C it flu = vnly
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Proof. We define the operator S : V — V by
a(v,SW) = (Kw, )y, YV EV.

Please note that Lemma 2.4 guarantees the existence of A~!. Also by Lemma 2.4 S
is continuous and we find S = (4*)~' K. Hence, S inherits compactness from K. Re-
member that compact operators convert strong convergence into uniform convergence,
see [15, Cor. 10.4], which means

lim [|(P, = I)S|l, =0. (2.5)

n—o0

Pick some uj € V,, and estimate

|a(up, (Id + PpS)ay)| > |a(up, (Id + S)ay)| — |a(up, (Py, — Id)Sap,)|
> |a(un, @n) + (K, @n)yry | = lall |(Po = Id) S|y Jually,
> (ca — ||al| |(P. = Id)S||y) Ilunll? -

Thanks to (2.5) it is possible to choose N € N such that ||a||[|(P, — Id)S||y < 3ca
for all n > N. Then, with vy, := (Id + P,S)ay € V,,

|alun, vn)| > ec llunlly, -
Making use of the (uniform) continuity of P, and S, this yields the inf-sup condition

sup 12w o)l lunlly Vi € Vayn > N . (2.6)

VREV, ||Uh||v

Using (2.6) and Galerkin orthogonality we get for any vy, € V,,, n > N,
lu = unlly <llu—wnlly + llvn — unlly
1 a(vp — up,w
<lu=vally + — sup Lot~ uns )]

d w,eVy, ||Uh||v

lla|
< (4 =) llu = vally -
Cd

This is the asserted asymptotic quasi-optimality with C' := 1+ ||a||/c4. O

3. Boundary integral operators. In this section we review important proper-
ties of boundary integral operators related to Helmholtz’ equation. The main reference
is the textbook [17] and the pioneering work by M. Costabel [9].

Without further explanation we will use Sobolev spaces H®, s € R, on domains
and boundaries, in particular H*(Q), Hz(T), and H 2(T), ¢f. [17, Ch. 2]. Here, we
merely recall the definition of the Sobolev-Slobodeckij norm

(u(x) ~ u())’
Iy = Wl + el gy o Wl o= [ [ = astey).
rr

The corresponding Frechet spaces on unbounded domains will be tagged by a subscript
loc, e.g. HL.(Q). Their associated dual spaces will carry the subscript “comp” to

illustrate that they contain compactly supported distributions.
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Writing
H(A,Q) = {U € Hlloc(Q)7 AU € L%OC(Q)} .

for the domain of the Laplacian, we have continuous and surjective trace operators,
cf. [9, Lemma 3.2],

Dirichlet trace ~p : HL (Q) — H>(T) ,
Neumann trace vy : H(A,Q) — H_%(F)
that generalize the following pointwise traces of smooth U € C'>((Q),
(vpU)(x) :==U(x) and (ynU)(x):=gradU(x) -n(x), xel,

respectively.
So far Q C R® has been a generic domain. Returning to our particular setting,
superscripts + and — will tag traces from Q= /QF. Jumps are defined as

[oUlr =750 =7pU , [wUlp = 73U — 93U -
Averages are denoted by
{wU}r = 305U +750) » AUl = $(7U +730) -
We recall that the bi-linear symmetric pairing
(p,v)p = /uvdS, p,v € L*(T),
r

can be extended to the duality pairing on H~2(I') x H (I'). Thanks to the definition
of the Neumann trace we have the integration by parts formulas

/ gradU - gradV + AUV dx = <7;,U,75V>F , (3.1)
o
— / gradU -gradV + AUV dx = <7]‘{}U,7$V>F , (3.2)
o+

for U € Hipe(A, Qi), Ve Hlloc(ﬂi). We will also need spaces with “vanishing aver-
age”

HE) ={u e H¥ (D), (1,u), = 0},
HI*(T) :={p € H¥(T), (i, 1) = 0} ,

where 1 € Hz(I') means the constant function = 1 on I, whereas 1 € H~z (I') refers
to the functional v — [.vdS.

1 _1
LEMMA 3.1. The spaces HZ (T') and H, *(I') are dual to each other with respect
to the pairing (-, )p.
Proof. For w € H: (T") denote by w* the average w* := fF wdS - 1. We point out
that

2

%112 2 * (12

2
H3(T)
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Therefore, for ¢ € H*_% (1)

[(pow —w )| _ | (o, w)y |

su
[w—wl_, P
H?2

sup |<§0,’LU>F| S sup
y il
() weHZ(T) H?=(T)

el ;-1 oy =
HoEm weH? (T) ”w”H%(F) weH? (T)

This amounts to the assertion of the theorem. 0
For fixed wavenumber x > 0 a distribution U is called a radiating Helmholtz
solution, if

AU +£U=0 inQ-UQt,

(3.3)
%—U(x) —ikU(x) = o(r~') uniformly as r := |x| = 00 .
r
Based on the Helmholtz kernel
exp(ik|x — y|)
b, =

we can state the transmission formula for radiating Helmholtz solution U [17,
Thm. 6.10]

U ==%.([wUlp) + ¥ (o U]r) (3-4)

with potentials

single layer potential: W& (\)(x) = /@K(x,y))\(y) dS(y),
r

double layer potential: U (u)(x) = 6%#(&)}’) u(y)dS(y) .
n(y

The potentials themselves provide radiating Helmholtz solutions, that is
(A+rHTE =0 , (A+rHIE, =0 inQ UQT. (3.5)
Moreover, they describe continuous mappings, see [17, Thm. 6.12],
U o H 3(T) = HE(R?) N Hige(A, Q0 UQY)
UK H2 (D) o Hige(A, Q™ UQT) .

This means that we can apply the trace operators to the potentials. This will yield the
following four continuous boundary integral operators, ¢f. [17, Thm. 7.1] and [14].
Vi :H(T) = HtNT), -1 <s<0 , Ve:={w¥} ,
Ke:H(T) = H*(T), 0<s<1 , Kg:={7wP}r ,
Ki:H*() » H'(T), -1<s<0 , Ki:={w¥},,
Dy :H*(I) = H*'(I),0<s<1 , Dy:=—{w¥Pr} .

By the jump relations [17, Thm. 6.11]
-\ ,VYAeH (),

[vp¥& N =0 [N EEL (V] = X
[o¥pL (W)l =u [YnTEL ()] =0 , Vue H2(T) .
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we find

YpUp, =Ko —3Id ,  ApUE =K.+ i1d (3.6)
WO, =Ki+iId YEUE =K — 11d
Besides, the Newton potential
(NN = [ 063 FR)dy o N Hoh (B) 1 Hb(B).
R3
can be used to get the concise representations
Vi=7p°Nso7p, (3.7)
Ke ={yp}r oNwovx, (3.8)
Ki ={wlroNsorp, (3.9)
D, =vvoNgoyxn . (3.10)

Here, an * labels the dual adjoint operator. These expressions immediately show the
symmetries [17, Thm. 6.15,6.17]

(¥, Vo = (0, Vi) Yo, 9p € HT(D), (3.11)
(@, Kuu)yp = (Kip,u)p Vo€ H3(D), ue H*(T), (3.12)
(Duu,v)p = (Dyv,u)p  Vu,v e HZ(T). (3.13)

Crucial will be the ellipticity of boundary integral operators in the natural trace norms
[17, Cor. 8.13, Thm. 8.21]

_ —1
(@ Vogdr 2 evllely g, Vo€ HTHD), (3.14)

1
(Dov,v)p > cp Hv”iﬁ(r Yve H(T) . (3.15)

)

Therefore, Vo : H=2(T') — Hz(T') and Dy : H*% (T) — H:% (T') are isomorphisms and
we conclude that for all p € H=2(T), v € H2(T)

Vol 4 gy % el -y Voo € HTE(T) (3.16)
(Vg'v, 7). > ey ||u||j{%(r) Vv e H:(T), (3.17)
L Y CI T T HE(T), (3.18)
(.05 0) 2 2 0112y, Vo€ HHD). (3.19)

Here, ~ designates equality up to constants that only depend on T'.
;From [17, Thm. 9.15] we learn that for u,v € H(T)

(Dyu, v = (Vieurlpu, curlpo), — 6% (Vi (u-n),v - n)p (3.20)

where V,; has to be read as vectorial single layer potential, and curly : H*(I') = L¢(T)
is the surface rotation, which agrees with the rotated surface gradient. It can be
extended to a mapping curlp : H2 (T) — (H~2(I))® [4].

7



LEMMA 3.2. The operators Vx — Vo : H™2([') — Hz(D), K, — Ko : H2() —
Hz (D), and D, — Do : H2(I') — H~=(T') are compact.

Proof. Note that 5(1“) = % is an analytic function on R. Therefore the
integral operator

(N f)(x) == / B(x - y) f(y) dy

R3

has a continuous kernel with bounded derivatives and weakly singular second deriva-
tives. This means that N, is an operator of order +4, continuous N : Hz 2 (R?) —

HZ (R?). Therefore we conclude the continuity of

V., —Vo=7poNsorh: H 2([)— HYT) .

The compact embedding H'(I') < Hz (') < H~3(I) finishes the proof of the first
assertion.
To confirm the second, we point out that

vy tH3(D) = HZ2 (2~ uQt)

comp

is continuous due to the continuous embedding HZ2 (2~ U Q) C Hioe(A, Q- UQT).
Then, the identity

K — Ko = {70 }r o Nx 0 7

Thus, K, — Ko : H2(I') — H'(I'). This, combined with the compactness of the
embedding H(T') < H= (), gives the result.

To confirm the assertion for the hypersingular operator, we appeal to the formula
(3.20) and the compactness of V,, — Vy that carries over to the vectorial single layer
potential operator. Further the multiplication with n is an isometry L?(I') — L*(T')
such that the second term in (3.20) is readily seen to be a compact perturbation. O

4. Indirect boundary integral equations. We recall that indirect methods
are based on a potential representation for (exterior) radiating Helmholtz solutions
in QF. By virtue of (3.5) we may set

U=95(4), € H2(I) or U= (u), uec H(T). (4.1)

Applying v}, to (3.6) we obtain the following integral equations for the exterior Dirich-
let problem:

V(@) =g or (Ke+ildju=g. (4.2)
Similarly, the resulting boundary integral equations for the Neumann problem are
(Ky—1Id)p=¢ or —Dyp=rp. (4.3)

However, these boundary integral equations are haunted by the problem of “resonant
frequencies” [7, Sect. 7.7]: if k2 is a Dirichlet eigenvalue of —A in Q~, then the
Neumann traces of the corresponding eigenfunctions will belong to the kernel of V,
and K} — %I d. Conversely, if k2 is a Neumann eigenvalue, the Dirichlet traces of the
eigenfunctions form the kernel of D, and K, + %I d. This fact destroys injectivity of the
operators in the boundary integral equations and bars us from applying the powerful
Fredholm theory outlined in Sect. 2.



4.1. Classical CFIE. As pointed out in the introduction, the awkward potential
lack of uniquness of solutions of (4.2) and (4.3) led to the development of the classical
combined field integral equations [8, Sect. 3.2]. They can be obtained by an indirect
approach starting from the trial expression

U =¥ (u) +inPe(u) , (4.4)

with real 7 # 0. Applying the exterior Dirichlet trace results in the boundary integral
equation

g=(31d+Ky)u+inVu, (4.5)
whereas the exterior Neumann problem leads to
¢ = —Dyu+in(K; — 3Id)u . (4.6)
To begin with, we discuss (4.6) and set
Cp := =Dy +in(K; — $1d) .

LEMMA 4.1. The operator C,, : H2(T) — H—2(T) is injective.

Proof. Let u € H2(T) be a solution of C,u = 0. Then U given by (4.4) is a
Helmholtz solution that satisfies WIJ\F,U = 0. Thus, the unique solvability of the exterior
Neumann problem according to Thm. 1.1 enforces U = 0 in Q7.

By the jump conditions we conclude

YpU =—u and U =inu.

As a consequence of the integration by parts formula
i17/|u|2 dS = (7zU,pU), = / |gradU|* — k?|U|* dx .
r Q-

Since n € R\ {0}, this involves v = 0.0

The equation (4.6) is set in the space H 2 (T). Hence, the natural test space
is H %(I‘), which perfectly matches the space for the unknown u. We arrive at the
variational problem: find u € H3 (y) with

(Co,v)p = (p,0) Vo€ HZ(T). (4.7)

The next result shows that the assumptions of the abstract theory of Sect. 2 is satisfied
for (4.7).
LEMMA 4.2. The bilinear form (Cy-,-)p : Hz(T) x Hz (L)~ C is coercive.
Proof. We can split

(Cru, v)p = — (Dou, v)p + (Do — Dy)u, v)p +in <(K: — %Id)u,v>F .

The last term is compact since K — £Id : L*(I') ~ L*(T') is continuous and the
embedding H? (') — L2(T') is compact. The second term is compact by Lemma 3.2.
1
The H? (I')-ellipticity of the first term according to (3.15) finishes the proof. O
9



Summing up, we conclude existence and uniqueness of solutions of (4.6). In ad-
dition we get asymptotic quasi-optimality for any conforming Galerkin boundary el-
ement discretization. The discussion of actual convergence will be postponed until
Sect. 6.

The situation is much worse in the case of the exterior Dirichlet problem and the
associated CFIE (4.5). Actually, the equation is set in Hz (I') and the density « should
be sought in H -3 (T). For obvious reasons, this is not possible, unless we use a pairing
in H % (T") to convert the equation into weak form. Yet, this will introduce products
of non-local operators, which render the equations unsuitable for numerical purposes.
The fundamental difficulty is that, unlike in the case of the exterior Neumann problem,
we cannot use matching trial and test spaces, because the potentials involved in (4.1)
require arguments with different regularity. What remains is to lift the equation (4.5)
into L2(T') and seek the unknown density u in L?(T'), too.

A key argument in the theoretical treatment of (4.5) in L?(T') is the compactness
of the double layer potential operator K, : L?(I') = L?(T') on smooth surfaces, which
renders the boundary integral operator associated with (4.5) a compact perturbation
of the identity. On non-smooth surfaces this argument is not available. This prompted
us to explore the regularized formulations presented in the next two sections.

4.2. Single layer regularization. The idea is to introduce the regularizing
operator into the argument of the single layer potential in the trial expression (4.4).
However, this operator has to be chosen carefully in order to permit us to prove
uniqueness of solutions along the lines of the proof of Lemma 4.1. Crucial is the
following result, cf. [22, Sect. 5]:

LEMMA 4.3. With a constant ¢1 > 0 we have

1
(Dov, (31d + Ko)o). > c1 ||v||i{%( Yoe HZ(T) .

)

Proof. Using integration by parts (3.2) and A¥%, = 0in Q*, we get for v € H*% ()

- <7;WODL (’U) ) ’YBlIIODL (6)>[‘

<D0’U, (%Id + KO)’D>F

2 2

= ||grad W%L(U) |L2(Q+) Z c ||'71J\FI‘I’0DL(U)”H:%(F)
2 2

> Doy, = 0l

Here, we have also used the continuity of vx, the estimate (3.18), and the ellipticity
of Do. O

Setting v := Dglgzﬁ, using (3.18) and the symmetry properties of the boundary
integral operators, we conclude from Lemma 4.3 that there is ¢y > 0 such that

(6.0 (GId+ KBy > en 10,3,y Vo€ HIF (D).

Note that (3Id + Kg)y € H*_%(I‘) for all ¢ € H—2(T"). Thus, owing to Thm. 2.1 and
Lemma 3.1, the operator
R =Dy ! (LId +K;) : HI () — H2(I)

is an isomorphism.
We still have to deal with the constant functions that are in the kernel of Dg.
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LeMMA 4.4. We have |1 1 = |T|"/2 and ||1]| _1 . = |T|'/2
H3 () H™2(T
Proof. Using the definition of the Sobolev-Slobodeckij norm ||-|| the state-

H%(F)’
ment about ||1]|

is trivial. To compute ||1||H consider the variational prob-
lem

H3(T) -3 ()

1 -
inf{3 ||U||H2(F) /vdS =1},
which gives rise to the saddle point problem: seek v € Hz (I

(v,q)H%(F) + AJpqdS = 0 Vqe Hz(T),
JrvdS =

Its unique solution is v = |T'|~*. Then

JrvdS fr1dS

L T s A0 = ot ol
vers @) a3 ) H3(T)
where we have used the definition of the dual norm. O
For v > 0 we define
Ry = R(p — o()1/|0)) + v (p, 1) 1: H-3(D) » H(I) . (4.8)

Since R maps into Hé (T"), this implies that for all p € H~= (')

(7.Re) = (7,R(p = p()1/IT]) +v (o, p 1)y
= (7= PWL/IC],R(p = p(V1/ITN) + 7] (, 1)
> e llp = (/LI ) +v1 (o, D I
> e (Illy-3 gy~ WU,y o)+ 1 o Dp

2
> en (el -3 0, = o Dr IIDI72) 4 v, 1), 2

2
> en ol -y oy + (0 = 20/ IT) o, D

In the sequel we assume v > ZCN/|I‘| Then, R turns out to be H~2 (I)-elliptic. Thus,
according to Thm. 2.1, R : H=%(I') — H?(T) is an isomorphism and for some &> 0

<§*1y,u> > elloll} )y ., Vo€ HE(D) (4.9)

The new combined field integral equation (CFIE) arises from an indirect boundary
integral approach to the exterior Dirichlet problem (1.1) and (1.3) using the special
trial expression

U= (u) +in®2 (R u) uwe H3(T). (4.10)

By (3.5), this is a radiating Helmholtz solution in Q= U Q*. As before, applying the
Dirichlet trace to (4.10) yields the boundary integral equation

= (LId + Ky)u +in(Vs o R M)(u) in H3(T). (4.11)

11



For the sake of brevity, we introduce the boundary integral operator
By i= (LId+Ky) +inVy oR™' : H3(T) s HZ(T) .

LeEMMA 4.5. The boundary integral operator B, is injective.

Proof. We adapt the proof of Lemma 4.1. Let v € H? (T") be a solution of B,u = 0.
Set U := ¥§; (u) + in\PgL(ﬁ’lu), whose restriction to Q1 is a radiating exterior
Helmholtz solution with ’YEU = 0. From Thm. 1.1 we conclude U = 0 in Q*. Thus,
by the jump relations,

U =lwUlr =u , U=~ wUlp = —inR™"u.

the integration by parts formula (3.1) yields
- /p-1, — -1 —177 2 2 2
in(R™'w,@) = (10, 75'0)p. = llerad Ully -y = £ U172 (q-) -

Thanks to (4.9) and n > 0 the left hand side is purely imaginary, whereas the right
hand side is real. Necessarily, <F{u,ﬂ>r = 0, which, by (4.9), implies u = 0.0

A Galerkin discretization cannot deal with the products of boundary integral
operators occurring in the definition of B,,. The usual trick to avoid operator products

is to switch to a mixed formulation. Here, this is done by introducing the new unknown
Y h !
A:=R'u € H 3(T) and gives us

iVe(\) + (AId+KJ)u = g inH3(T),

. (4.12)
RA - u =0 in Hz(T) .

These equations are equivalent to (4.11), as Ris an isomorphism. However, a product
of integral operators is still concealed in the definition of R. Fortunately, it involves
the inverse of the boundary integral operator Dy, which suggests plain multiplication
of the second equation of (4.12) with Dgy. Yet, Dy is not an isomorphism and this
simple approach is not feasible, unless we take care of the kernel of Dy: for £ > 0
define

Dov := Do(v — (1,v)p 1/|T|) + £ (1,0} 1, ve H3(T),

which, due to (3.15) and Lemma 4.4, satisfies

(Bov,7) = (Do(v = (1,0)p 1/IT)),7 = (1,5)p 1/I )y + €] (L, v)p |
2
> ep lo = (Lo} 1PNy oy + €1 (1,00 P
> ol g, + (€~ 2en/ITD| (1, 0)p
If &£ > 2cp/|T|, then Do is H2(I)-elliptic and gives rise to an isomorphism Dy :
Hz (') — H~%(T). This choice of the parameter will be assumed, henceforth.
As illustrated by the following lemma, we can now get rid of all products of

integral operators by multiplying the second equation of (4.12) with Dy.
LEMMA 4.6. We have

DoRp = (31d+Kj)(¢) + Tep

12



where

Ty = — (o, 1) /IT|(A1d + K3)(1) + vE€[T| (p, 1)1 1 .

Proof. Obviously Dol = £|T|1 and Dov = Do, if v € Hé (T'). This means

DoRy = DoR(p — ¢(1)1/|T]) + v€|T| (0, 1) 1
= (31d+ K§) () — (o, ) /IDI(51d + K§) (1) + v€|T| (o, 1)1 1,

where (4.8) has been employed. O
Hence, applying the isomorphism Dg to the second line of (4.12) gives

iV + (Fld+Kou = g,

413
(AId+KHA+TA — Dou = 0. (4.13)

We remark that the u-component of any solution of (4.13) instantly yields a solution
of Byu = g. Therefore, Lemma 4.5 also asserts the uniqueness of solutions of (4.13).

The first equation of (4.13) is set in Hz(T), the second in H~2(T'). Thus the
duality of these spaces gives rise to the natural weak form of (4.13): seek A € H~2(T),
w € H=(T) such that for all p € H~2(T), v € H2(T)

in (1, Vi (N + (u (3Id + Ke)u), (9, )p (4.14)
—(ATd+ KN 0) . — (TA0)p + <60u,v>r - 0. :

=

The bi-linear form a : (H™2 (L) x (H
with (4.14) reads

() x (H~2(I') x (H2(T')) — C) associated

a((A>, (u>) =i (i, Ve p + (p, (51d + Kyu)p —

u (%

- <(%Id+ KS)/\,’U>F - <T/\,U>F + <60U,U>F

Now, we alter this bi-linear form by adding compact terms. First, we drop (TA,v),
which is obviously compact since the range of T has dimension two. Next, we invoke
Lemma 3.2 to replace V,; and K, with Vy and Ky, respectively. Ultimately, we end up
with the perturbed bi-linear form

a( (/\> (u)) = in (i, Vo + {u, (1d + Ko)u),. —

u v

—((31d+ KS))\,’U>F + <50u,v>F

The symmetry (3.12) permits us to cancel cross terms and confirms H 2 (I') x Hz (I)-

ellipticity
o(2): (G0 =tin 5o, + (o),

1 2 2
> (v I oy +en el ) -
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This means that the bilinear form associated with 4.14) is coercive in H~2 () x H= (T').
In addition we have established uniqueness of solutions. Therefore, we have verified
all assumptions of Lemma 2.4 and Thm. 2.5 and reap all the desirable consequences
for Galerkin discretization discussed at the end of the previous section.

Remark 4.1. The reader has to be aware that the choice of the regularizing oper-
ator R is tightly constrained by the essential cancellation of the cross terms of @. This
forces us to incorporate %Id + K§ into R. In addition, R has to be H_%(F)—elliptic,
see (4.9), and it is by no means obvious, how a choice different from (4.8) can comply
with both requirements. A

Remark 4.2. The product of the parameters v and & will enter the final varia-
tional formulation (4.14). It is important to note that uniqueness of solutions will be
squandered, if v¢ is chosen too small. Conversely, a large value for ¢ might delay the
onset of asymptotic phase, that is, in terms of the statement of Thm. (2.6) N will
become very large. The necessity to pick parameters is definitely a drawback of this
regularized formulation. A

4.3. Double layer regularization. In the previous subsection we incorporated
the regularizing operator into the single layer potential. In light of (3.14) it is also an
option to target the double layer potential in an attempt to get a compact perturbation
of the single layer boundary integral operator.

The advantage of this is that we have much more freedom in choosing the regu-
larizing operator, c¢f. Rem. 4.1. Now, we make explicit use of 2~ being a (curvilinear)
Lipschitz polyhedron: denote by I'y,...,I',, p € N, its smooth (curved) polygonal
faces and introduce the space

Hl

pw,0

(T) = HL(Ty) x -+~ x HA(T,) ¢ H'(T) . (4.15)
Then define the regularizing operator M : H="(T') = H] ,(T) by

<gradF M(p, gradf U)I‘ = (907 U)F Vv € HIW,O(F) . (416)

p

In words, M is a combination of inverse Laplace—Beltrami operators on the individual
faces I';, 7 =1, ..., p. Continuity of M is straightforward. The next lemma shows that
M is even injective, when restricted to H—2(T).

LEMMA 4.7. The space H}, (L) is dense in H3(T).

Proof. Denote by ¥ the union of closed edges of Q~. We can rely on [11,

Lemma 2.6] that claims that the embedding

O :={ueC®(7), suppun¥ =0} c H(Q)

1

is dense. Obviously, v, (C) C H! . ,(T) and the continuity of v, : H'(Q27) — Hz(T)

pw,0
finishes the proof. O
We conclude that for ¢ € Hz(T)

Mp=0 = (p,v)p=0Y € H}, o) by (4.16)
= (pv)p=0Ye Hz (D) by Lemma 4.7
> =0 by duality of H2 (') and H~=(T') .
In particular, this involves
(o MB)p = Mglps ) > 0 Vip € H-3(D)\ {0} . (4.17)
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The new regularized indirect method is based on the trial expression
U = T, (M) +inTh (¢) , o€ H (D). (418)

As above, U is a radiating Helmholtz solution in Q= U Q. If we apply the Dirichlet
trace, we arrive at the boundary integral equation

9= ((3Id +Ky) o M)(p) +inVyp in H2(T). (4.19)
This prompts us to introduce the boundary integral operator
S, = (%Id+ Ke)o M +inV, .

LEMMA 4.8. The boundary integral operator S, : H—=(T) = Hz(T) is injective.
Proof. Again, the idea of the proof of Lemma 4.1 can be applied: we assume that
¢ € H2(T) solves

((31d+Ki) o M) () +inVup = 0.

It is immediate from the jump relations that U given by (4.18) is a Helmholtz solution
with '7$U = 0, which, by Thm. 1.1, implies U = 0 in Q. Hence, the jump relations
confirm that

U =-Mp , U =inp.

Next, we use the integration by parts formula (3.1) and get
—in (Mg 2)p = (1RU 500 = | |radUP = 20T ax

Necessarily, (M, @) = 0, which can only be satisfied, if ¢ =0, ¢f. (4.17). O

Now, regard M as an operator M : H=2(T) H, o(T). As such it inherits
compactness from the embeddings H~2(I') < H~!(T). Thus, Lemma 4.8 allows to
deduce existence of solutions of (4.19) by means of a Fredholm argument, ¢f. Thm. 2.3.

As the equation (4.19) is set in the space H2(T'), a natural weak formulation
can be obtained by testing with functions in H —3 (I"). In order to avoid undesirable
products of integral operators a mixed formulation comes handy, again. We introduce
the new unknown u := My € H,, o(') and the definition of M is used as second
variational equation, which leads to the following saddle point problem: seek ¢ €
H3(T), u € H, (), such that

—(p,v)p + (gradpu,gradpv)p = 0 Vo e Hy, o(T) . '

It goes without saying that the first components of a solution (¢, u) of (4.20) will give
us a solution of (4.19). Thus, Lemma 4.8 also asserts the uniqueness of solutions of
(4.20).

Next, we aim to identify compact perturbations of the bi-linear form a
(H=3(T) x H}\, o(T)) x (H=2(T) x HL, (")) — C associated with (4.20).

LEMMA 4.9. The bilinear form (-,-)p. : Hy,, o(T) x H=3(T) = C is compact.

Proof. Compactness of a continuous bilinear form b(-,-) : X xY — C, X,Y Banach

spaces, is equivalent to the compactness of the associated operator B : X — Y'. In
15



this particular case, it boils down to the compactness of the embedding operator

Hl, o) = Hz(I), which is a well-known embedding resuls. 0
Moreover, recall the continuity K, : H2(T) — H2 (') and take into account
Lemma 3.2. Hence, up to compact perturbations we need only examine the modified

bi-linear form

A .
a ((u)’ <’Z>) = i1 (Vo, ) + (gradp u, gradp v) . , (4.21)
A € H_%(F), u,v € Hr_l)w,()(r)' By (3.14) and the Poincaré-Friedrichs inequalities
on the faces I';, i = 1,...,p, it is obvious that a is elliptic on H*%(F) X H§W7O(F).
This permits us to conclude that the bilinear form belonging to (4.20) is coercive.
By virtue of Thm. 2.5 we get asymptotic quasi-optimality of approximate Galerkin
solutions.

Remark 4.3. It is also possible to use M := —Ar!, where Ar : HY(T') = H—'(T) is
the Laplace-Beltrami operator on all of I'. The rationale why we opted for a localized
operator M is explained in the next section. A

5. Direct boundary integral equations. The direct approach to the deriva-
tion of boundary integral equations uses the representation formula

U =%5,(vpU) — ¥, (7 U) (5.1)

valid for any exterior Helmholtz solution. Applying both the Dirichlet and Neumann
trace operator to (5.1), we obtain the formulas of the Calderdn projector

U = (K + 3Id)(vpU) = Vi (7 U) (5.2)
ViU = ~Du(3hU) — (Ki - LI (35 0) . (5.3)
From these equations we can extract two boundary integral equations for both the
exterior Dirichlet and Neumann problem for the Helmholtz equation (1.1). Since, the
boundary operators applied to the unknown Cauchy datum are the same as in (4.2)

and (4.3), respectively, these boundary integral equations will also be affected by
spurious resonances.

5.1. Classical CFIE. It was the idea of Burton and Miller in [6] to consider
the following complex linear combination of the two equations (5.2) and (5.3)

(in(Ke = $1d) = D) (YSU) = (inVs + 5I1d + K)(7ZU) =0, (5.4)

where i # 0 is a real parameter. Then, for the exterior Neumann problem (1.1), (1.2),
and (1.4) we seek the unknown Dirichlet datum u € H? (T') that satisfies

Cr(u) = (inVy + $I1d +K5) () , (5.5)
where
Cp :==in(K, — %Id) -D, .

First we establish a counterpart of Lemma 4.1.
LEMMA 5.1. The boundary integral operator C,, : Hz(T) — H—z(T) is injective.

16



Proof. Pick u € H3(I') such that C,u = 0 and set U := ¥4 (u). Then Ujq- is an
interior Helmholtz solution that complies with the Robin boundary conditions

(inyp +vv)U = (in(Ky — 3Id) = Dx)u = Cou =0.

This is an immediate consequence of the jump relations. As simple argument based
on the weak formulation of the Robin boundary value problem shows Ujg- = 0. Again
appealing to the jump relations, we see 'yx,U = 0. Owing to 1.1 this implies U = 0
everywhere. Eventually we get u = [ypU] = 0.0

Now, the arguments used for the analysis of the boundary integral equation (4.6)
can be copied verbatim and give us the existence of unique weak solutions of (5.5),
cf. Sect. 4.1.

As before, the exterior Dirichlet problem described by (1.1), (1.2), and (1.3),
eludes this simple analysis, because the boundary integral equation

Fn(‘P) = (in(Kn - %Id) - Dn)(’)/z_)U) s
where p € H2(T') and
Fo :=inV, + 1I1d + K,

cannot be considered in Hz(T). Lifting it to L2(T') is a remedy only on smooth
surfaces, c¢f. Sect. 4.1. Again, it takes regularization to get a coercive variational
formulation.

5.2. Regularized formulation. The strategy for regularization closely follows
the “double layer regularization” elaborated in Sect. 4.3. It relies on a regularizing
operator M : H—2(T') — H=(T) that has to satisfy

1. M is compact.

2. (o, M@), > 0 for all p € H=3 () \ {0}.
The trick is to apply M to (5.3) before adding it to in-(5.2). Doing so is strongly
suggested by the fact that Dirichlet traces and Neumann traces belong to different
spaces so that %f,U should be lifted into H 2 (T") before adding it to in'yEU. This yields
the following boundary integral equation for the exterior Dirichlet problem

Sk(p) = (in(Kx — %Id) —MoDy)g, (5.6)
where ¢ € H2(T') is the unknown Neumann datum and
Sk :=Mo (K + 11d) +inV, .

The first result corresponds to Lemma 4.8.
LEMMA 5.2. The boundary integral operator S, : H=2 (T') — H=(T) is injective.
Proof. We consider ¢ € H=3(T') with S, = 0 and set U = U& (¢). Thanks to
(3.5) Ujq- is a solution of

~AU-k*U = 0 in Q™ |
M(yyU) +inypU = 0 onD.
This is clear from the jump relations for the single layer potential. As a Helmholtz
solution U € H'(Q2™) satisfies
/ gradU - gradV — k’UVdx — (yyU,7p5V), =0 VYV e HY(Q7).
O-
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Now, use V = U and use the boundary conditions to express v,U

Z' - —
/ |gradU|2 — I<.‘,2|U|2 dx + 5 (’yNU, M(’YNU)>F =0.
G-

Equating imaginary parts and using the assumptions on M we find v, U = 0, which
implies v, U = 0. Hence, Ujg- = 0. The jump relations for the single layer potential
involve 7EU = 0, which, by Thm. 1.1, means Uig+ = 0. As a consequence, ¢ =
— U], =0.0

This paves the way for applying the Fredholm alternative to (5.6): since

Sk =inVo +in(Ve — Vo) + Mo (K} + L1d) ,

we can invoke Lemma 3.2, the continuity of K, and the compactness of M to conclude
that Sy is bijective.

In the sequel, let us use the same operator M as in Sect. 4.3, namely the one
given by (4.16). This makes it possible to switch to a simple mixed formulation by
introducing the new unknown

u:=M((3Id + K})p + Dug) . (5.7)

Actually, u is mislabelled, because it is by no means an unknown: recalling (5.3)
we quickly realize that uw = 0, if ¢ is the exact Neumann trace. What is the point of
introducing u, nevertheless? The reason is that we aim to get a variational formulation
suitable for Galerkin discretization and in the discrete setting the approximation of u
does not necessarily vanish. The concrete variational problem reads: seek p € H -3 (1),
u € HJ, () such that for all £ € H-=(T), v e HL, o(T)

”7 <€7VH@>F + <§a U’)F = “7 <£v (Klw - %[d)g>r ’ (5 8)
—((3Id + KZ)‘P:”>F + (gradpu,gradpv)p = (Dkg,v)p . .
It is clear that ¢ € H~2(T') solves (5.6) if and only if (¢,u), u given by (5.7), solves
(5.8). Hence, Lemma 5.2 also implies uniqueness of solutions of (5.8).

As in Sect. 4.3 we can appeal to Lemma 4.9 to see that the off-diagonal terms
in (5.8) are compact. Eventually, up to compact perturbations, it turns out that the
bilinear form associated with (5.8) equals the H~z(I') x HJ, o(I)-elliptic bi-linear
form @ defined in (4.21). Hence, it is a coercive bi-linear form that underlies the
variational problem (5.8).

6. Galerkin discretization. Conforming boundary element spaces for the ap-
proximation of functions in H? (T") and H-3 (T"), respectively, are standard. First, we
equip I' with a family {7}, of triangulations comprising (curved) triangles and/or
quadrilaterals. The meshes T, have to resolve the shape of the curvilinear polyhedron
Q2 in the sense that none of their elements may reach across an edge of 2~. Then,
the boundary element spaces S, € Hz(I') and Q, € Hz(I') will contain piecewise
polynomials of total/maximal degree k, k € Ny. Further, functions in S, have to be
continuous so that k > 1 is required in this case.

For the Galerkin discretization of (4.20) we will need boundary element subspaces
S of Héw,O' They can be constructed as subspaces of Sp, by setting all degrees of
freedom associated with edges of T' to zero.
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Let h denote the meshwidth of 7; and assume uniform shape-regularity, which,
sloppily speaking, imposes a uniform bound on the distortion of the elements. Then
we can find constants Cs,Cy > 0 such that for all 0 <t < k+ 1 [2, Sect. 4.4]

. _ t+1 t
10—l 3 gy SCHE by Vo€ HUOLVE,  (0)

. t—1 t
v;}relfsh [[v — UhHH%(F) SCh™2 vl ey Vv € HY(T), Vh. (6.2)

Thus, the quantitative investigation of convergence boils down to establishing the
Sobolev regularity of the continuous solutions. We will embark on this for the varia-
tional boundary integral equations (4.7), (4.14), (4.20), and (5.8).

It is useful to characterize the lifting properties of Neumann-to-Dirichlet maps
for the interior/exterior Helmholtz problem by means of two real numbers at/a .
In particular, let @~ /a™ be the largest real number such that for an interior/exterior
Helmholtz solution yLU € H* 2(T) implies ViU € H*+3(T) for all s < a* and
vice-versa. It is known that for mere Lipschitz domains o™, a™ > % [17, Thm. 4.24].

We first examine (4.7) and assume that the Neumann data ¢ belong to H 2+ (T),
o > 0. According to the definition of a* this implies YU € Hi+min{e.a™H ) Now,
let u € Hz(T) stand for the unique solution of (4.7) and let the Helmholtz solution
U be given by (4.4). By the jump relations

[ywUlp = —inu ,  [yUlp =u. (6.3)

we conclude that U)o~ satisfies the inhomogeneous Robin-type boundary conditions

WU = inypU = ¢ —inyyU (6.4)

This will endow the Neumann data with extra regularity and we can crank up the
machine of a bootstrap argument that confirms higher and higher regularity for Neu-
mann and Dirichlet data in turns. A limit will be set by the lifting exponents o=, a™*:
the best we can get is

u € H%+min{o,a’,a+}(r) ]

For piecewise linear continuous boundary elements on a sequence of shape regular
surface meshes this will mean O(hmi“{"’“Jr’a_}) convergence in Hz ().

In the case of the single layer regularization (4.14) of Sect. 4.2 the lifting arguments
will fail. Please note that for U from (4.10), where u € Hz (T) is the solution of (4.11),
the following interior Robin-type boundary conditions hold:

YU —inR™L(vpU) = yyU —inR71g . (6.5)

In contrast to (6.4), we cannot infer any enhanced regularity of either y,U or y,U
from (6.5). Hence, no quantitative rate of convergence can be obtained for a Galerkin
boundary element discretization of (4.14). Due to the density of the boundary element
spaces on infinite sequences of ever finer meshes in H 3 (T') and H —3 (T), respectively,
the method will converge for h — 0, but can be arbitrarily slow.

A similar reasoning as for (4.7) applies to the regularized formulation introduced
in Sect. 4.3. If ¢ € H~% (') is the solution of (4.19) and the Helmholtz solution U is
given by (4.18), the jump relations give us

[voUlp =My, [ywU]r = —ing . (6.6)
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It is clear that the regularizing properties of M will come into play. To measure them
define for s > 1
Hy, o) :={ve H!

pw,0

(F), ur; € HS(FZ),Z = ].,...,p} .

We will write 0 < 3 < 1 for the largest real number such that Mv € H*~1(T') implies
v e H3 (D) for all s < 8. From [13] we know that 3 > 3, and that 8 > 1 can be
choosen, if all I'; are diffeomorphic images of convex polygons.

Assume that the Dirichlet boundary values g belong to Heotz (T"). This means that
77\}U € H’%+mi“{"’“+}(F). In addition, U)o~ satisfies the inhomogeneous boundary

conditions
M (v U) = 7pU = inM(y3U) — g - (6.7)

Since WIJ\F,U € H’%eri“{"’aJr}(F), using the mapping property of M, we deduce
that the right hand side of (6.7) belongs to H" ('), with r = min{2 +a™, 14,1 +0}.

. . 1, -
We first have that y,U € H™™LH(D), thus yyU € H™MOr—Log+e7h ),
Now, a bootstrap argument can be used. By the shift theorem for M, we obtained an

. 3.
improved regularity for My, U € e ()

. 3, —
Using again (6.7), we then have 75U € H™M2r2+e 148H ) Thyg finally, re-
. 1, — . 1
calling the definition of 7, we have yyU € H™nth -3 +e78. 54k,
By (6.6), this involves

Q€ Hmin{l,ﬁ,*%#"ﬂ*%‘i’a*—v*%+a_}(F) . (68)

Note that, since  is a polyhedron, either a™ or o™ is smaller than 1. Without loss
of generality, we can then reduce (6.8) to:

p € HztmintoeteTi(r) (6.9)

which means that the regularity of ¢ depends only on the regularity of the Dirichlet
datum and of the interior and exterior Dirichlet-to-Neumann maps.

For the mixed variational problem (4.20) convergence will also hinge on the reg-
ularity of the auxiliary variable u := M.

The regularity (6.9) of ¢ will directly translate into the regularity u €

;rvl:lo{%+a’%+a+’%+a }(I‘). We point out that the approximation estimate (6.2) re-

mains true when we replace S, with Sp and HY(I') with H} o(T'). Therefore, u
is smooth enough not to impair the convergence estimate that can be gained from
combining (6.9) with (6.1).

Remark 6.1. The ease with which we get good regularity for u motivated the
concrete choice of M in Sect. 4.3. If we had opted for M = A;l, cf. Rem. 4.3, Thm. 5.3
of [3] tells us that 4 may be only slightly more regular than merely belonging to H*(T').

This could make u limit the overall convergence. A
The simplest case is that of the direct formulation (5.8) for the exterior Dirich-
let problem. The variational problem features the Cauchy datum ¢ := VJJ{,U

as the principal unknown. Assuming g € H%“’(I‘), o > 0, we conclude ¢ €

Hmi“{*%“”*%*M}(F). Moreover, the exact solution for the auxiliary unknown u
will be v = 0, which means that it does not affect the asymptotic convergence of the
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Galerkin scheme. Summing up, we find an a priori estimate O(h™n{e:0"-k+1}) for the
rate of convergence.

Remark 6.2. The behavior of an exterior Helmholtz solution at edges and corners
of T is well known [12]. This gives a lot of information about the local behavior of
the Neumann trace v, U. This knowledge can be exploited to construct more efficient
locally adapted approximation by means of local anisotropic refinement in conjunction
with hp-adaptivity [21]. A

7. Conclusion. We found that the classical combined field integral equation for
the exterior Neumann problem for Helmholtz’ equation leads to a H %(I‘)—coercive
variational problem. Satisfactory rates of convergence can be deduced for conforming
Galerkin BEM schemes. Conversely, the analysis of the CFIE for the exterior Dirichlet
problem has to rely on special regularizing operators. For the indirect method two
approaches to regularization have been pursued and both ensure coercivity of the
final mixed variational problems. However, only regularization aimed at the single
layer potential part of the trial expression yields information about extra regularity
of the unknown surface density. Hence, quantitative estimates of the convergence of
Galerkin BEM solutions could only be achieved in this case. On the other hand the
regularized direct CFIE instantly yields a priori error estimates that only depend on
the regularity of the Neumann data: the auxiliary unknown has no influence. In this
respect the direct method is definitely superior to the indirect approach.
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