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Abstract

We study the axysymmetrical triple flame, that could be observed at the base
of the laminar diffusion lifted flame. The study of this flame has been done by
S.Ghosal and L.Vervisch, who applied the two-dimensional approach for the
flame that axisymmetrical in fact. The experiments reveal us the necessity
to investigate the influence of the radius of the flame base on the behaviour
(i.e. such important characteristics as stability and velocity) of the whole
structure.

Both constant- and variable-density case are considered. Instead of solv-
ing a free-boundary problem for the flame surface, we approximate it with
a help of parabolic profile, the curvature to be self-consistently determined.
This method, called by Ghosal and Vervisch “the parabolic flame path ap-
proximation”, has shown his validity for planar case, and we would like to
expand this result for the axisymmetric flame. The method of matched
asymptotic expansions in parabolic-cylinder coordinates will be applied, and
the closed expressions for the flame curvature and velocity, as well as the
temperature field, will be given. We compare this theoretical results with
those J. Boulanger, L. Vervisch, J. Reveillon and S. Ghosal got with by DNS
(direct numerical simulations).



1 Introduction

We investigate the dynamic behavior of the so-called “triple” (or edge) flame, form-
ing on the base of the lifted laminar jet flame, near the burner exit. Under this flame
we consider the whole structure, consisting of diffusion flame and two branches of
premixed flame. The point of intersection of the stoichiometric iso-surface of the
mixture fraction, Z, and premixed flame zones, forms a so-called triple point. Due
to the curvature effects, the triple flame is able to propagate, that is differentiate
it from the planar diffusion flame. In practice we would like to stabilize the lifted
flame above the burner exit, in order to avoid the damages by the high tempera-
tures on the burner itself. We’d like to be able to control the propagation velocity
(and, consequently, the lift-off height), by given mixture fraction and velocity of the
gazes on the burner exit. L. Hartley and J. Dold [3] in there theoretical study of
triple flames, found the expression for the flame velocity in the case, when density
perturbations are neglected.

Ghosal and Vervisch [1] introduced the density changes in their analysis, where
flame front was approximated with the help of parabola. In the limit of high acti-
vation energy they found approximative solutions for velocity of the well-developed
two-dimensional triple flame.

Boulanger, Vervisch and Ghosal [2] applied these results to the lifted jet flame,
that is axisymmetric in fact. The velocity of the triple flame is influenced by its
curvature, but the effects of the flame base radius are neglected.

The goal of present paper is to find the expressions for velocity and ... , similar
to those of [1], but with jet radius taken in account. We will introduce such a
dependence in parametric way. The results we get are compared with those of a
planar case, as well as the numerical simulations for round jet. The velocity is
increased by the effects of the radius, and the under-prediction of the lift-off height
is corrected.

The method of asymptotic expansions in the vicinity of the flame front is applied,
but in order to keep the ’non-local’ influence of the jet radius, we introduce it as
a fixed constant in the two-dimensional axisymmetric equations, and then reduce
them to the planar case.

Surprisingly, we get very good agreement with numerical experiments, even
though the radial component dependence replaced by its approximation in the vicin-
ity of the triple point.

The flame in our work considered to be a parabola, following Ghosal and Vervisch [1],
where this approximation showed its validity.

The closed expressions for temperature and velocity in dependence with flame
curvature and jet radius are got.
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2 Problem formulation

We study the axisymmetric triple flame, forming on the base of lifted laminar jet
flame. The fuel is issuing from a nozzle of radius a, then mixing with oxidizer is
taking place.

We suppose the chemical process to be described by a one-step combustion:
ν0 molecules of fuel (molecular mass m0) react with ν1 molecules of an oxidizer
(molecular mass m1) to form νp molecules of product (molecular mass mp). We
suppose also the reaction to be infinitely fast, that allows us to think about a flame
front as a surface.

The partial premixing taking place, the triple flamelet forms. It consists of
two premixed (lean and rich) brunches and a trailing diffusion flame. This flamelet
propagates along the stoichiometric iso-surface of the mixture fraction. At the point,
where velocity of the outcoming jet is equal to the propagation triple flame velocity,
the flame is stabilized.

3 Mathematical modeling

We consider the reactive flow problem in the law Mach number limit, i.e. concen-
trating us essentially on the advection-diffusion affects.

The transport equations for species and mixture fraction, as well as energy equa-
tion are written. For the velocity components only the continuity equation is kept.

Further, we follow the general lines of the analysis, done in [1], with some modi-
fications, due to the axisymmetric nature of the problem. We right down the equa-
tions in cylindrical coordinates, and after pass to the local analysis, introducing the
local parabolic-cylinder coordinates, matching the form of the flame (supposed to
be parabola of a curvature to be determined), in the flame vicinity.

The solutions for the mixture fractions and temperature are developed in the
asymptotic series, and only leading terms are considered.

3.1 Governing equations

The equations, describing reactive flow, contain multiple scales, and because of there
nature cannot be solved analytically. We concentrate our attention on the processes,
that we suppose to dominate in case we are interesting in, namely, advection and
diffusion. We write down all the equations in cylinder coordinates (r, x), and taking
into account the axisymmetrical nature of the problem, get following equations:

• Time evolution of the mass fractions Y0(fuel) and Y1 (oxidizer):

ρ
DYi

Dt
= Di∇2Yi − νimiw, i = 0, 1 (3.1)

2



here w — reaction rate, Di—mass diffusivity of species i.

D

Dt
=

∂

∂t
+ u ·∇ (3.2)

with

∇ =

(

∂

∂r
,
∂

∂x

)

(3.3)

and

∇2 =
1

r

∂

∂r
+

∂2

∂r2
+

∂2

∂x2
(3.4)

are the gradient and Laplace operator in cylinder coordinates.

• Evolution of temperature T :

ρcp
DT

Dt
−

Dp

Dt
= DT∇2T +Qw. (3.5)

In our work we suppose the Lewis numbers, Le = DT

cpDi
, to be equal to unity

(this will give us further a possibility to get a linear dependence between Z
and H). The characteristic length k in this case can be defined as:

k =
D0

ρ∞
=

D1

ρ∞
=

DT

ρ∞cp
(3.6)

(here ρ∞ – density of unburnt gas far upstream).

• Equation of state for the ideal gas:

p =
ρkBT

m
(3.7)

with Boltzmann constant kB and mean molecular height m.

• Arrhenius law [6] for reaction rate:

w = Aρν0+ν1Y ν0
0 Y ν1

1 exp(−Ta/T ) (3.8)

(here Ta is the reaction temperature, A - pre-exponential factor, suppose to
be constant for simplicity).

• Density changes coupled to the velocity field through the equation of mass
conservation).

∂ρ

∂t
+∇ · (ρu) = 0 (3.9)

everything here is in cylinder coordinates, i.e. the equation in coordinates
(r, x) is:

1

r

∂

∂r
(rρur) +

∂(ρux)

∂x
= 0 . (3.10)
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From the momentum equation we can get that (p − p∞)/p∞ ! M2, here M—
Mach number, M # 1 and this means that we can approximate ρ ≈

mp∞
kBT . So, now

we can re-write equation (3.5):

ρcp
DT

Dt
= kρ∞cp∇2T +Qw . (3.11)

In our model problem we suppose axis x to be parallel to the iso-lines of the mixture
fraction, Z, the iso-line Z = Zs is fixed at the distance r = r0 from coordinate origin.
Axe r is a tangent to the contour lines of the reaction rate, and perpendicular to
x (see figure 1). We suppose this frame to move together with our triple flamelet,
that allows us to consider the problem to be stationary. A uniform flow issues from
infinity (x = −∞) with velocity U∞.

We specify the values for a chemical species at x = −∞:

Y0 = 1 in the fuel stream (r → 0)
Y0 = 0 in the oxidizer stream (r → +∞)
Y1 = 1 in the fuel stream (r → +∞)
Y1 = 0 in the oxidizer stream (r → 0),

and
Y0(r,−∞) + Y1(r,−∞) = 1 (3.12)

T = T∞ far upstream for fuel and reactant,
ρ = ρ∞ far upstream.

Under this conditions the fuel mixture fraction Z will be defined:

Z =
r̃Y0 − Y1 + 1

1 + r̃

(

r̃ =
ν1m1

ν0m0

)

. (3.13)

From this formulation it’s clear, that:

Z = 1 for fuel stream,

Z = 0 for oxidizer stream

Z = Zs =
1

1+r̃ under stoichiometric conditions.

From (3.1) and (3.13) follows that Z evolves as a passive scalar:

ρ
DZ

Dt
= kρ∞∇2Z . (3.14)

For the pair of equations (3.11) and (3.1) we get that “Shvab-Zeldovich variables”
Hi = T +QYi/(νimicp) also evolve as a passive scalar:

ρ
DHi

Dt
= kρ∞∇2Hi . (3.15)
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Under the condition T = T∞ far upstream it’s clear, that Hi is a linear combination
of Z, i.e. Hi = Ai + BiZ. We determine constants Ai and Bi we use the boundary
conditions for Y0 and Y1 and get:

Y0 = (T∞ − T )
m0ν0cp

Q
+ Z, (3.16)

Y1 = (T∞ − T )
m1ν1cp

Q
+ Z + 1. (3.17)

3.2 Dimensionless variables

We introduce the dimensionless variables: w̃ = ρ/ρ̃ — dimensionless density
(u, v) = (ur/U∞, ux/U∞) — dimensionless velocity.

With the appropriate length scale: diffusion length k/U∞ we get the dimension-
less coordinates: (r,X) = (rU∞/k, xU∞/k).

In order to get an appropriate temperature scale, we need to find some measure
of changing across the flame. Because the maximum temperature Ts is reached just
behind the flame surface, along the stoichiometric line, where the combustion is
complete. We can find this Ts, putting Z = Zs = 1/(1 + r̃) and Y0 = 0 in (3.16)

Ts = T∞ +
Q

m0ν0cp

1

1 + r
= T∞ +

Q

(m0ν0 +m1ν1)cp
(3.18)

The dimensionless parameter

α =
Ts − T∞

Ts
=

[

1 +
(m0ν0 +m1ν1)cpT∞

Q

]−1

(3.19)

characterizes the amount of heat, released to the flame.
The dimensionless temperature, Θ:

Θ =
T − T∞

Ts − T∞

(3.20)

Zeldovich number β:

β = α
Ta

Ts
(3.21)

measures the sensitivity of the reaction rate to the temperature.
In terms of these dimensionless variables, (3.11) may be written as

w̃(u
∂Θ

∂r
+ v

∂Θ

∂X
) =

=
1

r

∂Θ

∂r
+

∂2Θ

∂r2
+

∂2Θ

∂X2
+ λw̃ν0+ν1Σ(Z/Zs,Θ) exp

[

−
β(1−Θ)

1 − α(1−Θ)

] (3.22)
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where
Σ(x, y) = (x− y)ν0 [(1− x) + r(1− y)]ν1 (3.23)

and λ is defined by

λ =
kQA

cpTsα

ρν0+ν1−1
∞

(1 + r)ν0+ν1
exp(−β/α)

1

U∞
2 . (3.24)

The equation for the mixture fraction, Z, becomes:

w̃

(

u
∂Z

∂r
+ v

∂Z

∂X

)

=
1

r

∂Z

∂r
+

∂Z2

∂r2
+

∂2Z

∂X2
(3.25)

and the density is related to the temperature through ρ = mp∞
kBT , which may be

re-expressed in dimensionless form as

w̃ =
1− α

1− α(1−Θ)
(3.26)

(3.10) in dimensionless variables:

∂

∂r
(w̃ur) +

∂(w̃v)

∂X
= 0 . (3.27)

First we suppose the constant density case, i.e. w̃ = 1, and in this case velocity
decouples form density. We take the trivial solution u = 0, v = 1.

We also consider the approximation of the “law heat release”, by which we mean
α # 1. The simplified set of equations is:

∂Θ

∂X
=

1

r

∂Θ

∂r
+

∂2Θ

∂r2
+

∂2Θ

∂X2
+ λΣ(Z/Zs,Θ) exp(β(1−Θ)) (3.28)

and
∂Z

∂X
=

1

r

∂Z

∂r
+

∂2Z

∂r2
+

∂2Z

∂X2
. (3.29)

Due to the coordinate choice and problem formulation, the only “surviving” influ-
ences in the equation for mixture fraction are:

0 =
1

r

∂Z

∂r
+

∂2Z

∂r2
. (3.30)

We develop solution of this equation in the vicinity of r = r0 (here r0 is the radius
of the flame base) in Taylor series, and get, prior to boundary conditions r →
+∞, Z → 0, and r = r0, Z = 1/2:

Z =
1

2

[

1 + µ(r − r0) +O(r − r0)
2
]

(3.31)

6



where

µ =
1

Zs

∂Z

∂r

∣

∣

∣

∣

r=r0

(3.32)

is the value of the mixture fraction gradient, prescribed on the inlet. Here we have to
note, that the linear approximation of the mixture fraction is also an exact solution
in the case, when we suppress all non-local effects, i.e. the first term on the right
hand side of (3.30). Further we will consider, that

Z =
1

2
[1 + µ(r − r0)] . (3.33)

Since the gases far upstream are at the uniform temperature, we have the boundary
condition:

Θ(r,−∞) = 0 . (3.34)

Θ =

{

(1− Z)/(1− Zs), r ≤ r0
Z/Zs, r ≥ r0

. (3.35)

Together with these boundary conditions, equation (3.28) defines an eigenvalue prob-
lem in λ (related to the flame speed via (3.24).

4 Activation-energy asymptotics

We study the basic equations in the so-called “activation-energy asymptotics” (AEA),
β → ∞. Only “well-developed” triple flames are considered, i.e. the flames with
βµ ∼ O(1).

In this limit the source term vanishes except in the immediate vicinity of the
flame front, (Θ = 1). The problem we get is a singular perturbative problem, the
method of matched asymptotic expansions is applied to find the solution.

4.1 Solution

The solution consists of two parts: the “outer solution”, valid everywhere except in
the vicinity of the flame front, and the “inner solution”, that connects smoothly two
branches (one in front and other behind the flame), of the outer solution.

4.1.1 The outer solution

While we consider the reaction zone to be infinitely small, the temperature just
behind the flame front may be obtained by setting Y1 = 0 (in the fuel stream,

7



r < r0), or Y0 = 0 (in the oxidizer stream, r > r0) in (3.17) and (3.16), since the
component that is deficient, is completely consumed. We get from (3.20) and (3.18):

Θ = 2(1− Z) = 1− µ(r − r0). (4.1)

Ahead the premixed flame:

∂Θ

∂X
=

1

r

∂Θ

∂r
+

∂2Θ

∂r2
+

∂2Θ

∂X2
. (4.2)

After two coordinate changes,

Θ = exp(X/2)F,

and

F =
1
√
r
f

we get following equation:

∂2f

∂r2
−

1

4
f

(

−
1

r2
+ 1

)

+
∂2f

∂X2 = 0 . (4.3)

In this form the “non-local” forces are described as potential through − 1
r2 + 1.

We’d like to keep only parametric dependence on this force, reducing afterwards the
equations to the two-dimensional case in the vicinity of the flame. That’s exactly
what we get, keeping only leading term of the potential in the vicinity of r = r0, i.e.
replacing potential force by constant 1− 1

r02
.

Once the parabolic-cylinder coordinates

X =

√
c

2

[

ξ2 − η2 + η0
2
]

,

r − r0 =
√
cξη

(4.4)

are introduced, the problem is completely reduced to the local one, keeping never-
theless the dependence on radius of the flame base r = r0. Here η = η0 corresponds
to the flame surface, and c = 1 − 1

r2
0

. The solution prior to boundary condition

X → ∞,Θ → 0 is:

Θ = exp

[√
c

4
(ξ2 + η20 − η2)

]

exp

(

−
1

4
cξ2

) ∞
∑

n=0

anHn

(√
c√
2
ξ

)

U(n + 1/2,
√
cη) .

(4.5)
The boundary condition

Θ(ξ, η0) = 1− µξη0 +O(µ2). (4.6)

8



leads us to the following solution for temperature:

Θ(0) =
erfc

(√
c

√
2
η
)

erfc
(√

c
√
2
η0
) exp

[(√
c

4
−

c

4

)

(

η0
2 − η2

)

]

+O(1/β). (4.7)

The factor exp
[(√

c
4 − c

4

)

(η02 − η2)
]

decaying from 1 much slowly, then those of

erfc-function, that’s why we finally write the first approximation for temperature in
the form:

Θ(0) =
erfc

(√
c

√
2
η
)

erfc
(√

c
√
2
η0
) +O(1/β). (4.8)

Behind the flame temperature is approximated by

Θ(r,X) = 1 +O(1/β). (4.9)

4.1.2 The inner solution and the asymptotic matching

We now determine the solution to (3.28) in the vicinity of the flame zone. Equation
for the temperature could be re-written in parabolic-cylinder coordinates:

(

ξ −
η

ξη + r0

)

∂Θ

∂ξ
−
(

η −
ξ

ξη + r0

)

∂Θ

∂η
=

=
∂2Θ

∂ξ2
+

∂2Θ

∂η2
+ λc(ξ2 + η2)Σ(1 + µξη,Θ) exp(−β(1−Θ)) .

(4.10)

Since the flame sickness is ∼ 1/β, an appropriate inner variable is τ = β(η−η0). We
also define the new variable θ which is a deviation of the temperature from those on
the flame surface, scaled to order of unity:

Θ = 1− µη0|ξ|−
θ

β
. (4.11)

We re-write (3.7) in terms of these scaled variables, expand θ in asymptotic series
in 1/β, and get at the leading order:

θττ = cΛ0(ξ
2 + η20)θ

ν(ν + 2Bη0|ξ|)ν exp(−θ) exp(−Bη0|ξ|) , (4.12)

here Λ0 is the first term in the expansion λ = β2ν+1(Λ0 + . . . ), B = µβ = O(1). We
integrate this equation prior to boundary conditions θτ (τ = 0) = 0, θτ (τ = ∞) = 0,
and get:

θ2τ (τ → +∞) = 2cΛ0(ξ
2 + η20) exp(−Bη0|ξ|)Fν(2Bη0|ξ|). (4.13)

9



Here the function Fν is defined:

Fν(α) =

∫ ∞

0

θν(θ + α)ν exp(−θ)dθ. (4.14)

To determine Λ0, we reenforce the asymptotic matching condition:

Θη(ξ, η → η0) = −θτ (ξ, τ → ∞), (4.15)

where Θη corresponds to the outer, and θτ — to the inner solution. Equating terms
of right and left hand sides by ξ0 and ξ, we get:

√

2Λ0Γ(2ν + 1) =

√

2

π

exp(−cη20/2)

η0erfc(
√
cη0/

√
2)

. (4.16)

The equation for the curvature of the parabola, η0, at leading order in 1/β:

η0 =
(4ν − 2)1/4√

B
. (4.17)

Formulae for the normalized velocity, expressed in terms of the mixture fraction
gradient:

U∞

U∞
s =

√

π

2
η0 exp

(

cη02

2

)

erfc

(
√

c

2
η0

)

, (4.18)

k

U∞
s

1

Zs

∂Z

∂r
=

√
4ν − 2

βη02
U∞

U∞
s , (4.19)

k

U∞
sκ =

1

η02
U∞

U∞
s . (4.20)

Here U∞—flame velocity in physical units, US
∞— stoichiometric planar flame speed,

κ—the flame curvature. We note the dependence of the velocity on the global char-
acteristics, r0, through the coefficient c = 1 − 1/r20. The limit r0 → ∞ corresponds
to the planar case, and our formulae reduce to those of planar case.

5 Perturbative solutions, effects of heat release

With the help of approximations for the pressure and density changes in the vorticity
equation, and due to the low Mach number approximation, we can conclude, that
the velocity perturbation could be described in a potential form, namely:

u = αψr + . . . , v = 1 + αψX + . . . (5.1)

10



the velocity perturbation due to the heat release. We introduce these expressions
for the velocity into the temperature equation (3.28), and get at leading order in α:

1

r
ψr + ψrr + ψXX = Θ(0)

X . (5.2)

re-written in local parabolic-cylinder coordinates (ξ, η), these equations take form:

1

r0

(

η
∂

∂ξ
+ ξ

∂

∂η

)

ψ + ψξξ + ψηη = −ηΘ(0)
η , (5.3)

behind the premixed front the right hand side in (5.3) is 0, and above the premixed
front is equal to

ση exp

(

c(η20 − η2)

2

)

, here σ =

√
c√
2π

exp
(

−
c

2
η20

)

/erfc

(√
c√
2
η0

)

. (5.4)

The boundary conditions are:

ψξ(0, η) = 0, ψη(ξ, 0) = 0. (5.5)

We are looking for solution in the vicinity of r = r0, that means ξ = 0 or η = 0.
Together with boundary conditions, introduced above, and due to the fact, that
velocity perturbation stays limited even at infinity, we conclude, that the first term
on the left hand side of (5.3) can be suppressed. Further, it’s easy to see that the
only physically relevant solution of (5.3) is a function ψ0 = ψ(η).

We are in 2D situation again, and the solution can directly be written:

ψ0(η) =
erfc

(√
c

√
2
η
)

erfc
(√

c
√
2
η0
) + σ

√
c(η − η0)− 1 (5.6)

for η > η0, and
ψ0(η) = 0 (5.7)

for η < η0.

The local expressions for velocity components along axes r = r0, X = 0 are:

u(r, 0) =
ασξ

η02 + 2ξ2

[

1− exp
(

−
c

2
ξ2
)]

(5.8)

v(X, r = r0) =







1−
ασ

√

η02 − 2X
[1− exp(

√
cX)] , X < 0 ,

1, otherwise

. (5.9)
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5.1 Reduction of the mixture fraction gradient near the

flame tip

We perturb the linear approximation for Z, and present this new solution as a serie
in α:

Z =
1

2
(1 + µ(r − r0)) + αζ + . . . (5.10)

with ζ— mixture fraction perturbation, due to the density changes.
We put this expression into the equation for mixture fraction gradient (3.25),

develop everything in series in α, and, on the leading order, get:

1

r

∂ζ

∂r
−

∂ζ

∂X
+

∂2ζ

∂r2
+

∂2ζ

∂X2
=

1

2
µψr . (5.11)

We transform this equation into local parabolic-cylinder coordinates (ξ, η), and get:

1

ξη + r0

(

ξ
∂ζ

∂η
+ η

∂ζ

∂ξ

)

− ξ
∂ζ

∂ξ
+ η

∂ζ

∂η
+

∂2ζ

∂ξ2
+

∂2ζ

∂η2
=

=
1

2

(

η
∂ψ

∂ξ
+ ξ

∂ψ

∂η

)

. (5.12)

The right-hand side is given by function ψ0(η), calculated above. We are looking
only for factor by ξη, so we are looking for solution in form:

ζ(ξ, η) = ξF (η) + φ(ξ, η) . (5.13)

When we put everything in the original equation, we see, that the equation for
function F , we are interesting in, is:

F
′′ − F + ηF

′

=
1

2
µψ0

′(η), (5.14)

that is, the same equation, as in two-dimensional case, and the solution is written
directly, following Ghosal and Vervisch:

Z = 1/2(1 + µ′)(r − r0), (5.15)

with modified mixture fraction gradient

µ′ = µ+ 2αa, a =
µ

4

(

cη0
2 − σ

√
cη0 − 1

)

. (5.16)

We see, that the gradient on the top of the edge flame will be reduced firstly by
premixed flame front curvature and secondly, by the radius of the flame base. If we
right down the expressions for the velocity components along the axes, we see, that
propagation velocity is increased, as awaited, not only by local effects, but also by
global one, such as flame base radius.
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5.2 Modified solution for temperature

The perturbated equations for the temperature are:

ψrΘR
(0) +

1

r
ψrΘ

(0) −Θ(0)ΘX
(0) + ψXΘX

(0)

=

(

1

r

∂

∂r
+

∂2

∂r2

)

Θ(1) +
∂2

∂X2Θ
(1) −ΘX

(1) . (5.17)

Proceeding in the similar way, as before, (i.e. suppressing all the influences that
of not - 2D nature), we reduce the equation to 2D case, and afterwards follow [1].
In fact, only the appropriate coordinate change (η *→ η

√
c) is necessary in order to

write down the result:

Θη
(1)(ξ, η0) = σL(η0) +O(1/β), (5.18)

where

L(η0) = σ2

[

π exp(cη0
2)

∫ ∞

√
c/2η0

xerfc2xdx−
√
cη0
σ

+ 1−
1

2σ2

]

. (5.19)

5.3 Expression for velocity in dependence on mixture frac-

tion gradient, effects of heat release included

Results for velocity and mixture fraction gradient with constant c, depending on
radius r0 of the flame base as c = 1− 1

r2
0

:

U∞

Us
∞(α)

=
η0
σ
[1 + αL(η0)], (5.20)

where

L(η0) = σ2

[

π exp(cη0
2)

∫ ∞

√
c/2η0

xerfc2xdx−
√
cη0
σ

+ 1−
1

2σ2

]

(5.21)

and
σ−1 =

√

π/2 exp(−η20c/2)erfc(
√

c/2η0). (5.22)

k

Us
∞(α)

1

Zs

(

∂Z

∂r

)

0

=

√
4ν − 2

β

1

η20

U∞

U∞
s(α)

, (5.23)

(

∂Z

∂r

)

0

=

(

∂Z

∂r

)

∞

[

1 +
α

2
(1 +

√
cση0 − cη20)

]−1
, (5.24)

k

Us
∞(α)

κ =
1√
cη20

U∞

Us
∞(α)

. (5.25)
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6 Comparison with DNS results;

blow-out limit, lift-off height

In their paper Boulanger, Vervisch, Reveillon and Ghosal [2] applied three different
approximations for triple flame velocity, in order to estimate the lift-off height. They
compared the results with numerical simulations of full compressible axisymmetrical
Navier-Stokes equations. The results show, that the best theoretical description is
naturally those taking into consideration the heat release effects.

We’ll see, that the new expressions for the triple flame velocity, including the
dependence on the jet radius, will ameliorate the situation considerably.

The edge flame supposed to propagate with the local velocity, defined above. We
find the lift-off height, equating this local velocity to those of the jet. As a solution
for round jet we consider those proposed by Landau and Lifshitz (see [5]). The
Reynolds number, Re, is proportional to the opening angle of the jet, θ0:

Re =
32

3
θ0

−2 .

We calculate the lift-off heights for different values of Re, till the blow-out is reached.
We’d like to apply the new approximation we’ve got in formulae (5.25) - (5.27).

In our model problem stoichiometric line supposed to be parallel to the X-axis. In
real situation the radial component is not fixed along stoichiometric line, but varies,
when the flame changes its position. In fact, the r0 we’ve chosen to characterize the
problem, is the mean value of the deplacement of the triple point on the interval
(1, rmax) (for values of r smaller then one, our approximation is not correct, by
definition of the constant c). The rmax is easily found from the Landau solution, so
for each concrete problem r0 is defined. If we keep the same notations, as in [2], the
new approximation for velocity takes form:

U IV = SL
0 (1 + α)

√
c

−
1
√
c
Fα(χs). (6.1)

(here SL
0 is a laminar velocity of a planar flame), with

Fα(χs) = Aαχs
1/2,

correction, due to the curvature of the flame. Here

Aα = β/(Zs

√
4ν − 2)(λ/ρCP )

1/2/(1 + α),

and χs is a mixture fraction dissipation rate.
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Equating this velocity with those of round jet, we get the following transcendental
equation in variable x = θ

θ0
:

(1 + x2)2Sc−2[1 + Ax(1 + x2)] = B, (6.2)

with

A =
βθ0

2
√
4ν − 2(1 + α)

√
c
, (6.3)

B =
θ0a(1 + α)

8ZsSck
√
c
SL

0. (6.4)

We solve this equation with a help of Newton method, and once we’ve got the
solution x, the lift-off height is calculated:

h = r(xθ0)s cos(xθ0)−
a

θ0
. (6.5)

Here the subscript s denotes the value on the stoichiometric line.
The lift-off heights for different Reynolds numbers (or different opening angles of

the jet) are calculated. We’ve done this for two values of heat release: α = 0.3, and
α = 0.8. The comparison with DNS (by Boulanger, Vervisch, Reveillon and Ghosal)
shows us, that in both cases an important amelioration in theoretical prediction of
the lift-off heights is achieved (see figures 2 and 3).

7 Conclusions

The asymptotic analysis of the triple “ring” flame in the limit β → ∞ has been
done. Introduction of the dependence on the non-local parameter r0 allowed us to
get new expressions for triple flame velocity and lift-off heights of round jet. In fact,
the dependence on the radial component in our results is simply a stretching with
a factor

√
c of the coordinate η, matching the form of the parabolic flame profile.

The comparison with high-order DNS results showed the validity of the this
new laminar triple ring velocity approximation, even though the expressions we’ve
derived are not valid in the whole domain of the triple flame existence (the approx-
imation of the mixture fraction by a linear profile valid only if we are not too close
to the burner exit; the result we’ve got is valid only in zone r > 1).
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Figure 2: Comparison of our theoretical results with DNS and theoretical approxi-
mation by J. Boulanger, L. Vervisch, J. Reveillon and S. Ghosal for α = 0.3
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A. Schneebeli, R. Lauper

Generalized hp-FEM for Lattice Structures

02-22 L. Filippini, A. Toselli hp Finite Element Approximations on Non-
Matching Grids for the Stokes Problem

02-21 D. Schötzau, C. Schwab,
A. Toselli

Mixed hp-DGFEM for incompressible flows
II: Geometric edge meshes

02-20 A. Toselli, X. Vasseur A numerical study on Neumann-Neumann
and FETI methods for hp-approximations on
geometrically refined boundary layer meshes
in two dimensions
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