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Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Swiss Federal Institute of Technology Zurich

Mixed hp-DGFEM for incompressible flows
III: Pressure stabilization∗
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1 Introduction

Over the last few years, several discontinuous Galerkin (DG) methods for incom-
pressible flow problems and for certain saddle-point problems with incompress-
ibility constraints have been proposed in the literature. Here we only mention
the piecewise solenoidal discontinuous Galerkin methods introduced in [6, 20],
the local discontinuous Galerkin (LDG) methods of [11, 10], and the interior
penalty methods studied in [18, 29, 17]. The methods above all rely on discrete
velocity spaces consisting of piecewise polynomial functions with no kind of
continuity constraints between the elements in the underlying triangulation. In-
terelemental communication is achieved through so-called numerical fluxes, as in
the original discontinuous Galerkin methods for non-linear hyperbolic systems;
see [12, 9, 13] and the references therein. The main motivations for using DG
methods in fluid flow problems lie in their robustness in convection-dominated
regimes, their conservation properties, and their great flexibility in the mesh-
design. Based on completely discontinuous finite element spaces, DG methods
easily handle elements of various types and shapes, non-matching grids and even
local spaces of different orders; they are therefore ideal for hp-adaptivity.

Even if transport phenomena may be dominant in incompressible flow prob-
lems, mixed DG methods still require suitable velocity-pressure pairs in or-
der to ensure stability and convergence of the underlying Stokes discretization.
In [18, 29], it was shown that discontinuous Pk − Pk−1 and Qk − Qk−1 pairs
are inf-sup stable with respect to the mesh-size, as opposed to their conforming
counterparts. These elements are optimal from an approximation point of view.
A slightly different approach was proposed in [11, 10]. There, the introduc-
tion of a pressure stabilization term was proven to also render the convenient
equal-order Pk − Pk and Qk −Qk elements stable, uniformly in the mesh-size.

The study of mixed hp-discontinuous Galerkin methods was initiated in [29]
where several discontinuous velocity-pressure pairs were shown to possess better
stability properties than their conforming versions. In particular, the numerical
results reported there for two-dimensional uniform meshes show that discontinu-
ous Qk−Qk−1 elements are also uniformly stable with respect to the polynomial
degree k. For this pair, the best available bound of the inf-sup constant in terms
of k was then obtained in [24] and decreases as k−1, on shape-regular tensor-
product meshes in two and three dimensions, possibly with hanging nodes. This
bound ensures the same p-version convergence rate for the velocity and the pres-
sure as that of conforming Qk − Qk−2 elements in three dimensions. However,
the latter elements are mismatched with respect to h-approximation.

In laminar regimes, solutions of incompressible flow problems in polyhedral
domains have corner and edge singularities. In addition, strong boundary layers
may arise at faces, edges, and corners. In the hp-version of the finite element
method, these solution components can be approximated at exponential rate
of convergence provided that the meshes are geometrically and anisotropically
graded towards faces, edges, and corners; see [2, 5, 21, 27, 28] and the references
therein. These anisotropically refined meshes raise serious stability issues in
mixed approximations as the inf-sup constants might in general be very sensi-

1
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tive to the aspect ratios of the elements. It has recently been shown for two- and
three-dimensional conforming approximations employing Qk − Qk−2 elements
that, on corner, edge, and boundary-layer tensor-product meshes, the inf-sup
constant for the Stokes problem is in fact independent of the aspect ratios of the
anisotropic elements in the meshes; see [22, 23, 1, 30] and the references therein.
In the more recent work [25], discontinuous Qk−Qk−1 elements have been stud-
ied on geometric edge meshes designed to resolve corner and edge singularities
in the absence of boundary layers. By suitably defining the discontinuity sta-
bilization parameters in the DG bilinear forms on anisotropic elements, it has
been proven that this velocity-pressure pair is divergence stable, with an inf-sup
constant that is independent of the aspect ratios of the anisotropic elements and
that decrease as k−3/2 in the approximation order.

In this paper, we continue our study of the stability properties of mixed hp-
DGFEM for the Stokes problem started in [29, 24, 25], and analyze stabilized
variants thereof on geometric meshes in three dimensions. We show that the
introduction of the pressure stabilization term originally proposed in the LDG
discretization in [11] leads to a generalized inf-sup constant for Qk −Qk−1 and
Qk −Qk elements that decreases only as k−1/2 in the polynomial degree, and is
independent of possibly large aspect ratios of the mesh. As opposed to the work
in [25] that only considers geometric edge meshes, the results here also hold
for geometric boundary layer meshes that are additionally geometrically refined
towards the faces. As a consequence of the generalized inf-sup condition, we
obtain a global stability result in a suitable energy norm and derive p-version
error bounds that are better than those in [24], by of half an order of k in the
velocity and a full order of k in the pressure, respectively. We emphasize that,
in our analysis, we use a similar unifying setting as that proposed in [24]. Thus,
although we only consider the so-called interior penalty discontinuous Galerkin
method, our results hold true verbatim for the analogs of the methods analyzed
in [24], and, in particular, extend the h-analysis in [11] to the hp-context.

The outline of the paper is as follows. In section 2, we introduce stabilized
mixed hp-DGFEM methods for the Stokes problem. Two classes of geometric
meshes are defined in section 3. Continuity and coercivity properties of the
DG forms on these meshes are established in section 4. Our main result is the
generalized inf-sup condition that we present and prove in section 5. A global
stability result for the proposed DG discretizations is then derived in section 6,
together with hp-error bounds on shape-regular elements.

2 Stabilized mixed hp-DGFEM for the Stokes

problem

In this section, we introduce stabilized mixed hp-discontinuous Galerkin meth-
ods using the pressure stabilization form that was originally proposed for the
LDG discretization in [11].
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2.1 The Stokes problem

Let Ω be a bounded polyhedron in R3, and let n be the outward normal unit
vector to its boundary ∂Ω. Given a source term f ∈ L2(Ω)3 and a Dirichlet
datum g ∈ H1/2(∂Ω)3 with

∫
∂Ω g · n ds = 0, the Stokes problem consists in

finding a velocity field u and a pressure p such that

−ν∆u+∇p = f in Ω,

∇ · u = 0 in Ω, (1)

u = g on ∂Ω.

Thanks to the inf-sup condition

inf
0"=q∈L2(Ω)/R

sup
0 "=v∈H1

0(Ω)3

−
∫
Ω q∇ · v dx

|v|1‖q‖0
≥ CΩ > 0, (2)

with a constant CΩ depending only on Ω (see, e.g., [7, 16]), the Stokes problem
(1) has a unique solution (u, p) with

u ∈ V := H1(Ω)3, p ∈ Q := L2
0(Ω) = L2(Ω)/R.

Here, we denote by ‖ · ‖s,D and | · |s,D the norm and seminorm of the Sobolev
space Hs(D), s ≥ 0 on a domain D in Rd, d = 1, 2, 3. The same notation is
used to denote norms for vector fields. In case D = Ω, we drop the subscript.

2.2 Meshes and trace operators

Throughout, we consider triangulations T on Ω that consist of affine hexahe-
dral elements {K}. More precisely, each element K ∈ T is obtained from the
reference cube Q̂ = (−1, 1)3 by an affine mapping. In general, we allow for irreg-
ular meshes, i.e., meshes with hanging nodes (see [26, Sect. 4.4.1]), but suppose
that the intersection between neighboring elements is either a common vertex, a
common edge, a common face, or an entire face of one of the two elements. An
interior face of T is the (non-empty) two-dimensional interior of ∂K+ ∩ ∂K−,
where K+ and K− are two adjacent elements of T . Similarly, a boundary face
of T is the (non-empty) two-dimensional interior of ∂K ∩ ∂Ω which consists of
entire faces of ∂K. We denote by FI the union of all interior faces of T , by FB

the union of all boundary faces, and set F = FI ∪ FB.
For an element K ∈ T , we denote its diameter by hK and the radius of

the biggest circle that can be inscribed into K by ρK . A mesh T is called
shape-regular if

hK ≤ cρK , ∀K ∈ T , (3)

for a shape-regularity constant c > 0 that is independent of the elements. Our
meshes are not necessarily shape-regular; see section 3.

We next define some trace operators. Let f ⊂ FI be an interior face shared
by two elements K+ and K− and v, q, and τ be vector-, scalar- and matrix-
valued functions, respectively, that are smooth inside each element K±. We
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denote by v±, q± and τ± the traces of v, q and τ on f from the interior of K±

and define the mean values {{·}} and normal jumps [[·]] at x ∈ f as

{{v}} := (v+ + v−)/2, [[v]] := v+ · nK+ + v− · nK− ,

{{q}} := (q+ + q−)/2, [[[[[[q]]]]]] := q+ nK+ + q− nK− ,

{{τ}} := (τ+ + τ−)/2, [[[[[[τ]]]]]] := τ+nK+ + τ−nK− .

Here, we denote by nK the outward normal unit vector to the boundary ∂K of
an element K. We also define the matrix-valued jump of the velocity v given
by

[[v]] := v+ ⊗ nK+ + v− ⊗ nK− ,

where, for two vectors a and b, [a ⊗ b]ij = aibj . On a boundary face f ⊂ FB

given by f = ∂K ∩ ∂Ω, we set {{v}} := v, {{q}} := q, {{τ}} := τ , as well as
[[v]] := v · n, [[v]] := v ⊗ n, [[[[[[q]]]]]] := qn and [[[[[[τ]]]]]] := τ · n.

2.3 Finite element spaces

Given a mesh T on Ω and an approximation order k ≥ 0, we introduce the finite
element spaces Vk

h(T ) and Qk
h(T ):

Vk
h(T ) := {v ∈ L2(Ω)3 : v|K ∈ Qk(K)3, K ∈ T },

Qk
h(T ) := { q ∈ L2

0(Ω) : q|K ∈ Qk(K), K ∈ T },
(4)

where Qk(K) is the space of polynomials of maximum degree k in each variable
on K.

2.4 Mixed discontinuous Galerkin approximations

We approximate the velocities and pressures in the spaces Vh and Qh given by

Vh := Vk
h(T ), Qh := Q"

h(T ), (5)

with k ≥ 1 and % = k or % = k − 1. We refer to these velocity-pressure pairs
as (non-conforming) equal-order Qk −Qk elements and mixed-order Qk −Qk−1

elements, respectively.
We consider the following stabilized mixed DG methods: find (uh, ph) ∈

Vh ×Qh such that

{
Ah(uh,v) + Bh(v, ph) = Fh(v)

−Bh(uh, q) + Ch(ph, q) = Gh(q)
(6)
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for all (v, q) ∈ Vh ×Qh. The forms Ah, Bh, and Ch are

Ah(u,v) =

∫

Ω
ν∇hu : ∇hv dx−

∫

F

(
{{ν∇hv}} : [[u]] + {{ν∇hu}} : [[v]]

)
ds

+ν

∫

F
δ [[u]] : [[v]] ds,

Bh(v, q) = −

∫

Ω
q∇h · v dx+

∫

E
{{q}}[[v]] ds,

Ch(p, q) = ν−1

∫

FI

γ [[[[[[p]]]]]][[[[[[q]]]]]] ds.

Here, ∇h is the discrete gradient, taken elementwise. The functions δ ∈ L∞(F)
and γ ∈ L∞(FI) are the so-called discontinuity and pressure stabilization func-
tions, respectively, for which we will make a precise choice in section 3.3. Finally,
the corresponding right-hand sides Fh and Gh are

Fh(v) =

∫

Ω
f · v dx−

∫

FB

(g ⊗ n) : {{ν∇hv}} ds+ ν

∫

FB

δ g · v ds,

Gh(q) = −

∫

FB

q g · n ds.

Remark 2.1. It follows from the stability results in section 6 below that prob-
lem (6) has a unique solution (uh, ph) ∈ Vh ×Qh.

Remark 2.2. The form Ah(·, ·) discretizing the Laplacian is the so-called in-
terior penalty (IP) form. Several other choices are possible for Ah(·, ·), as dis-
cussed in [24]. All the results of this paper also hold verbatim for the forms
considered there. The form Bh(·, ·) is related to the incompressibility constraint;
it is used in the mixed DG approaches in [11, 18, 29, 24, 17]. Finally, Ch(·, ·)
is the pressure stabilization form that was originally introduced in the local dis-
continuous Galerkin methods in [11, 10].

2.5 Perturbed mixed formulation

For the purpose of the analysis, we introduce perturbed forms Ãh and B̃h,
following the ideas in [4, 24]. To this end, we define the space V(h) := V+Vh,
and introduce the lifting operators L : V(h) → Σh and M : V(h) → Qh by

∫

Ω
L(v) : τ dx =

∫

F
[[v]] : {{τ}} ds, ∀τ ∈ Σh,

∫

Ω
M(v)q dx =

∫

E
[[v]]{{q}} ds, ∀q ∈ Qh,

where we use the auxiliary space Σh = { τ ∈ L2(Ω)3×3 : τ |K ∈ Qk(K)3×3, K ∈
T }. We then introduce the following perturbed forms on V(h) × V(h) and
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V(h)×Q:

Ãh(u,v) =

∫

Ω
ν
[
∇hu : ∇hv − L(u) : ∇hv − L(v) : ∇hu

]
dx+ ν

∫

F
δ[[u]] : [[v]] ds,

B̃h(v, q) = −

∫

Ω
q [∇h · v −M(v)] dx.

(7)

We have
Ãh = Ah on Vh ×Vh, B̃h = Bh on Vh ×Qh.

Thus, we may rewrite the method (6) as: find (uh, ph) ∈ Vh ×Qh such that
{

Ãh(uh,v) + B̃h(v, ph) = Fh(v)

−B̃h(uh, q) + Ch(ph, q) = Gh(q)
(8)

for all (v, q) ∈ Vh ×Qh.

3 Geometric edge and boundary layer meshes

In this section, we define two classes of geometric meshes, namely geometric
edges meshes that are employed in the presence of corner and edge singulari-
ties (as, e.g., in Stokes flow or nearly incompressible elasticity), and geometric
boundary layer meshes that are used when, in addition to corner/edge singu-
larities, boundary layers are present as well. Both meshes are characterized by
a geometric grading factor σ ∈ (0, 1) and the number of layers n, the thinnest
layer having width proportional to σn. We refer to [2, 5, 21, 27, 28, 30] and
the references therein for a more detailed discussion on how to choose these
parameters in order to resolve singularities and layers at exponential rates of
convergence.

3.1 Geometric edge meshes

A geometric edge mesh T n,σ
edge is constructed by considering an initial shape-

regular macro-triangulation Tm = {M} of Ω, with no hanging nodes, possibly
consisting of just one element. The macro-elements M in the interior of Ω are
then refined isotropically and regularly (not discussed further) while the macro-
elements M on the boundary of Ω are refined geometrically and anisotropically
towards edges and corners. This geometric refinement is obtained by affinely
mapping corresponding reference triangulations (referred to as patches) on Q̂
onto the macro-elements M using the elemental maps FM : Q̂ → M . This
process is illustrated in Figure 1. For edge meshes, the following patches on
Q̂ = I3, I = (−1, 1), are used for the geometric refinement towards the boundary
of Ω:

Edge patches: An edge patch T edge
e on Q̂ is given by

T edge
e := {Kxy × I | Kxy ∈ Txy},
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where Txy is an irregular corner mesh, geometrically refined towards a vertex of

Ŝ = (−1, 1)2 with grading factor σ and n refinement levels; see Figure 1 (level
2, left).

Corner patches: In order to build a corner patch T edge
c on Q̂, we first

consider an initial, irregular, corner mesh Tc,m, geometrically refined towards a

vertex of Q̂, with grading factor σ and n refinement levels; see the mesh in bold
lines in Figure 1 (level 2, right). The elements of this mesh are then irregularly
refined towards the three edges adjacent to the vertex in order to obtain the
mesh T edge

c ; see also Figure 3.
For simplicity, we always assume that the only hanging nodes in geometric

edge meshes T n,σ
edge are those in the closure of edge and corner patches.

Level 1

Level 2

Figure 1: Hierarchic structure of a geometric edge mesh T n,σ
edge. The macro-

elements M on the boundary of Ω (level 1) are further refined as edge and
corner patches (level 2). The geometric grading factor is here σ = 0.5.

3.2 Geometric boundary layer meshes

As for edge meshes, the construction of a geometric boundary layer mesh T n,σ
bl

starts from an initial shape-regular macro-triangulation Tm = {M} of Ω, with
no hanging nodes, possibly consisting of just one element. The macro-elements
M on the boundary of Ω are now also refined geometrically towards faces; see in
Figure 2. More precisely, the following face, edge, and corner patches on Q̂ = I3

are used:
Face patches: A face patch T bl

f on Q̂ is given by an anisotropic triangula-
tion of the form

T bl
f := {Kx × I × I | Kx ∈ Tx},

where Tx is a mesh of I, geometrically refined towards one of the vertices, say
x = 1, with grading factor σ ∈ (0, 1) and total number of layers n; see Figure 2
(level 2, left).
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Edge patches: An edge patch T bl
e on Q̂ is given by

T bl
e := {Kxy × I | Kxy ∈ T̃xy},

where T̃xy is a triangulation of Ŝ = I2 obtained by first considering an irregular
corner mesh Txy as in a patch T edge

e of an edge mesh, geometrically refined

towards a vertex of Ŝ, say (x, y) = (1, 1), with grading factor σ and n refinement
levels (see Figure 1 below, level 2, left). The elements of the mesh Txy are then
anisotropically refined towards the two edges x = 1 and y = 1, in order to obtain
a regular mesh T̃xy. We refer to Figure 2 (level 2, center) for an example.

Corner patches: In order to build a corner patch T bl
c on Q̂, we first consider

the same initial, irregular corner mesh Tc,m, geometrically refined towards a

vertex of Q̂, with grading factor σ and n refinement levels; see the mesh in bold
lines in Figure 2 (level 2, right). The elements of Tc,m are then anisotropically
refined towards the three faces x = 1, y = 1, and z = 1 in order to obtain a
regular mesh T bl

c ; see also Figure 3.
For simplicity, we always assume that the three types of patches above are

combined in such a way that geometric boundary layer meshes T n,σ
bl do not

contain hanging nodes.

Level 1

Level 2

Figure 2: Hierarchic structure of a geometric boundary layer mesh T n,σ
bl . The

macro-elements M on the boundary of Ω (level 1) are further refined as face,
edge and corner patches (level 2). The geometric grading factor is here σ = 0.5.

Remark 3.1. We note that the underlying mesh Tc,m is the same for the cor-
ner patches T edge

c and T bl
c in edge and boundary layer meshes, respectively.

However, T edge
c is irregular and contains hanging nodes. Figure 3 shows the

difference between corner patches for boundary layer and edge meshes.

The geometric edge and boundary layer meshes defined above satisfy the
following property; see [25, Sect. 3].



Mixed hp-DGFEM for incompressible flows: Pressure stabilization 9

Figure 3: Geometrically refined corner patches T bl
c and T edge

c for boundary layer
(left) and edge (right) meshes. The geometric grading factor is σ = 0.5.

Property 3.1. Let T be a geometric edge mesh T n,σ
edge or a geometric boundary

layer mesh T n,σ
bl , with a grading factor σ ∈ (0, 1) and n levels of refinement.

Then, any K ∈ T can be written as K = FK(Kxyz), where Kxyz is of the form

Kxyz = Ix × Iy × Iz = (x1, x2)× (y1, y2)× (z1, z2),

and FK is an affine mapping, the Jacobian of which satisfies

| det(JK)| ≤ C, | det(J−1
K )| ≤ C, ‖DFK‖ ≤ C, ‖DF−1

K ‖ ≤ C,

with constants only depending on the angles of K but not on its dimensions.

We note that the constants in Property 3.1 only depend on the shape-
regularity constant in (3) of the underlying macro-element mesh Tm. The di-
mensions ofKxyz on the other hand may depend on the geometric grading factor
and the number of refinements.

For an element K of a geometric edge mesh, we define, according to Prop-
erty 3.1,

hK
x = hx = x2 − x1, hK

y = hx = y2 − y1, hK
z = hx = z2 − z1.

3.3 Stabilization on geometric meshes

In this section, we define the discontinuity and pressure stabilization functions
δ ∈ L∞(F) and γ ∈ L∞(FI) on geometric meshes.

To this end, let f be an entire face of an element K of a geometric mesh T on
Ω. According to Property 3.1, K can be obtained by a stretched parallelepiped
Kxyz by an affine mapping FK that only changes the angles. Suppose that
the face f is the image of, e.g., the face {x = x1}. We set hf = hx. For a
face perpendicular to the y- or z-direction, we choose hf = hy or hf = hz,
respectively.
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Let then K and K ′ be two elements with entire faces f and f ′ that share an
interior face f = f ∩ f ′ in FI . We have

chf ≤ hf ′ ≤ c−1hf , (9)

with a constant c > 0 that only depends on the geometric grading factor σ and
the constant in (3) for the underlying macro-mesh Tm. We define the function
h ∈ L∞(F) by

h(x) :=

{
min{hf , hf ′} x ∈ f ∩ f ′ ⊂ FI ,
hf x ∈ f ⊂ FB.

(10)

We then set
δ(x) = δ0h

−1k2, x ∈ F , (11)

and
γ(x) = γ0 min{hf , hf ′} max{1, %}−1, x ∈ FI , (12)

with δ0 > 0 and γ0 > 0 independent of h and k.

Remark 3.2. For isotropically refined, shape-regular meshes, the definitions in
(10) and (11) are equivalent to the usual definition of δ, see [24]. Similarly,
the definition of γ in (12) generalizes the definition in [11] to the hp-DGFEM
context on geometric meshes.

4 Continuity and coercivity on geometric meshes

On the geometric meshes defined in section 3, the continuity of Ãh and B̃h as
well as the coercivity of Ah can be established as in [25, Sect. 4].

To this end, we equip V(h) = V +Vh with the broken norm

‖v‖2h :=
∑

K∈T

|v|21,K +

∫

F
δ|[[v]]|2 ds, v ∈ V(h).

We have the following result.

Theorem 4.1. Let T be a geometric edge mesh T n,σ
edge or a geometric boundary

layer mesh T n,σ
bl , with a grading factor σ ∈ (0, 1) and n levels of refinement. Let

the stabilization functions δ be defined as in (10) and (11). Then, the forms Ãh

and B̃h in (7) are continuous:

|Ãh(v,w)| ≤ να1‖v‖h‖w‖h ∀v,w ∈ V(h),

|B̃h(v, q)| ≤ α2‖v‖h‖q‖0 ∀u ∈ V(h), q ∈ Q,

with continuity constants α1 and α2 that depend on δ0 and the constants in
Property 3.1, but are independent of ν, k, n, and the aspect ratio of T . Further-
more, there exists a constant δmin > 0 that depends on the constants in Property
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3.1, but is independent of ν, k, n, and the aspect ratio of T , such that, for any
δ0 ≥ δmin,

Ah(v,v) ≥ νβ‖v‖2h ∀v ∈ Vh,

for a coercivity constant β > 0 depending on δ0 and the constants in Property
3.1, but independent of ν, k, n, and the aspect ratio of T .

Remark 4.1. The results in Theorem 4.1 are based on anisotropic stability
estimates for the lifting operators L and M that can be found in [25, Sect. 4].
These operators are identical for all the DG forms considered in [24] and, thus,
the results in Theorem 4.1 also hold for all the mixed DG methods considered
there. We note that the restriction on δ0 is typical for the interior penalty
form Ah and can be avoided if Ah is chosen to be, e.g., the local discontinuous
Galerkin form, the nonsymmetric interior penalty form, or the second Bassi-
Rebay form, see [24].

Next, we address the continuity of Fh and Gh.

Theorem 4.2. Let T be a geometric edge mesh T n,σ
edge or a geometric boundary

layer mesh T n,σ
bl , with a grading factor σ ∈ (0, 1) and n levels of refinement.

Let the stabilization functions δ be defined as in (10) and (11). Then we have

|Fh(v)| ≤ C
[
‖f‖0 + ν‖δ

1
2g‖0,∂Ω

]
‖v‖h ∀v ∈ Vh,

|Gh(q)| ≤ C ‖δ
1
2g‖0,∂Ω ‖q‖0 ∀ q ∈ Qh,

with continuity constants that depend on δ0, Ω, and the constants in Prop-
erty 3.1, but are independent of ν, k, n, and the aspect ratio of T .

Proof. We first note that we have the Poincaré inequality

‖v‖0 ≤ C‖v‖1,h ∀v ∈ V(h), (13)

with a constant depending on δ0, Ω, and the constants in Property 3.1. The
bound (13) follows by proceeding as in the original proof in [3, Lemma 2.1],
taking into account elliptic regularity theory for polyhedral domains and by
using the anisotropic trace inequality

‖ϕ‖0,f ≤ Ch−1
f ‖ϕ‖3/2+ε,K , ε > 0,

for an element K ∈ T and an entire face f of ∂K, with a constant depending
on the constants in Property 3.1.

Let now v ∈ Vh. From (13), we obtain |
∫
Ω f · v dx| ≤ C‖f‖0‖v‖h. Further,

applying the discrete trace inequality from [25, Lemma 3.3] as in the proof of [25,
Theorem 4.1],

|

∫

EB

(g⊗ n) : {{ν∇hv}} ds| ≤ Cν‖δ
1
2g‖0,∂Ω‖v‖h,
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with a constant depending on δ0, and the constants in Property 3.1. Finally,
the Cauchy-Schwarz inequality yields |ν

∫
EB

δg · v ds| ≤ ν‖δ
1
2 g‖0,∂Ω‖v‖h. This

proves the assertion for Fh. Similarly, for q ∈ Qh,

|Gh(q)| ≤ |

∫

EB

q g · n ds| ≤ ‖δ
1
2g‖0,∂Ω

( ∫

EB

δ−1|q|2 ds
) 1

2 .

Using again the techniques in [25, Lemma 3.3 and Theorem 4.1], we have
∫

EB

δ−1|q|2 ds ≤ C‖q‖20,

with a constant depending on δ0, and the constants in Property 3.1. This
completes the proof.

Remark 4.2. The same continuity properties hold for all the functionals Fh

and Gh in the mixed DG methods analyzed in [24].

5 Generalized inf-sup condition on geometric meshes

Our main result establishes a generalized inf-sup condition on geometric meshes.
To this end, we introduce the following seminorm on Qh

|q|2FI
:=

∫

FI

γ |[[[[[[q]]]]]]|2 ds,

with γ the pressure stabilization function defined in (12).
We have the following result.

Theorem 5.1. Let T be a geometric edge mesh T n,σ
edge or a geometric boundary

layer mesh T n,σ
bl , with a grading factor σ ∈ (0, 1) and n levels of refinement. Let

the stabilization functions δ and γ be defined according to (10), (11), and (12).
Then, there exists a constant C > 0 that depends on δ0, γ0, and the constants
in Property 3.1 and (9), but is independent of ν, k, %, n, and the aspect ratio of
T , such that, for any n and k ≥ 1, % = k or % = k − 1,

sup
0"=v∈Vh

Bh(v, q)

‖v‖h
≥ Ck−

1
2 ‖q‖0

(
1−

|q|FI

‖q‖0

)
, ∀q ∈ Qh \ {0}.

Remark 5.1. For h-version DG approximations on shape-regular meshes, the
generalized inf-sup condition in Theorem 5.1 was established in [11, 10] for
LDG discretizations, in a form that also involves the auxiliary stresses present
in the LDG approach. Similar inf-sup conditions also play an important role in
the analysis of conforming stabilized mixed methods; see, e.g., [15, 14] and the
references therein.

The proof of Theorem 5.1 is carried out in the rest of this section. We
begin by collecting several properties of L2-projections in section 5.1 and derive
bounds for averages and jumps over faces of geometric meshes in section 5.2.
We then complete the proof of Theorem 5.1 in section 5.3.
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5.1 L2-projections

For an interval Ix = (x1, x2), let Πx : L2(Ix) → Qk(Ix) denote the one-
dimensional L2-projection onto the space Qk(Ix) of polynomials of degree at
most k on Ix; given v ∈ L2(Ix), this projection is defined by imposing

∫

Ix

Πxv ϕ dx =

∫

Ix

v ϕ dx, ∀ϕ ∈ Qk(Ix).

The L2-projection is stable:

‖Πxv‖0,Ix ≤ ‖v‖0,Ix , ∀v ∈ L2(Ix). (14)

Moreover, applying similar techniques as in [8, Theorem 2.2], we have, for k ≥ 1,

|Πxv|1,Ix ≤ Ck
1
2 |v|1,Ix , ∀v ∈ H1(Ix), (15)

with a constant C > 0 independent of k, Ix, and v.
We next recall the following approximation result from [19, Lemma 3.5].

Lemma 5.1. Let Ix = (x1, x2), hx = x2 − x1 and v ∈ H1(Ix). Then, there
holds

|v(x1)−Πxv(x1)|
2 + |v(x1)−Πxv(x2)|

2 ≤ C hxk
−1 ‖v′‖20,Ix ,

for k ≥ 1 and with a constant C > 0 independent of hx, k, and v.

We will also make use of an approximation result from [19, Lemma 3.9] for
the two-dimensional L2-projection Πx ⊗ Πy; here, the subscripts indicate the
variables the projectors Πx and Πy act on.

Lemma 5.2. Let Ix = (x1, x2), Iy = (y1, y2), hx = x2 − x1 and hy = y2 − y1.
Assume that there exists a constant c > 0 such that chx ≤ hy ≤ c−1hx. Then,
for v ∈ H1(Ix × Iy) and k ≥ 1, we have

‖v −Πx ⊗Πy v‖
2
0,∂(Ix×Iy)

≤ C hxk
−1 |v|21,Ix×Iy ,

with a constant C > 0 depending on c, but independent of hx, hy, k, and v.

For an axiparallel element Kxyz = (x1, x2) × (y1, y2) × (z1, z2), the L2-
projector ΠKxyz

: L2(Kxyz) → Qk(Kxyz) is the product operator ΠKxyz
=

Πx ⊗Πy ⊗Πz of one-dimensional L2-projections. For v ∈ L2(Kxyz), it satisfies
∫

Kxyz

ΠKxyz
v ϕ dx =

∫

Kxyz

v ϕ dx, ∀ϕ ∈ Qk(Kxyz).

For an element K of a geometric edge or boundary layer mesh T , the L2-
projection ΠK : L2(K) → Qk(K) is defined by

∫

K
ΠKv ϕ dx =

∫

K
v ϕ dx, ∀ϕ ∈ Qk(K).
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Thanks to Property 3.1, we have K = FK(Kxyz) for an axiparallel element
Kxyz = (x1, x2)× (y1, y2)× (z1, z2). For v ∈ L2(K), we therefore have

ΠKv ◦ FK = ΠKxyz

[
v ◦ FK

]
, on Kxyz. (16)

We have the following stability result.

Lemma 5.3. Let T be a geometric edge or boundary layer mesh. Let K ∈ T
and v ∈ H1(K). Then we have for k ≥ 1

|ΠKv|1,K ≤ Ck
1
2 |v|1,K ,

with a constant C > 0 depending on the bounds in Property 3.1, but independent
of k, K, and v.

Proof. Let K = Kxyz according to Property 3.1. The bounds (14) and (15)
imply that

‖∂xΠKxyz
v‖0,Kxyz

≤ Ck
1
2 ‖∂xv‖0,Kxyz

,

‖∂yΠKxyz
v‖0,Kxyz

≤ Ck
1
2 ‖∂yv‖0,Kxyz

,

‖∂zΠKxyz
v‖0,Kxyz

≤ Ck
1
2 ‖∂zv‖0,Kxyz

,

for any v ∈ H1(Kxyz), with a constant C > 0 independent of k, Kxyz, and v.
A scaling argument and the bounds in Property 3.1 prove the assertion for a
general element K.

Finally, the L2-projection Π : L2(Ω) → {v ∈ L2(Ω) : v|K ∈ Qk(K), K ∈ T }
is defined elementwise by Πv|K = ΠKv|K , K ∈ T . For vector fields, we use
bold-face notation (such as ΠKxyz

, ΠK , and Π) to denote the L2-projections
that are applied componentwise.

5.2 Auxiliary results

In this section, we derive bounds for the averages and jumps over faces. We
start by considering interior faces.

5.2.1 Interior faces

Let K and K ′ be two elements of a geometric mesh with entire faces f and f ′

that share an interior face f ∩ f ′ in FI . We may assume that f ∩ f ′ is an entire
face of K, that is, f ∩ f ′ = f . By Property 3.1, we have K = FK(Kxyz) and
K ′ = FK′(K ′

xyz) with, e.g.,

Kxyz = (x1, x2)× (y1, y2)× (z1, z2), K ′
xyz = (x2, x3)× (y1, y3)× (z1, z2),

and y2 ≤ y3. The face f is then given by f = Ff (fyz), with fyz = {x2} ×
(y1, y2) × (z1, z2), and Ff (y, z) = FK(x2, y, z) = FK′(x2, y, z) for y1 ≤ y ≤ y2,
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z1 ≤ z ≤ z2. Similarly, we have f ′ = Ff ′(f ′
yz). For a function v ∈ H1(K ∪K ′)3,

we define vxyz = v|K ◦ FK and v′
xyz = v|K′ ◦ FK′ .

We set hx = x2 − x1, h′
x = x3 − x2, hy = y2 − y1, h′

y = y3 − y1, and
hz = z2 − z1, and may assume that

chx ≤ h′
x ≤ c−1hx, (17)

according to (9). In the case where the elementsK and K ′ match regularly (i.e.,
f = f ′) the ratios of the mesh-sizes hx, hy and hz can be arbitrary. However,
when K and K ′ match irregularly (i.e., f /= f ′), it is essential to observe that,
by definition of geometric meshes, we also have

chy ≤ h′
y ≤ c−1hy, chy ≤ hx ≤ c−1hy, (18)

with a constant c > 0 depending solely on the bounds in Property 3.1. The
situation when K and K ′ match irregularly is shown in Figure 4. We point
out that the above configuration covers all interior faces in geometric edge and
boundary layer meshes.

y

x

z

z

y

y

xx
2 3

1

2

3

1

2

K

f

1

K’
xyz

yz

xyz

Figure 4: The axiparallel elements Kxyz and K ′
xyz match irregularly. The face

fyz is given by fyz = {x2}× (y1, y2)× (z1, z2).

We first show the following result.

Lemma 5.4. Let K,K ′ ∈ T share a face f ⊂ FI. Then, for q ∈ Qh and
v ∈ H1(K ∪K ′)3,

|

∫

f
[[[[[[q]]]]]] · {{v−Πv}} ds| ≤ C

(∫

f
γ |[[[[[[q]]]]]]|2 ds

) 1
2
(
|v|21,K + |v|21,K′

) 1
2

,

with a constant C > 0 that depends only on the bounds in Property 3.1 and (9).

Proof. We begin by noting that
∫
f [[[[[[q]]]]]] · {{v−Πv}} ds = 1

2SK + 1
2SK′ , where

SK =

∫

f
[[[[[[q]]]]]] · (v|K −ΠKv|K) ds,

SK′ =

∫

f
[[[[[[q]]]]]] · (v|K′ −ΠK′v|K′ ) ds.
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Step 1: We start by bounding the term SK . Setting qyz = [[[[[[q]]]]]] ◦ Ff , we obtain

SK =

∫

f
[[[[[[q]]]]]] · (v|K −ΠKv|K) ds

=

∫

fyz

qyz · (vxyz −ΠKxyz
vxyz) | det(DFf )| dy dz

=

∫

fyz

qyz · (vxyz −Πx ⊗Πy ⊗Πzvxyz) | det(DFf )| dy dz

=

∫

fyz

qyz · (Πy ⊗Πzvxyz −Πx ⊗Πy ⊗Πzvxyz) | det(DFf )| dy dz.

Here, we have used identity (16), the factorizationΠKxyz
= Πx⊗Πy⊗Πz into

one-dimensional L2-projections, and the fact that each component of qyz is a
polynomial of degree % = k or % = k − 1 in y- and z-direction. The Cauchy-
Schwarz inequality, the definition of hf in (9), the definition of γ in (12), and
(17) yield

SK ≤ TK

(∫

fyz

hx max{1, %}−1|qyz |
2 | det(DFf )| dy dz

) 1
2

≤ C·TK ·

(∫

f
γ|[[[[[[q]]]]]]|2 ds

) 1
2

,

with the term TK given by

T 2
K := max{1, %}h−1

x

∫

fyz

|Πy⊗Πzvxyz−Πx⊗Πy⊗Πzvxyz |
2 | det(DFf )| dy dz.

From the stability of the one-dimensional projections Πy and Πz in (14) (tak-
ing into account that | det(DFf )| is constant), the approximation result in
Lemma 5.1, and the bounds in Property 3.1, we obtain

T 2
K ≤ max{1, %}h−1

x | det(DFf )|

∫

fyz

|vxyz −Πxvxyz |
2 dy dz

≤ Cmax{1, %}k−1 | det(DFf )| ‖∂xvxyz‖
2
0,Kxyz

≤ C | det(DFf )| ‖DFK‖ | det(DF−1
K )| |v|21,K ≤ C |v|21,K .

Combining the above estimates shows that

SK ≤ C |v|1,K

(∫

f
γ |[[[[[[q]]]]]]|2 ds

) 1
2

, (19)

with a constant C depending solely on the bounds in Property 3.1 and (9).
Step 2: Let us now consider the term SK′ . We note that there is an entire

face f ′ of K ′, such that f = f ∩ f ′. If f = f ′, then SK′ can be bounded as SK

in Step 1. Thus, we only need to consider the case where f is an irregular face
of K ′, i.e., f is a proper subset of f ′ as in Figure 4. As in the proof of Step 1,



Mixed hp-DGFEM for incompressible flows: Pressure stabilization 17

since qyz is a polynomial in z-direction, we have:

SK′ =

∫

f
[[[[[[q]]]]]] · (v|K′ −ΠK′v|K′) ds

=

∫

fyz

qyz · (v
′
xyz −ΠK′

xyz
v′
xyz) | det(DFf )| dy dz

=

∫

fyz

qyz · (Π
′
zv

′
xyzv

′
xyz −Π′

x ⊗Π′
y ⊗Π′

zv
′
xyz) | det(DFf )| dy dz.

Here, we denote by Π′
x, Π′

y, and Π′
z the one-dimensional L2-projections on

K ′
xyz. We obtain

SK′ ≤ C · TK′ ·

(∫

f
γ |[[[[[[q]]]]]]|2 ds

) 1
2

,

with the term TK′ given by

T 2
K′ := max{1, %}h−1

x

∫

fyz

|Π′
zv

′
xyz −Π′

x ⊗Π′
y ⊗Π′

zv
′
xyz |

2 | det(DFf )| dy dz.

From the stability (14) of Π′
z in z-direction, (17), (18) and Lemma 5.2, we

obtain

T 2
K′ ≤ max{1, %}h−1

x | det(DFf )|

∫

f ′
yz

|v′
xyz −Π′

x ⊗Π′
yv

′
xyz |

2 dy dz

≤ C|v′
xyz|

2
1,K′

xyz
≤ |v|21,K′ .

Combining the bounds above gives

SK′ ≤ C |v|1,K′

(∫

f
γ |[[[[[[q]]]]]]|2 ds

) 1
2

, (20)

with a constant C > 0 depending on the bounds in Property 3.1 and (9).
Combining (19) and (20) concludes the proof.

Next, we estimate the jump of the L2-projection over the face f .

Lemma 5.5. Let K,K ′ ∈ T share a face f ⊂ FI . Suppose that f = f∩f ′, with
f and f ′ entire faces of K and K ′, respectively. Then, for v ∈ H1(K ∪K ′)3,

∫

f
|[[Πv]]|2 ds ≤ Cmin{hf , hf ′}k−1

[
|v|21,K + |v|21,K′

]
,

with a constant C > 0 that depends only on the bounds in Property 3.1 and (9).

Proof. Equality (16) ensures that
∫

f
|[[Πv]]|2 ds ≤

∫

f
|ΠKv|K −ΠK′v|K′

|2 ds

=

∫

fyz

|ΠKxyz
vxyz −ΠK′

xyz
v′
xyz|

2 | det(DFf )| dy dz.
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We consider two cases separately.
Case 1: Let K and K ′ match regularly, i.e., f = f ′. Since vxyz and v′

xyz

coincide on the face fyz, we have Πy⊗Πzvxyz = Π′
y⊗Π′

zv
′
xyz on fyz. We thus

obtain from the triangle inequality
∫

f
|[[Πv]]|2 ds ≤ C · | det(DFf )| · [TK + TK′ ],

with

TK =

∫

fyz

|Πy ⊗Πzvxyz −Πx ⊗Πy ⊗Πzvxyz|
2 dy dz,

TK′ =

∫

fyz

|Π′
y ⊗Π′

zv
′
xyz −Π′

x ⊗Π′
y ⊗Π′

zv
′
xyz|

2 dy dz.

Using the stability (14) of the projections Πy and Πz in y- and z-directions, as
well as the approximation result in Lemma 5.1, we obtain

TK ≤ Chxk
−1‖∂xvxyz‖

2
0,Kxyz

≤ Chfk
−1|v|21,K .

An analogous bound for TK′ and (17) prove the assertion in this case.
Case 2: Assume that K and K ′ are non-matching (f /= f ′). We then have

that Πzvxyz = Π′
zv

′
xyz on fyz. Thus,

∫

f
|[[Πv]]|2 ds ≤ C · | det(DFf )| · [TK + TK′ ],

with

TK =

∫

fyz

|Πzvxyz −Πx ⊗Πy ⊗Πzvxyz|
2 dy dz,

TK′ =

∫

fyz

|Π′
zv

′
xyz −Π′

x ⊗Π′
y ⊗Π′

zv
′
xyz|

2 dy dz.

Since the underlying elements are shape-regular in x- and y-directions thanks
to (17) and (18), we can invoke the stability (14) of Πz and the approximation
result in Lemma 5.2. This gives

TK′ ≤

∫

fyz

|v′
xyz −Π′

x ⊗Π′
yv

′
xyz|

2 dy dz

≤

∫

f ′
yz

|v′
xyz −Π′

x ⊗Π′
yv

′
xyz|

2 dy dz

≤ Ch′
xk

−1|v′
xyz |

2
1,K′

xyz
≤ Chf ′k−1|v|21,K′ .

An analogous bound for TK and (17) prove the assertion in this case.
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5.2.2 Boundary faces

We conclude by stating an analogous result for boundary faces that can be
proved with exactly the same techniques. Let K be an element on the boundary
and f an entire face of K in FB.

Lemma 5.6. For v ∈ H1
0 (K)3, we have

∫

f
|[[Πv]]|2 ds ≤ C hfk

−1 |v|21,K ,

with a constant C > 0 depending on the bounds in Property 3.1.

5.3 Proof of Theorem 5.1

Fix q ∈ Qh. From the continuous inf-sup condition (2), there exists a field
w ∈ H1

0 (Ω)
3 such that

−

∫

Ω
q∇ ·w dx = ‖q‖20, |w|1 ≤ C−1

Ω ‖q‖0, (21)

where CΩ > 0 is the continuous inf-sup constant. We then set v = Πw, with Π
the L2-projection defined in section 5.1. Using [[w]] = 0 on F , (21), integration
by parts, and the properties of the L2-projection, we find

Bh(v, q) = Bh(w, q) +Bh(Πw −w, q)

= ‖q‖20 +

∫

Ω
∇hq · (Πw −w) dx −

∫

FI

[[[[[[q]]]]]] · {{Πw−w}} ds

= ‖q‖20 +

∫

FI

[[[[[[q]]]]]] · {{w−Πw}} ds.

Applying Lemma 5.4 gives
∣∣∣∣

∫

FI

[[[[[[q]]]]]] · {{w−Πw}} ds

∣∣∣∣ ≤
∑

f⊂FI

∣∣∣∣

∫

f
[[[[[[q]]]]]] · {{w−Πw}} ds

∣∣∣∣

≤ C

( ∑

K∈T

|w|21,K

) 1
2
( ∑

f⊂FI

∫

f
γ|[[[[[[q]]]]]]|2 ds

) 1
2

≤ C|w|1|q|FI
.

Combining the above estimates with (21) yields

Bh(v, q) ≥ C‖q‖20

(
1−

|q|FI

‖q‖0

)
, (22)

with a constant C > 0 solely depending on CΩ, and the bounds in Property 3.1
and (9).
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We have from Lemma 5.3, Lemma 5.5 and Lemma 5.6, together with the
definition of the discontinuity stabilization function δ,

‖v‖2h =
∑

K∈T

|Πw|21,K +
∑

f⊂F

∫

f
δ |[[Πw]]|2 ds

≤ Ck
∑

K∈T

|w|21,K + Ck
∑

K∈T

|w|21,K ≤ Ck|w|21.

Thus, invoking (21),

‖v‖h ≤ Ck
1
2 ‖q‖0. (23)

Combining (22) and (23) concludes the proof of Theorem 5.1.

6 Global stability and a-priori error estimates

In this section, we show how the results in section 4 and section 5 can be used
to obtain a global stability result and to derive a-priori error estimates. The
technique we use is closely related to that used in the analysis of conforming
stabilized mixed methods; see, e.g., [15, 14] and the references therein.

6.1 Global stability

Let Wh be the product space Wh = Vh ×Qh, endowed with the norm

|||(v, q)|||2DG = ν‖v‖2h + ν−1k−1‖q‖20 + ν−1|q|2FI
.

In Wh we define the forms

Ah(u, p;v, q) = Ãh(u,v) + B̃h(v, p)− B̃h(u, q) + Ch(p, q),

Lh(v, q) = Fh(v) +Gh(q),

and reformulate (8) equivalently as: find (uh, ph) ∈ Wh such that

Ah(uh, ph;v, q) = Lh(v, q) (24)

for all (v, q) ∈ Wh.
The following stability result holds.

Theorem 6.1. Let T be a geometric edge mesh T n,σ
edge or a geometric boundary

layer mesh T n,σ
bl , with a grading factor σ ∈ (0, 1) and n levels of refinement. Let

the stabilization functions δ and γ be defined according to (10), (11), and (12).
Then, there exists a constant C > 0 that depends on δ0, γ0, and the constants
in Property 3.1 and (9), but is independent of ν, k, %, n, and the aspect ratio of
of T , such that, for any n and k ≥ 1, % = k or % = k − 1,

inf
(0,0) "=(u,p)∈Wh

sup
(0,0) "=(v,q)∈Wh

Ah(u, p;v, q)

|||(u, p)|||DG|||(v, q)|||DG
≥ C.
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Proof. Fix (0, 0) /= (u, p) ∈ Vh ×Qh. Thanks to the coercivity of Ah in Theo-
rem 4.1 and the definition of Ch, we have

Ah(u, p;u, p) ≥ νβ‖u‖2h + ν−1|p|2FI
. (25)

Furthermore, Theorem 5.1 guarantees the existence of a velocity w ∈ Vh satis-
fying

Bh(w, p) ≥ C‖p‖20 − C|p|FI
‖p‖0, ‖w‖h ≤ Ck

1
2 ‖p‖0. (26)

From the definition of Ah, the continuity properties in Theorem 4.1, weighted
Cauchy-Schwarz inequalities, and (26), we obtain

Ah(u, p;w, 0) = Ah(u,w) +Bh(w, p)

≥ −Cε1ν‖u‖
2
h − Cε−1

1 ν‖w‖2h + C‖p‖20 − Cε−1
2 ‖p‖20 − Cε2|p|

2
FI

≥ C(1− ε−1
2 − νε−1

1 k)‖p‖20 − Cε1ν‖u‖
2
h − Cε2|p|

2
FI

, (27)

with parameters ε1, ε2 > 0 at our disposal. We next set (v, q) = (u, p)+ε3(w, 0),
with ε3 > 0. Then, combining (25) and (27), yields

Ah(u, p;v, q) ≥ Cν(1−ε1ε3)‖u‖
2
h+C(ν−1−ε3ε2)|p|

2
FI

+Cε3(1−ε−1
2 −νε−1

1 k)‖p‖20.

It is now easy to see that one can select ε1 of order O(kν), ε2 of order O(k),
and ε3 of order O(ν−1k−1), respectively, in such a way that

Ah(u, p;v, q) ≥ Cν‖u‖2h + Cν−1|p|2FI
+ Cν−1k−1‖p‖20 = C|||(u, p)|||2DG. (28)

Using the fact that ε3 is of order O(ν−1k−1) and (26) give

|||(v, q)|||2DG ≤ Cν‖u‖2h + Cνε23‖w‖2h + ν−1k−1‖p‖20 + ν−1|p|2FI

≤ Cν‖u‖2h + Cν−1k−1‖p‖20 + ν−1k−1‖p‖20 + ν−1|p|2FI

≤ C|||(u, p)|||2DG. (29)

Combining (28) and (29) completes the proof.

6.2 A-priori error estimates

In order to derive a-priori error estimates, we define (u, p) as the exact solution
of the Stokes system (1) and assume that p ∈ H1(Ωint) in a domain Ωint ⊂ Ω
containing all the interior faces in FI . Thus, [[[[[[p]]]]]] = 0 on FI . We define Q(h) :=
Qh+H1(Ωint) and W(h) := V(h)×Q(h), equipped with the norm |||(v, q)|||DG.

From the continuity properties in Theorem 4.1, Theorem 4.2 and the Cauchy-
Schwarz inequality, it can be seen that

|Ah(u, p;v, q)| ≤ Ck
1
2 |||(u, p)|||DG |||(v, q)|||DG, ∀(u, p), (v, q) ∈ W(h),

(30)
and

|Lh(v, q)| ≤ C
[
ν−1‖f‖20+νk‖δ

1
2g‖20,∂Ω

] 1
2 |||(v, q)|||DG, ∀(v, q) ∈ Wh, (31)
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with constants as in Theorem 4.1 and Theorem 4.2, respectively.
Taking into account (30), the global inf-sup condition in Theorem 6.1, and

the non-consistency of the forms Ãh and B̃h, we obtain straightforwardly the
following a-priori bound.

Theorem 6.1. Let (u, p) be the exact solution of the Stokes system (1), with p ∈
H1(Ωint), and let (uh, ph) be its discontinuous Galerkin approximation (6) on a
geometric edge mesh T = T n,σ

edge or a geometric boundary layer mesh T = T n,σ
bl ,

with a grading factor σ ∈ (0, 1) and n levels of refinement. Let the stabilization
functions δ and γ be defined as in (10), (11) and (12), respectively. Then,

|||(u− uh, p− ph)|||DG ≤ Ck
1
2 inf

(v,q)∈Wh

|||(u− v, p− q)|||DG + CRh(u, p),

with a constant C > 0 that depends on δ0, γ0, and the constants in Property 3.1
and (9), but is independent of ν, k, %, n, and the aspect ratio of the anisotropic
elements in T . Here, Rh(u, p) is the residual

Rh(u, p) = sup
(w,s)∈Wh

|Ah(u, p;w, s)− Lh(w, s)|

|||(w, s)|||DG
.

Let us make precise the abstract error bound above for a smooth solution
(u, p) ∈ Hs+1(Ω)3×Hs(Ω), s ≥ 1, on isotropically refined meshes with mesh-size
h with possible hanging nodes and for mixed-order elements where % = k − 1.

In this case, the residual Rh(u, p) can be bounded (see [24, Proposition 8.1])
by

Rh(u, p) ≤ sup
(w,s)∈Wh

|
∫
F {{ν∇u− T (ν∇u)}} : [[w]] ds|+ |

∫
F {{p− T (p)}}[[w]] ds|

|||(w, s)|||DG
,

where T and T are the L2-projections onto Σh and Qh, respectively. The
Cauchy-Schwarz inequality and standard hp-approximation properties then give

Rh(u, p) ≤ C
hmin{s,k}

ks+
1
2

[
ν

1
2 ‖u‖s+1 + ν−

1
2 ‖q‖s

]
.

Furthermore,

inf
(v,q)∈Wh

|||(u − v, p− q)|||DG ≤ C
hmin{s,k}

ks−
1
2

[
ν

1
2 ‖u‖s+1 + ν−

1
2 ‖q‖s

]

and thus
|||(u− uh, p− ph)|||DG ≤ C

hmin{s,k}

ks−1

[
ν

1
2 ‖u‖s+1 + ν−

1
2 ‖q‖s

]
. (32)

This estimate is optimal in the mesh-size h and suboptimal in k by one power
of k in the velocity and by a power k3/2 in the pressure, respectively.

Similarly to [24, Sect. 8], we obtain a slightly better result on conforming
meshes, that is,

|||(u− uh, p− ph)|||DG ≤ C
hmin{s,k}

ks−
1
2

[
ν

1
2 ‖u‖s+1 + ν−

1
2 ‖q‖s

]
. (33)

We point out that the a-priori error bounds (32) and (33) hold verbatim for
equal-order elements.
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Remark 6.1. We note that the dependence on the polynomial degree k in (32)
and (33) is slightly better than the hp-estimates in [24] for mixed-order Qk −
Qk−1 elements without pressure stabilization.
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