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Abstract

The h-version of the discontinuous Galerkin finite element method (h-DGFEM)
for nearly incompressible linear elasticity problems in polygons is analyzed.
It is proved that the scheme is robust (locking-free) with respect to volume
locking, even in the absence of H2-regularity of the solution. Furthermore,
it is shown that an appropriate choice of the finite element meshes leads to
robust and optimal algebraic convergence rates of the DGFEM even if the
exact solutions are singular.
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1 Introduction

In mechanical engineering, partial differential equations are often solved by low-
order finite element methods (FEMs). In many applications, the convergence of
these schemes may strongly depend on various problem parameters. Unfortunately,
this can result in non-robustness of the convergence i.e. the asymptotic convergence
regime of the method is reached only at such high numbers of degrees of freedom
that the scheme is practically not feasible. In computational mechanics, this non-
robustness of the FEM is termed locking.

There exist different kinds of locking: Shear locking typically appears if the cor-
responding domains are very thin and plate and shell theories, which include shear
deformation, are used. In addition, in shell theories and their finite element models,
there arises membrane locking which is caused by the interaction between bending
and membrane energies. Finally, problems dealing with nearly incompressible ma-
terials are often accompanied by the so-called volume locking; this type of locking
is very typical for elasticity problems in biology and will be explored in this paper.

In order to overcome locking, a wide variety of alternative approaches have been
suggested. For example, low-order mixed FEMs, where an extra variable for the
divergence term is introduced, yield adequate numerical results (cf. [8]). These
methods are closely related to under-integration schemes. A further possibility is
the use of non-conforming methods, where the global continuity of the numerical
solutions is not anymore enforced (see [12], for example).

In 1983, M. Vogelius proved absence of volume locking for the p-version of the
FEM on smooth domains [16]. Moreover, in 1992, I. Babuska, M Suri [5] showed
that, on polygonal domains, the h-FEM is locking-free on regular triangular ele-
ments with p > 4. In addition, they proved that, for conforming methods, locking
cannot be avoided on quadrilateral meshes for any p > 1. Recently, P. Hansbo and
M. G. Larson [11] suggested the use of a discontinuous FEM (DGFEM). Assuming
at least H? regularity, they showed that the h-version of the DGFEM does not lock
for all p > 1.

Following the classical approach of M. F. Wheeler [17] and B. Riviere, M. F.
Wheeler [14], this paper is devoted to the exploration of the DGFEM for linear
elasticity problems (with mixed boundary conditions) in convex and non-convex
polygons. Based on a recent regularity result by B. Q. Guo and C. Schwab [10]
it will be proved here that, even if the exact solutions of the elasticity problems
are singular (i.e. not H? anymore), the h-version of the DGFEM is locking-free.
Additionally, the use of so-called ’graded meshes’ lead the DGFEM to converge at
an optimal algebraic rate (independently of the compressibility of the material).

The DGFEM above is closely related to non-conforming methods of Crouzeix-
Raviart type. In 1992, S. C. Brenner, L. Sung [7] already showed that these schemes
are locking-free even for p = 1. However, their results are based on the assump-
tion that the displacements are H? regular, and therefore, the case of non-convex
polygons is in general not covered by that work. Nevertheless, applying the regu-
larity results and the mesh refinement strategies presented in this paper (Theorem
3.4, Theorem 5.10), it may be proved that the convergence statements in [7] are



extensible to the case where the exact solutions of the elasticty problems exhibit
corner singularities.

The outline of the paper is as follows: In Section 2 and 3, the linear elasticity
problem and its regularity on polygons are presented. In Section 4, the DGFEM
is introduced. Section 5 contains the error analysis of the DGFEM and terminates
with the proof of the main result (optimal, robust convergence of the DGFEM). In
Section 6, the theoretical results are confirmed with some numerical examples.

2 Problem Formulation

Let € be a polygon in R?. Its boundary I := 95 is assumed to consist of a Dirichlet
part I'p with |I'p| > 0 and a Neumann part I y:

F E FD U FN.
The linear elasticity problem reads as follows:

~V.ou) = f in Q
u = g, on I'p (1)

o(u) ng = g, on I'y.

Here, u = (u1,up) is the displacement and o = {o0y;};,_, is the stress tensor for
homogeneous isotropic material given by

o(u) = 2pe(u) + AV - 1 lyyo,

where €(u) = {€;(u)}; -, with

1
€ij () = 5 (O uj + Ou;us) (2)

is the symmetric gradient of u. Furthermore, y and A are the so-called Lamé coet-
ficients satisfying
0 < min{p, p+ A},

and ng, is the unit outward vector of €2 on I'.

3 Regularity

3.1 Weighted Sobolev Spaces

The regularity of (1) will be measured in terms of certain weighted Sobolev spaces.
In order to do so, set

SP(Q,FD,FN) = {Az i:1,2,...,M},
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where A;, ¢ = 1,..., M, denote the ’singular vertices’, e.g. corners and points
of changing boundary condition type of 2. Moreover, introduce a weight vector
B = (Bi,...,Bu) with 0 < f; < 1, and for any number k& € R set §+ k :=

(Br £ k,...,Bu £ k). Then, let @5 be a weight function on €2 given by

%(x):HT?(ﬂf)ﬁia ri(z) = v — A

Furthermore, for any integers m > [ > 0, denote by Hg"l(Q)2 the so-called weighted

Sobolev Spaces on 2 (cf. [2], [3], [9]) which are understood to be the completions of
C>(€)? with respect to the norms

[ lallfrs) + D 1D U Pparillamy, 121
= k=l

k=0

Convention 3.1 Since the weight function ®5 controls the local behaviour of the
solution in the vicinity of a (singular) vertex, it is obvious to work locally with the
weight function ®5 = r? with

B := 5 and r(z) = |z — Ay,
where A; denotes the corresponding vertex of the polygon.

Remark 3.2 In this paper, the spaces HE’Q(Q)2 will play a main role and it may
be proved easily that for all ¢ > 0 and for each function u € HE’Z(Q)Z, there holds

ulg € H?(Q.)?, where

M
Q. =\ J{zr eR?: |z — A <e}.

i=1
Moreover, Hy?(2) = H%(Q).

Finally, the spaces Hg_l/z’l_w(y)
HEZ(Q) ony C I and

2 | = 1,2, are defined as the trace spaces of

—1y2— ;= inf G| kit o -
HQHHE EEaC) gemy'(@)? H_HHEZ(Q)

Gly=g



3.2 Regularity of Generalized Stokes Problems

In order to obtain a regularity result for the elasticity problem (1), the following
generalized Stokes problem in the polygon € is considered:

( -V-o(u,p) = [ in Q
—V-u = h in Q

g:gDonFD

| o(w,p) ng = g, on Ty

Here, u is the velocity field, p a Lagrange multiplier corresponding to the (hydro-
static) pressure in the incompressible limit and o (u, p) the hydrostatic stress tensor
of u defined by

o(u,p) = —pl+2ve(u),

where €(u) is given as in (2) and v > 0 is the (kinematic) viscosity. If 'y = 0, the
following compatibility condition is supposed to be fulfilled:

/hdx—l—/ 9, nods=0 (4)
Q )

In [10] the following regularity result was proved:

Theorem 3.3 Let k > 0 and |U'p| > 0. In addition, if Tn = 0, let (4) be sat-
isfied. Then there exists a weight vector 3 = (B1,...,0Bu) with 0 < f; < 1,

i =1,...,M, such that for f € H;*(Q)?, h € H{*™M(Q), g, € Hy ™7 (I'p)?
and g, € 1T1T§+1/2’1/2(F1\r)2 the generalized Stokes problem (3) admits a unique solu-
tion (u,p) € H§+2’2(Q)2 X HgH’I(Q) and the a-priori estimate

||Q||H§+2’2(Q) + ||p||H§+l’1(Q)

(5)

< C(IIiHHgO(m ) + g llgssrrng,, + ||3N“H§+1/2*1/2(FN))

holds true.

3.3 Regularity of Linear Elasticity Problems

A regularity result for linear elasticity problems in polygons was proved in [9], Theo-
rem 5.2. However, referring to the previous Theorem 3.3, a more specific statement,
which clarifies the regularity of the linear elasticity problem (1) in dependence on
the Lamé coefficient A, may be developed.

Theorem 3.4 Let Q) be a polygon in R* and |T'p| > 0. Then there exists a weight
vector 8 = (B1,...,0u) with0 < B; <1, 1=1,..., M, such that for f € HE’O(Q)Q,

4



9, € 1T1T§+3/2’3/2(FD)2 and g, € H’grl/2’l/2(f‘]\;)2 the linear elasticity problem (1) has

a unique solution u € H§+2’2(Q)2. In addition, there exists a constant C' > 0
independent of A such that the ensuing estimate holds true:
||H||H§+2’2(Q) + AV - H“H;;“J(Q) ©)

< C(HiHHE’O(Q) T ||2D||H§+3/2’3/2(FD) * HQNHH?W’I/Z(FN))'

Proof: As already mentioned above, the unique solution u,, of the linear elasticity
problem (1) belongs to HEH’Z(Q) ([9], Theorem 5.2). Therefore, the choice

h:=-V. Uelast € HE-H,I(Q)
leads to the following solution (u,p) of the generalized Stokes problem (3):
p=—AV- Uelast

and

Ueglast-

=
I

Hence, using (5) implies that
||Q||H§+2’2(Q) + AV - Q||H§+1’1(Q) < C(HiHHE’O(Q) +[V- Q||H§+1’1(Q) (7)
+||gD||H§+3/2,3/2(FD) + ||QN||H§+1/2’1/2(FN))'
Thus, if |A| < 2C, it follows that
||Q||H§+2’2(Q) + AV - Q||H§+1’1(Q)
< Cllulgpsnso
< O (M Nmgoray + 19l e,y + Nayllggevming,)

for a constant C' independent of |A| € (0,2C). In the last step, Theorem 5.2 in [9)]
was applied.
Alternatively, if [A| > 2C, the term ||V - ul|iiss g in the right-hand side of

(7) may obviously be absorbed into the left-hand side. O

4 The DGFEM

4.1 Finite Element Meshes
Consider a regular® partition (FE mesh) 7 of Q into open triangles K:

T={K}, [|[JEK=2Q

KeT

*i.e. a FE mesh without any hanging nodes



The elements K € T are images of the reference triangle
Ti={(#,9): 0<§<V3(1—[2]),& € (-1,1)} (8)

under affine maps F, i.e. for each K € T there exists a constant matrix Ax € R?*?
and a constant vector b, € R? such that with

Fr(z) = Agz + by (9)

there holds

~

K = Fx(T). (10)
Moreover, for each K € 7T, introduce
hg = diam(K)

and
pr = sup{diam(B) : B is a ball contained in K}.

Finally, the so-called mesh width of T is given by

hy = sup hg. (11)
KeT

Henceforth, the FE meshes are assumed to be shape regular:

Definition 4.1 Let G = {7;}ien be a family of FE meshes. Then G is called shape
regular if there exists a constant p > 0 independent of i such that

h h
1 < min K < max X < ot Vi € N. (12)
KeTi pg KeTi pr

4.2 FE Spaces

Let 7 be a regular finite element mesh consisting of shape regular triangles K € 7.
The discontinuous finite element spaces that will be appropriate for the DGFEM
are defined as follows:

S T) ={uc L*(Q)?: ulg € P(K) KT} (13)

Here,
Pi(K) = {u(z,y) =ax + by +c: a,b,c € R}

is the space of all linear functions on K.



4.3 Variational Formulation

First of all, assume that there exists an index set Z C N such that the elements in
the subdivision 7 are numbered in a certain way:

T = {Kz‘}z‘ez-

Furthermore, denote by £ the set of all element edges associated with the mesh 7.
Additionally, let T’y be the union of all edges e € £ not lying on 0€2:

Fint = U €.

ecé:
eNQ=0

Moreover, define
Pingp :=TiwU{e€&:eCTp}.

Obviously, for each e € 'y, there exist two indices 7 and 7 with ¢ > j such that K;
and K share the interface e:
€ = 8KZ N 6[(]

Thus, the following mapping is well-defined:

90 : Fint — N2
e (gol(e)::z'_)
p2(e):=j5 ) *

If e € £\ Tin, i-e. if e is a boundary edge, there is a unique element K; € T such
that

Hence, the above definition may be expanded as follows:

p: E\liw — N
e — p(e) :=1.

As the DGFEM is based on functions in
HY(Q,T):={v:ve H(K)? VK €T} ¢ C°(Q)?,

the discontinuities over element boundaries have to be controlled in a certain way.
In order to do so, consider v € H(Q,T)?, e € I'iy; and x € e, and introduce the
so-called (numbering-dependent) jump operator of v in x,

[Q]e(aj) = 7le(e),ey(aj) - 7K¢2(e),6g($)’
and the so-called average operator of v in z,

(), (7) == 1(%%(e),ey(:zr) VK, 0,V (2)).-

2
Here, VK, (o).l denotes the trace of Q|KME) onto e, i = 1,2. For e C I', define:

[y]e = <Q>e = ’YKW(E),eQ-

7



Additionally, on e € I'jy, introduce a normal vector v, pointing from K, ) to K, )
(for boundary edges e C T, set v, := nj, where ny is the unit outward vector of K
on 0K).

Finally, in order to define a variational formulation for the linear elasticity prob-

lem (1), the following product operator on L?(K)?*? x L*(K)**? K € T has to be
introduced:

2
(8 2 ,8 = Z Olijﬁz’j

ij=1

lallx = / a:adr.
K

Definition 4.2 (DGFEM) Define a bilinear form Bpg by

with the induced norm

Bog(wy) = 3 /K o) : e(v) ds

KeT
=Y [t ), b~ i (o)), ds
TH Z %/[Q]e [Q]e dS,

and a corresponding linear functional Lpg by

Lpa(v) = Z/Kj-ydxwL/F g, uds

KeT

1
+/ (o(v) ng)-g,ds+p Z m/g[)gds.
I'p e

ecé:
eCl'p

Then, the DGFEM for the linear elasticity problem (1) reads as follows:
Find upg € SY°(Q,T) such that

Bpa(upg,v) = Lpe(v) Vv e SY(Q,T). (14)

Proposition 4.3 (Consistency) If the exact solution u,, of the linear elasticity
problem (1) belongs to HE’Q(Q)2 for any weight vector 3 = (Bi,. .., Bu) with 3; €
[0,1), i=1,..., M, then the DGFEM (14) is consistent:

Bpe(t,,,v) = L(v) Vo € B, T). (15)

—~exrr =



Proof: Cf. [18]. O
Finally, the DGFEM will be associated with the following norm:

lulpe =D lle(w)ll% + > el 1/I Je|* ds, (16)

KeT BEFm D

where
Melasy = 2min{u, pu + A}.

Remark 4.4 The norm in (16) is equivalent to the elementwise H' norm. A corre-
sponding result may be found in [6], where a discrete Korn inequality was proved.

Proposition 4.5 (Coercivity) The bilinear form Bpg is coercive on S"°(Q,T).
More precisely,
BDG(Q; Q) 2 2melast||ﬂ||%)G

for all w € SYO(Q, T).
Proof: Set

€o(u) := €(u) — —V u 1oy,
Then, for K € T, there holds that

[ otwsetwds = 2 [ ew)setwydnsa [ VouPs
= 2 [ (6ol + 5V o) s (ea(w) + 5V - Tcr) d
+)\/ V-l de
_ 2u/{60 —|v uf? }d:r+)\/ V- da
- QM/KGO(Q)¢€0(Q)d37+(ﬂ+)\)/[(|v'u|2d$-

Moreover, since

/Ke(g):e(g)dx = /( ()+ V U12><2)§(60(@)+%V'@12X2)d1’
- /{eo |v ul?} dz,

it follows that

[ ot selw)do 2 o [ elw) elw

K K
Thus,

Bpa(u,u) > melastZ/ wdr+p Y el 1/I (]| ds

KET eerlnt D

\%

= melast”@”p(;-



5 Error Analysis of the DGFEM

5.1 Interpolants

Proposition 5.1 Let K € T be a triangle with vertices Ay, Ay, As. Then, for each
B €10,1) and for ®g(z) = r® = |x — A,|P, there exists an interpolant

mr Hy?(K)? — Pi(K)’
such that the following properties are satisfied:

a) /g—m(gds:g, Vee g :={ec&:eCOK};

b) / u—7mgu)-n,ds =0, Veée€ Ek, (n, is the unit outward vector of K on e);

c)/ (u —mgu)de = 0;

Proof: For u € HE’Q(K) the interpolant Txu € Py(K)? is uniquely defined by
1
rru(aM) = H /gds, Ve € &k,
€ e

where 22" denotes the midpoint of e € £x. Then, a) and b) follow directly from this
definition. c) results from b) and from Green’s formula:

/V-(g—m{g)dx = / (u— TrU) - Ny ds
K
= Z/u—m(u n,ds

ecfi

= 0.
O

Proposition 5.2 Foru € HE’Z(K)Q, K € T, the interpolant wgu from Proposition
5.1 satisfies the following estimates:

lu — Trull2 ) + hilu — TrulmE)y < Ch?{ﬂMIH;,z(K) (17)
=il pgze g < ufyze (18)

and
IV - (u = 7rw)ll2) < Ch};ﬂv'mg;l(m (19)
Ve (w=mrw) iy <1V -ufyiag. (20)

C > 0 s a constant independent of hx and w.
Proof: Set U := u — mxu. Then, since mxu € P;(K)?, there holds:
|Q|H§=2(K) = |H|H§=2(K) and |V'Q|Hg=l(f<) = |V'Q|H;’1(K)
Thus, applying Lemma A.2 to U and Lemma A.3 to V - U, terminates the proof.O

10



5.2 Stability

In a polygon €) consider a FE mesh T satisfying the conditions from Section 4.1.
Moreover, let 3 = (fB1,..., Bu) be a weight vector and ®4 the corresponding weight
function described in Section 3.1. Then, on §'°(2, T), define an interpolant

Iy : H“(Q)2 — SH(Q,T)
by
r|gu = mgu, VK €T,

where 7, K € T is the interpolant from Proposition 5.1.

Then, the DG-error ¢ := u,, — ups, where u, is the exact solution of the
linear elasticity problem (1) and up, is the solution of the DGFEM (14), may be
represented as follows:

€= Upy = Hytty + Tl — upg . (21)

Remark 5.3 Since HE’Q(Q)2 C C()?% (cf. [4]), uy, € HE’Q(Q) implies that
/[ﬂ]e ds =0

Proposition 5.5 shows that [|{||pg is bounded by ||5||pg. Therefore, the error
€ = Uey — Upg Of the DGFEM may be controlled by n only.
In order to prove this, consider the following notations:

13

for all edges e € ['jy;.

Ko := {KETI 3KﬂSP(Q,FD,FN) 75(2)},

and
0Ky :={e € £: IK € Ky such that e C 0K'}.

Furthermore, consider the following Lemma, which will be useful for the error anal-
ysis of the DGFEM.

Lemma 5.4 Let u € H;’Q(Q). Then,

Y i + Do D lkelo® vl +#° D el lnlel7z

KeT KeT 681§5K e€ling D
€€lint,D
< | S Rl + )+ Y Wkl
KeT KeT\Ko
3 Bl T2 2 IVl
KeKy KeT
+ Z hﬁ(WgﬁHl + Z h2 2ﬂ|V T]|211 }},
KeT\Ko KeKo
where n = u — Ilru.

11



Proof: Obviously,

Z € ||K <C Z |77|H1

KeT KeT
Furthermore, Lemma A.4 and Remark 3.2 imply that

Yo D hvkele ) - vz

KeT ecég
EEI—‘intD
Clt Y > helem vlE + 223 D kel V)i
KeT e€ég KeT e€€k
eEFint D eerint D
< Cu| 3 IVl + D el + 3 K P lalee
KeT KeT\Ko KeKy
+OA2[Z||V e+ S WV b+ 3 BEF|V Ui ]
KeT KeT\Ko KeKy

Additionally, by the Trace Theorem (cf. [15], Theorem A.11), there holds

Do lelMiellzey < €D Yo lel Hhvenllza

eeFint,D KeT eeeg'gi(D
< C Z (lel™*llnllZecry + IV172(10))
eeFint,D
< C Z (W72 ey + V0172
eeFint,D

|

Proposition 5.5 (Stability) Let the exact solution u,, of the linear elasticity prob-
lem (1) be in HE’Z(Q), where 2 is a polygon in R%. Then, there holds the following

stability inequality for the DGFEM (14)

1€]lhe < CCIW\{MQ[Z(hl_(2||ﬂ||%2([()+|ﬂ|§11( Z R 12
KeT KeT\Ko
3 Wl 4 DIVl
KeKy KeT
Z h |V 77|211 Z h2 25|V 77|211 :|},
KET\Ko KeKo

where  and § are defined in (21) and where

-
I e

s bounded independently of A and p as A\ — oo, and C' > 0 is a constant independent
of i, A and of {hx : K € T}.

12



Proof: Due to the consistency of the DGFEM (cf. Proposition 4.3), it holds that

Bpa(&,€) = Bpale —1,§) = —Bpa(n,§).

Therefore, by Proposition 4.5

2mela.st||§||2DG S _BDG(Q7§)~ (22)

Furthermore,

Boo(n6) = 3 /K o (1) : €(€) du

KeT B B

- Y [t ), - e (@), )

eeFlnt D

+u2|e|1/ - 1¢].ds

eerlnt D

- QMZ/ (Qdz+A) V- g/v n da

KeT KeT

el /<a V> d3_<‘7(§)'ze>e'/e[g]eds)
WZ |e|1/ (€], ds.

eeFlnt D

Applying Proposition 5.1 and Remark 5.3 results in

Boon) = Y. [ e e Y [(ol-w),-.ds

KeT e€ling, D e
b Y gl / €] ds
eEFmtD
=1—-I1I+1I1.

By Holder’s inequality, there holds that

= |y [ ew

< [a? > ety ||K] [ZTH ]

13



A bound for I is obtained as follows:

< Y / {o() - ve), |I[Ele] ds

eeFint,D

IN

eeFint,D

IN

KeT e€lint
eCOK

) Eellre e

KET e€€k
eclp

IN

KET e€fik
eeFint,D

Furthermore, Lemma A.1 implies that

> lgeliomoll (o)
£ Y gl

CY > Mgl

), |

[7x.e(o(n

Li(e)

) vllLre

A

|17k.e(a (1) - )| L1e)

kela(n) -zl

11l < Y > el el 1 ve(o(m) - e

KeT ecfg

Mz

eeFint,D
1/2
<O Y el M| [ D hkele
KeT e€ég KeT ce€fk
EEFint,D EEI—‘int,D
Melast % -1 2 /2
- BB S )
2 /2
I Y kelom vl
KeT ce€fk
e€ling, D
Finally,

Melas -
) < Mt[m S lel M el e

eeFint,D
Summing up and using (22) yields
1

2melast

||§||2DG <

|Bpa(n, §)]

< (] + |11+ [111])

2melast

| [
Melast

< C’max{l,,/ elaSt}|§||DG [M Z”
KeT

+Z Z |7k (o

KeT ce€fk
e€ling, D

14

eeFint,D

7S

vollltse +1* Y el ]

eeFlnt D

n) Ze)H%l(e)

> ez

JellZ2

1/2

1/2



Applying Lemma 5.4 completes the proof immediately. O

A direct sequence of the statement above is the ensuing

Corollary 5.6 Let the assumptions of Proposition 5.5 be satisfied. Then, the fol-
lowing a priori error estimate holds true

ltor = upalide < COM{ 12| D Bl lmlage + Infisge) + S Hklnfiege
KeT KeT\Ko
2 WPl 4] DIVl
KeKy KeT
DD\ ¥ NSRS Sl 2T M 3
KeT\Ko KeKo

Here, u,, is the exact solution of (1), upe is the solution of the DGFEM (14) and
éu,A = max{y %, i~ M Cun ks
where C,, 5 is the constant from Proposition 5.5.

Remark 5.7 Obviously, the constant éu,/\ from the above Proposition loses its
dependence on A if A is sufficiently large, i.e.:

o) : Cun <Oy VA > N,
where CN’H is a constant independent of \.

Proof: From the error splitting (21) it follows that

lelde < Ol + lElhe)

I

< O[T letwlibe+ 72— 30 tel™ [P s+ i)
Melast

KeT BEFmD
< Omax{u i mil ) it S le@lbe + 30 1ol [l as]
KGT eeFlntD
€l

Thus, using Lemma 5.4 and inserting the stability bound from Proposition 5.5 com-
pletes the proof. O

5.3 Convergence Rates of the DGFEM

It is a well-known fact that, if u,, € H?*(Q2)?, where u,, denotes the exact solution
of (1), the standard (continuous) finite element method (and also the DGFEM)
convergences at an optimal algebraic rate, i.e.

||Qex - QFEH < CN?l/Za

15



where N = dim(8'°(€, 7)) is the number of degrees of freedom and 7 is a uniform
mesh on 2. Unfortunately, this result is typically not anymore true if the assumption
Uy € H?(Q)? is weakened, i.e. u,, € H;’Z(Q)2 with 3 >~ 0. Moreover, C' depends on

A, C ~V\as A — oo.

Although, the convergence rate remains algebraic in this case, the optimal order
O(N~?) is usually reduced to O(N—/?) with a < 1. This effect is even more
pronounced at higher orders of approximation.

The aim of this section is to prove that the optimal convergence rate may be
preserved even if the exact solution is singular, i.e. u, & H?(Q2). The main idea is
to replace the uniform meshes by so-called 'graded meshes’ which are able to resolve
the singularities without the need of additional degrees of freedom.

5.3.1 Graded Meshes

There are several possibilities to introduce graded meshes. The following approach
may be found in [4].

Definition 5.8 Let v be a weight vector as defined in Section 3.1 and ®., the cor-
responding weight function on Q. Then, a mesh T, on Q is called a graded mesh
with grading vector v if there exists a constant L > 0 such that the following
properties are satisfied:

i) if K €T, \ Ky then
L™ hy, @y (x) < hxe < Lhy,®,(z)  Vz € K;
i) if K € Ky then

L™ hy, sup @, (z) < hg < Lhy, sup @, ().
Teek TaeK

Here, hr, is the mesh width of T, (cf. (11)).

Graded meshes have asymptotically the same number of degrees of freedom as
uniform meshes:

Lemma 5.9 Let T, be a graded mesh as in Definition 5.8. Then,
N :=dim(8""(Q, T;)) < Chy?,
where C' > 0 is a constant independent of {hx : K € 7'1}

Proof: See [4], Lemma 4.1. O
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5.3.2 Main Result

Theorem 5.10 (Robust Optimal Convergence) Let the assumptions of Theo-
rem 3.4 be satisfied. Moreover, let T, with (1,1,...,1) > v = 3 be a graded mesh
as introduced in Definition 5.8. Then, for the h-DGFEM (1_4) it holds the following
optimal error estimate:

||Qex - QDG“DG < CCN'H,/\N*VZ.

Here, u,, € HE’Z(Q)2 is the exact solution of the linear elasticity problem (1), upq

is the solution of the DGFEM (14), N = dim(S8"(7,,9)), Cyux is the constant from
Corollary 5.6 (independent of X as A\ — o0) and C > 0 is a constant independent of
N and the Lamé coefficients p and A.

Proof: Let Il be the global interpolant from Section 5.2, i.e.
HTl|K =71k, KE€ 7’1,

where mg is the interpolant from Proposition 5.1. Referring to Corollary 5.6 the
following error bound for the DGFEM may be obtained:

||Qex - HDG“%)G

< OO 12| D0 (it = Trcttnl32a0) + It — Trctin s )

KeTy
+ Z h%(|ﬂex_7rKﬂex|%{2 + Z h2 2ﬂ|uex ’/TKuex| 22
KEE\KO Keky
[ SV e~ eyt 30 Wl - (e — Tt s
KGTI KEE\’CO
2—-2
£ 30 1PNV - ey~ o) ] -

KeKy

Moreover, inserting the estimates from Proposition 5.2 yields

| U — QDG”%)G

< céu,A{/f[ > hiclueelirue + 3 K P ltole)

KeTy\Ko Keko

> BV i + 20 PNV vl |

KeT,\Ko KeKo

= CCun{ Y Bl + NIV - el )
KeTy\Ko

2— 2,8 2 2
+ Z l’L ,u |uex| 22 +)\ |V uex| 51([())} (23)

KeKy -
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Furthermore, from the definition of the graded meshes (Definition 5.8) it follows
that

||Uex UDG||2DG

< i 0 [ D P+ NIDY ) de

KE’ITY\]CO

2—2
+Kz; h2-20( (supr7) )220 (i Iuelezz + XV “ex|Hgl<K>)}‘
elo

For all K € Kg there holds r < hg. Hence,

hix < ChT supr? < C’hﬂhK,
T rxeK

and therefore )
hyg < Ch;? .
This implies that

supr” < Ch), < C’h1 T < C’h1 5
zeK

Thus,

| U — QDG”%)G

< Ot { [ D XDV )

KeTy\Ko
+ Z H |uex|232 +)‘2|v uex| él(K))}
KeKy
< Gt X [ Bl NID(T ) o
KG%\’CQ
2 Pl + X1V ol o) }
KeKy -
<

CCpati { [ B0 Dl + XDV - )P o

+ Z 11 |ty |7, 22 +)\2|V U |? él(K))}

KeKy
< CCM,)\h (:u |uex|222 +)‘2|v2ex|§{;1(g))

Finally, by Lemma 5.9, i.e.
th < ON_1/2,
and with the aid of Theorem 3.4, the proof is complete. O
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Figure 1: Polygonal domain €2

Remark 5.11 On uniform meshes 7'10 it holds:

thO

1
NhKNﬁ VKE’TZQ.

Therefore, (23) directly implies that, even if v = 0, the DGFEM still converges

independently of © and A\. However, due to the appearance of the term h%{w , the
rate of convergence is not anymore optimal for 8 - 0.

6 Numerical Results

The aim of this section is to confirm the previous theoretical results with some
practical examples. More precisely, it will be shown that, even if the exact solutions
of the corresponding problems are singular, the convergence rate of the DGFEM
remains of order O(N~"/?), as expected. Moreover, the robustness of the method
against volume locking will be illustrated.

6.1 L-shaped Domain
6.1.1 Model Problem

Let €2 be the polygonal domain with vertices
Al — (0,0),A2 — (—1, —1),A3 — (1, —1),A4 — (1, 1),A5 — (—1, 1)

Note, that the origin O = (0,0) is a reentrant corner of Q (cf. Figure 6.1.1).
Then, consider the following model problem

—V.o(u) = 0 in Q
= g, on I'p=0Q

) (24)
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Figure 2: Graded mesh with refinement  Figure 3: Uniform mesh (i.e. graded
towards the origin (y = (1/2,0,0,0,0)) mesh with v = (0,0,0,0,0))

Here, g 9y, =Uu
dinates

Ue |1, Where u, is the exact solution of (24) given by its polar coor-

up(r,0) = iro‘(—(a + 1) cos((a+1)8) + (Cy — (a4 1))Cy cos((a — 1)8))

up(r,0) = ir“((a%—l)sin((a%—l)@)+(C'2+a—l)Clsin((a—l)Q)),

where o &~ 0.544484 is the solution of the equation
asin(2w) + sin(2wa) = 0
with w = 37/4, and

2(\ + 2;1)'

o, = LT ) Cy =
1 )7 2 )\+/L

6.1.2 Robust Optimal Convergence Rates on Graded Meshes

A few calculations show that the exact solution w,, of the model problem (24) is in
H*(Q)? with 8 = (51,0,0,0,0) for all 1 > 8 > 1 — a ~ 0.455516. Thus, in order
to obtain the optimal convergence rate, a graded mesh with refinement towards the
origin must be used for the numerical simulations.

Figure 4 shows the errors of the DGFEM for A € {1,100, 500, 1000, 5000} (x = 1)

in the energy norm
> fel [l as

lulpg = el +
KeT e€lnt, D
on a graded mesh with weight vector v = (1/2,0,0,0,0)) (cf. Figure 2). Obviously,
the convergence rate of the DGFEM is already almost optimal for approximately
5000 degrees of freedom (~ 800 elements). Moreover, the expected robustness of
the DGFEM with respect to the Lamé coefficient A is clearly visible.

20



DGFEM on graded mesh

—— A=t

-©- A=100
—— A=500
—<— A=1000
—&- A=5000

rel. energy error

0.4518

L 1

10’ 10°

number of degrees of freedom

Figure 4: Performance of the DGFEM on the L-shaped domain with Q =
(1/2,0,0,0,0) (graded mesh)

In Figure 5 the energy error of the DGFEM on a uniform mesh (i.e. v =
(0,0,0,0,0)) is presented. Although the DGFEM still converges robustly, the op-
timal convergence rate is not anymore achieved (cf. Remark 5.11) and the use of
graded meshes is found to be justified.

In addition, the L? errors for the computations above are shown in Figures 7
and 6. Again, the performance of the DGFEM on a uniform mesh is notably worse.
However, the convergence rate of the L? error seems to be twice as high as of the
energy error. A similar super convergence was already discovered in [1].

6.1.3 Volume Locking

Figures 8 and 9 show that the standard (i.e. continuous) finite element method does
not convergence independently of \. Although the asymptotic rate of convergence
is optimal on graded meshes, the onset of the errors’ decay is remarkably retarded
for A — oo. This effect is widely known as ’volume locking’ which, in contrast to
the DGFEM, seems to be unavoidable for low-order standard h-FEMs in the primal
variables.

6.2 An Example on the Unit Square
Consider the following problem on Q = (0,1)*:

—V.o(u) = 0 in Q
e (25)
u = ( b ) on I'p =09
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DGFEM on uniform mesh

10 . T —

—— A=t
-©- A=100
—— A=500
—*— A=1000 |
—&- A=5000

rel. energy error

1 1

2 3

10 10

number of degrees of freedom

10

Figure 5: Performance of the DGFEM on the L-shaped domain with § = 0 (uniform
mesh )

DGFEM on uniform mesh

10 - —————
—— A=t
-~ A=100
—— A=500
—— A=1000 ||
—8- A=5000 |]
107 .
5
5]
4
®
1071 .
4
10-3‘ H i ..‘.“12 i ; .H‘.ma “4
10 10 10 10

number of degrees of freedom

Figure 6: Performance of the DGFEM on the L-shaped domain with = 0 (uniform
mesh )
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DGFEM on graded mesh

—2

rel. L2 error
N
o
T

10' 10° 10° 10*
number of degrees of freedom

Figure 7: Performance of the DGFEM on the L-shaped domain with § =
(1/2,0,0,0,0) (graded mesh)

Standard FEM on graded mesh

10°
—— =1
-6~ A=100
—%— 2=500
—x— 2=1000
-5 A=5000
107
S
)
>
S
[
[ =4
[}
°
1071
]
1073 1 ‘ 2 ‘ 3 ‘ 4 5
10 10 10 10 10

number of degrees of freedom

Figure 8: Performance of the Standard FEM on the L-shaped domain with 3 =0
(uniform mesh)
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Standard FEM on graded mesh

—+ A=1

—©- A=100
—%— A=500
—— A=1000
—- A=5000

-5 ; HE R i R i A H
10 10 10° 10 10
number of degrees of freedom

Figure 9: Performance of the Standard FEM on the L-shaped domain with § =
(1/2,0,0,0,0) (graded mesh)

with
oD y) = { (1) — 4z —1/2) ;fls(ex,y) € (0,1) x {1}

Due to Theorem 3.4, the exact solution of this problem belongs to H?*(Q)2.
Therefore, referring to the numerical analysis above, no mesh refinement is required
for the DGFEM to converge optimally. The computational (uniform) mesh is shown
in Figure 10. Additionally, the results for different choices of A are presented (Figures
11-14). In contrast to the DGFEM, the standard FEM shows clear evidence of
locking.

A Appendix

Lemma A.1 Let I = [a,b], a < b be an interval in R and hy = b — a. Then, for
every u € Py(I) it holds that

ul| ey < 4V2R7 72|l p2ry-

Proof: See [13]. =
The proofs of the following lemmas may be found in [18].
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Figure 10: Computational mesh
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Figure 11: Standard FEM / DGFEM for A = 100
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Figure 12: Standard FEM / DGFEM for A = 500
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Figure 13: Standard FEM / DGFEM for A\ = 1000
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Figure 14: Standard FEM / DGFEM for A\ = 5000

Lemma A.2 Let K C R? be a triangle with vertices Ay, As, As. Then, for each
u € H;’Z(K)z, where 3 € [0,1) and ®(x) = r® = |z — Ay |5, there holds:

2
el ey < O (lufnagey + 3 | / ws|).
eEEK €

Here, C' > 0 is a constant (independent of u) and Ex = {ey, ea,e3} is the set of all
edges of K.

Lemma A.3 Let the assumptions of Lemma A.2 be satisfied. In addition, let

/udx:().
K

lull 2 < Clule ey

Then, there holds

where C > 0 is a constant independent of u.

Lemma A.4 Let the assumptions of Lemma A.2 be satisfied. Then, the following
inequalities hold true:

a) |ulor) < C(llullL2e) + h;ﬂ|Q|H§’1(K))"

b) |Vulrror) < C(lulmx) + h}{ﬂ|ﬂ|yg=2(m)-

27



References

1]

[10]

[11]

[12]

[13]

D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. Unified analysis of
discontinuous Galerkin methods for elliptic problems. vol. 39, pp. 17491779,
2001.

I. Babuska and B. Q. Guo. Reqgularity of the solutions of elliptic problems with
piecewise analytic data, part I. STAM J. Numer. Anal., vol. 19, pp. 172-203,
1988.

I. Babuska and B. Q. Guo. Reqgularity of the solutions of elliptic problems with
piecewise analytic data, part II. STAM J. Numer. Anal., vol. 20, pp. 763-781,
1989.

I. Babuska, R. B. Kellogg, and J. Pitkaranta. Direct and Inverse Error Esti-
mates for Finite Elements With Mesh Refinements. Numerische Mathematik,
vol. 33, pp. 447-471, 1979.

I. Babuska and M. Suri. Locking effects in the finite element approximation of
elasticity problems. Numerische Mathematik, vol. 62, pp. 439-463, 1992.

S. C. Brenner. Korn’s Inequality for Piecewise H' Vector Fields. Tech. Rep.
2002:05, Department of Mathematics, University of Carolina, 2002.

S. C. Brenner and L. Sung. Linear Finite Element Methods for Planar Linear
Elasticity. Math. Comp., vol. 59, pp. 321-338, 1992.

D. Chapelle and R. Stenberg. Locking-free mized stabilized finite element meth-
ods for bending-dominated shells. CRM Proc. Lecture Notes, pp. 81-94, 21.

B. Q. Guo and I. Babuska. On the Regularity of Elasticity Problems with
Piecewise Analytic Data. Adv. Appl. Math., vol. 14, pp. 307-347, 1993.

B. Q. Guo and C. Schwab. Analytic Regularity of Stokes Flow in Polygonal
Domains. Tech. Rep. 2000-18, Seminar for Applied Mathematics, ETH Ziirich,
8092 Ziirich, Switzerland, 2000. http://www.sam.math.ethz.ch/reports/.

P. Hansbo and M. G. Larson. Discontinuous Galerkin methods for incompress-
ible and nearly incompressible elasticity by Nitsche’s method. Comput. Methods
Appl. Mech. Engrg., vol. 191 (17-18), pp. 1895-1908, 2002.

R. Kouhia and R. Stenberg. A linear nonconforming finite element method
for nearly incompressible elasticity and Stokes flow. Comput. Methods Appl.
Mech. Engrg., vol. 124 (3), pp. 195-212, 1995.

A. Quarteroni. Some results of Bernstein and Jackson type for polynomial
approximation in LP spaces. Japan J. Appl. Math., vol. 1, pp. 173-181, 1984.

28



[14] B. Riviere and M. F. Wheeler. Optimal Error Estimates for Discontinuous
Galerkin Methods Applied to Linear Elasticity Problems. Tech. rep., TICAM,
2000.

[15] C. Schwab. p and hp Finite Element Methods. Theory and Applications to Solid
and Fluid Mechanics. Oxford University Press, 1998.

[16] M. Vogelius. An Analysis of the p-Version of the Finite Element Method for
Nearly Incompressible Materials. Numerische Mathematik, vol. 41, pp. 39-53,
1983.

[17] M. F. Wheeler. An elliptic collocation finite element method with interior penal-
ties. STAM J. Numer. Anal., vol. 15, pp. 152-161, 1978.

[18] T. P. Wihler. Dissertation ETH. To appear.

29



Research Reports

No. Authors Title
02-14 Th.P. Wihler Locking-Free DGFEM for Elasticity Prob-
lems in Polygons
02-13 S. Beuchler, R. Schneider, Multiresolution weighted norm equivalences
C. Schwab and applications
02-12 M. Kruzik, A. Prohl Macroscopic modeling of magnetic hysteresis
02-11 A.-M. Matache, Fast deterministic pricing of options on Lévy
C. Schwab, driven assets
T. von Petersdorff
02-10 D. Schétzau, C. Schwab, Mixed hp-DGFEM for incompressible flows
A. Toselli
02-09 Ph. Frauenfelder, Concepts - An object-oriented software pack-
Ch. Lage age for partial differential equations
02-08 A.-M. Matache, Two-Scale Regularity for Homogenization
J.M. Melenk Problems with Non-Smooth Fine Scale
Geometry
02-07 G. Schmidlin, C. Lage, Rapid solution of first kind boundary integral
C. Schwab equations in IR
02-06 M. Torrilhon Exact Solver and Uniqueness Conditions for
Riemann Problems of Ideal Magnetohydro-
dynamics
02-05 C. Schwab, R.-A. Todor Sparse Finite Elements for Elliptic Problems
with Stochastic Data
02-04 R. Jeltsch, K. Nipp CSE Program at ETH Zurich: Are we doing
the right thing?
02-03 L. Diening, A. Prohl, On Time-Discretizations for Generalized
M. Ruzicka Newtonian Fluids
02-02 A. Toselli hp Discontinuous Galerkin Approximation for
the Stokes Problem
02-01 F.M. Buchmann, Solving Dirichlet problems numerically using
W.P. Petersen the Feynman-Kac representation
01-09 A.-M. Matache Sparse Two-Scale FEM for Homogenization
Problems
01-08 C. Lasser, A. Toselli Convergence of some two-level overlapping
domain decomposition preconditioners with
smoothed aggregation coarse space
01-07 T. von Petersdorft, Wavelet-discretizations of parabolic integro-
C. Schwab differential equations
01-06 A.-M. Matache, C. Schwab Two-Scale FEM  for  Homogenization
Problems
01-05 A. Buffa, R. Hiptmair, Boundary Element Methods for Maxwell

T. von Petersdorft,
C. Schwab

Equations in Lipschitz Domains



