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! Eidgenössische
Technische Hochschule
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Introduction

Object oriented design and analysis [4] have proven themselves as a powerful tool in the field of scientific
computing. Several software packages, libraries and toolkits exist, in particular in the FEM arena that fol-
low this design methodology providing extensible, reusable, and flexible software while staying competitive to
traditionally designed point tools in terms of efficiency.

However, the common approach to identify classes is to turn data structures and algorithms of traditional
implementations into classes such that the level of abstraction is essentially not raised. An alternative way
to identify reusable classes is concept oriented design proposed in [10]. This design methodology exploits the
mathematical structure to find an appropriate modularisation. We explain the ideas of concept oriented design
shortly in Section 1 and show its application to Finite Elements in Section 2.

For our hp-FEM code, it is crucial that hanging nodes can be handled. Otherwise, implementing adaptive
methods is quite complicated. In the present work, a new method to deal with hanging nodes in conforming
FE spaces is presented. In contrast to methods which are widely used today, our approach offers both, more
flexibility and extensibility in the variety of meshes which are supported and in the spatial dimension which can
be handled. We present the theory and the software design in Section 3.

We use a software package called Concepts developed at the Seminar for Applied Mathematics (SAM) of the
Swiss Federal Institute of Technology (ETH), Zurich, following the guidelines of concept oriented design applied
to Petrov-Galerkin methods. The package is based on [9].

At the SAM several projects have been realised using the library: generalised FEM in two dimensions
(Ana-Maria Matache, [12]), linear elasticity (Giacomo Catenazzi, David Hoch, Andreas Rüegg), discontinuous
Galerkin finite elements (Philipp Frauenfelder), boundary elements including clustering and wavelet based
acceleration methods (Gregor Schmidlin, Christian Lage).

1. Software Design

Most software projects treating numerical problems have among their general aims extensibility, re-usability,
flexibility and performance. With the increasing complexity of the problems which can be solved by computers,
the complexity of the needed software is growing, too. Solving a complex problem is only possible if it is
fragmented, i.e. the software has a modular design and the modules can be designed and coded more or less
separately from each other. Using a modular design, the whole software package is built from loosely coupled
modules which make exchanging a module or adding modules easy yielding extensibility and re-usability.

Flexibility can be achieved by designing generic modules which describe the properties of a whole set of
modules. This is an important feature which distinguishes object oriented methods from traditional (structured)
methods. These generic modules fix the interface to a set of modules which, in return, are specialisations of the
generic modules.

Essentially, object oriented methods provide two methods to describe the relation of generic and specialised
modules: polymorphism (inheritance, overloading) and parametrised types (templates).

In the following, we give a brief summary of [10].
In the section above, the necessity to have generic and specialised modules was described. Often, it is not

evident how to identify those generic modules. In the structured programming world, a top-down or bottom-up
approach was used to identify the different modules in the designing process of a software package.

The main problem of the top-down approach: since the modules are produced in the scope of their generating
problem it is difficult to reuse them in a different context. On the other hand, the bottom-up approach makes
it difficult to combine the resulting modules. For a new application of the software, it might be necessary to
redesign several modules. This makes the design method unusable.

The above mentioned methods do not give us a satisfying recipe. Identifying the modules is one of the crucial
points in object-oriented software design, though.

However, since we are interested in the development of numerical software, there is a special situation:
the considered numerical methods are already formulated in an abstract way based on hierarchical structured
mathematical concepts. This motivates the following approach: represent each concept by a module and

1
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combine these modules according to the numerical algorithm to generate an implementation. This defines
concept oriented modularisation.

Since the mathematical formulation is quite stable and reusable already, chances are quite high that these
properties carry over to the modularisation in the software. Another great advantage of concept oriented design
is: Mathematicians and other researchers will find the concepts familiar.

2. The Software Package Concepts

The design ideas and principles shown in the previous section are used to design the software Concepts
[5]. Concepts is a class library nearly completely written in C++ [14]. We are working with Concepts at our
institute with boundary element methods, hp-finite element methods and generalised finite element methods.
The following subsections outline the main classes of the software by means of a very general problem. In
addition, we show an application of the classes to hp-FEM.

The diagrams in this section follow the standard of the Unified Modelling Language UML [13].

2.1. Mathematical Concepts. The mathematical concepts used for the design of Concepts are those of FEM
and BEM or, more general, those of Petrov-Galerkin discretisation methods. In the following, we briefly recall
the terminology of these methods:

In order to find a solution u of

(2.1) Lu = f

where L denotes an operator and the function f a given right hand side, we rewrite (2.1) in variational form:

Find u ∈ V such that

(2.2) a(u, v) = l(v) ∀v ∈ W,

with V , W function spaces, a(·, ·) a bilinear form and l(·) a linear form. A discretisation of (2.2) is obtained by
replacing V and W with finite dimensional subspaces VN and WN , respectively.

The discretised problem may be written as a linear system of equations by choosing a suitable basis for each
of the subspaces. To keep the discussion focused, we assume the same basis {Φ1, ...,ΦN} for both spaces VN

and WN , and obtain

(2.3) Au = l

with (A)ij := a(Φj ,Φi), (l)i := l(Φi) and u the coefficient vector of the discrete solution.
The mathematical concepts used above are easily listed: operator, function, bilinear form, linear form,

(sub)space, basis function, matrix, vector. Mapping these concepts into classes, however, rises the problem
to represent functions, in particular, basis functions. The standard way to approach this problem is to de-
compose (mesh) the domain Ω of the function into primitive sets Ki (elements). These sets themselves can
be characterised by applying mappings FKi

to predefined reference sets (cells), e.g. FKi
: K̂ → Ki such that

Ki = FKi
(K̂). In addition, functions Nj mounted on a reference set define so-called shape functions φKi

j on

each of the elements Ki via φKi

j ◦ FKi
= Nj .

Functions may now be implemented by specifying their restriction to each of the elements Ki by means of
linear combinations of shape functions.

Definition 1 (T-matrix). Let mK be the number of shape functions
{

φK
j

}mK

j=1
attached to element K and N

the number of basis functions {Φi}
N
i=1. The T-matrix TK ∈ RmK×N of element K is implicitly defined by

Φi|K =
mK
∑

j=1

[TK ]ji φ
K
j

or in vector notation: Φ|K = T"
KφK .



3

Mesh

+ncell(): int
+scan(): Scan<Cell>

Space

+dim(): int
+nelm(): int
+scan(): Scan<Element>

Element

+T(): TMatrix

Cell
+map: ElementMap

+child(): Cell

Scan

+eos(): bool
+operator++(): P

P

ElementMap

+operator()(x:scalar[dim]): scalar[dim]

Figure 1. The classes in Concepts representing mesh, space and elements.

The element-by-element representation of functions carries over to the specification of linear and bilinear
forms:

(2.4) l = l(Φ) = l





∑

K̃

T"

K̃
φK̃



 =
∑

K̃

T"

K̃
l(φK̃) =

∑

K̃

T"

K̃
lK̃

and

(2.5) A = a(Φ,Φ) = a





∑

K

T"
KφK ,

∑

K̃

T"

K̃
φK̃



 =
∑

K,K̃

T"

K̃
a(φK ,φK̃)TK =

∑

K,K̃

T"

K̃
AK̃KTK

where the element vector lK̃ and the element matrix AK̃K are given by

(2.6) (lK̃)i := l(φK̃
i ), and (AK̃K)ij := a(φK

j ,φK̃
i )

with i = 1, . . . ,mK̃ and j = 1, . . . ,mK .

2.2. Fundamental Classes. In this section, we show the classes in Concepts which realize the mathematical
concepts presented in the previous section. An application in Concepts typically performs the following steps:

(1) Build a meshed domain of interest. A mesh is built from cells which contain the element maps.
(2) Build a space on the mesh. The space creates the elements. Typical for FEM and BEM: the elements

are associated to cells in the mesh.
(3) Build the system matrix A and the system vector l from the element contributions computed by the

bilinear and linear forms respectively.
(4) Solve the resulting linear system Au = l with the solver.

In Concepts, there are classes for the space, the mesh and the elements: see Figure 1. The main member of
the classes Mesh and Space is scan(). In both classes, it returns a Scan<P> with the template parameter P set
accordingly. The instance of Scan is a scanner over the space or the mesh and makes it possible to loop over
the elements of the space or the cells of the mesh. Typically, the constructor of a space loops over all cells of
the mesh and creates an associated element. The element map FK : K̂ → K is realized by ElementMap.

The most important member of the element is T : It returns the T-matrix of an element. The T-matrix is
used to assemble the local shape functions into to global basis functions of the space whom the element belongs
to. Figure 3 shows the assembly of a load vector.

Figure 2 shows the classes of Concepts for the bilinear and linear form, the system matrix and system vector
and the linear solver. The constructor of the system matrix SystemMatrix takes as arguments a space and
a bilinear form. It assembles the system matrix by looping over the elements of the space and calling the
application operator operator() of the bilinear form on the elements. The same is done in the constructor of
the system vector Vector. By using these abstract class declarations, it is possible to explicitly implement the
assembly operator: Figure 3 shows the constructor of Vector, i.e. the assembling of the global load vector—the
assembly operator of a system matrix looks similar. The solver is, like SystemMatrix, derived from the general
class Operator. Operator is the realization of the general concept of an operator which maps a vector from one
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BilinearForm

+operator()(elmX:Element,elmY:Element,em:ElementMatrix)

LinearForm

+operator()(elm:Element,em:ElementMatrix)

Operator

+operator()(fncY:Function,fncX:Function)
+spaceX(): Space
+spaceY(): Space

LinearCombination
-A: Operator
-B: Operator

+LinearCombination(A:Operator,B:Operator,a:scalar=1.0,b:scalar=1.0)

SystemMatrix
-spcX: Space
-spcY: Space
-A: SparseMatrix

+SystemMatrix(spc:Space,bf:BilinearForm)

Solver
-A: Operator

+Solver(a:Operator)

Function
-spc: Space

+operator+(fnc:Function): Function
+operator-(fnc:Function): Function
+space(): Space

Vector
+data: scalar[]

+Vector(spc:Space,lf:LinearForm)

ElementMatrix
-data: scalar[]

+ElementMatrix(m:int=0,n:int=0)
+transpose()
+operator()(i:int,j:int): scalar

Figure 2. The classes in Concepts for bilinear and linear forms, system matrix and system
vector and the solver.

Vector::Vector(const Space& spc, LinearForm& lf) : v_(new F[n_]) {

memset(v_, 0, n_ * sizeof(v_[0])); // set all elements of the system vector to 0

ElementMatrix A(3, 1), B(3, 1); // initialize 2 element matrices

std::auto_ptr<Space::Scan> sc(space().scan()); // get a scanner to loop over the space

while ( *(sc.get()) ) { // the loop ends after all elements are treated

Element& elm = (*sc)++; // get the current element

const TMatrixBase& T = elm.T(); // get the T-matrix of the element

lf(elm, A); // evaluate the linear form

A.transpose(); T(A, B); B.transpose(); // apply the T-matrix

for(int i = T.n(); i--;) {

v_[T.index(i)] += B(i,0); // add the element’s contribution into the system vector

}

}

}

Figure 3. Constructor of the class Vector which implements the assembly operator for a load
vector. This does not depend on any particular implementation but only on the abstract classes.

space to another. A solver fits into this concept, too. In practice, the classes SystemMatrix and Solver are just
an interface to PETSc [1, 2, 3].

2.3. Application to hp-FEM: concrete classes in Concepts. In this section, an application of the math-
ematical concepts and the classes shown in the Sections 2.1 and 2.2 is presented.

Consider the following scalar model problem:

−∆u+ u = f in Ω,

u = 0 on ∂Ω.

Integrating over Ω and integrating by parts results in a variational formulation which is discretised with a
FE space VN ⊂ H1

0 (Ω), e. g. VN = S1,p
0 (Ω, T ), the space of continuous, piecewise polynomials of degree pK
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Element

+T(): TMatrix

FEMElement
-T: TMatrix

+FEMElement(T:TColumn*=0)
+evaluate(x:scalar[])
+evaluateD(x:scalar[])

Space

+dim(): int
+nelm(): int
+scan(): Scan<Element>

LinearFESpace
-dim: int
-nelm: int

+LinearFESpace(mesh:Mesh)

Figure 4. The FE space S1,p
0 (Ω, T )

implemented in LinearFESpace and the
element implemented in FEMElement.

BilinearForm

+operator()(elmX:Element,elmY:Element,em:ElementMatrix)

Laplacian Identity

LinearForm

+operator()(elm:Element,em:ElementMatrix)

RHS

Figure 5. The bilinear forms for A
and I implemented in Laplacian and
Identity respectively. The linear form
for l implemented in RHS.

functions on the mesh T with zero boundary values.1 The discrete variational problem reads:
Find uFE ∈ S1,p

0 (Ω, T ) such that
∫

Ω
(∇uFE ·∇vFE + uFEvFE) dx =

∫

Ω
fvFE dx ∀vFE ∈ S1,p

0 (Ω, T ).

Opposed to (2.2), VN = WM here. Let {Φi}
N
i=1 be a basis of S1,p

0 (Ω, T ) and u the coordinates of uFE in this
basis. Plugging uFE = u"Φ into the variational formulation yields

(A+ I)u = l

where A is the stiffness matrix originating from the Laplacian and its bilinear form

aΩ(u, v) =

∫

Ω
∇u ·∇v dx.

I is the mass matrix originating from the absolute term and its bilinear form

bΩ(u, v) =

∫

Ω
uv dx.

Finally, define L = A+ I and solve the linear system Lu = l for u.
With this background, the necessary classes can be found easily. The specialisations of Space and Element

are shown in Figure 4. The bilinear forms to compute A and I are depicted in Figure 5. The realisation of A
and I are combined using LinearCombination from Figure 2—eventually, the solver is initialised and applied to
l to get u. An application in pseudo code looks like in Figure 6.

3. Generation of T-Matrices

Basis functions are implemented using T-matrices, i.e. the generation of T-matrices defines a set of basis
functions and therefore the subspace used to discretise the variational formulation. Depending on the collection
of shape functions and properties of the mesh several construction rules exist. Consistent meshes, i.e. meshes
with properly aligned vertices, edges and faces, allow construction rules specifying shape functions to be “glued”
together in order to form basis function. Associated T-matrices usually have at most one entry equal to 1 in
each row and column which defines a simple index mapping operation (Example 2).

1On triangles and tetrahedra, we use PpK (the space of polynomials of total degree pK) as the polynomial space for element
K. On quadrilaterals and hexahedra, we use QpK (the space of polynomials of maximal degree pK) as the polynomial space for
element K. On prisms, we use a tensor product of PpK (for the triangular base) with QpK as the polynomial space for element K.
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Domain mesh;

LinearFESpace space(mesh); // elements and T-matrices are generated

Laplacian bfa;

SystemMatrix A(space, bfa); // computing and assembling the stiffness matrix

Identity bfi;

SystemMatrix I(space, bfi); // computing and assembling the mass matrix

RHS lf;

Vector l(space, lf);

Vector u(space); // empty solution vector

LinearCombination L(A, I);

Solver Linv(L);

Linv(f,u); // solve linear system

Figure 6. An application in pseudo code.

1

1
1

2

2
2

3

3
3

4

K1

K4

Figure 7. Consistent mesh with two
elements with three local shape func-
tions each and four global basis func-
tions.

1

1

1
1

2
2

2
2

3

3

3
3

4

K1

K2

K3

Figure 8. Inconsistent mesh with
three elements with three local shape
functions each and four global ba-
sis functions. The hanging node is
marked with ◦.

Construction rules can be formally defined utilising the concept of degrees of freedom. However, this does not
provided an efficient algorithm to generate basis functions. These algorithms depend strongly on the properties
of given meshes and the applicable sets of shape functions. Therefore, a generalisation of such an algorithm is
not possible.

In Concepts we deal with this problem by introducing specialisations of the abstract base class Space, each
implementing way of generating basis functions (e.g. class LinearFESpace). Since the assembly of vectors and
matrices only depends on the interface defined by the class Space and the general concept of a T-matrix to
define basis functions (see Figure 3) new construction rules in form of concrete classes for spaces, may be added
without changing existing code.

Example 2. Consider the consistent mesh shown in Figure 7. Assuming standard linear nodal shape functions,
the elements K1 and K4 have the T-matrices

(3.1) TK1
=





1 0 0 0
0 1 0 0
0 0 1 0



 and TK4
=





0 1 0 0
0 0 0 1
0 0 1 0




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TMatrix
-data: scalar[]

+TMatrix(t:TColumn*=0)
+append(t:TColumn*)

TColumn
-lnk: TColumn*
-n: int
-index: int
-data: scalar[]

+TColumn(n:int,index:int,link:TColumn*=0)
+link(): TColumn
+operator[](i:int): scalar

TColumnTensor
+n: int[dim]

+TColumnTensor(n:int[dim],index:int,link:TColumn*=0)
+operator[](i:int[dim]): scalar

dim:int

TMatrixBase

+operator()(A:ElementMatrix,B:ElementMatrix)

TIndex
-data: scalar[]

+TIndex(m:int,n:int,idx:scalar[])

Figure 9. Classes for a T-matrix: T-matrices are built from T-columns. There are two spe-
cializations of TMatrixBase: TIndex which is for simple meshes and TMatrix which is for general
meshes. TColumnTensor is a tensorized view of TColumn.

specifying four continuous basis functions. In case of the inconsistent mesh shown in Figure 8, the T-matrices
of element K2 and K3 are:

(3.2) TK2
=





0 1 0 0
0 0 0 1
0 1/2 1/2 0



 and TK3
=





0 1/2 1/2 0
0 0 0 1
0 0 1 0



 .

In case of consistent meshes the implementation of construction rules depends heavily on counting and
assigning indices with respect to topological entities such as vertices, edges and faces.2 To support this, Concepts
provides the user with unique identifiers for basic topological entities. These identifiers may be used to associate
information necessary for the construction with these entities using data structures like arrays and maps. Note
that this kind of association is temporary, i.e. the information is no longer needed, after basis functions and T-
matrices, respectively, are constructed. Moreover, with this approach it is not necessary to pollute topological
and geometrical data structures with construction specific data fields which improves the encapsulation of
modules.

The concept of T-matrices is captured in an abstract base class, which provides among others a multiplication
operation with element matrices. Specialisation of this interface include the implementation as index mapping
operation in order to keep the application of T-matrices efficient in case of consistent mesh discretisations
and the implementation of T-matrices as general matrix (class TMatrix shown in Figure 9) to cover non-
consistent or nonstandard meshes. However, T-matrices are in general highly sparse matrices with only a few
nonzero columns. Therefore, instances of TMatrix are created column-wise as TColumns and TColumnTensors,
respectively.

The handling of inconsistent meshes involves more complex construction rules for basis functions compared
to the rules for consistent meshes. In addition, in many cases one has to distinguish several situations such as
single constraint hanging nodes and double constraint nodes.

In the following we present an approach that extends simple construction rules for consistent meshes to
the inconsistent case. The assumption made for this approach is that the inconsistency (hanging nodes) is
introduced due to recursive refinements of an initially consistent mesh. For example, the mesh in Figure 8 is a

2The user who implements a concrete FE space can choose what should be done if two neighbouring elements have different
polynomial degrees. There are two possibilities:

• the set of local shape functions on the element with the lower polynomial degree is enriched on the shared interface or
• the set of shape function on the other element (the one with the higher polynomial degree) is diluted, i.e. the shape

functions on the shared interface which do not have a matching partner on the neighbouring element are dropped.

It is possible to implement both variants in Concepts.
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refined version of the mesh in Figure 7 and the meshes in Figure 11 result from a mesh consisting of a single
quadrilateral. This assumption is met for example by methods offering local adaptivity.

Consider a mesh M for which all elements and associated T-matrices have been generated. Suppose the
mesh M′ is the result of splitting several elements of M. The basis functions B := {Φ1, . . . ,ΦN} defined for M
may be partitioned into two sets – one denoted by Breplace containing all basis functions that can be described
solely by elements of M′ that are not part of M and another one denoted by Bkeep representing the rest:

B = Breplace ∪Bkeep.

Note that Breplace is easily determined; the support of basis functions in Breplace consists entirely of newly
inserted elements.

The set of basis functions B′ related to mesh M′ contains all basis functions in Bkeep plus an additional set
Binsert of basis functions generated by consistent components of mesh M′ formed by elements not part of M:

B′ = Binsert ∪Bkeep.

In Example 2 we find B = B′ since Binsert = ∅ whereas for the mesh shown on the left in Figure 11, basis
functions related to newly created vertices on the boundary as well as the basis function related to the center
vertex form Binsert in each refinement step. In addition, the basis function associated with the lower left corner
will be replaced.

The construction of columns of T-matrices for basis functions in Binsert follows the rules for consistent meshes
and may be implemented using standard FEM techniques. For functions in Bkeep, however, there already exists
a T-matrix column with respect to mesh M. These columns are easily converted into T-matrix columns with
respect to mesh M′ by means of so-called S-matrices (see Proposition 4).

3.1. S-Matrices.

Definition 3 (S-matrix). Let K ′ ⊂ K be the result of a refinement of element K. The S-matrix SK′K ∈
RmK′×mK is defined by

φK
j

∣

∣

K′
=

mK′
∑

l=1

[SK′K ]lj φ
K′

l

and in vector notation: φK
∣

∣

∣

K′

= S"
K′KφK′

, respectively. It represents the restriction of the shape functions φK
j

onto K ′ as linear combination of the shape functions
{

φK′

l

}m
K′

l=1
of K ′. For K = K ′, i.e. no refinement, the

S-matrix SKK is equal to the identity matrix.

Proposition 4. Let K ′ ⊂ K be the result of a refinement of an element K. Then, the T-matrix of K ′ can be
computed as

TK′ = SK′K T̃K + T̃K′

where T̃K denotes the T-matrix of element K with columns not related to functions in Bkeep set to zero and

T̃K′ the T-matrix for functions in Binsert with respect to K ′.

Proof. Let K ′ ⊂ K and Φi ∈ Bkeep. Then

Φi|K′ = Φi|K |
K′

=
mK
∑

j=1

[TK ]ji φ
K
j

∣

∣

K′
=

mK
∑

j=1

[TK ]ji

mK′
∑

l=1

[SK′K ]lj φ
K′

l ,

i.e. [TK′ ]i = SK′K [TK ]i = SK′K

[

T̃K

]

i
. For Φi ∈ Binsert the assertion holds by definition. !

S-matrices do not depend on the exact geometry of elements but only on topology and subdivision ratio of
the refinement.
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1

1

0

FK : K̂ → K and FK′ : K̂ → K ′

K

K ′K̂

K̂ ′

Figure 10. Element maps for K and K ′.

Proposition 5. Let K̂ ′ ⊂ K̂ be the result of a refinement of the reference element K̂ with H : K̂ → K̂ ′ the
subdivision map (see Figure 10). The element maps are FK : K̂ → K and FK′ : K̂ → K ′ and

(3.3) FK′ ◦H−1 = FK

holds.
Then, SK̂′K̂ = SK′K .

Proof. The local element shape functions and the reference element shape functions are connected by the element
map:

φK
j ◦ FK = Nj ,

φK′

j ◦ FK′ = Nj .
(3.4)

Using Definition 3:

φK
j

∣

∣

K′
=

mK′
∑

l=1

[SK′K ]lj φ
K′

l .

Taking the local element shape functions back to the reference element K̂ by FK yields

φK
j ◦ FK

∣

∣

K̂′
=

mK′
∑

l=1

[SK′K ]lj φ
K′

l ◦ FK .

Using (3.3) and (3.4), it follows:

(3.5) Nj |K̂′ =

m
K′

∑

l=1

[SK′K ]lj Nl ◦H
−1.

Comparing (3.5) and the definition of the S matrix SK̂′K̂

Nj |K̂′ =

m
K̂′

∑

l=1

[

SK̂′K̂

]

lj
Nl ◦H

−1

concludes the proof. !

Example 6 (Examples of Meshes). The meshes in Figure 11 can be handled by Concepts using quadrilaterals
and a subdivision strategy which creates four children out of an element. The subdivision ratio used here is 1/2,
i.e. the children all have the same size.
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Figure 11. Meshes which can be handled by Concepts. The mesh in the middle is not handled
by some sort of Mortar method. Instead, a continuous FE space is created on the whole
computational domain, as it is the case for the other two meshes as well.

10

Ĵ

Ĵ ′ Ĵ!

Figure 12. One dimensional reference element with left and right child.

The mesh on the left shows a geometrical refinement towards the lower left corner. This mesh has only single
constrained nodes and could also be handled by an algorithm which is able to eliminate only single constrained
nodes.

The mesh in the middle shows a quadrilateral (the top left one) which is refined three times recursively, i.e. it
is divided into 23 · 23 = 64 small quadrilaterals. This can no longer be handled by an algorithm which is able to
eliminate only single constrained nodes. An S-matrix can be applied recursively as it was done for the subdivision
algorithm, though.

The right hand mesh does no look very different to the left hand mesh but the constrained nodes are not just
single constrained. Again, the S-matrix has to be applied several times.

3.2. Generation of S-Matrices. If, in higher dimensions, the reference element shape functions are tensorised
one dimensional reference element shape functions, the S matrices also have a tensor product structure. In the
following, we restrict the discussion to reference elements which allow tensorised element shape functions:
quadrilaterals and hexahedrons in two and three dimensions, respectively.

3.2.1. S-Matrix in One Dimension. In one dimension, the S-matrices can be computed by solving a linear
system. See Figure 12.

(3.6) N |Ĵ′ = S"

Ĵ′Ĵ
N ◦G−1,

where G : Ĵ → Ĵ ′, ξ *→ ξ/2. Evaluating (3.6) in mĴ distinct points in the interval [0, 1/2] results in a linear
system which can be solved for SĴ′Ĵ . The same holds for SĴ!Ĵ .

For the reference element shape functions

Nj(ξ) =











1− ξ j = 1

ξ j = 2

ξ(1− ξ)P 1,1
j−3(2ξ − 1) j = 3, . . . , J



11

K̂ ′

K̂ ′

K̂!

K̂!

K̂a K̂b

K̂cK̂d

Figure 13. Variants of subdividing a quadrilateral.

the S-matrices are (J = 4):

SĴ′Ĵ =









1/2 1/2 1/4 0
0 1 0 0
0 0 1/4 3/4
0 0 0 1/8









and SĴ!Ĵ =









1 0 0 0
1/2 1/2 1/4 0
0 0 1/4 −3/4
0 0 0 1/8









.

3.2.2. S-Matrix in Two Dimensions. The three different subdivisions shown in Figure 13 shall be considered.
The reference element shape functions are tensorised versions of the one dimensional shape functions:

(3.7) Ni,j = Ni ⊗Nj .

Consider the left subdivision variant in Figure 13 with the subdivision map

H : K̂ → K̂ ′, ξ *→

(

ξ1/2
ξ2

)

By Definition 3, the S-matrix SK̂′K̂ is defined as

Ni,j |K̂′ =
∑

k,l

[

SK̂′K̂

]

(k,l),(i,j)
Nk,l ◦H

−1.

Plugging (3.7) into this yields

(3.8) (Ni ⊗Nj)|K̂′ =
∑

k,l

[

SK̂′K̂

]

(k,l),(i,j)
(Nk ⊗Nl) ◦H

−1.

The S-matrices for the one dimensional reference element shape functions used in (3.8) are

Ni|Ĵ′ =
∑

m

[

SĴ′Ĵ

]

mi
Nm ◦G−1 for the ξ1 part and

Nj =
∑

n

[E]nj Nn for the ξ2 part.

Plugging this into the left hand side of (3.8) gives:

(Ni ⊗Nj)|K̂′ = Ni|Ĵ′ ⊗Nj =
∑

m,n

([

SĴ′Ĵ

]

mi
Nm ◦G−1

)

⊗
(

[E]nj Nn

)

=
∑

m,n

[

SĴ′Ĵ

]

mi
· [E]nj Nm ◦G−1 ⊗Nn

comparing with the right hand side of (3.8)

=
∑

k,l

[

SK̂′K̂

]

(k,l),(i,j)
Nk ◦G

−1 ⊗Nl

gives (using the definition of matrix tensor products of Fiedler [6]):

SK̂′K̂ = SĴ′Ĵ ⊗ E for the left quadrilateral K̂ ′.
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SMatrixBase

+operator()(src:TColumn,dest:TColumn)

SMatrix1D
-data: scalar[]

+SMatrix1D(small:ShpFct1D,left:ShpFct1D,right:ShpFct1D)

SMatrixCompose
-A: SMatrixBase
-B: SMatrixBase
-C: SMatrixBase*

+SMatrixCompose(a:SMatrixBase,b:SMatrixBase,c:SMatrixBase*=0)

SMatrixTensor
-matrix: SMatrixBase
-position: int

+SMatrixTensor(m:SMatrixBase,pos:int)

dim:int

Figure 14. Classes for S-matrices in one, two and three dimensions.

The right child K̂! in the left subdivision variant of Figure 13 has the S-matrix

SK̂!K̂ = SĴ!Ĵ ⊗ E.

The children of the middle subdivision variant of Figure 13 have

SK̂′K̂ = E ⊗ SĴ′Ĵ for the bottom quadrilateral K̂ ′ and

SK̂!K̂ = E ⊗ SĴ!Ĵ for the top quadrilateral K̂!.

It remains to compute the S-matrices for the right subdivision variant (four children) of Figure 13. Since only
the topology and the subdivision ratio influences the S-matrix, the subdivision of K̂ into the four children K̂a,
K̂b, K̂c and K̂d can be reached by subdividing K̂ horizontally into two children and subdividing both children
vertically into two children. This is reflected by concatenating the S matrices of the two subdivision processes
above:

SK̂aK̂ =
(

SĴ′Ĵ ⊗ E
)

·
(

E ⊗ SĴ′Ĵ

)

,

SK̂bK̂ =
(

SĴ!Ĵ ⊗ E
)

·
(

E ⊗ SĴ′Ĵ

)

,

SK̂cK̂ =
(

SĴ!Ĵ ⊗ E
)

·
(

E ⊗ SĴ!Ĵ

)

,

SK̂dK̂ =
(

SĴ′Ĵ ⊗ E
)

·
(

E ⊗ SĴ!Ĵ

)

.

3.2.3. S-Matrix in Higher Dimensions. With the same idea which was used to derive the two dimensional S
matrices, the S-matrices in three and higher dimensions can be derived from the one dimensional S-matrices
with matrix tensor products.

In Concepts, the classes shown in Figure 14 implement the concept of the S-matrices which was presented in
this section. SMatrixBase just prescribes the interface: an S matrix is applied to a column of a T-matrix (i.e. a
TColumn). SMatrix1D is used to compute the one dimensional S-matrices for the set of shape functions given
on a set of points (see Section 3.2.1). SMatrixTensor implements a tensor product in dim dimensions with the
given one dimensional matrix at the given position. SMatrixCompose is used to concatenate S-matrices.

Summary

In this paper, we have shown how mathematical concepts can be used to identify and characterize the modules
which can then be used to implement a mathematical method in an object oriented programming language. We
used this approach called concept oriented design to show how we implemented hp-FEM. It has been applied
to implement codes for BEM and (g-)FEM in the same framework, too.

A more in depth analysis of the treatment of hanging nodes in irregular meshes is given: T-matrices are used to
formulate a general and flexible assembly operator. S-matrices are used to handle the hanging nodes of irregular
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meshes. A dimension independent and flexible approach to compute the S-matrices is shown mathematically
and algorithmically.
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