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Abstract

Weakly singular boundary integral equations (BIEs) of the first kind on polyhedral
surfaces I' in R? are discretized by Galerkin BEM on shape-regular, but otherwise
unstructured meshes of meshwidth h. Strong ellipticity of the integral operator is
shown to give nonsingular stiffness matrices and, for piecewise constant approx-
imations, up to O(h®) convergence of the farfield. The condition number of the
stiffness matrix behaves like O(h™!) in the standard basis. An O(N) agglomera-
tion algorithm for the construction of a multilevel wavelet basis on I' is introduced
resulting in a preconditioner which reduces the condition number to O(|log hl|).
A class of kernel-independent clustering algorithms (containing the fast multipole
method as special case) is introduced for approximate matrix-vector multiplication
in O(N(log N)3) memory and operations.

Iterative approximate solution of the linear system by CG or GMRES with
wavelet preconditioning and clustering-acceleration of matrix-vector multiplication
is shown to yield an approximate solution in log-linear complexity which preserves
the O(h?) convergence of the potentials. Numerical experiments are given which
confirm the theory.
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1 Introduction

The discretization of integral operators such as

(Au)(a) = [ kle,y) uly) duty) (L)

by Galerkin-, Collocation or Nystrom methods with N degrees of freedom leads to moment
matrices A of size N x N which are fully populated. Therefore, the approximate solution of
integral equations

Au=f (1.2)

becomes prohibitively expensive for large N. The kernel function k(x, ) is often the fundamen-
tal solution of an elliptic operator with constant coefficients and hence analytic in z,y € RY,
x # y. This fact has been used since the appearance of the Fast Multipole Methods (FMM) by
Rokhlin and Greengard ([1], [26] and the references there) in various “fast” algorithms. These
algorithms reduce the complexity of the matrix vector multiplication z — Az from N? to
O(N(log N)*) operations for some (small) a > 0. We mention here only the panel-clustering
(14, 15] and wavelet-based methods (see [4, 30] for surveys and [18, 19] for algorithmic as-
pects of wavelet algorithms). All these algorithms can be viewed as matrix-compression tech-
niques, where the N x N matrix A is replaced by an approximation A which is described
by O(N(log N)?) essential parameters. In the context of (1.2), this replacement generates a
consistency error in the approximate solution of (1.2) and therefore must be controlled in terms
of the discretization error. Such error analysis has been given for clustering in [15] and for
wavelets in [6, 24, 30] and the references there. Fast matrix vector multiplication is ideally
suited for iterative solution of linear equation systems by eg. GMRES or CG. For integral
equations (1.2) with operators A of the second kind, the condition number of the moment
matrix is often bounded independently of N. The error in GMRES or CG iteration ¢ therefore
decreases geometrically like ¢ with ¢ < 1 independent of N and the number ¢ of iterations
needed to match the discretization error of O(N~=%), A > 0, behaves like £ > O(log N), since
then ¢ < N=*. With work of O(N(log N)¢) per iteration, an overall algorithm of log-linear
complexity results.

For first kind equations (1.2), the situation is less favorable. Here, the condition of A
behaves often like O(N~#) for some p > 0 and hence ¢ ~ 1 —O(N~#), therefore the number ¢ of
iterations increases algebraically in N, spoiling log-linear complexity. Consequently, some form
of preconditioning is required. Wavelets allow naturally for preconditioning in Hz(I'), H=2(T)
on polyhedral surfaces I' C R3. However, in order to achieve bounded condition numbers for
A, rather sophisticated constructions of wavelets had to be performed (see [5]), which assure
H jE%(F) norm stability as well as sufficient vanishing moments for matrix-compression. Here,
we propose a different approach. We consider Galerkin BEM for weakly singular single layer
potential and the simplest, piecewise constant shape functions. It was shown by Oswald in [21]
how to obtain in this case a preconditioner in H~2 (') which reduces the condition number
of A to O(log N). While not uniformly bounded, this suffices to reduce the iteration count
of iterative solvers to a polylogarithmic function of N. The preconditioner is based on Haar-
Wavelets which lack vanishing moments for optimal matrix compression [30]. We therefore
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propose to use multipole type methods for this purpose, resulting in algorithms of log-linear
complexity for weakly singular integral equations.

Multiple acceleration has at first sight 2 disadvantages as compared to wavelet-based com-
pression. First, classical fast multipole is fairly kernel specific in that particular farfield expan-
sions of kernels k(x,y) of interest have to be derived, whereas wavelet compressions work on
large classes of kernels without any explicit analytic kernel information. We overcome this by
proposing a new multipole scheme based on kernel interpolation. Second, the Haar-Wavelet
preconditioner from [21] assumes a sequence of dyadically refined, nested triangulations on T'.
In practice, however, I' is often complicated and dyadic refinement is impossible. We gener-
alize [21] by generating wavelet bases on unstructured meshes by recursive agglomeration, as
described in [29]. We show that preconditioning based on this agglomeration wavelet basis is
effective and yields a log-linear solution algorithm for weakly singular BIEs on unstructured,
shape-regular meshes on polyhedra in R3.

The outline of the paper is as follows: in Chapter 2, we review the Galerkin BEM, Chapter
3 presents a general framework for clustering and estimates the impact of the error introduced
by the cluster approximation of the farfield upon the accuracy of the Galerkin solution. Section
4 addresses the agglomeration preconditioner and proves log-linear complexity of the overall
algorithm, while Section 5 shows numerical results which confirm the estimates.

2 Model Problem

2.1 Preliminaries

Let €2 C R? be a bounded, open polyhedral domain with Lipschitz boundary I' = 92 which we

assume to be a connected union of plane, triangular faces 7r;-), j =1,..., Ny constituting the
mesh M° on T'.

The space L?(T") is the space of all functions u : T' — C which are square integrable with respect
to the surface measure ds. It is a Hilbert space with innerproduct

(u,v>0:/ /u(x)@dsydsx (2.1)

zel' yel’
and norm |[[u||§ » = (u,u). By Vr, we denote the surface gradient. Then
HYT) = {u € L*T) : Vru € L*(T')?} (2.2)

is a subspace of L*(T'). Tt is a Hilbert space with innerproduct given by

(u, v)1 = (u, v)o + (Vru, Vrv)g (2.3)

and norm given by |lul|? » = (u,u);. By |u|;r we mean the seminorm

M

|’LL 1, = ((VFU, VFU>0) . (24)

2



For 0 < s < 1, we define H*(T') by interpolation: H*(T') = (L*(T"), H'(T"))s2. It is a Hilbert-
space with norm ||u||sr given by

Ju(z) — u(y)|”
ol =l oo o= [ [ SR ds s o)
zel' yel

For —1 < s < 0, we define H*(T") by duality:

H*(T) = H*I)" (2.6)
and equip it with norm
LU

|ullsp = sup o, v) (2.7)

pet—r) o]l s

where (p,u) : H=*(T')x H*(T') — C denotes the duality pairing obtained by identifying L?(T")* =
L*(T) and extending (-, -)o.r to H *(T') x H*(T"). By o we denote the trace operator: U := Ulr
for U € C°(Q). It extends to a continuous operator o : H572 () — H*(I') for 0 < s < 1.

2.2 Boundary Integral Equation
In Q¢ = R3\(Q, we consider the exterior Dirichlet problem
P0,)U =0 in Q°,
wU =f on I', (2.8)

+ radiation conditions as |z| — 0o.

Here P(0,) is a second order elliptic differential operator in divergence form with constant
coefficients, and f € H%(F) is prescribed boundary data. We denote by e(z) the fundamental
solution of P(0,), i.e. P(0;)e(z —y) = d(x — y). Then the single layer potential Ansatz

Ux) = / e(x —y)o(y)ds,, x€Q° (2.9)

yel’

with unknown density o € H=2(I) in (2.8) leads to the boundary integral equation
Vo=f (2.10)

where V' denotes the weakly singular single layer operator

(Vo)(z) = / k(z,y)o(y) ds,, z €T,

yer

with kernel k(z,y) = e(z — y). The Galerkin BEM is based on the variational formulation of
(2.10):

oc H:(): alo,0") = (f,0") Vo'e H 2(T), (2.11)
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where the bilinear form a(-,-), given by

a(0, 0" = <at,va>:/ /k(x,y)a(y)mdsydsx,

zel' yel

1S continuous: )
Vo,0' € H 2(T): la(o,0")| < |lal| [lo]| s [lo"|| -1 r

1

and coercive: there is v > 0 and a compact form ¢(-,-) : H 2(T') x H 2(T') — C such that

Vo € H 2(T') Rea(o,0) > ol -y —clo,0). (2.12)

(T)
We assume in addition that V' is injective, i.e. that there are no resonances:

Vo' :a(o,0") =0=0=0. (2.13)

Then the problem (2.11) has for every f € H~2(T'), a unique solution and there is s*(I') > 0
such that

||U||H—%+S(F) S C ||f||H%+S(F) fOI' 0 S s < S*(F) ' (2]‘4)
Example 2.1.
P0,)U = —AU-kU=0 in Q°,
fYOU = f on Fa
1
aa—g—ikU = o(m) for |z| = co.

Here the fundamental solution is e(z) = exp(ik|z|)/(47|z|) and (2.12) holds.

2.3 Galerkin Boundary Element Method

From the partition M° of T" a sequence { M*}° of meshes is obtained by subdividing recursively
each panel 7rf € M" into 4 congruent subtriangles. Clearly, then

he == max{diamﬂf : 7rf e MY =27"h,.

With the sequence { M} of meshes, we associate the spaces of piecewise constant functions

V¢:={uec L*T): ul|,. = const. for 7rf e M}, £=0,1,2,.... (2.15)

The Galerkin BEM for (2.11) on V' for some L > 0 is:

ol eVl a(o® o) = (f,0") Vo' e VE. (2.16)

For a panel 7§ € M, denote by ¢ = |7rf|_% Xt its indicator function. Then V* = span{¢! }j-vzfl,
J

ol = Z;V:LI ok ol and (2.16) is a linear system for the unknown coefficient vector o = {oF}'%;:
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Al ot = f", (2.17)
with

1 p-1
Al = aehooh) = (b Vel = I [ [ b dsydse, fE= (el (218)
e s
The subspace sequence {V/}32, is dense in H—2(T'). Hence the coercivity (2.12) and the

uniqueness (2.13) imply stability: there is v > 0 and L, sufficiently large such that the
discrete inf-sup conditions hold:

L L
Vul e V. sup M >yl 1, L> Lo,
A ) 2
o (2.19)
whevi: sup 20Ol L,
S Tt oy z

and hence for L > L, the Galerkin solutions o exist, A" is nonsingular and there is C' > 0

such that
dl

o = oMy < € iy o= ]y (220)

In particular, we also have stability of the Galerkin solutions
lo“ll_sr <Clfllyr, L2 Lo, (2.21)

with C' independent of L.

2.4 Convergence Rates

Assuming exact quadrature in (2.18) and exact solution of (2.17), the convergence rate of ol

as L increases is determined by the regularity (2.14) of ¢ and the approximation properties of
the subspaces V*¢. There holds

Proposition 2.2. For ¢ > 0, let P, : L*(T') — V* denote the L*(T')-projection, i.e. {(u —
Pyu, Yo = 0 for all ¢ € V¢, Then

||U - PguHLQ(F) S Chg ||VFU||L2(I‘) (222)

where C > 0 depends only on the shape of the 7r§-’ e M.

Proof. We have [lu — Poul|Zzpy = 35, [lu — Pgu||i2(7r§). On element 7§, Pu = (u,¢}) =

\ﬂ_lf-l fﬂ_]g u ds, hence Poincaré’s inequality on 7T;-) D 7rf and a scaling argument give
[ = Peullp2(rty < Ch [|Vroul| p2gety -
Squaring and summing over all ﬂf € Mt gives (2.22). O
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From (2.22), we get the approximation property of V*.

Proposition 2.3. For every s > 0, there is C' > 0 independent of £, such that as £ — oo

min [l = ll, - 1 < Ch ol (2.23)
Proof. Let o € HY(T') and ¢ = P,o € VY. Then
||U_(,0|| L — su <U—90,¢> sup <0—_()0?7w/)_P[4/)>
H2D) ||7/)|| 1 19113
eH2 H2 WEHZ(T) H?2(T)
1Y = Pllzae
<llo=vloey sp Tl
peH?(T) H3 (1)
Now ||¢ — Pi)|| 2y < O]l 2y and (2.22) give with interpolation
|9 — Pppllp2ry < Ch 9] whr
whence we get, using again (2.22),
3
o~ Pl gy < OB} IVr0luecr
(2.23) now follows by interpolation with (2.21). O

The convergence rate of the Galerkin BEM (2.16) follows from (2.20), (2.23):

Proposition 2.4. Assume (2.14). Then the boundary element solution ol in (2.16) satisfies
for 0 < s < s*(T) the error estimate

1’1’11I1

sé)
||a—gL||Hr o < Ch; 2 ||f||H%+S(r)‘ (2.24)

Often, the solution o is not of main interest, but rather the farfield U(x) for 2 € Q°. Given

ol we approximate U(x) by

Ul(z) := / e(r —y)o(y)ds,, x€Q°. (2.25)

yel’

This approximation converges faster than (2.24) as follows from the following Nitsche duality
argument [16]: let z € Q¢ and ¢, solve the adjoint problem

Yo € H2(T) 0 (Vi v = (e, ), 0") W' € H 2(T). (2.26)
Then by (2.25), we have for any ¢" € V'
U(x) = UM (x)] = [{e(x,-),0 = a")| = [V 4y, 0 — 07)]
= (Y0, V(o = 0")| = [(¥e — 4", V(0 — o)

<l I = 6 30 o= 0l 4 -



Since e(z, -) is smooth on T, ¢, € H™3+5(T") for 0 < s < &'(I'), where §/(I) is the regularity
index for V*. It follows that as L — oo
U(x) — Ub(x)| < C RS, 0 < s < min {s*(F), g} + min {s'(F), g} . (2.27)

Analogously, the well-posedness and the convergence rates of the Galerkin-BEM for Au = B f
resulting e.g. from the direct boundary reduction of elliptic boundary value problems:

ok e Vlia(oh, o") =b(f,0") Vo' e VFE, (2.28)
with b(f,o") = (o', Bf) can be proved.

3 Cluster Methods

The matrix of the linear system (2.17) is ill-conditioned and fully populated. Thus, (2.17) is for
large Ny, expensive to solve. To reduce the complexity of the equation solution, multipole-type
expansions in conjunction with iterative solvers like GMRES or CG are often used. We present,
here a class of multipole methods which require only the kernel function k(z,y), but not the
expansion coefficients and which have similar properties like the fast multipole method. Using

this cluster approximation of the far field yields a perturbed matrix EL and, consequently, a
perturbed boundary element solution & in place of o”. We estimate the error o* — &% due to
clustering the far field and show that an expansion order m = O(]log hy|) is sufficient to preserve
the consistency (2.24). We also give a general algorithmic framework which accommodates
various multipole-type discretizations. Since the concepts are not restricted to weakly singular
operators, we assume a singularity of order 5. We also present the cluster-algorithms in a
more general setting which covers in particular also multipole evaluations of the representation
formula or Nystrom and collocation discretizations of the operator A.

3.1 Kernel Expansions

Assumption 3.1. Let 0<n <1, k: D x D — C a kernel function and T an index set. Then
for all xg,yo € D, xoy # 4o, and expansion orders m € Ny there exists an approxrimation k,, of
the form

k(2,y) & k(2,55 20,50) = Y F(u) (T0, %0) Xy (23 20) Yo (y; y0) (3.1)
(1) ELm

for I, C I x T such that for all x,y € D satisfying
Y = yol + |2 — w0 < nlyo — ol (3.2)
the error is bounded by
k(2 y) = k(2,55 20,50)| < Ce D™y —a|* (3.3)

with C(n) > 0 a decreasing function and C a constant both independent of m. § denotes the
singularity order of the kernel for x = y.

The goal of the expansion (3.1) is to decouple the source points y from the field points z.
The simplest example of such a decoupling is Taylor expansion.
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3.1.1 Taylor Expansion [15]

Let the kernel function £ only depend on the difference of its arguments:

k(z,y) = k(y—x). (3-4)
We expand k(y — z) formally into a Taylor series centered at yo — ¢ with g, yo € R%:
v (zo — )" (y — 0)”
My—2) = > (D) —w)
(v,p)ENE x N¢

With this we get an approximation (3.1) where
IT:=N¢ Z,:={(p,v) €ETXT:|p+v|<m},
K(uw) (To, Yo) == (D*k)(yo — 20), (3.5)
Xu(w;m0) = o ;gx)ﬂ’ Yo (y390) == ¥ = )" _V!y")y.
The verification of the error bound (3.3) can be found in [14]. For example, (3.3) holds for the
fundamental solution

1

—— e R? 3.6
wly—a OV T FEY (3.6)

k(x,y) =

of Laplace’s equation in R® with C' =1 and C(n) = — logn.
Remark 3.1. Note that only x(,,) depends on the kernel.

Applying the binomial formula the expansion (3.1) can be shifted from x4 to z; and from
Yo to y1 by

X, (z;21) = X:d %XV(JC;%) Y, (y;01) = X:d %Yu(y; Yo) (3.7)

v<p p<v

3.1.2 Multipole Expansion [1]

The multipole expansion is the fastest and most specialized case of (3.1), i.e., the expansion
coefficients must be evaluated analytically for each kernel of interest separately. Here we only
present the multipole expansion for the Coulomb-potential in three dimensions [1].

The multipole expansion in R? is given by an expansion of the kernel function (3.6) based
on spherical harmonics:

e = \/(214;(11)4? |;z||;z|)!ﬂ'm'(cos@)eim¢, (3.8)

for x € Sy, 1 € Ng, m € Z, I/m| < [ and (0©,¢) € [0,7] x [0,27) the spherical coordinates
of . The functions P;" are called associated Legendre functions and can be defined by the
Rodrigues’ formula

dm
—P(z), l,m e No,m <. (3.9)

Pi'a) = (1)1 -t
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P, denotes the Legendre polynomial

1 d

P(z) = gm—o(@

- 1), | € Np. (3.10)

Lemma 3.2. Let z, zy € R? satisfying |z — 2| < |20]. Then

e v () _
Z Z 07 om' | — 2 Z’Y—m’( Sl ) 3.11
Cm| |l+1 —~  —~, Clrjj;m Zo|l+l,+1 U | 0 | 4 |Z0 . Z| ( )

with C™ defined by

;Iml
o = JI—m+m)l (3.12)

For the proof see [1].
Applying Lemma 3.2 twice for given z,y, Ty, yo € R® with |z — zo| + |y — yo| < |yo — 0|
yields the multipole expansion of the Coulomb potential:

s = B S 5 iy Rt T
_ _ . L
C’0|y 1=0 m=—1 l lvo — yl” C"|yo — |
00 l 00 4 _y
=2 > Z Z Cllyo — yI'Y, (| |) (3.13)
1=0 m=—l I'=0 m/=—I Yo—Y
VI (i) O o — oY, ™ (22)
CrEn™ lyo — o1+

Truncating (3.13) we obtain an approximation (3.1) of the kernel with

T:={peNyxZ: |pa| <pr}, Lo i =A{(p,v) €T XT: gy +v1 <m},

Yu2+1/2 ( Yo — Lo )
K ( ) ot lyo — ol
(1) \ 05 Yo Cu2ivz|y0 _ x0|u1+u1+1’
w1t

(3.14)

r—
Xu(x;m0) 1= Cl2|w — 2o Y), 12 ( P IZ|) Y, (v v0) = Xu(yo3 y)-

Moreover, this approximation satisfies the error bound (3.3) with C'(n) ~ 1/(1 — 7).

Lemma 3.3. Let z, 2y € R? satisfying |z — 2| < |20]. Then

(o)l = Z Z Y (e =l ol Y () (319

with C" defined as in Lemma 3.2.



The proof is the same as for Lemma 3.2 except using [1, Theorem 5.5] instead of [1, Theorem
5.3].
To reduce the number of operations to evaluate the approximation (3.14) we exploit

jlmljlm’| '
m T A A | for m',m >0
Y=Y and sy = { (—1ymin{imlm'} otherwise (3.16)
and reformulate k,, by
k(2,45 20, 0) = Yo (uv)ezn R(ﬁu+u(:ro, Y0) Xpu (3 0) Yo (y; yo))
+ Z ”272(% vt wa—pa) (05 Y0) X (73 20) Yo (y5 yo))
(u,v)ELIm (317)
0<po<vy
+ Z VZR(K/ /L1+U1,[,L2—1/2)(I07yO)XM(x;IO)YV(y; yo))
3tz

where R denotes the real part and obtain (3.1) with
T:={pneNyxNg: ps <p}, L ={(pt,v) ETXT: py+1v4 <m},

| _ 1 .
K’/L(an yo) = 21760/1,2 \/(/Jll + ILLQ)(/J’I - /J/Z).Y/LZ( yo ) )7
|y0 - ':L,O|H1+ |y0 — $0|

|£L‘ — $0|“1 — e
X, (2 x0) = Y, ‘“(
' Vi ) — pa)t

r — T

|>, Y. (y590) == Xo (o5 ).

|z — z

3.1.3 Cebysev Interpolation

The Taylor and multipole expansion coefficients have to be calculated for each kernel separately.
To circumvent this we interpolate the kernel k(z,y) by Cebysev polynomials. For this only the
kernel has to be evaluated at O(m?) different points and no derivatives come into play. Therefore
it is easy to adapt the implementation to new kernels since only the evaluation routine of the
kernel has to be replaced. We will verify Assumption 3.1 for this variant of clustering for general
kernels with analytic far fields.

Let I := [~1,1], m € Ny and T},(x) = cos(parccos(z)), p € Z, denote the Cebysev poly-
nomials of the first kind. For any function f, defined on I, we consider the formal Cebysev
expansion

> ~ I T,
— %f(u)Tu(:v), Jp) =~ /_1 %d@ (3.18)
pe
and the Cebysev interpolant

= > ATu@), fw:% > @) T() (3.19)

e 0<i<m
pnl<m

where we assume f to be known at the m Cebysev-points z; := cos((i +1/2)7/m) € I, i.e., the
m roots of T,,,. By employing tensor products,

I 7.(@)), pez’zer (3.20)

1<i<d
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we extend expansion and interpolation to the d-dimensional case with (x); the i-th component
of x € I¢. This yields

_ N7 B e FETu(E)
flz) = gz:df(u)Tu(a:), fuy=nt | T (@i)ng (3.21)
and
fm(z) = Z ﬁTu(x), J/t; =m @ Z f(x)T, () (3.22)
IuToiij :fjﬁ

where x, 1= (2,,)1<i<a € I and || = maxi<i<q |-
Remark 3.4. Note that T, (¢) = T ., (1), 3 ezt [uTu(@) = 3 peng 207000 £, T, (2) with
[1loo <m || oo <m
d
|| = E:i:1|MiL

Lemma 3.5. Suppose [ : I¢ — R to be a continuous function that admits an Cebysev expansion.
Then interpolation (3.22) and expansion (3.21) are related by

Fu= (=)l F(2me + p) (3.23)

¢ezd

for all p € Z with |p|s < m. In particular, the Cebysev interpolant of T,,, v € Z¢, is given by
(=1)=r/Cm T where p = v mod 2m and |p|s < m.

Proof. Inserting the Cebysev expansion of f in (3.22) we find

~

fo =m0 S T (@) Tuw) =m Y fw) Y Toa) T,

eNg verLd vezZd vend
L<m L <m

= m Y fw) J] D Tu@)Ta(e). (3.24)
vezd 1<i<d 0<j<m

Since 2T, (x)TNi (I) = Tui-i-ui (:L’) + Tlli—ui (:L’) and

N (=1)z  if g; = 0 mod 2m,
Z UNC m{ 0 otherwise

0<j<m

the product in (3.24) does not vanish iff ; = +p; mod 2m for all 1 < i < d. We restrict the
summation to these values and exploit that f(—pu;) = f(u;). With this we get

Fu=5 3 (DR FEmC+ ) + (=) Fm¢ — w) = 3 (1) f2m¢ + p)
(ezd (ezd
which yield the assertion. O
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Lemma 3.6. Let £, € C, p > 1, designate the closed ellipse with foci at £1 and sum of its
semi-azis p. Suppose, f: 17 — R admits an analytic extension into 8;)1 .= (&,)%. Then, for the
Cebysev interpolant (3.22) there holds the error estimate

1f = fnllpogny < VA25 (1 = p2) 5 M,(f) (3.25)
where M,(f) := max,ega | f(2)].

Proof. The verification of Lemma 3.6 consists in applying the generic error estimation technique
of Davis for analytic functions [10, 25]. We introduce the inner product

) (3.26)

: f ﬁ dz
(f;9)p - /s;,i [Ticica V11— ((2):)?]

and consider the space

L2(£;f) = {f . [ analytic inside £ and || f|, :== \/(/, f), < oo}.

Then, the polynomials
2\ % . oL
p) = (O T +r) 000, e (3.27)
1<i<d

define a complete orthonormal set with respect to (3.26) such that for any bounded linear
functional E over L*(£7) there holds

B <IEIIAZ =Y E@IPIAL = 1£12 D [E@))” (3.28)
peNg peNg
for all f € LQ(S;f). For z € I? select E to be the error of interpolation in z, i.e.,
E(f) = Ex(f) == f(x) = fm(2). (3.29)
This yields for the sum in (3.28)

S et = (2) 5 T+ o) i)

peNg peNg 1<i<d

2\ “ | |
< 4<;> > I ™+ pm)™
pend  1<i<d
|tloo >m
2 ‘ 2\ —1 2 ‘ —2m 2\ —1
< a(=) > I <aa( ) o > I ™)
pend  1<i<d peNd 1<i<d
|tloo >m
< aa(2) o S ek < a2 (L (3.30)
- T eNd - T , .
HENp

since according to Lemma 3.5 |E,(7,)| < 2 for |u|. > m and obviously zero otherwise. Com-
bining (3.30) and the bound || f||2 < 7%M,(f)* gives the assertion. O
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Lemma 3.7. Let p> 1,7 >0, c € R4 Then f: 14 = R; f(&) = [ré+¢|™%, s > 0, can be
extended analytically into Eg provided
-2

2
llellz > u (3.31)

r/d 2

In addition, suppose now p = ||c||z/(rV/d), which satisfies (3.31), then the module of f on Eis
bounded by

Pt

M) < ((1‘;_2) ”2"’2) el;*. (3.32)

Proof. The extension of f given by

flz) = (Z(rz+c)§) (3.33)

=1

is analytic in Q== {z € C?: 2% (rz + ¢)? # 0}. Writing z; € £, as

% =R(z) + V_1I(z) = L +2”_1 cos(¢y) + v/—12 _QP_I sin(g;) ¢ € [0,27]

and using

b2
¢ir€%gw] acos(2¢;) +bcos(¢;) > —a— < (3.34)

for a > 0 we find that for any z € E;f

R( S (rz+ ci)Q) = 3 P (R(z))? - P(Z(z)) + & + 2R (z)e,

=1 i=1
“ 2 2 2 1 , T2
> min —(p™ 4+ p %) cos(2¢;) +rei(p+p ) cos(;) + ¢ + =
> min, D30 ) cos26) +reip-+ g cos(o) ¢+
d 2 ~1\2,.2 2
r oy lpEp )G 5
> Y =P+ s T+
= Ty
_ d B
SRR o B S P Uy h i S
2 (p2 —+ p—2) 2 — 2 (p? + p—Z) 2

where we employ (3.31) to derive the last inequality. Hence, the real part of f does not vanish
implying £/ C €. To estimate M,(f), note that

d

d s _ﬁ
PN =] Y+ " <R(D 02+ 02)
i=1 i=1
In view of the estimation above the assertion follows. O
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Theorem 3.2. Let 0 <n <1, s>0 and
k:DxD—=R; k(z,y):=Ky—z)y—z|

(3.35)

a kernel function where D C R? and K admits an analytic extension into C*\{0}. Suppose x

denotes for any xo,yo € D, xo # 3o, the affine transformation

X : RY — Rd; X(&) = nllyo — ®ol|oc€ + Yo — To-

(3.36)

Then, the approzimation of k given by the Cebysev interpolant of f(;x0,10) := (K o x)|x|*

on I,

Fn(, 420, 90) = > Fulwo, o) T, (X (y — ),

nezd
|tloo <m

satisfies the error bound (3.3). In addition, k,, admits the representation (3.1) with
T = {(p,v) € Nd x N&: |+ v|oo < m},
K(uw) (:E07 yO) = (M + l/)!cp—i—u (:E07 yO)a
,_ (zo — )" __ (y — v0)”
XH(:E’$0) T Ta Yu(yayO) T T
where the ¢, p € N¢, are the coefficients of the interpolation polynomial defined by
~ z
fu(wo, 40)T, (—) = (o, yo) 2"
Zi 8 “Nllyo — oloo z:d :
HEL HEN

0
liloo <m lnloo <m

To get (3.38) we interpolate the kernel function by Cebysev polynomials
km(wa Y; Zo, yO) = Z fu(an yO)T,u(X_I(y - :E))

pezd
|l <m

where the m? expansion coefficients are given by

Falwo,yo) =m 3" (K 0 x) (@) [x(@,)] T, (x,)

vend
v;<m

Expanding the interpolant by Taylor we get
k(T yi70,90) = Y Fe(zo,90)Te(x ' (y — 7))

cezd
[€loo <m

- Z f((%,yo)Tc <y—x—y0+x0> = Z Cg(ifo,yo)(y—if—yo+$o)<

cezd 77||y0_$0||00 cend

[¢loo<m [¢loo <m

=YY D0 e D )

! V!
() ENG NG ceng
[¢loo<m

Ly meew

/J/| l/' (:u + V)!CH+V($0, yO)

d v Nd
(v,u) ENJ XN
[p+v]co <m
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Remark 3.8. There is only an error in the interpolation. Taylor expansion is exact since the
derivatives of order larger than m of a polynomial of degree m vanish.

Remark 3.9. The coefficients ﬁ(xo, Yo) in (3.39) - (3.41) require O(m?) kernel evaluations at
the Cebysev points of order m. The kernel is not explicitly needed, but could for example be
given in a subroutine.

3.1.4 Fast Helmholtz Solvers

In acoustics and electromagnetics, the kernel function

ei/\|x_y|

k(xz,y) = (3.42)

dm|z — y|

arises. It is an easy exercise to verify that Cebysev-Interpolation can be applied, since k(x,y)
satisfies the assumptions of Theorem 3.2. However, for high wavenumber ) in (3.42), polynomial
farfield interpolation is inefficient, i.e. very high expansion order m is needed for an efficient
scheme. In [8] and the references there, the approximation

km(z,y) = Z w,y €T T () — - 5 ) M Sp U0 —Y) (3.43)
p

is introduced. Here, w, and s, are weights and nodes of a quadrature formula on the sphere,
i.e.

[ 1@~ w5,

2 P

and Ty(xo — yo; 5p) denotes a transfer operator (see [8] for details).

Once again, (3.43) is of the form (3.1) with u = (¢,p), v = (¢,p) and
Xﬂ(x, xo) — 67:)‘<sp@*$0>, Yu(y’ yo) — efi)‘<sp:y*y0>

K () (To, Yo) = wp Te(o — Yos sp) -

The validity of the error bound (3.3) has been established in [9].

3.2 Cluster Expansions

Assumption 3.1 provides an approximation of the kernel, which is in general not valid for
all (z,y) € I' x I'. In order to define a global approximation on I" x I', a collection of local
approximations is used, where each of the local approximation is associated with an appropriate
block of a given partition of I' x I'. Those blocks are called clusters and the combination of
local approximations a cluster expansion.

More precisely, let P(I') denote the set of all subsets of I', 74 := inf,cgasup,c4 |y — 2] € R
the Cebysev radius of a set A C R% and ¢4 € R with 74 = SUPyea Y — Cal its Cebysev center.
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Definition 3.10. Suppose C C P(I') x P(T) to be a finite partition of I x ' and let 0 < n < 1.
An element (o,7) € C is called n-cluster iff

Fo + 77 < mlés — &l (3.44)

The set of all n-clusters in C,
F:=F(C,n) ={(o,7) €C: (0o,7) is n-cluster}, (3.45)
is called the far field of grain n and its complement N := N (C,n) = C\ F(C,n) the associated

near field. Moreover, let the kernel k(z,y) satisfy Assumption 3.1. Then

(2, y) = { b (z,y; 5, ¢7) if (z,y) €0 X7 and (0,7) € F (3.46)

k(x,y) otherwise

for all (x,y) € T x T, x # y, defines a cluster expansion of the kernel k(z,y).

Proposition 3.11. By construction, the local error bound (3.3) remains valid for a cluster
ETpPansion:

|k(2,y) = km(2,y)| < Co(Cin)™ k(z,y)| (3.47)
for all (x,y) e T x T, x#y.

Replacing the kernel k(x,y) in the definition of the system matrix A% in (2.18) introduces
~L
an approximation A :

A= [ [ bl o) b0 s, ds..

~L
Due to the properties of the cluster expansion, A may be decomposed in the following way:

A"=N"+ Y xU'F, Y (3.48)
(o,7)EF

with

(N = Y / / Bz, 9ok (x) o*(y) dsy ds, (3.49)

(oT)EN L
(X )i = /Xu(:r;éa)sof(:r)dsx, (3.50)
Yho = [ Vledehds, 3.51)
(FUT)M,V = Kj(u,u)(é(r,éT) (352)

for (o,7) € F and (p1,v) € Z,,,. The matrix N represents the near field part of A" whereas the
sum of matrices describes the influence of the far field. If the partition C is chosen as discussed
in the next Section, N is a sparse matrix. In addition, the matrix vector multiplication related
to the far field part can be evaluated with essentially linear complexity.

16



Remark 3.12. The matrices F,, are never formed explicitly. Typically, their entries (F,;),.
only depend on p + v with |v + u| < m. Therefore, only O(m?) instead of O(m?*) enties,
where p € {2,3} is given by the chosen kernel expansion, have to be evaluated and stored. In
order to form matrix vector products several algorithms to shift the expansion centers exist
in the literature, which exploit features specific to the chosen expansion to reduce the O(m?)
complexity of a standard matrix vector product. The various shift methods might be grouped
into exact methods [15][12] and sparse approximations [8] which introduce an additional error,
e.g. due to quadratures over S?. The present paper only realizes the exact algorithms.

Remark 3.13. Derivatives of DY ka(:v,y) are easily handled by applying the derivatives

to the kernel expansion. This way, only the matrices X g and YT

-, respectively, have to be
modified.

Remark 3.14. The kernel expansions listed in the previous Section preserve the symmetry of
the kernel k&, i.e. ky,(z,y) = kn(y,x). If, in addition, the given partition C exhibits symmetry,

~1
ie. (0,7) € C = (1,0) € C, then A is symmetric for Galerkin discretizations.

3.3 Cluster Algorithm

Equation (3.48) specifies an approximation of the system matrix A% which allows to control
the approximation error (see Section 3.4). However, the objective is, to reduce the complexity
of assembly and storage of A, which is closely related to the question of choosing the partition
C appropriately. An efficient way, which also provides the desired complexity reduction, is to
start with a recursive hierarchical decomposition of the mesh M’ represented by a tree 7 :=
(V,€). An algorithm similar to Algorithm 3.1 might be used to generate such a decomposition,
ie. T := tree(M?").

Algorithm 3.1 (V, &) = tree(A)
if |A| < ¢ then
return ({A},0);
else
(Ap, A1) := split(A)
Vo, &) = tree(Ag); (W1, &) := tree(A4;);
return (Vo UV, U{A}, EUE U {(A4, Ay), (4, A1)});

The function split(A) bisects a set of panels A into two disjoint sets Ay and A; such that
the Cebysev radius of both sets is reduced. This, for example, could be achieved by splitting
the bounding box of A along the longest side and distribute the panels with respect to the two
parts.

Given a hierarchical decomposition 7 of M it is straight forward to construct a partition C
as outlined in Algorithm 3.2. The decomposition T serves two purposes during the construction
process: (i) it defines the pool V of subsets available for the construction of clusters and (ii) it
defines the sets children(A) := {A’ € V : (A, A') € £}. Calling partition( MY, MY) generates a
partition C by specifying its far field F and near field /. The generated partition is symmetric
in the sense of Remark 3.14.

17



Note that in Algorithm 3.2 A/ and F are given in terms of sets of panels instead of subsets
of the boundary I' (cf. Definition 3.10).

Algorithm 3.2 (N, F) := partition(A, B)
if (Upen ™ Uyepm) is an n-cluster then

return (0, {(4, B)});
else

A" := children(A); B’ := children(B);
UaeA,,beB, partition(a,b) if A" # () and B’ # () and |A| = |B|,
U,ew partition(a, B)  if A" 0 and (|4 > |B| or B' =),
Upepr Partition(A, b) if (JA| < |B|or A" =10) and B’ # 0,
({(4,B)},0) otherwise;

return

L
The matrix vector product v = A wu is evaluated in five steps:

(i) compute v, := N*u,

(ii) for all 7 compute u, := Ylu,
(iii) for all o compute v, ::TZ(U,T)ef F, u,
(iv) compute vy :=> XL v
)

(v) compute v = v, + vg.

The steps (ii) and (iv) can be accelerated taking once again advantage of the hierarchical
decomposition. For most of the common kernel expansions it is possible to represent the
matrices X% and Y'¥ by means of the corresponding matrices related to children of ¢ and 7:

X= ) C,X%, Yi= Y D.YL (3.53)

o’ echildren(o) 7' echildren(r)
where the matrices Cy,r and D, represent so-called shift operators (e.g. see Lemma 3.3 and
(3.7)). These relationships are exploited in Algorithm 3.3 and 3.4, which replace step (ii) and
(iv) above, i.e. by scatter(M?%,u) and v := gather(M¥,0). Note that only the matrices Y~
and X ﬁ , where 7 and o are leafs of the decomposition, are necessary. These matrices typically
contain only O(m?) entries (see Remark 3.12).

Algorithm 3.3 scatter(A4, u)
7:=Jyeam A := children(A);

if A" =0 then

u, =Yy
else

Uy i= D e a Drposcatter(a, u) with 7' :=J, ., m;
return u._;

Remark 3.15. Variations of the above algorithms include shift operators which are approxima-
tions. They are used, for example, to provide information on higher levels which is not explicitly
available on lower levels of the decomposition [28] or simply to speed up the evaluation process

8].
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Algorithm 3.4 gather(A,w,)
0:=,cam A :=children(A);
if A" =0 then
return XﬁT(gg +wy,);
else
return Y, , gather(a, Coo” (v, +w,)) with o' :=J, ., ™

wea )

3.4 Cluster error

The replacement (3.1) of k(z,y) by the cluster approximation k,, in the far field introduces an
approximate bilinear form via,

a(u”, ™) :/ /UL—(:E)km(x,y) u"(y)ds, ds, (3.54)

where k,,(x,y) is the global cluster expansion of the kernel k(z,y) introduced in (3.46) and

where ul, vl € VI, We can associate the form a(-,-) with the matrix A and an approximate
boundary element solution % € V¥ via the perturbed variational problem:

gle vt aah ot = (f,0") Wt eVr. (3.55)
We assume for now that we have an exact solution &~ of the perturbed linear system (incomplete

iterative solution of (3.55) will be dealt with below)

~L.;  ~L

At =7". (3.56)

Our purpose is to estimate the error ||o — 5L||7%’F. The following Strang-type Lemma relates
this error to the errors a(-,-) —a(-,-) and f — ]7 We start by establishing the stability of (3.55).

Proposition 3.16. Assume (2.12), (2.13) and that the bilinear form a(-,-) is consistent with
a(-,-) in the following sense: for every 6 > 0 there exists Lo(8) such that for every L > Ly,

la(u®, v") —a(u®, v")| <6 ||uL||_%,F ||UL||_%’F vul vt e VE. (3.57)

Then the perturbed Galerkin scheme (3.55) is stable, i.e. there are v > 0, Ly > 0 such that for
all L > Ly holds

~ L L
vut e VE: sup M > ||t 1 p (3.58)
A oM z
and
=~ L L
vol e VI sup |a(z£ %) > yllv" || _1 - (3.59)
o A v z
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Proof. (2.12) and (2.13) imply (2.19). We show (3.58). Given 0 # u* € V¥, (2.19) and (3.57)
give

sup 7 > sup
vLeve v ||—%,F vleVeL

|a(uLa 'UL)| { |a(uL, UL)| |a(uL, 'UL) _ a(uLa UL)| }
lo¥]] 1 p lo¥]] 1 p

L L\ _ %(,,L ,L
Z,YHUL“_%’F_ sup |a(u ) U ) a(u U )|

> (y = ) lu" |y -
Tz

Choosing in (3.57) 6 = 7/2 and possibly adjusting L, yields (3.58). The proof of (3.59) is
analogous. O

We obtain from (3.58), (3.59) that for sufficiently large L the problem (3.55) is well-posed. In

~ I ~ .
particular, the matrix A is nonsingular and the approximate solution o” € V'’ is well-defined.

We derive now an error estimate for o — g%.

Proposition 3.17. Assume (3.57) and that L > Ly, Lo sufficiently large. Then the perturbed
Galerkin solutions o* of (3.55) exist and satisfy the error estimate

lo =& 1p < c{ inf [lo—v"| 1 +6|f[lp+ su W_—M} (3.60)
R W ST e oEl ar |
where C' > 0 is independent of L > Ly and 0 as in (3.57).
Proof. For ¢ > 0 sufficiently small and L > Ly(¢), (3.58) gives
lo =3y < llo— oMy g+ llo® — 5y
1 a(ot — ot vt
oot yt o sup T T
T A T
L 1 1 ~c L L 7 L
=llo—o"ll_sr+ = sup T a(o", 07) = (f,0")|
S T
1 1 - ~
<llo—o"|yp+~ sup e {la(e", 0) — alo®, oM + (f = [o")]}
T T

Now (3.57) gives

i 5 (f = Joom)]
) < e’ o L N 2 7
o=l yr <llo =iyt Sl + sup Spg

The stability (2.21) and the quasi optimality (2.20) of the Galerkin solution o imply (3.60).
U

L L L

We now link the discretization error o — ¢ and the consistency error o — ¢~ caused by

the cluster approximation k,, in (3.46) of the kernel k(zx,y).
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Theorem 3.18. Assume (2.12), (2.13) and let a cluster approzimation k,, of the far field be
given which satisfies Assumption 3.1 with sufficiently small grain n. Choose the expansion order

m according to
m > CL or m> C|logh|, (3.61)

with C' > 0 sufficiently large. Then
i) there is Ly > 0 such that the Galerkin discretization (3.55) with clustering is stable and

i) the Galerkin solution o™ in (3.55) with f: f converges at the same rate as o, i.e.

~7, || 1'1'111'1

<C ||f||HZ+S L> L. (3.62)

lo—¢ HoB(D) =

Proof. We show that the form a(-,-) in (3.54) satisfies (3.57). We have

ot o!) =t o) = | [ [ @ bl) ~ b)) wt ) dsy s (303

zel' yel

Since vX € VL = span{pl}, of = |xk| 2 Xaz, T € MPE, we write ut = 37 o uf of, vt =
>0 uf oF and we have due to (¢}, ¢}) = d;; the norm equivalences
J

(e =D luf P = llu"IZ,, o8 15e =D lof P = llw"IIZ, -
i J

Since the mesh MF is shape-regular, there holds the inverse inequality with Ay, denoting the
smallest element diameter of ML

vul € VE: ef||lut|| 1p < ||UL||L2 < e mln||u |- ir (3.64)

where ¢y, c; depend only on the shape regularity of M”. We can therefore estimate (3.63) as

follows:
[ 770 k) ) sy ] < 3 R
r T

B [ [ 1)~ halo) | H@) ) dsy ds. (3.65)

where

By Definition 3.10, Ej = 0 if 7} is in the near field of 7} and vice versa (i.e. all singular

~I
integrals in A~ are calculated exactly) and E}; # 0 = dist(n/", 7}') > chy, for some ¢ > 1
independent of L. Since ¢! is piecewise constant on M* = {7}, it follows with (3.47) that

for dist(x/, 7)) > chy

Bl < hLQ//UC(:E,y) m(T,y)| ds, ds, < h3 max max{|kxy) ke (2, )|}
L L

xEW yEW

IN

h3 Co(Cin)™ max max |k(x y)| < Chj Co(Cin)™ (dist(rf 7TL))_va

)
xEW yE J
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where 5§ = 1 denotes the singularity order. Hence we get Vul, vl € VI
ja(u®, o) = a(u®, o) = C Y ufvf by Co(Cin)™ dff
2
where d;; = dist(n],7}). Using the Cauchy-Schwarz inequality, we get
1 1
L, Ly (L L m(s —512 Li2)? L2\ 2
[a(u, v") ~ @(u",v")| < € Co(Cym)" (min dy) m(; [uf ) (; o} )
< CCo(Cim)™ ™ lu® [lo,e 1o flo,r
and using (3.64)
la(u®, v") —a(u®,v")| < C Co(Crm)™hy ™ || Zy pllv™ )2 - (3.66)
With 5 = 1 we get from (3.66) that (3.57) holds with § = C Cy(Cyn)™. We choose n > 0 so

3
small that C1n < 1/2 and obtain § < h? if m > C'|loghr| = CL for a sufficiently large C, i.e.
if (3.61) holds. This also implies that § — 0, as é — 00. Therefore, Proposition 3.17 applies
and af(-,-) is stable for sufficiently large L. Since f = f was assumed, (3.60) implies that

~ . 3
lo =" yr<C{ nf o =" ll_ye+hE Il -

The assertion (3.62) follows from the approximation property (2.23) of VX and the H=2%5(T)
regularity of o. O

Remark 3.19. In the proof of Theorem 3.18, we assumed s = 1, corresponding to the weakly
singular operator V. The same analysis, however, also applies to a cluster approximation b(-, -)
of the form b(-,-) in the right hand side of the direct Galerkin BEM (2.28). We use then s =0
and Proposition 3.17 with

(F = Fooh)] = b, 0™) = B(F 0P| < O Ly
if (3.61) holds.

Remark 3.20. If we extract the potential U(z) from ol (z) according to (2.25), in many
exterior points z € ¢, this approximation may efficiently be computed by clustering e(x — y).
The error in

ﬁL(x) = / em(z —y) 54 (y) dsy
r
may be estimated by

Uw) = U (@) < |Ulw) = U ()] + U () = U" ()]

< U@ - UH@)+ | [ o)t~ 5,

(3.67)

4| [ @) = enen) 5 ds
r

Combining (2.27), (3.47) we see that (3.61) ensures once more the optimal error bound (2.27)
also for U — U".
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4 Iterative Solution and Complexity

4.1 General remarks

In Section 3 we saw that the cluster approximation of the kernel will not decrease the asymptotic
rate of convergence of &” provided the order m of the cluster expansion increases logarithmically

~ I, — .
with hj. We assumed there that the linear systems A g~ = S are solved exactly. In practice,
however, clustering methods are used with iterative methods like CG or GMRES with incom-

~L
plete iterations. Since each iteration requires one matrix-vector multiplication z — A z,
which can be performed in O(m? Np) = O(Ny(log N1)) operations, the solution must require
no more than O((log N1.)?) CG or GMRES iterations with some b > 0 to reduce the error to

the order of the discretization error. It is not hard to see with (3.64) that A" s symmetric and
that .
k= condy(A ) =O(h;') as L — oo . (4.1)

The CG method gives vectors oF, j =0,1,2,... with

- VE—=1\J/ .
18" — ol <2( ﬁﬂ) [P (4.2)

By (3.58), (3.59), the norm ||g||4: = (leLg, o)'/? is equivalent to lof| 1 p where (-,-) denotes
the standard scalar product on CV-.

Let of € V" denote the piecewise constant function associated with the vector of. Then (4.2)
implies that the error of the j-th CG iterate ajL satisfies

15" = oFll_1p < C 15" = oFllor = CIE" = oFl, (43)

< C(=h2) 15" e,

1

3\ =5 |1
<C (1 - hL)] hy ||UL||f%,F
1 1
<O fllyp byt (- B

3 L1
We stop the CG procedure, once the error (4.3) is O(h?), i.e. once (1 — h?)? < h%. Since
jlog(1 — v/hy) < —jv/hy, this is satisfied in j > 2|loghg|h,* = O(Nilog N) iterations, i.e.
in a total of O(N7(log N)*!) operations. The situation is worse if GMRES is used for the
solution, due to the weaker available convergence estimates.

~L
To obtain an algorithm with log-linear complexity, we must precondition A . We describe

~L
here a preconditioner for A~ which is based on Haar-multiwavelet bases of the subspaces VL.

In these bases, due to a result of Oswald [21], a condition number k¥ = condy(A ) = O(L) =
O(|loghy|) is achievable. We emphasize that the Haar basis is not used for matrix compression,
but merely for preconditioning: the Haar basis does not have enough vanishing moments for
optimal wavelet-compression [30]. However, its support is the smallest possible. We present the
wavelets and the complexity estimate for both CG and GMRES with wavelet preconditioning in
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Section 4.1. The main result states that Cebysev-clustering with Haar wavelet preconditioning
does give a O(N (log N)®) complexity algorithm for weakly singular first kind BIEs on polyhedra.

The construction of Haar-wavelets used in [21] requires a sequence of nested triangulations
MO ML .. onT. Often, however, MO is the finest mesh manageable in the computer and no
refinements are possible. We show in Section 4.2 how to construct Haar-wavelet preconditioners
on M¥. In Section 4.3 we show how to construct Haar-wavelets on unstructured surface meshes
MO without any refinement at all based on a O(N) agglomeration algorithm from [29].

4.2 Wavelet Preconditioning in H~2(T)

On the polyhedron I' with N; plane faces 7r;-’ € M°, which we assume for convenience to

be triangles, we introduce a dyadic sequence {M*}2 of meshes by regular refinement: each
7rf € M is obtained by subdividing a W‘fil € M* ! into 4 congruent triangles by connecting the
mid-sides. By V' we denote the piecewise constant functions on M”. We define for / = 1,2, ...

the spaces W via
={peVii(py)=0 YWeV:l (4.4)

and set W0 = VO By P% L*(T') — V* we denote the L?(T')-projection:
(u — Pu,v)y =0 VYoeV:. (4.5)

Given a function u® € VE, we have the multilevel decomposition

L
= Z wt, w' = (P"— Pt (4.6)
=0
and the norm equivalence
L
||UL||%2(F) = Z ||wz||%2(r)a ubevr. (4.7)
=0

(4.6) and (4.7) also hold for L = oo, where V' is replaced by L?(T):
Vu e LA(T) : ulljam = Y IlofllZeq Z I(P* = P ulla ) (4.8)
=0

where P~! := (0. We may therefore write

@ Wt LT é w' (4.9)

the decomposition being orthogonal in L?*(T,ds). The increments W¢ = V¢ n (V1)L are
spanned by wavelets T/Jf which are translates and dilates of the mother-wavelets w} shown in
Fig. 4.1
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Figure 4.1: Triangular polyhedral side 7} € M?°, subdivision into 4 congruent triangles 7; € M

and 3 mother-wavelets t; on ;

Evidently, the multiwavelets ¢ are orthonormal in L*(T,ds). Any function u € L*(T,ds) can
be expanded in the wavelet basis:

oo

=3 S el ul = (w0 (4.10)
=0 jeJt
and we have obviously also
wl:Rg’LL: (Pg—Pg,I)u: Z uﬁiﬁf (4.11)

jegt
A basic tool in the theory of multilevel schemes are the norm equivalences akin to (4.8) in the
scale H*(T"), s # 0, of Sobolev spaces. The central result of relevance for preconditioning in
H—2(T) is due to Oswald [21]:
Proposition 4.1. There are ¢1,¢co > 0 depending only on the shape of ' such that for any
|s| <3

o0
Vu e H(T) : erllullrery < D 27| Reullfay < collullire - (4.12)
=0
In the limiting case s = —% holds

L
vul e VI 01||UL||§,_%(F) <D 2R oy < 2L+ lutIP (4.13)
=0

@)
where c1, ¢y are independent of L.
Oswald also shows in [21] that the factor (L + 1)? cannot be removed in general.
For preconditioning, we proceed as follows: let A%, Zlq) denote the stiffness matrix without
and with multipole compression in the standard basis ® = {¢F}, V¥ = span{¢}}, and let AY,

;1\1, denote these matrices transformed to the wavelet basis ¥ = {T/Jf :0< (< L,j€e J. The
basis transformation can be done in O(Np) operations and is denoted symbolically by W: we
have

Wz =% =W '’ =w' " (4.14)

for 2®, ¥ € R¥t and W' = W since ¥ is L?(T)-orthonormal.

~®
To solve A® o® = f , we transform it to the Wavelet basis W:

WA W Wi = Wi (4.15)
—_— —— ——
a" o = 7

Now Proposition 4.1 implies immediately
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Proposition 4.2. Assume (3.57) and denote by C' the diagonal matriz

C = diag{2726;:i,j€ J, 0< (<L},

Then we have for the matriz A=C"! ;lqj C ! and for all Y, T € CNe

Rez" Az > Cy(L+1)7 ||z, , (4.16)

~

2™ Ayl < Collzle, [lylle. (4.17)
Proof. We have for every u,v € CV¢ with (4.13)

Cc
[a(u®, ") < Cllu g ) 07 < ICull, ICle,

o3 (T)

and

C

Rea(u®,u )>C’||uL||2 )>m

It follows that there are constants C;, C independent of L such that for every u, v € CN-

Ch

~ U ~ U
u A" v| < Gof|Cull, [[Culle, and Reu" A u> (e 1C ull7, -
Setting x = C'u, y = C'v, (4.16) and (4.17) follow. O
We conclude that if A is hermitian,
~ Oy 9
condy(A) = ma.x( )/)\mm( )~ c (L+1)°. (4.18)
1

Theorem 4.3. If the linear system (4.15) is solved iteratively by either CG (zfz is symmetric)
or by GMRES with restart after 1 iteration, applied to the preconditioned matrix ;1, generating
the sequence {a ;) }32 with starting vector u,y = 0, and by {U(Lj) 720 the sequence of approzimate
solutions. Then there holds the error bound

<Ch? (4.19)

||U _0— ||H—§(F) —_—

provided the number j of iterations satisfies

2 for CG

jZ@L’“:{5ﬁwGme (4.20)

for some ¢, > 0 large enough.
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Proof. We have for CG with (4.18) in the wavelet basis U:

~

condy(A) — 1\ 7 C \J ! g
la" = afyll5e < 2( @) 1) loe® — afoyll 42 < 0(1 - L—+1> lo*l 52 < Chy .
condsy +

Since hy, = O(27%), the claim follows for CG with (4.13).
For GMRES, we use (4.16), (4.17) which imply

~ o~ H
Amin((A+A7)/2) > Ci(L+1)2,
and [11] who proved

C? i/2

It follows that |ol — U(Lj)“H_%(F) < Ohy if j > (L + 1)° with ¢, > 0 sufficiently large

(depending on a). O
Remark 4.4. The exponent a = 5 for GMRES in (4.20) is likely not optimal.

We can now estimate the complexity of the algorithm. Note that in practice, the matrix A

~®
is never formed - we apply instead PCCG with preconditioner C™'W directly to A which is
realized by a clustering scheme.

Proposition 4.5. The total work for the iterative solution of the linear system

Azt =1

(to the accuracy of the discretization error of full Galerkin) by CG or GMRES with multilevel
preconditioner C~'W is bounded by

C Ny (log N )t (4.21)
operations with
o 2 for CG b— 2 for spherical harmonics,
| & for GMRES | & for Cebysev clustering.

If the iteration is run to a fized tolerance T rather than to O(h*), a+ b in (4.21) is reduced by
one.

Remark 4.6. We assumed here that the nearfield part of matrix A can be computed exactly
in O(Np) operations. If this is not possible, the quadrature scheme in [22] gives consistent
approximations in O(Np,(log Ny,)*) operations.
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4.3 Coarsening by Agglomeration

The multiwavelet basis {1)/}{_, of V'’ used in the preconditioner C' in Proposition 4.2 is only
effective if L > 1. Often, however, already the mesh MO describing the geometry has Ny =
O(10°) panels 7¥. In such cases, the preconditioner C cannot improve the condition number.
To deal with this case, we extend the decomposition V¥ = W2 @ --- @ WF to levels £ < 0.
This coarsening is conveniently achieved by using the hierarchy of clusters in the cluster tree
T (M?P) constructed for the farfield acceleration. In what follows, we denote by

T =T(M" (4.22)

an n-admissible cluster tree on M. Some definitions follow:

Definition 4.7.
1. The depth dr of the cluster tree T is defined by

dr = max {teNy:7C7, C7, &+ C1y, =M%, 73,75y, ... 75, € T(M?)}. (4.23)

2. The level £, of a cluster 7 € T(M?O) is defined by

(= —dr + max {rcn Cny Sy =M, 11y, T, € T(MO)) (4.24)
0

3. The agglomerated panel 7rf associated with a cluster Tf € T(MP®) of level £ < 0 is defined by

TfZU{FEM():?TOETf}. (4.25)

We denote a cluster 7 € T(M°P) of level ¢ also by 7.
4. For { < 0 the coarsened mesh M is the union of all agglomerated panels ﬂf
M ={rl:je TV, —dr <1<0. (4.26)
Evidently, the root of 7 (M?) satisfies

{T'} = root(T(M®)) = M™% . (4.27)

4.3.1 Agglomeration Procedure

The agglomerated wavelet basis {1, ;} is constructed from the scaling functions {p?}°, by the
following agglomeration procedure. In a first step, we compute for each cluster 7 € 7 with
child(7) = () the piecewise constant orthonormal basis functions ¢, ((¢r, 1) = 0r1)

_ LYVl zer
or(z) = { 0 olse (4.28)

with |7| = [ ds,. Afterwards for each cluster 7 with child(7) # 0 the wavelets 1, =
{0 }ljiulldm‘*l and the coarsened scaling function ¢, are computed by the local wavelet trans-
formation M .. The constant normed function ¢, with supp(¢,) = 7 is needed to get the
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wavelets on the next lower level. At the end of this agglomeration the recursion wavelet basis
consists of the functions

Sproot and {wT]} T,j)E (429)

where J = {(7,j) : 7 € T Achild(r) # 0, 1 < j < |child(7)|}. The construction of the
agglomerated wavelet basis is realized by Algorithm 4.1.

Algorithm 4.1
for [ = 0 down to L

forall 7 € T with [, =1
if child(r) =0

compute @;;

else
P,

compute ( b > M : , Tiy, € child(7)

Pr

i|child(r)|

4.3.2 Local transformation M ,

For each tree T(M?P) with |child(T)| > 1 we can construct the agglomerated wavelet basis of
the space V of piecewise constants by applying Algorithm 4.1 and the local transformations
M.

The local transformation M . converts the scaling functions ¢, with 7; € child(r) into

the local wavelet basis ¢, = {1, ]}|Chlld ' and the coarsened scaling function ¢,
Priy
< Pr ) =M : . (4.30)
Y7
(pTi|child(T)\

To get an orthonormal wavelet basis of V? the local transformation matrix M, = (m],...,
M iiacr) has to satisfy

M 'M,=1. (4.31)

__ For each cluster 7 in the tree 7 we compute the local transformation matrix M, by defining
MT = (mIa @; B a@\::hild('rﬂ) with

VIl s VI Ty )y iy € child(7)

(m1) - \/m

and My, - . ., Meiq(r) Such that
det(M,) #0, (m])"m =0, 2<i< |child(r)|.
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Applying the singular value decomposition (SVD) to the vectors my,. . ., Mipiacr)» We get the
matrix M ,

(U-, 87, V) =SVD((m3, ... v@rchild(rﬂ))’ M, = (mj, U;) (4.32)
which satisfies (4.31).

Proposition 4.8. With the local transformation matriz M , defined above, we get a local basis
©r, Yy which is orthonormal with respect to the surface measure on ', i.e.

lorllrzey = 1 (4.33)
(ors ;)= O 1< j < |child(r)] (4.34)
(Vrjy rjr) = 6jj 1< j,7" < |child(r)]. (4.35)

In our implementation, we use the matrix M » in Assertion 4.9.

Assertion 4.9. The matriz

[ m] —m} 0 0 0 7
my, mj -—-mj 0 0
M. - mj 0 my  —mj] : (4.36)
0 i, i
L omy, 0 0 mp |

with T € T, 7, € child(7), m} = /|7, |/|7| and n = |child(7)| has full rank.

Remark 4.10. The local transformation (4.30) can be seen as an application of the lifting
scheme presented in [31, 32] or the stable completion in [3, 4, 7]. We start with the scaling
function ¢, and the wavelets

o,
Urg = (@4) : 1 < j < |child(r)]

%ﬂchﬂd(r)\
defined by the matrix M, and {¢r }- These wavelets are lifted to an orthonormal basis on T
with vanishing mean value with respect to the surface measure ds on I'. This is done using the

singular value decomposition (4.32).

Remark 4.11. In case of a binary tree, the local transformation matrix M, is

M. — | Vol =vInl/I7]
LIl VInl/I

for 7, € child(7). Then the singular value decomposition can be omitted.
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4.3.3 Properties of the agglomerated wavelet basis

For any triangulation M° on I, Algorithm 4.1 generates an agglomerated wavelet basis. The
forward and backward transformation of the pyramid scheme for vectors f¥ and f¥ are standard
and omitted, since they are almost identical to Algorithm 4.1. The agglomerated wavelet basis
has desirable properties:

Proposition 4.12. The wavelet basis obtained from Algorithm 4.1 is an L*(T', ds) orthonormal
basis of V.

a) The agglomerated wavelets fulfill the vanishing moment property

/F@/)T,j(g)dsm = 0 for (r,5) €T (4.37)

with J defined as in (4.29).

b) The agglomerated wavelet basis satisfies Parseval’s equation in L*(T,ds).

||u||%3(f‘) = (ua(proot(T))2+ Z (uawr,j)Q (438)
(r.g)ed

for all uw € Vy.
c) With W, =span{t,; : I, =1—1,1 < j < |child(7)|}, | > —d7, it holds
Vv = Weg, @Wog1 ®...0 W, (4.39)
where we have set W_4 = span{goroot(T)}

Equation (4.38) is a consequence of the clusters on the same level being disjoint and of
the orthogonality of the wavelets between different levels. The orthogonality between different
levels follows from (4.34).

Remark 4.13. If we refine M beyond level [ = 0 by regular subdivision of each m; € M9,
the corresponding spaces of piecewise constants are dense in L*(T,ds) and the finite sum in
Parseval’s equality (4.38) can be extended to an infinite one as for example in [19, 24].

Remark 4.14. It is an interesting open problem to establish an analog of Proposition 4.1
for the agglomerated wavelet basis. Below, we investigate the diagonal preconditioning in the
agglomerated wavelet basis numerically.

4.3.4 Complexity of the transformation

In this section the complexity of Algorithm 4.1 is estimated. In a first step of the algorithm we
generate the cluster tree 7. With mild assumptions on the geometry of I', we see that we can
compute a cluster tree 7 with dr = O(log Ny) (see [14]). To insert the leafs 7; into the cluster
tree we need for each leaf at most dr = O(log Ny) operations. Therefore, we can compute
the cluster tree T for Ny leafs in O(Nplog Ny) operations. The constant depends on a mild
regularity condition on the surface (see [17, 29] for details) which is satisfied for the domains
in Figure 4.2 uniformly in the number of slits. With this cluster tree we apply Algorithm 4.1.
Then we have (see [29])
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Proposition 4.15. Algorithm 4.1 takes Wy, = O(Ny) operations.
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Figure 4.3: cpu-time to compute the cluster tree for the L-shaped domains and to apply the
pyramid scheme to a vector versus the number of degrees of freedom.

We illustrate in 4.3 the result of Proposition 4.13. The wavelet transformation is applied
to a vector in the one scale basis. The diagram shows the cpu-time for the pyramid scheme
for the L-shaped domain with slits. The thickness of the L-shaped domain and the slits is
always one triangle. Therefore an increase of the degrees of freedom in the L-shaped domain
problem induces also more slits and changes consequently the geometry. This leads to a series
of domains where in Fig. 4.2 the domains with 6 (N = 1500) and 13 slits (N = 6148) are
plotted. We see that the cpu-time behaves like O(N) as stated in Proposition 4.13.

5 Numerical Results

In this section we will discuss different numerical experiments for the agglomeration precondi-
tioner proposed in Section 4. In addition to the normed one scale basis introduced in Section
2.3

O = {d el = Im 1< < N (5.1)
we define a new basis by
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For convenience we will omit the level [ in our further explanations since in our experiments
we choose [ = 0 and construct the wavelets by agglomeration as explained in Section 4.3.

_ All experiments are based on the cluster approximation of the stiffness matrix in the basis
)

//(,0] (z,y)@i(y) dsyds, . (5.3)

The different matrices in our tests are never formed explicit but a combination of the cluster
approximation A the transformation D which transforms a vector given in the basis ® to a
vector in the ® basis

Dz® = z° (5.4)

and the wavelet transformation W of Section 4.
The test problem is the interior Dirichlet problem

Au = 0 in 2

u = f on I' =02 (5:5)

for f =1/y/(z1 — 1.001)2 + (z — 1.001)2 + (23 — 1.001)? and different domains 2 C R?® where
we measure the iteration numbers of GMRes [2]. Convergence is achieved if the relative residual
is smaller than 107!°. In our experiments we solved this problem on a Sun UltraSPARC-II 336
MHz with 1 GB memory and used the GNU compiler 2.95.2.1.

G The first geometry is the unit cube with a uniform grid and the refinement levels from 0 up
to 6. On level 0 each side consists of two triangles. The refinement is done by connecting
the edge midpoints of each triangle which leads to four smaller triangles. With this we get
the problem sizes Ny = 12, 48, 192, 768, 3072, 12288 and 49152. Although the geometry
is obtained by refining the cube on level 0 we construct all wavelets by agglomeration
using a binary tree.

(G5 The second problem is the same as in Section 4.3.4 and consists of a series of different
geometries. Each geometry is a L-shaped domain with a uniform grid and n slits of the
size of a triangle on each side. In Figure 4.2 the geometries for n = 6, 13 are plotted. The
problem (5.5) is solved for n =1, 2, 3, 4, 6,9, 13, 19, 27 and 38 with Ny = 100, 252, 468,
748, 1500, 3108, 6148, 12628, 24852 and 48348.

The first preconditioner tested is the one proposed in Proposition 4.2. There we assume that
the relation between the support sizes is 4. Since we are using a binary tree the relation of the
support size of a cluster to the support size of its children is approximately 2. The advantage of
a binary tree is the explicitly given local transformation matrix (see Remark 4.11). Adapting
C to this situation we replace 2 by v/2 and introduce a new parameter at our disposal. With
this we get the preconditioner P;

(lr+d7)t

C, = dlag{\/_ ciyjeJ —dr <1<0}. (5.6)

With the transformation W to the wavelet basis we have to solve

Al'y=C,WD 'AD 'W'C;y = C,WD b
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Figure 5.1: Number of GMRes iterations versus number of degrees of freedom and ¢ for Gy
(left) and Gy (right) with the preconditioner P;. ¢ = 0 corresponds to no preconditioning.

Iterations
Iterations

Figure 5.2: Number of GMRes iterations versus number of degrees of freedom and ¢ for G
(left) and G (right) with the preconditioners P, and P.

and then to compute x = D™'WTC,y. The test problem (5.5) is solved for —0.5 < ¢ < 0.
With this preconditioner the iteration number of GMRes is reduced substantially as shown in
Figure 5.1. Accordingly to the theory the minimal iteration number should be achieved for
t = —0.5 (Proposition 4.2) and not for ¢ ~ —0.3 as obtained in the experiment. The reason
for this deviation lies in the agglomeration process. There it is not possible to ensure that the
relation of the support size of a cluster to its children is exactly 2. We overcome this problem

lr+dT)

by replacing the approximated relative cluster size \/5_( by the exact relative cluster size

\/|TH/IT]. With this we get the second preconditioner P,

t
l
~ T,
C; = diag %5ij:i,j€Jl,—dT§l§O (57)

where supp(@/)é) = 7']4. Then the equation system looks like
Ay = CtWD‘IKD‘IWTCtQ — C,WD™

with = D_IWTéty. This generalization of the preconditioner P; leads to a reduction of the
iteration number for G; and G5. Further more the minimal iteration number is achieved for ¢ ~
—0.5 which confirms the theory of Section 4.2. A comparison between the two preconditioners
P, and P, for Gy and G5 can be seen in Figure 5.2. For ¢ = 0 the iteration number is the same
since C; = ét = I. But for ¢ smaller P, performs better than P;.

Up to now we discussed uniform grids and therefore the matrix D is just the identity times
a constant and has no influence on the iteration number. This behavior changes if we take a
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¢ Ng ¢ " No
Figure 5.3: Number of GMRes iterations versus number of degrees of freedom and ¢ for GGy
(left) and Gy (right) with Ps.

_ Iterations

Figure 5.4: G3, Cube with locally refined mesh (left) and number of GMRes iterations versus
number of degrees of freedom and ¢ for G3 with P; (right).

geometry with panels of different sizes. In that case we observed that the iteration number
to solve D"'AD 'y = D'} is substantially larger than for Az = b. As a consequence we
circumvent the normalization and end up with the problem P; where we have to solve

APy = C,WAW Cy = C,Wb

with = WTC,y. For uniform grids the definition of Py does not change anything in compar-
ison to P, since the normalization is the identity times a constant. This confirms Figure 5.2
and Figure 5.3 where the GMRes iterations versus ¢ and the number of unknowns N, for GGy
and G, are plotted for P, and Ps respectively.

To test the new preconditioner for strongly locally refined meshes we solve (5.5) on an locally
refined grid on the cube.

(G5 This problem consists of a series of adaptive grids on the unit cube. In each step the grid
is refined in one corner by one level. The level difference between neighboring patches is
restricted to one. The last grid in the series (maximal refinement level 10) is shown in

Figure 5.4.

For ¢t > —0.5 and Ny > 400 GMRes does not converge and stops after N, iteration steps.
Decreasing ¢ we achieve convergence as can be seen in Figure 5.4. It seems that for non uniform
grids the optimal value of ¢ depends on the quotient of Amin/hmax With Ay, the minimal and
hmax the maximal mesh size which decreases for larger Ny in our experiment.

A comparison between P, (t = —0.5), Py (t = —1.5,—0.5) and the case without any pre-
conditioning for the adaptively refined cube G5 can be seen in Figure 5.5. For hpin/hmax small
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Iterations

aJNO

Figure 5.5: Number of GMRes iterations versus number of degrees of freedom for G5 with P,
(t =—-0.5), P; (t=—-0.5 and t = —1.5) and without preconditioning.

enough (N, > 400) GMRes stops after N, iterations and does not converge for P, and without
any preconditioning. With P; and choosing ¢ appropriately we get convergence even for the
case where Amin/hmax becomes small (Apin/hmax < 0.002).
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