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Abstract

This paper presents the technical details necessary to implement an exact solver
for the Riemann problem of magnetohydrodynamics (MHD) and investigates the
uniqueness of MHD Riemann solutions. The formulation of the solver results in a
nonlinear algebraic 5× 5 system of equations which has to be solved numerically.

The equations of MHD form a non-strict hyperbolic system with non-convex
fluxfunction. Thus special care is needed for possible non-regular waves, like com-
pound waves or overcompressive shocks. The structure of the Hugoniot loci will be
demonstrated and the non-regularity discussed. Several non-regular intermediate

waves could be taken into account inside the solver.
The non-strictness of the MHD system causes the Riemann problem also to

be not unique. By virtue of the structure of the Hugoniot loci it follows, however,
that the degree of freedom is reduced in the case of a non-regular solution. ¿From

this, uniqueness conditions for the Riemann problem of MHD are deduced.

Keywords: hyperbolic systems of conservation laws, Riemann problem,
magnetohydrodynamics, non-classical shocks
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1 Introduction

In a Riemann problem a system of hyperbolic equations in one space dimension

∂tu+ ∂xf (u) = 0 u ∈ IRN (1)

is furnished with discontinuous initial conditions in the form

u (x, t = 0) =

{

u(1) x < 0
u(0) x > 0

. (2)

The solution of such problems is governed by the hyperbolic properties of the system (1).
It is built from simple waves, either discontinuities, called shock waves, or rarefaction
fans, which have to be assembled appropriately. The general procedure to solve Riemann
problems may be found in textbooks like [14] or [19].

The equations of magnetohydrodynamics are formed from Euler equations of gasdy-
namics and the induction equation for the magnetic field. They describe the flow of a
plasma in interaction with a magnetic field. The physics of the MHD system is described
in [12], for example. Though the Euler equations are underlying, the hyperbolic prop-
erties of the MHD system are considerably more complex in comparison. There are not
only more waves according to a larger system, in addition the system is non-strictly hy-
perbolic with non-convex fluxfunction and the characteristic fields are no longer either
genuinely non-linear or linearly degenerated. By virtue of this, the MHD system may
admit non-regular waves, like compound waves and overcompressive intermediate shocks.

These intermediate shocks had been abondoned by evolutionary arguments (see [11],
[15]) in former times. The research of the last decade, however, showed that those waves
seems to have physical significance. They may be formed numerically from steepening
waves [20], are present in numerical calculations [3], [21], and even stable in 3d simulations
under finite perturbations (see [4], [5] ). In [8], [9] was shown that they posses a non-
linearly stable viscous profile in all cases. Thus they are conditionally stable in a nonlinear
analysis (see also [16], [17]). Nevertheless, very recently it has been argued against non-
evolutionary waves, like intermediate shocks, in [7]. Hence, the relevance of these waves
is not yet completely clarified.

In this paper an exact Riemann solver for MHD is constructed. The construction
results in a highly nonlinear 5×5 algebraic system of equations which is solved by Newtons
method numerically. In order to give some insight into MHD Riemann problems, a solution
example will be discussed in Section 2. The formulation of the solver (Section 3) will need
the control of shocks (Section 4) and rarefaction waves (Section 5). Therefore, a detailed
presentation of the MHD Hugoniot loci, which describe admissible shock waves, is given.
Originally the evaluation of the MHD Rankine-Hugoniot-conditions has been done in [1]
and [6]. This paper will collect results from these former papers and from textbooks ([11],
[12] and [15]) in order to present a selfcontained describtion of the MHD Riemann solver.
After the presentation of the Hugoniot loci the non-regular waves and their characteristic
behavior is discussed. The implementation of the solver (Section 6) will admit some
overcompressive shocks and compound waves to be inserted in the solution. Nevertheless
not all intermediate shocks could be taken into account and it stays an open question how
these waves come into play.

The solver is mainly developed to produce reliable solutions, which could be used as
benchmarks for numerical methods. The investigations of numerical methods for MHD by
using exact solutions obtained with the Riemann solver will be subject of a future paper.
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The usage of the solver to calculate intercell fluxes inside a numerical method seems also
to be interesting. However, due to the computational complexity of the exact solver, this
is not worthwhile up to now.

Due to its non-convexity and non-strictness, the uniqueness of MHD Riemann problems
is not assured by the theorem of Lax [13] (see also [18]). Indeed non-unique solutions are
known [2] in which essentially regular waves are substituted by non-regular waves. The
last section of this paper will investigate the uniqueness of MHD Riemann problems. The
argumentation presented in that section will yield conditions on the initial data under
which uniqueness of the solution is assured.

The details of the various formulas and calculations may be found in the appendixes
of the paper.

2 MHD equations

The variables of ideal magnetohydrodynamics are the fields of density ρ, flow velocity v,
magnetic filed B and total energy E. In one-dimensional processes the vectorial variables
v and B are splitted into their scalar normal components vn and Bn in the direction of
the space variable and the two-dimensional transversal parts vt and Bt. If x is the space
direction, we have

B = (Bx, By, Bz) = (Bn,Bt) and v = (vx, vy, vz) = (vn,vt) . (3)

The absolute value of Bt will be denoted by

Bt = ‖Bt‖ . (4)

Due to the divergence condition which have to be imposed on the magnetic field, the normal
component Bn have to be constant in space in one-dimensional processes. Throughout
this paper the normal field Bn is assumed to be nonnegativ

Bn ≥ 0. (5)

The remaining seven fields
u = (ρ, vn,vt,Bt, E) (6)

build the set of variables for one dimensional MHD. In this paper only ideal gases are
considered and the total energy will be substituted by the pressure, which is related to E
by

E =
1

γ − 1
p+

1

2
ρv2n +

1

2
ρv2

t +
1

2
B2

t . (7)

Note, that in this equation the contribution of the normal field Bn is suppressed. In the
numerical calculations of this paper the adiabaitic constant γ is set to be γ = 5/3.

The one dimensional MHD equations read

∂tρ + ∂x (ρvn) = 0
∂tρvn + ∂x

(

ρv2n + p+ 1
2B

2
t

)

= 0
∂tρvt + ∂x (ρvnvt −BnBt) = 0
∂tBt + ∂x (vnBt −Bnvt) = 0
∂tE + ∂x

((

E + p+ 1
2B

2
t

)

vn −BnBt · vt
)

= 0

(8)

2
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The equation for the normal component of the magnetic field reduces to the statement
that Bn is also constant in time. The normal fieldBn is thus considered only as parameter.

The system (8) is hyperbolic and has the characteristic velocites

λ1 = v − cf , λ2 = v − cA, λ3 = v − cs,

λ4 = v, (9)

λ5 = v + cs, λ6 = v + cA, λ7 = v + cf ,

which are formed by the fast and slow magnetoacustic velocities cf,s, and the Alfven
velocity cA, given by

cf,s =

√

1

2

(

B2
n+B2

t
ρ + a2

)

±
√

1

4

(

B2
n+B2

t
ρ + a2

)2
− a2B

2
n
ρ (10)

cA =
√

B2
n
ρ . (11)

Here the usual sound speed of gas dynamics a =
√

γ p
ρ is used as abreviation. Since

cs ≤ cA ≤ cf (12)

the eigenvalues may coinside at special points in the flow. Hence, the system (8) is only
non-strictly hyberbolic.

In the regular case, the solution of a Riemann problem (2) for the MHD system is
governed by seven waves, either discontinuities or rarefaction fans. Each wave is associated
to a characteristic velocity in the following way

v ± cf : fast shock/rarefaction to the right/left (13)

v ± cA : rotational discontinuity to the right/left (14)

v ± cs : slow shock/rarfaction to the right/left (15)

v : contact discontinuity (16)

The contact and rotational discontinuities are linear waves.

2.1 Example of a Riemann problem

Befor the actual Riemann solver is formulated, it is instructive to present a solution as an
example. This will increase the understanding of the following sections.

As mentioned above the normal magnetic field Bn has to be constant

B(0)
n = B(1)

n = Bn, (17)

and will be prescribed only as parameter additionally to the initial conditions (2). The
transversal field Bt, however, may vary from state 0 to state 1. In Fig. 1 general initial
conditions for the magnetic field are shown. The absolute value as well as the direction
of Bt may be different in both halfspaces. The initial twist angle of the planes of the
magnetic fields is denoted by α. In the case of α = 0 the Riemann problem is called
planar, whereas the case α = π is called co-planar.

3
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Figure 1: The initial conditions of a Riemann problem are separated
into the constant states 0 and 1. Due to the divergence constraint the
normal component of the magnetic field is not allowed to differ in both
states. The transversal part may have different absolute values as well
as a twist angle α. The same setting is used in the evaluation of the
Rankine-Hugoniot-conditions in Sec. 4.

As example let us look at initial conditions given by

(

ρ1, v
(1)
n ,v(1)

t , Bn,B
(1)
t , p1

)

=

(

3, 0,0,
3

2
, (

1
0
), 3

)

(18)

(

ρ0, v
(0)
n ,v(0)

t , Bn,B
(0)
t , p0

)

=

(

1, 0,0,
3

2
, (

cosα
sinα

), 1

)

(19)

with twist angle α = 1/2, so the initial transversal components of the magnetic field are
twisted by almost 90 degrees. The pressure and density fields are chosen analogously to
standard shocktube problems of ordinary gas dynamics.

In Fig. 2 the solution of (18)/(19) is depicted at time t = 0.4. Additional to the set
of variables (6) the temperature T ∼ p/ρ is shown in the upper right corner. As you can
read off the figure, none of the fields exhibits all seven MHD waves. The contact is only
visible in the field of the density (and of the temperature). The rotations change only the
transversal magnetic field and the transversal velocity. The fast and slow waves may be
identified in each field: To the left there are a fast and slow rarefaction wave and to the
right a fast and a slow shock. The exclusive appearence of rarefactions to the left and
shocks to the right is a coincidence.

More insight into the behavior of the magnetic field is obtained by displaying the
solution for Bt in the (By, Bz)-plane. This is done in Fig. 3. The solution forms a
polygon whose legs represent the different waves. From the figure one main property of
MHD Riemann problems may be extracted. The fast and the slow waves change only the
absolute value of the transversal magnetic field. The rotational waves, in contrast, only
rotate the transversal field. The exact solution, of course, gives only the left and right
states of a rotation. The arcs in Fig. 3 are added to guide the eye.
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Figure 2: The solution of the Riemann problem with initial conditions
(18)/(19) at time t = 0.4. The fields of density ρ, normal velocity vn,
pressure p, temperature T as well as transversal components of the ve-
locity and of the magnetic field are shown.

Figure3: Solution of the Riemann problem (18)/(19) for the transversal
magnetic field shown in the (By, Bz)-plane. In the waves occuring in
the MHD Riemann problem either only the absolute value or only the
direction of Bt is changed.
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3 Formulation of the solver

Any wave in a Riemann problem is controlled by a single parameter, a pathvariable ψ.
Given the fields in front of the wave, the fields behind are functions of this parameter. In
order to solve the Riemann problem one has to find the parameter of each wave such that
the initial conditions

U = (u0,u1) (20)

are met beyond the fastest waves to the left and the right. This leads to a nonlinear
algebraic system

RPU (Ψ) = 0, (21)

which have to be solved for the vector of the pathvariables Ψ. The vectorvalued function
RPU calculates the residuum by comparison with the initial conditions U . The MHD
Riemann problem consists of seven waves and seven fields, but (21) may be reduced to be
a 5× 5 system.

Firstly, both rotational discontinuities are described by specification of only one angle
αR. This follows from the fact that only these waves twist Bt. If the initial twist angle
and one rotation is given, the other roation angle α"

R may be calculated via α"
R = α−αR.

Hence, by the angle αR and the initial conditions, the direction of Bt is prescribed and
only the absolute value Bt need additional considerations.

Secondly, the contact discontinuity may be eliminated by considering the left and the
right part of the solution separately. This is also done when solving the Riemann problem
for Euler equations. In this procedure the right/left waves are inserted starting from
the right/left part of the initial conditions and the residuum is calculated at the contact
discontinuity. At this point all fields are continuous, except the density field, which needs
not to be considered.

Formally we write
(p", v"n,v

"
t , B

"
t ) = RP"

u
(ψs,f ,α) (22)

for the calculation of one half of the Riemann problem. The function RP∗
u
(ψs,f ,α) starts

from the fields given by u and calculates the values of the fields after inserting fast/slow
wave with parameter ψs,f and a rotation with angle α. With respect to the residuum only
the five fields of pressure p, of velocity (vn,vt) and the absolute value of the transversal
magnetic field Bt are used.

The nonlinear system of (21) now has the form

RPU (Ψ) := RP"
u0

(

ψ−

s,f ,αR

)

− RP"
u1

(

ψ+
s,f ,α− αR

)

= 0 ∈ IR5 (23)

with the vector
Ψ =

(

ψ±

s,f ,αR

)

∈ IR5. (24)

The pathvariables ψ±

s,f are associated with the left and right going fast and slow waves
and the angle αR describes both rotations.

4 Controlling the discontinuities

The pathvariables which control the discontinuities usually come from a parametrization
of the Hugoniot locus. The Hugoniot locus is build out of the solutions of the jump

6
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conditions, or Rankine-Hugoniot-conditions, which read

s [[u]]− [[f (u)]] = 0 (25)

for the general system (1). The quantity

[[ϕ]] := ϕ(1) − ϕ(0) (26)

describes the jump of the fields to right and left of the discontinuity. The propagation
velocity of the discontinuity is denoted by s. The Hugoniot locus is now given by

Hi

(

ψ;u(0)
)

=
{

u(1)i (ψ) | si (ψ)
(

u(1)i (ψ)− u(0)
)

= f(u(1)i (ψ))− f(u(0))
}

. (27)

The index i represents the wave family to which the solution u(1) is associated, i.e. fast,
slow or rotational. A solution is said to be associated to the family i, if

u(1)i (ψ → ψ0) → u(0) ⇒ si (ψ0) = λi (28)

holds. That is, a infinitesimal wave travels with the corresponding characteristic velocity.
By virtue of this definition, each solution of (25) may be identified to belong to a certain
family. We will see, that the choice ψ = s, i.e. using the shock speed as pathvariable, is
possible only for fast shocks.

The Rankine-Hugoniot-conditions are evaluated most conveniently in a Galilei-transformed
frame in which the discontinuity remains stationary. In such a frame (25) reduces to

[[f (u)]] = 0. (29)

If one defines by m := ρvn the mass flux, from (29) and (8)1 follows

m = const. (30)

The other equations of (8) inserted in (29 ) give after some calculations

m2 [[v]] +
[[

p+ 1
2B

2
t

]]

= 0
m [[vt]]−Bn [[Bt]] = 0

m [[vBt]]−Bn [[vt]] = 0
[[

γ
γ−1pv +

1
2m

2v2 +
(

v − B2
n

2m2

)

B2
t

]]

= 0

(31)

where the specific volume

v :=
1

ρ
(32)

replaced the density.

To calculate the Hugoniot locus one has to proceed in principle as follows: Let the
0-state

(

ρ0,v
(0)
t ,B(0)

t , p0
)

(33)

be given together with Bn as parameter. Then choose the speed of propagation v(0)n = s
and thus m and calculate the 1-state variables

(

ρ1,v
(1)
t ,B(1)

t , p1
)

(34)

7
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from (31). The normal velocity of state 1 is given by

v(1)n =
ρ0
ρ1

v(0)n (35)

modulo Galilei invariance.

A shock wave is physically admissibe only if the entropy is increased through the shock.
In magnetohydrodynamics the entropy η has the same form as in ordinary gasdynamics

η (p, ρ) = ln
p

ργ
(36)

and it can be shown (e.g. [12]) that for a shockwave the condition η1 > η0 is equivalent to

ρ1 > ρ0. (37)

Hence, like in the case of Euler equation only compression is allowed in a shock. In the
Hugoniot loci presented below the expansion parts have been neglected.

4.1 Rotational wave

The rotational discontinuity is a linear wave with

[[v]] = 0 [[p]] = 0
[[

B2
t

]]

= 0. (38)

¿From this follows m out of (31) and

v(1)n = v(0)n =
Bn√
ρ0

=
Bn√
ρ1

(39)

As expected from the linear degeneracy, any rotational discontinuity travels with the
Alfven velocity. As pathvariable the change of the direction of Bt is most appropiate.
Since the absolute value is preserved, the jump [[Bt]] may be calculated by the angle αR

and then the transversal velocity follows from (31)2

[[vt]] = ±
1
√
ρ
[[Bt]] . (40)

The +-sign (−-sign) belongs to a left (right) travelling wave.

4.2 Shocks

If the jump of the density, respectively of the specific volume is nonzero, [[v]] += 0, the
resulting discontinuity is called a shock. It may be deduced from (31)3 that the transversal
magnetic fields at both sides of any shock are collinear. Thus only the absolute value of
Bt needs to be considered across a shock wave, which will be allowed to become negative.

By eliminating the transversal velocity between (31)2 and (31)3 and after some rear-
rangements, the Rankine-Hugoniot-conditions for a shock may be written as

m2 [[v]] + [[p]] + 1
2

[[

B2
t

]]

= 0
m2 [[vBt]]−B2

n [[Bt]] = 0
1

γ−1 [[pv]] +
1
2 (p0 + p1) [[v]] +

1
4 [[v]] [[Bt]] 2 = 0

(41)

8
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It is now usefull to define dimensionless quantities by

v̂ =
v1
v0

p̂ =
p1
p0

B̂t =
B(1)

t√
p0

v̂t =
vt

a0
. (42)

It is quite common to scale pressure and transversal field by the normal field Bn, but the
definitions (42) cause less trouble if Bn → 0. The Rankine-Hugoniot-conditions (41) then
read

p̂− 1 + γM2
0 (v̂ − 1) + 1

2

(

B̂2
t −A2

)

= 0

γM2
0

(

v̂B̂t −A
)

−B2
(

B̂t −A
)

= 0

1
γ−1 (p̂v̂ − 1) + 1

2 (v̂ − 1) (p̂+ 1) + 1
4 (v̂ − 1)

(

B̂t −A
)2

= 0

(43)

with the three parameters

A =
B(0)

t√
p0

B =
Bn√
p0

M0 =
vn|0
a0

=
m

√

γp0/v0
. (44)

The parameters A and B describe the magnetic field in front of the shock and the Mach
number M0 is the shock speed scaled by the gasdynamical speed of sound.

In dimensionless variables the state 0 is given by

(

v̂, B̂t, p̂
)∣

∣

∣

0
= (1, A, 1) (45)

and the variables (v̂, B̂t, p̂)
∣

∣

∣

1
at state 1 may be calculated from (43) after fixing the param-

eters A, B and M0. Once this is done, the remaining variables follow from

v̂n|1 =
1

ρ̂
v̂n|0 [[v̂t]] = ±

B̂

γM0

[[

B̂t

]]

, (46)

where again the +-sign (−-sign) belongs to a left (right) travelling wave.

4.2.1 Fast Hugoniot locus

If the propagation speed approaches the fast magnetoacustic velocity, i.e.

M0 → ĉ(0)f (A,B) =
cf |0
a0

, (47)

a fast shock arises. It turned out by numerical evaluation, that the shock speed, resp. M0,
is indeed a practical pathvariable, since it varies monotonically along the fast Hugoniot
locus. The calculation of the fields in the case A += 0, B += 0 is done by solving a cubic
equation numerically, which is deduced from the system (43). In the cases A = 0 and
B = 0 analytic expressions are available. Detailed formulas are presented in Appendix A.

In Fig. 4 the values of transversal magnetic field, pressure and specific volume along
the fast Hugoniot curve are shown. The different curves referr to different choices of the

parameters A and B. At the left hand side A (and thus B(0)
t ) is constant and B (resp. Bn)

takes increasing values and vice versa at the right hand side. The figure should be read as
follows: Suppose the values of the fields in front of a shock are given. This fixes a certain
curve in the diagram for the transversal field, the pressure and the specific volume. Then

9
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Figure 4: Hugoniot locus of the fast characteristic family in MHD.
Behavior of transversal magnetic field, pressure and specific volume are
plotted versus Mach number of the resulting shock wave. At the left
hand side Hugoniot loci for different values of the normal magnetic field
are shown (A = 1.5 / B = 0, 2, 3, 4), whereas at the right hand side
the initial transversal field varies between the different curves (B = 3 /
A = 0, 0.05, 0.5, 1).

choose a Mach number at the abscissae as propagation speed of the shock. The values of
the fields behind the shock may now be found at the corresponding ordinates.

The decrease of the specific volume is limited by

v −→
M0→∞

γ−1
γ+1 (48)

in a fast shock. This behavior is known from the Euler equations. The transversal magnetic
field along the Hugoniot locus has the asymptote

Bt −→
M0→∞

γ+1
γ−1A, (49)

what follows from (43)2. Nevertheless, for B large enough, higher values of Bt behind a
fast shock are possible since the graph becomes non-monotone.

At the right hand side we see the Hugoniot curve forA = 0, i.e. for vanishing transversal

10
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Figure 5: Hugoniot locus of the slow characteristic family of MHD
for different values of the normal magnetic field (A = 1 / B =
0.5, 1, 1.5, 2, 2.5, 3). Behavior of transversal magnetic field, pressure and
specific volume versus Mach number of the resulting shock. Addition-
ally, in the lower right corner the characteristic curves in front and in
the back of a regular slow shock are sketched.

magnetic field in front of the shock. Within the interval

ĉ(0)f (0, B) < M0 <

√

γ+1
γ−1

B2

γ
− 2

γ−1 (50)

the transversal magnetic field behind the shock does not vanish indicating the existence
of a ”switch-on” shock. This interval is only non-empty if B2 > γ. Beyond the interval
the Hugoniot curve describes an Euler shock. This fact is also shown in Fig. 4.

4.2.2 Slow Hugoniot locus

If for the Mach number

M0 → ĉ(0)s (A,B) =
cs|0
a0

(51)

holds, a slow shock becomes possible. The slow Hugoniot locus is more involved than
that of the fast family. First of all the Mach number turned out to be not a practical
pathvariable, since it varies non-monotonically along the locus. Unfortunately all the
familiar quantities, like transversal field, pressure or density, behave in a non-monotone
manner. Thus in the calculations the pathvariable is changed appropriately when tracing
the Hugoniot locus. In Appendix B explicit expressions for the fields behind a slow shock
are given.

The slow Hugoniot locus at constant A for different values of B is depicted in Fig. 5.
Again the values of magnetic field, pressure and specific volume are shown. Along the

11
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x-axis varies the Mach number. Note, that for certain Mach numbers two possible shock
solutions exist. This fact corresponds to the non-convexity of the MHD equations. Fur-
thermore the interval for the Mach number of a slow shock is finite. There exist Mach
numbers such that no slow shock is possible. Of course, this follows already from the
non-monotonicity of M0. The end of a slow Hugoniot locus is always given by a rotational
wave in which the transversal magnetic field is rotated by an angle of π.

The limiting behavior of the slow Hugoniot locus is not very clear. From Fig. 5 one
may read off that for B → 0 the slow Hugoniot locus vanishes. In the case A → 0 the cases
B2 ≶ γ have to be distinguished. Numerical evaluations suggest that for B2 < γ the locus
vanishes whereas for B2 > γ it approaches the Hugoniot locus of the Euler equations.
Investigations like in [8]/[9] might bring more insight into this field.

4.2.3 Non-regularity

The shocks realized along the fast Hugoniot curve of Fig. 4 always have a regular char-
acteristic behavior. They form classical Lax shocks. The slow Hugoniot locus, however,
is decomposed into segments of different non-regular behavior. In the following this non-
regularity is discussed. The nomenclature referrs to Fig. 6 as well as to the common 1-2-3-4
notation introduced by [15]. In the 1-2-3-4 notation the regular slow and fast shocks are
3-4 and 1-2 shocks, whereas 1-3, 1-4, 2-3 and 2-4 shocks form intermediate waves.

The transversal magnetic field is decreased across a slow shock. As far as the transver-
sal field stays away from zero behind the shock, the shock forms a Lax shock (3-4 shock).
The characteristics in front and behind of such a shock are sketched in the lower right
corner of Fig. 5. If the transversal field passes zero, an intermediate shock arises with
non-regular characteristic behavior. In Fig. 6 the transversal magnetic field of three slow
Hugoniot loci is shown and the non-regular segments are indicated. There are two dif-
ferent single overcompressive shocks in which one additional characteristic points into the
shock. They are denoted by C+ which corresponds to a 2-4 intermediate shock and by
C̃+ which corresponds to a 1-3 intermediate shock. C++ (1-4 intermediate) denotes a
double overcompressive shock with two additional characteristics pointing into the shock.
The so-called Alfven-shock is denoted by A and describes a 2-3 intermediate shock. A
Alfven-shock looks like a Lax shock, but for the linear degenerated field associated to the
eigenvalue v± cA. The different scenarios of the characteristics of the intermediate shocks
may be read off Fig. 7. It is interesting to remark, that 1-3 and 1-4 shocks intuitively
could be considered as fast shocks. However, they appear while tracing the slow Hugoniot
locus.

Note that the Hugoniot locus in Fig. 6 shows the transition between the different in-
termediate shocks very clearly. Once the transversal field becomes negative, the inflow
velocity (referring to the picture of a stationary shock) reaches the Alfven velocity. De-
pending of the choice of the parameter A and B it might even happen, that the inflow
becomes super-fast. At this point the Alfven and fast characteristic in front of the shock
has turned into it (first C+ and then C++). The maximal value of the inflow velocity
M0 is reached, if the slow characteristic behind the shock is parallel to it. By tracing the
Hugoniot locus further this characteristic points out of the shock (A, resp. C̃+). By and by
the fast and Alfven characteristic in front of the shock again turn out of the shock, while
the inflow velocity again drops below the fast velocity and aproaches the Alfven velocity.
At the end of the Hugoniot locus the Alfven-shock becomes a rotational wave with both
Alfven characteristics in front and behind the shock parallel to it.
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Figure 6: Indication of the non-regular sections along three different
slow Hugoniot loci. As example, the transversal magnetic field is shown.
The non-regular shocks are intermediate shocks in which the transversal
magnetic field changes sign. The shock changes type if the Mach number
of the inflow reaches the different characteristic velocities. Note, that the
velocities ĉ, c̃ and c̄ referr to the different Hugoniot loci shown, i.e. they
belong to different values of the parameter B.

In the MHD system also compound waves may occur. In such a wave a slow rarefaction
is directly attached to a slow shock. The slow shock travels with its maximal propagation
speed. The slow characteristic in the back of the shock is then parallel to the shock and
gives way to the rarefaction.

It has been mentioned in the introduction that the relevance and physical significance
of intermediate shocks is lively discussed. A very strong result [5] shows the stability of
intermediate shocks in a 3d numerical simulation under finite perturbations. Theoretically
they are shown [16], [17] to be stable according to a nonlinear stability analysis. It seems
that intermediate waves may not yet be abondoned in MHD investigations.

Figure 7: Characteristic curves in front and in the back of non-regular
waves occuring along the slow Hugoniot locus shown in Fig. 6. The shock
is viewed stationary as vertical line in the middle of the pictures.
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5 Controlling the rarefaction waves

The fast and slow characteristic family allow expansion of the plasma by rarefaction waves.
The admissible states are described by the integral curves of the eigenvectors of the Jaco-
bian of the fluxfunction in (8).

Along the integral curves the primitive variables

ϕ = (ρ, vn,vt,Bt, p) (52)

are used. From the eigenvectors (see e.g. [3]) follows that like in the case of a shock wave
only the absolute value of the transversal magnetic field may change. The equations of
the integral curves may be integrated in the case of the density and the pressure to give

ρ (s) = ρ0 e−s

p (s) = p0 e−γs (53)

The remaining fields are described by the ordinary differential equations

v′n (s) = ∓cs,f (s)

v
′

t (s) =
∓cs,f (s)

(

cA(s)
cs,f (s)

)2
− 1

Bt (s)

Bn

B
′

t (s) =
Bt (s)

(

cA(s)
cs,f (s)

)2
− 1

.

(54)

The curve is parametrized by s > 0. Note that the fast, slow and Alfven velocity cs,f,A
defined in (9) depend on the values of density pressure and magnetic field and thus on s
along the integral curve. The +-sign (−-sign) belongs to a left (right) going rarefaction
wave.

It may be read off (54) that in contrast to the fast and slow shock wave the transversal
magnetic field always decreases in a fast rarefaction and increases in a slow one. The fast
integral curve ends if Bt vanishes. Thus there is a maximal value of s given by

Bt(s
(max)) = 0. (55)

where Bt (s) is the solution of (54). Of course, the value of s(max) depends on the initial
conditions at the starting point of the rarefaction.

The system (54) may not be solved analytically. In the implementation of a Riemann
solver the ordinary differential equations are solved numerically in order to describe rar-
efaction waves.

6 Implementation

The algebraic system which have to be solved in order to solve the Riemann problem
is given in (21) together with (23). It only remains to define pathvariables ψf,s for the
fast and slow wave. In the implementation both pathvariables should be ∈ IR to aviod
problems at artificial boundaries. Positive values will represent shocks, negative values
correspond to rarefactions.
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The fast family is rather straight forward to parametrized. This paper suggests

ψf > 0 fast shock with velocity vs = c(loc)f + ψf (56)

ψf < 0 fast rarefaction of strength send = s(max) tanh (−ψf ) . (57)

where c(loc)f is the fast velocity calculated with the local fields in front of the shock. Thus
the fast shock is described by its propagation speed relative to the fast velocity. For a
fast rarefaction, ψf ∈ IR is transformed to the valid interval

(

0, s(max)
)

of the integration
variable s.

The slow waves may be described by

0 < ψs ≤ B̂(")
t slow shock with B̂t

∣

∣

∣

1
= A− ψs (58)

ψs > B̂(")
t slow shock with B̂(")

t + rarefaction with send = ψs − B̂(")
t (59)

ψs < 0 slow rarefaction with send = −ψs (60)

Here the shock interval ψs > 0 is splitted into two parts. The first part describes a slow
shock where ψs is the jump in the transversal magnetic field B̂t (locally dimensionless).
The second part corresponds to a compound wave in which a slow rarefaction is attached

to a slow shock with maximal Mach number M (max)
0 . The single shock is only considered

up to the value ψs = B̂(")
t at which the maximal Mach number is reached, see Appendix

B for details. The slow rarefaction, either pure or in a compound wave, is described by
the integration variable s.

Note, that the pathvariable (58)-(60) pays full attention to non-regular 2-4 and 1-4
shocks, but not to Alfven shocks (2-3) and C̃+-shocks (1-3). These waves are in a way
substituted by the compound wave. Compound waves are well known in numerical MHD
simulations, whereas the Alfven-shock, for instance, as shock in a linear family rather needs
further investigations. Until the relevance of such shocks is not clarified, the definitions
(58)-(60) should be considered as a first empirical approach to the implementation of a
MHD Riemann solver.

In the present implementation the system (21) is solved by the classical method of
Newton. The Jacobian of RP is calculated by finite differences. The ODE system (54) is
solved by a explicit Runge-Kutta-method (see [10]). For solving (73) in the case of a fast
shock also Newtons method has been applied. The simple Newton method is known to be
sensitive with respect to the initial guess. The present implementation worked satisfactory,
though, in some cases, special care had to be taken for the initial guess.

6.1 Results

As concluding result the exact solution of the Riemann problem given by the initial con-
ditions (18)/(19) is presented. In Table 1 and 2 the values of the fields are given together
with the positions of the waves. The tables have to be read from left to right and the
columns give the values behind the corresponding wave. If the wave does not change a
quantity the entry is left out. The graphs of the fields have been depicted in Fig. 2.

For the solver the initial guess was chosen to be

(

ψ−

f ,ψ
−
s ,αR,ψ

+
s ,ψ

+
f

)

guess
= (0.01, 0.01, 0.01, 0.01, 0.01) . (61)
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state 1 fast raref. rotation slow raref.

xstart -1.474922 -0.631585 -0.521395
xend -0.990247 ./. -0.445268

ρ 3.000000 2.340949 2.200167
vx 0.000000 0.348797 0.402052
vy 0.000000 -0.144157 -0.339270 0.286284
vz 0.000000 0.000000 0.354780 0.438321
By 1.000000 0.642777 0.344252 0.413199
Bz 0.000000 0.000000 0.542820 0.651535
p 3.000000 1.984139 1.789281

Table 1: Results for the initial data (18)/(19). The table shows the val-
ues of the fields and the positions of the waves in the negative halfspace.
It is continued by Table 2.

contact slow shock rotation fast shock

xstart 0.402052 1.279598 1.568067 2.072332
xend ./. ./. ./. ./.

ρ 1.408739 1.054703 1.000000
vx 0.107484 0.000000
vy -0.514217 -0.006260 0.000000
vz 0.078923 -0.088275 0.000000
By 0.601050 0.079386 cos (0.5)
Bz 0.947741 1.119452 sin (0.5)
p 1.093004 1.000000

Table 2: Results for the initial data (18)/(19). This table continues
Table 1 and shows the values of the fields as well as the wave positions
in the positive halfspace.

In Table 3 the convergence behavior of the Newton method is shown. The solver proceeds
with quadratic convergence within the last 3 iterations. The residual drops below 10−9.
The quadratic convergence of the solver has been observed over a wide range of initial
conditions. For the solution of the system (21)

(

ψ−

f ,ψ
−
s ,αR,ψ

+
s ,ψ

+
f

)

solution

= (−0.451045,−0.062023, 1.005614, 0.335496, 0.061318) (62)

is calculated. From this it may be read off immediately that both waves to the left are
rarefactions, since ψ−

s,f < 0. Analogously, both waves to the right are shocks.

The results in Table 1 and 2 now could be used as benchmark for numerical schemes
for magnetohydrodynamics. The will be done in a future paper.

Iteration Residual ‖RPU (Ψ)‖
∞

0 2.0521587682
1 0.8758019116
2 0.1715716821
3 0.0093181931
4 0.0000548088
5 0.0000000007

Table 3: Iteration vs. residual during the solution of the Riemann
problem given by (18)/(19). The initial guess may be read off (61).
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7 Uniqueness conditions

If a hyperbolic system is strictly hyperbolic and each characteristic family is either genuine
non-linear or linearly degenerated, then the theorem of Lax ([13], [18]) gives local existence
and uniqueness to the Riemann problem. Clearly the requirements of the theorem are not
given in the case of MHD. However, if we characterise the transversal magnetic field by
polar coordinates with positiv absolute value and neglect the non-regular part of the slow
Hugoniot locus, we match the conditions. The slow and the fast family then form genuinely
non-linear fields and the characteristic and shock velocities stay apart. By this setting,
the whole phase space of the variables (6) may be acquired by regular Hugoniot curves
and integral curves. Thus it seems suggestive that, by virtue of Lax’ theorem, there exists
exactly one regular solution of a MHD Riemann problem. Based on this argumentation it
will be assumed that in a non-unique solution of the Riemann problem only non-regular
solutions are added.

The main ingredient to derive uniqueness conditions is the following: If a non-regular
wave is inserted at one side of the solution, the Alfven wave at this side disappears, since
the non-regular wave skips the Alfven characteristic. The Alfven waves, however, are the
only waves that could change the directions of the transversal magnetic field. Even the
non-regular wave changes only the absolute value. Thus, if a non-regular wave is inserted
at each side, only planar initial conditions will be met. If only one non-regular wave is
present, non-planar initial data could be met, provided the remaining rotational wave will
adjust exactly the twist angle of the initial conditions. This fixes the rotation angle a
priori by the initial conditions. Hence, one degree of freedom in (24) is missing and one
variable of the initial conditions may not be prescribed, but follow from the non-regular
solution. It will be shown that the following condition is sufficient:

Uniqueness condition 1 If for the initial conditions in the non-planar case the condi-

tion [[vt]]initial = 0, or in the coplanar case the condition 0 += [[vt]]initial ∦ [[Bt]]initial holds,
then the MHD Riemann problem has an unique regular solution.

It follows, for instance, that the solution of (18)/(19) depicted in Fig. 2 is unique, since
vt ≡ 0 initially. To derive this condition we proceed as follows:

In the initial conditions of a MHD Riemann problem we are free to choose the coordinate
axes for the magnetic field and the Galilei-frame for the velocity. Therefore any non-planar
initial data may be brought into the form

v
(1)
t = 0 B

(1)
t =

(

B(1)
t

0

)

(63)

v
(0)
t =

(

vy
vz

)

B
(0)
t = B(0)

t

(

cosα
sinα

)

α += 0 (64)

with positive transversal field B(0)/(1)
t > 0. The case of initially vanishing transversal field

is not considered. The (1)- and (0)-state shall be chosen such that the non-regular wave
is inserted at the (1)-side of the initial conditions. In Fig. 8 the situation and notation is
sketched. Note, that all waves between state (1) and state (*) change only the absolute
value of Bt. Additionally, in any wave of MHD Riemann problems the transversal velocity
is connected to the transversal magnetic field by

[[vt]] = C [[Bt]] (65)
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Figure 8: Settings and notations referring to the initial conditions
(63)/(64) and equation (67 ).

where the constant C differs for the different waves. Starting from the left hand side
(1) and inserting waves towards the (0)-side, it follows that the transversal velocity and
magnetic field in the back of the right going rotational wave will have the form

v"
t =

(

a
0

)

B"
t =

(

B"
t

0

)

(66)

with some constant a += 0. We now look at the Alfven and fast wave that travel to the
right. If the non-regular solution exists, the equation

v"
t = v

(0)
t + Cf [[Bt]]f + CA [[Bt]]A (67)

must hold. In Appendix C is shown that this equation implies

vz = Λ sinα with Λ += 0 (68)

Therefore, a non-planar Riemann problem with vz = 0 has no non-regular solution. The
above stated condition follows in the case of general initial conditions.

The constant Λ depends on the solution and thus on the initial conditions of the
remaining variables. In fact, (68) forms a constraint to the initial conditions if a non-
regular solution is required. The investigation of this condition and its physical relevance
is subject to future work.
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A Details for the fast shock

¿From the equations in (43) follow the Hugoniot curve and the Rayleigh line

p̂R
(

v̂, B̂t,M0, A
)

= 1− γM2
0 (v̂ − 1)− 1

2

(

B̂2
t −A2

)

(69)

p̂H
(

v̂, B̂t, A
)

=
v̂ − γ+1

γ−1 + 1
2 (v̂ − 1)

(

A− B̂t

)2

1− γ+1
γ−1 v̂

(70)

which after substitution of B̂t by

B̂t (v̂,M0, A,B) = A
γM2

0 −B2

γM2
0 v̂ −B2

(71)

form pure functions of the specific volume and the parameter M0, A and B. The inter-
sections of p̂R(v̂) and p̂H(v̂) in the (p̂, v̂)-plane represent the solutions of the Rankine-
Hugoniot-conditions. If we define

v̂(min) (M0, B) =

{ γ−1
γ+1

B2

γM2
0

< γ−1
γ+1

B2

γM2
0

B2

γM2
0

> γ−1
γ+1

(72)

then for M0 > ĉ(0)f there exists exactly one intersection of p̂R (v̂) and p̂H (v) in the interval

(v̂(min), 1). This intersection corresponds to a fast shock. The other intersections (if they
exist) lay at the branch of p̂R(v̂) with v̂ < B2/(γM2

0 ) and correspond to a (1-3) and (1-4)
shock. The equation

p̂R
(

v̂, B̂t (v̂,M0, A,B) ,M0, A
)

= p̂H
(

v̂, B̂t (v̂,M0, A,B) , A
)

(73)

is cubic in v̂ and has to be solved numerically. Pressure p̂ and magnetic field B̂t follow
then from v̂. In the case B = 0 from (73) follows a quadratic equation for v̂ with one
solution v̂ > 0 that reads

v̂ (M0, A) =
(γ − 1)M2

0 +A2 + 2

2 (γ + 1)M2
0

+

√

(

(γ − 1)M2
0 +A2 + 2

2 (γ + 1)M2
0

)2

+
2− γ

γ (γ + 1)M2
0

A2. (74)

In the limiting case of A = 0 there exists a ”switch-on” shock with B̂(1)
t += 0 if (50) and

B2 > γ hold. The transversal magnetic field is then given by

B̂t (M0, B) =

√

γM2
0 −B2

B2

(

(γ − 1)
(

γ+1
γ−1B

2 − γM2
0

)

− 2γ
)

(75)

and the specific volume follows from

v̂ (M0, B) =
B2

γM2
0

(76)

If a ”switch-on” shock is not admissible an ordinary Euler shock with

v̂ (M0) =
(γ − 1)M2

0 + 2

(γ + 1)M2
0

(77)

is realized.
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B Details for the slow shock

To calculate a slow shock the transversal magnetic field will be used as parameter in (69)
and (70), whereas the Mach number will be eliminated via

M0

(

v̂, B̂t, A,B
)

=

√

B2

γ

B̂t −A

B̂tv̂ −A
(78)

It follows the quadratic equation

a
(

B̂t, A,B
)

v̂2 + b
(

B̂t, A,B
)

v̂ + c
(

B̂t, A,B
)

= 0 (79)

for the specific volume, where the coefficients read

a
(

B̂t, A,B
)

=
B̂t

2

(

4 γ
γ−1 +

(

B̂t −A
)2

+ γ+1
γ−1

(

A2 − B̂2
t

)

)

− γ+1
γ−1B

2
(

B̂t −A
)

(80)

b
(

B̂t, A,B
)

= γ
γ−1

(

A
(

B̂2
t −A2

)

+ 2B2
(

B̂t −A
)

− 2
(

B̂t +A
))

(81)

c
(

B̂t, A,B
)

= 2γ
γ−1A−

(

A2 +B2
)

(

B̂t −A
)

. (82)

Both solutions

v̂±
(

B̂t, A,B
)

= −
1

2a

(

b±
√

b2 − 4ac
)

(83)

play a role along the slow Hugoniot locus. First only v̂+ lies in the valid range (γ+1
γ−1 , 1).

The second solution v̂− becomes smaller than one if B̂t < −A is reached. Both solutions
join at a minimal value of B̂t which is given by

B̂−
t (A,B) = −

4(B2 − γ)2 + γ2A4 + 4A2(B2 + γ2)

2γAB2 + γ (2− γ)A (2 +A2) + 4B
√

(γ − 1)∆ (A,B)
(84)

with the abbreviation

∆ (A,B) :=
(

B2 − γ
)2

+A2 γ(γ2−2γ+2)
γ−1 +A2

(

2B2 +A2
)

. (85)

Given the transversal field (like in (58)) the specific volume follows from (83). The value
of the pressure and the Mach number of the shock may be calculated from (69) and (78),
respectively.

The maximal Mach number of a slow shock is given by the following relations. In a slow
shock with maximal propagation velocity the normal velocity behind the shock equals the

slow characteristic velocity. For the corresponding transversal magnetic field B(")
t follows

the equation

v̂(")M0

(

v̂("), B̂(")
t , A,B

)

= ĉ(1)s

(

v̂("), p̂("), B̂(")
t , A,B

)

(86)

with v̂(") = v̂+
(

B̂(")
t , A,B

)

, p̂(") = p̂R
(

v̂+
(

B̂(")
t , A,B

)

, B̂(")
t ,M0, A

)

(87)

and the maximal Mach number is then given by

M (max)
0 = M0

(

v̂("), B̂(")
t , A,B

)

. (88)
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C Uniqueness argument

The Alfven wave changes only the direction, whereas the fast wave changes the absolute
value. Hence, from (67) follows

v"
t = v

(1)
t + Cf [[Bt]]f + CA [[Bt]]A (89)

=

(

vy
vz

)

+ Cf

(

B"
t −B(0)

t

)

(

cosα
sinα

)

+ CA

((

B"
t

0

)

−B"
t

(

cosα
sinα

))

(90)

and, with knowledge of v"
t = (a, 0),

(

vy
vz

)

!
=





a− CAB"
t +

(

CAB"
t − Cf

(

B"
t −B(0)

t

))

cosα
(

CAB"
t − Cf

(

B"
t −B(0)

t

))

sinα



 . (91)

This equation has to hold in the case of a non-regular solution. It will now be shown that

CAB
"
t −Cf

(

B"
t −B(0)

t

)

+= 0 (92)

holds. The coefficients CA and Cf depend on the fields in the solution, but have the same

sign, see (40), (46) and (54). From the initial conditions we have B"
t > 0 and B(0)

t > 0. In
the case of the fast wave being a rarefaction, the transversal magnetic field is decreased

B"
t < B(0)

t (93)

and thus (92) is true. On the other hand, in the case of a shock it may be shown that

(

CA

Cf
− 1

)

B"
t + B(0)

t += 0 (94)

is true. In order to do so, we proof

CA

Cf
> 1. (95)

¿From (40) follows CA = ±1/
√
γρ̂" in the case of dimensionless variables according to

(42). Together with (46) the inequality (95) is equivalent to

v̂" >
B2

γM2
0

(96)

which is true since, see (71),

v̂" =
B2

γM2
0

+
A

B"
t

(

1−
B2

γM2
0

)

>
B2

γM2
0

(97)

withM2
0 > B2/γ for a fast shock. Therefore in any case the transversal velocity component

vz is given in the form (68) in a non-regular solution.
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Birkhäuser Verlag (1999)

[10] E. Hairer, S. P. Nørsett, and G. Wanner, Solving ordinary differential equations I

(2nd edn), Springer series in comp. math. (vol. 14), Springer Verlag, Berlin (1993)

[11] A. Jeffrey and T. Taniuti, Non-linear Wave Propagation, Academy Press, New York
(1964)

[12] L. D. Landau and E. M. Lifshitz, Electrodynamic of Continuous Media, Course in
theoretical physics (vol. 8), Pergamon Press, Oxford (1960)

[13] P. D. Lax, Hyperbolic Systems of Conservation Laws II, Comm. Pure Appl. Math. 10
(1957) p.537

[14] R. J. LeVeque, Numerical Methods for Conservation Laws (2nd edn), Lectures in
Mathematics, Birkhäuser Verlag, Basel (1992)

[15] M. A. Liberman and A. L. Velikovich, Physics of Shock Waves in Gases and Plasmas,
Springer Series in Electrophysics (vol.19), Springer, Berlin (1986)

[16] R. S. Myong and P. L. Roe, Shock Waves and Rarefaction Waves in Magnetohydro-

dynamics. Part 1. A Model System, J. Plasma Phys. 58/3 (1997) p.485

[17] R. S. Myong and P. L. Roe, Shock Waves and Rarefaction Waves in Magnetohydro-

dynamics. Part 2. The MHD System, J.Plasma Phys. 58/3 (1997) p.521

22



Torrilhon

[18] D. Serre, Systems of Conservation Laws (vol. 1), Cambridge Univ. Press, Cambridge
(1999)

[19] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics (2nd edn),
Springer, Berlin (1999)

[20] C. C. Wu, Formation, Structure, and Stability of MHD Intermediate Shocks, J. Geo-
phys. Res. (space physics) 95/6 (1990) p.8149

[21] C. C. Wu, Magnetohydrodynamic Riemann Problem and the Structure of the Magnetic

Reconnection Layer, J. Geophys. Res. (space physics) 100/4 (1995) p.5579

23



Research Reports

No. Authors Title

02-06 M. Torrilhon Exact Solver and Uniqueness Conditions for
Riemann Problems of Ideal Magnetohydro-
dynamics

02-05 C. Schwab, R.-A. Todor Sparse Finite Elements for Elliptic Problems
with Stochastic Data

02-04 R. Jeltsch, K. Nipp CSE Program at ETH Zurich: Are we doing
the right thing?

02-03 L. Diening, A. Prohl,
M. Ruzicka

On Time-Discretizations for Generalized
Newtonian Fluids

02-02 A. Toselli hpDiscontinuous Galerkin Approximation for
the Stokes Problem

02-01 F.M. Buchmann,
W.P. Petersen

Solving Dirichlet problems numerically using
the Feynman-Kac representation

01-09 A.-M. Matache Sparse Two-Scale FEM for Homogenization
Problems

01-08 C. Lasser, A. Toselli Convergence of some two-level overlapping
domain decomposition preconditioners with
smoothed aggregation coarse space

01-07 T. von Petersdorff,
C. Schwab

Wavelet-discretizations of parabolic integro-
differential equations

01-06 A.-M. Matache, C. Schwab Two-Scale FEM for Homogenization
Problems

01-05 A. Buffa, R. Hiptmair,
T. von Petersdorff,
C. Schwab

Boundary Element Methods for Maxwell
Equations in Lipschitz Domains

01-04 R. Hiptmair, C. Schwab Natural BEM for the Electric Field Integral
Equation on polyhedra

01-03 C. Schwab, A.-M. Matache Generalized FEM for Homogenization Prob-
lems

01-02 A. Toselli, C. Schwab Mixed hp-finite element approximations on
geometric edge and boundary layer meshes in
three dimensions

01-01 A. Buffa, M. Costabel,
C. Schwab

Boundary element methods for Maxwell’s
equations on non-smooth domains

00-18 B.Q. Guo, C. Schwab Analytic regularity of Stokes flow in polygo-
nal domains

00-17 M.H. Gutknecht, S. Röllin Variations of Zhang’s Lanczos-Type Product
Method
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