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Eidgenössische Technische Hochschule

CH-8092 Zürich
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Abstract

We propose and analyze a discontinuous Galerkin approximation for the Stokes

problem. The finite element triangulation employed is not required to be conform-

ing and we use discontinuous pressures and velocities. No additional unknown

fields need to be introduced, but only suitable bilinear forms defined on the inter-

faces between the elements, involving the jumps of the velocity and the average of

the pressure. We consider hp approximations using Qk′-Qk velocity-pressure pairs

with k′ = k + 2, k + 1, k. Our methods show better stability properties than the

corresponding conforming ones. We prove that our first two choices of velocity

spaces ensure uniform divergence stability with the respect to the mesh size h.

Numerical results show that they are uniformly stable with respect to the local

polynomial degree k, a property that has no analog in the conforming case. An

explicit bound in k which is not sharp is also proven. Numerical results show that

if equal order approximation is chosen for the velocity and pressure, no spurious

pressure modes are present but the method is not uniformly stable either with re-

spect to h or k. We derive a priori error estimates generalizing the abstract theory

of mixed methods. Optimal error estimates in h are proven. As for discontinuous

Galerkin methods for scalar diffusive problems, half power of k is lost for p and hp

approximations independently of the divergence stability.

Keywords: Mixed problems, hp approximations, spectral elements, discon-
tinuous Galerkin approximations, non-conforming approximations
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1 Introduction

Discontinuous Galerkin (DG) methods have a long history and have recently
become more and more popular. They have been heavily tested and studied, and
they present considerable advantages for certain types of problems, especially
those modeling phenomena where convection is strong; see the monograph [15].

Their main idea relies in the choice of approximation spaces consisting of
piece-wise polynomial functions with no kind of continuity constraints across
the interface between the elements of a triangulation. Consistency and well-
posedness are achieved by introducing suitable bilinear forms defined on the
interface. In this respect they are closely related to finite volume methods as
they relies on the definition of numerical fluxes. As for conforming finite element
approximations, the corresponding discrete problem is given in terms of finite
dimensional subspaces and bilinear forms.

One of the main advantages of DG methods is that they allow a much greater
flexibility in the design of the mesh and in the choice of the approximation
spaces. Indeed, if one abandons the idea of a conforming approximation, one
may as well abandon the idea of a conforming triangulation. This was soon
realized and exploited in some DG methods; see, e.g., [19]. A mixed domain
decomposition approach is also natural where conforming approximations are
considered on single subdomains or patches, and DG interface terms are in-
troduced on the boundaries between the subdomains; see [27, 8, 30]. In order
to illustrate this point, we mention the problem of singularity and boundary
layer resolution as an example. Suitable meshes (radical for h, or geometric for
p version finite elements) are required for the approximation of edge and vertex
singularities. Due to the different types of these singularities, finding conform-
ing global triangulations without excessive overrefinement is not always an easy
task in practice; see, e.g., [3, 4] for h and [5, 22, 23, 31] for hp approximations.
A DG approach allows local independent refinement strategies and independent
polynomial degrees can be employed on different elements, thus allowing more
flexible hp adaptivity strategies.

DG methods however require a considerable increase in the number of de-
grees of freedom. If for instance trilinear elements on a uniform mesh on a
cube are employed, for one nodal value in a conforming approximation we have
eight degrees of freedom in a DG approach. Such increase can be prohibitively
expensive for h approximations of large, three dimensional, vector problems, un-
less there are other requirements, such as suitable refinement strategies or the
treating of convective terms. The situation is somewhat different for p and hp
approximations, where the additional degrees of freedom in a DG approximation
do not have the same order of magnitude as the number of degrees of freedom
of a conforming discretization. We also note that non-conforming meshes with
hanging nodes can be employed for p and hp finite element discretizations. Even
if multiply constrained nodes are possible in theory, they bring in considerable
complications in the implementation of practical codes, and often only simply
constrained nodes are treated. Such complications are removed in a DG ap-
proach.
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We finally note that even if convection may be the dominant effect
of a problem, diffusive terms still need to be accounted for and correctly
discretized. In particular, the finite element approximation of the Oseen
or the incompressible Navier-Stokes equations require the introduction of
suitable velocity-pressure spaces that ensure stability and approximabil-
ity. If convective terms are properly treated, such properties only depend
on the diffusive part of the operator and can then be studied for the

simpler Stokes problem; see, e.g., [29, 17, 13, 21, 9]. This is indeed the purpose
of this paper.

We propose a DG approximation together with suitable finite element spaces
consisting of discontinuous velocities and pressures for the Stokes problem. We
aim to a method where no additional unknown fields are introduced, which
involves the same local bilinear forms on each element as those employed for
conforming approximations and only adds interface contributions on the in-
terelement boundaries. We believe that this approach can also be more easily
exploited in a domain decomposition framework.

One remarkable property of our method is that the corresponding modified
divergence bilinear form and the velocity-pressure pairs exhibit greater stabil-
ity than the corresponding conforming approximations. We believe that this is
related to the stabilizing effect obtained when Dirichlet conditions are imposed
weakly, as it can easily be seen in the case of one element Ω = (−1, 1)n. If we
consider pressures in Qk(Ω), i.e., polynomials of degree k in each variable, with
mean value zero, referring to [9, Th. 24.1], we see that the spurious pressure
modes p, which satisfy

b(v, p) = −

∫

Ω
∇ · v p dx = 0, v ∈ Qk(Ω)

n ∩H1
0 (Ω)

n,

are all related to the fact that the velocities vanish on ∂Ω. If Dirichlet conditions
are imposed weakly (see (17), with Γint = ∅), spurious pressure modes satisfy

b(v, p) = −

∫

Ω
∇ · v p dx+

∫

∂Ω
v · n p dx =

∫

Ω
v ·∇p dx = 0, v ∈ Qk(Ω)

n,

and thus vanish, as it can be seen by taking v = ∇p. This remark only gives an
idea of the reason why greater stability is achieved with DG approximations and
is no proof that the case of more then one element is also stable. In addition,
quantifying the stability in terms of an explicit dependence on the mesh size and
the polynomial degree is not a trivial matter and a complete theory is beyond
the scope of this work. Here we show that the pairs Qk′ -Qk, k′ = k+2, k+1, are
uniformly stable with respect to the mesh size h. Our tests show that the choice
Qk-Qk is also free from spurious pressure modes, but is not uniformly stable with
respect to h. Our numerical results show that the pairs Qk′ -Qk, k′ = k+2, k+1,
are also uniformly stable with respect to k in two dimensions, while Qk-Qk is
not. In this paper we only prove an algebraic bound for the inf-sup constant
that decreases like k−4 for the case of Qk+1-Qk elements. For the pair Qk+2-Qk
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a better bound, which is not sharp either, is obtained using a stability result
for conforming approximations. As is the case of DG approximations for scalar
second order problems, a loss of optimality for p approximations is also found
in our error analysis. Such loss is independent of the divergence stability of the
method and is related to the interface contributions involving the gradient of
the velocity.

Ours is not the first work on DG approximations of the Stokes problem. We
mention [7, 20], where an interior penalty approximation with discontinuous,
piece-wise divergence-free velocities and continuous pressures are employed for
the Stokes and incompressible Navier-Stokes equations, respectively. In [14] a
local DG approximation of the Stokes problem is proposed. There the introduc-
tion of the fluxes as additional unknowns appears to have a stabilizing effect,
and equal order flux, velocity, and pressure spaces can be chosen. Optimal error
estimates for h approximations are proved.

The work in [18] deserves particular mention. There an h approximation for
incompressible and nearly incompressible elasticity based on a DG method is
introduced and studied. Triangular and tetrahedral meshes are employed to-
gether with polynomial spaces of total degree k + 1 and k for the velocity and
pressure, respectively. Optimal error estimates in h are proven for velocity and
pressure, which remain valid in the incompressible limit. We note that the in-
terface and modified divergence bilinear forms that we employ are basically the
same. Here we consider a positive-definite, non-symmetric velocity bilinear form
instead of an indefinite, symmetric one, which requires restrictions on the pe-
nalization coefficient. Our focus here is on hp approximations on quadrilateral
and hexahedral meshes with hanging nodes and on the stability properties of
some DG approximations also in terms of the order of the approximation. We
also note that the proof for the divergence stability in [18], which employs the
so called BDM spaces, does not seem to extend to our types of meshes. Here
we also present a proof for the a priori estimates since the standard theory of
mixed methods cannot be directly applied.

The rest of the paper is organized as follows:
In section 2 we introduce our continuous problem. Finite element spaces are
defined in section 3, while our DG methods are derived in section 4. In section 5
we present some numerical tests and estimate the stability constants for certain
h and p approximations, while we prove explicit theoretical bounds in section
6. Section 7 is devoted to the well-posedness and consistency of the discrete
problem, and a priori error estimates for the velocity and pressure are proven in
section 8. We conclude with some remarks on other choices of velocity-pressure
pairs in section 9.
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2 Problem setting

Let Ω ⊂ Rn, n = 2, 3, be a bounded polyhedral domain. Given two vectors
f ∈ L2(Ω)n and g ∈ H1/2(∂Ω)n, with

∫

∂Ω
g · n ds = 0,

we consider the following system for a velocity u and a pressure p:

u|∂Ω
= g,

−ν∆u+∇p = f , in Ω,

∇ · u = 0, in Ω.

(1)

For a vector u, the tensor ∇u is defined by

(∇u)ij = ui/j =
∂ui

∂xj
,

with ui the i-th component of u. If I is the identity matrix in Rn, we can rewrite
the second of (1) in terms of the divergence of a stress tensor τ :

−∇ · τ = −∇ · (ν∇u − pI) = f , (2)

where

(∇ · τ)i =
n
∑

j=1

τij/j .

For tensors τ and ε, and a vector v, we define the products

τ · ε =
n
∑

i,j=1
τijεij ,

(τ : v)i =
n
∑

j=1
τijvj .

Using the following Green formula,

∫

D

((∇ · τ) · v + τ ·∇v) dx =

∫

∂D

v · (τ : n) ds, D ⊂ Ω, (3)

we find the following variational formulation of Problem (1): find u ∈ H1(Ω)n

and p ∈ L2
0(Ω), such that

u|∂Ω
= g,

ν(∇u,∇v)Ω − (p,∇ · v)Ω = (f ,v)Ω, v ∈ V := H1
0 (Ω)

n,

(∇ · u, q)Ω = 0, q ∈ M := L2
0(Ω).

(4)
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Here L2
0(Ω) denotes the subspace of L2(Ω) of functions with vanishing mean

value in Ω and, for D ⊆ Rn, (u, v)D, (u,v)D , and (τ, ε)D denote the scalar
products in L2(D), L2(D)n, and L2(D)n×n, respectively, with ‖u‖D, ‖u‖D, and
‖τ‖D the corresponding norms. We denote the norm ofHs(D) orHs(D)n, s ∈ R,
by ‖ · ‖s,D. Analogous notations are employed for the corresponding seminorms
for s > 0. In case D = Ω, we drop the subscript Ω and, in case s = 0, we also
drop the subscript 0. We recall that the seminorm |u|1,Ω = ‖∇u‖0,Ω is a norm
in H1

0 (Ω)
n, the subspace of H1(Ω)n of vectors that vanish on ∂Ω.

We note that the second of (4) can also be written in terms of the stress
tensor τ , since

ν∇u ·∇v − p∇ · v = (ν∇u− pI) ·∇v = τ ·∇v.

The well-posedness of problem (4) is ensured by the two stability conditions

ν(u,v) ≤ ν|u|1 |v|1, (5)

(∇ · u, p) ≤ |u|1 ‖p‖, (6)

the coercivity condition

ν(∇u,∇u) ≥ ν|u|21, u ∈ H1
0 (Ω)

n, (7)

and the divergence stability condition

sup
0$=v∈H1

0(Ω)n

(∇ · v, p)

|v|1
≥ γ‖p‖, p ∈ L2

0(Ω), γ > 0. (8)

We refer to, e.g., [13, Ch. II] for a comprehensive analysis.

3 Finite element spaces

Given a shape-regular affine quadrilateral or hexahedral mesh T = Th, of max-
imum diameter h, and polynomial degrees k′ and k, we consider the following
finite element spaces:

Vk′ =
{

u ∈ L2(Ω)n | u|κ ∈ Qk′(κ)n κ ∈ T
}

,

Mk =
{

p ∈ L2
0(Ω) | p|κ ∈ Qk(κ) κ ∈ T

}

.
(9)

Here Qk(κ) is the space of polynomials of maximum degree k in each variable on
κ. We note that we have considered discontinuous finite element spaces for the
velocity that do not vanish on ∂Ω, since we impose Dirichlet conditions weakly.
We still require that pressures have mean value zero in Ω.

The mesh T is said to be conforming or regular if the intersection between two
different elements is either empty, or a vertex, an edge, or face that is common
to both elements. Meshes that are not conforming are sometimes called irregular
and they contain hanging nodes; see, e.g., [23, 24]. We allow irregular meshes in
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general, but suppose that the intersection between neighboring elements is either
a common vertex, or an entire edge, or an entire face of one of the two elements.
We also allow non quasi-uniform meshes, but assume that the diameters of
neighboring elements are not too different:

Assumption 3.1. There exist constants independent of T , such that

chκ′ ≤ hκ ≤ Chκ′ , κ,κ′ ∈ T ,

if κ and κ′ are distinct and they share an entire edge, if n = 2, or an entire
face, if n = 3, of κ or κ′.

We will make particular choices for the velocity and pressure spaces in the
next section.

We recall the following inverse estimates; see [26, Eqq. 4.6.4 and 4.6.5]. Let
q ∈ Mk, then

|q|21,κ ≤ C
k4

h2
κ
‖q‖20,κ, (10)

‖q‖20,γ ≤ C
k2

hκ
‖q‖20,κ, (11)

where γ is either ∂κ or one of its faces, and hκ denotes the diameter of κ ∈ T .
Similar estimates hold for vector functions in Vk.

We will also need a multiplicative trace inequality:

‖q‖20,∂κ ≤ C
(

‖q‖0,κ ‖∇q‖0,κ + h−1
κ ‖q‖20,κ

)

, q ∈ H1(κ), (12)

with κ ∈ T and C independent of hκ; see [19]. An analogous estimate holds for
vector functions.

The following approximation property can be found in [6, 24].

Lemma 3.1. Let q ∈ Hnκ(κ), κ ∈ T . Then, there exists Πκq = Πκ,kq ∈ Qk(κ)
and C, only depending on the shape–regularity of κ , s, and nκ, such that

‖q −Πκq‖s,κ ≤ C
hm−s
κ

knκ−s
‖q‖nκ,κ

, 0 ≤ s ≤ m, (13)

where m := min{k + 1, nκ}.

It is possible to define a global operator Πh,kq on Mk by

Πh,kq|κ := Πκ,kq, κ ∈ T .

Similar operators and estimates hold for vector functions in Vk′ .
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4 Discrete problem

We now derive our DG formulation. The idea is to consider Problem (1) on
each element κ ∈ T and impose Dirichlet conditions weakly on the boundary
∂κ using the value of the velocity on the boundary of the neighboring elements.
In addition, a suitable numerical flux needs to be chosen in order to approxi-
mate the flux τ : n on ∂κ. Finally an interface term, penalizing the jumps of
the velocity, will be added as for similar DG approximations of second order
problems. This is a standard procedure in the derivation of DG formulations;
see, e.g., [19, 14, 18].

Here, the choice of flux τ : n instead of ν∇u : n seems most reasonable
and physically meaningful. As in [18], this will bring a modification of both the
bilinear form a(·, ·) and b(·, ·); see (19).

We consider Problem (1) on κ ∈ T , multiply the second equation (or, equiv-
alently, (2)) by a test velocity v, the third equation by a test pressure q, and
sum. We obtain

∫

κ
(−∇ · τ) · v +

∫

κ
∇ · u q dx =

∫

κ
f · v dx.

By using the Green’s formula (3), we find
∫

κ
(τ ·∇v +∇ · uq) dx −

∫

∂κ
v · (τ : nκ) ds =

∫

κ
f · v dx,

where nκ is the outward normal to ∂κ.
Let uout be the value of a velocity u on ∂κ from the neighboring elements.

On ∂κ∩ ∂Ω += ∅, we set uout = g, the Dirichlet data. In addition we define ε as
the flux relative to the pair {v, q}:

ε = ν∇v − qI.

Assuming that u is continuous and equal to g on ∂Ω, we can write
∫

κ
(τ ·∇v +∇ · uq) dx−

∫

∂κ
v · (τ : nκ) ds + ρ

∫

∂κ
u · (ε : nκ) ds

=

∫

κ
f · v dx + ρ

∫

∂κ
uout · (ε : nκ) ds,

(14)

where ρ is equal to one on ∂κ ∩ ∂Ω and to one half elsewhere.
We now replace τ : nκ and ε : nκ with suitable numerical fluxes. In order to

do so, we first need to define some geometrical objects related to the partition
T . We denote by Eint the set of all open (n − 1)–dimensional intersections of
neighboring elements

Eint = {e| e = ∂κ ∩ ∂κ′, κ, κ′ ∈ T , measn−1(e) > 0}

and Γint their union, such that

Γ̄int =
⋃

e∈Eint

ē.
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Thanks to our assumptions on T , these intersections are entire faces of elements
in T for, e.g., n = 3. For the sake of brevity we will refer to such intersections as
’faces’ in the following, even for n = 2. The boundary ∂Ω can also be partitioned
into contributions from single elements. We define

Eout = {e| e = ∂κ ∩ ∂Ω, κ ∈ T , measn−1(e) > 0}

and
E = Eint ∪ Eint.

In the following, we generically refer to elements in Eout as faces, even though
they may actually consist of union of element faces.

Given an interior face e ∈ Eint, there are two elements κi,κj , with, e.g.,
i > j, that share this face. We define the jump [v] and the average < v > by

[v]e = vκi |e
− vκj |e

, < v >e=
1

2
(vκi |e

+ vκj |e
) ,

and n as the unit normal which points from κi to κj , i.e., n = nκi . We note
that if [v]e = 0, then < v >e= vκi |e

= vκj |e
. For e ∈ Eout, we define

[v]e = v|e , < v >e= v|e ,

and n as the unit outward normal to ∂Ω. Jumps and averages for vector functions
are defined component by component.

Our choice for the numerical fluxes is

< τ : nκ >, < ε : nκ >, on Γint ∪ ∂Ω.

Replacing the fluxes in (14) with the numerical fluxes, we obtain
∫

κ
(τ ·∇v +∇ · uq) dx−

∫

∂κ
v· < τ : nκ > ds + ρ

∫

∂κ
u· < ε : nκ > ds

=

∫

κ
f · v dx + ρ

∫

∂κ
uout· < ε : nκ > ds,

or, equivalently,






























∫

κ
τ ·∇v dx−

∫

∂κ
v· < τ : nκ > ds + ρ

∫

∂κ
u· < ν∇v : nκ > ds,

=

∫

κ
f · v dx + ρ

∫

∂κ
uout· < ν∇v : nκ > ds

−

∫

κ
∇ · uq dx+ ρ

∫

∂κ
< q > (u · nκ) ds = ρ

∫

∂κ
< q > (uout · nκ) ds.

(15)

Our derivation is concluded by summing over the elements. We start with the
second equation in (15) and find

−
∑

κ∈T

∫

κ
∇ · uq dx +

∫

Γint

< q > [u · n] ds+

∫

∂Ω

u · nq ds =

∫

∂Ω
g · n q ds. (16)

8



We note that, by summing over the elements, the integral on an interface e =
∂κ∩∂κ′ consists of two contributions, from κ and κ′, and that ρ is equal to 1/2
on e.

Equation (16) motivates our choice for a modified divergence bilinear form:

b(v, p) = −
∑

κ∈T

(∇ · v, p)κ +

∫

Γint∪∂Ω

< p > [v · n] ds

= −
∑

κ∈T

(∇ · v, p)κ +

∫

∂Ω

pv · n ds+

∫

Γint

< p > [v · n] ds.
(17)

Before considering the first equation in (15), we introduce a penalization
coefficient for the velocity space. Let σ0 be a positive constant and σ be the
function defined on Γint ∪ ∂Ω by

σ|e = σ0ν
k′2

he
, e ∈ E ,

with he the diameter of e and k′ the polynomial order chosen for the approxi-
mation of the velocity; see below. Summing then over the elements and adding
penalization terms, we obtain

∑

κ∈T

∫

κ
ν∇u ·∇v dx+

∫

∂Ω

σu · v ds+

∫

Γint

σ[u] · [v] ds

+

∫

∂Ω

(u · (ν∇v : n)− (ν∇u : n) · v) ds

+

∫

Γint

([u]· < ν∇v : n > − < ν∇u : n > ·[v]) ds

+ b(v, p)

=
∑

κ∈T

∫

κ
f · v dx+

∫

∂Ω

(σ g · v + g · (ν∇v : n)) ds,

(18)

We note that the penalization terms vanish if u is continuous across the elements
and is equal to g on ∂Ω.
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We then define the following velocity bilinear form:

a(u,v) =
∑

κ∈T

ν(∇u,∇v)κ +

∫

Γint∪∂Ω

σ[u] · [v] ds

+

∫

Γint∪∂Ω

([u]· < ν∇v : n > − < ν∇u : n > ·[v]) ds

=
∑

κ∈T

ν(∇u,∇v)κ +

∫

∂Ω

σu · v ds+

∫

Γint

σ[u] · [v] ds

+

∫

∂Ω

(u · (ν∇v : n)− (ν∇u : n) · v) ds

+

∫

Γint

([u]· < ν∇v : n > − < ν∇u : n > ·[v]) ds.

Given the pressure space Mk, k ≥ 0, and a velocity space Vk′ , k′ ≥ k, (18)
and (16) define our discrete problem:
Find u ∈ Vk′ and p ∈ Mk, such that

a(u,v) + b(v, p) = (f ,v)Ω +

∫

∂Ω

(σ g · v + g · (ν∇v : n)) ds, v ∈ Vk′ ,

b(u, q) =

∫

∂Ω
g · n q ds, q ∈ Mk.

(19)
We note that, by integrating by parts on each element, the bilinear form

b(·, ·) can also be written as

b(v, p) =
∑

κ∈T

(v,∇p)κ −

∫

Γint

[p] < v · n > ds. (20)

In particular we see that the b(u, 1) is identically zero for every u. Consequently
the second equation in (19) is satisfied for every u ∈ Vk′ and q a constant
function on Ω. As for conforming approximations, the pressure is determined
up to an additive constant and uniqueness is achieved by requiring a vanishing
mean value on Ω.

We consider three choices of approximation spaces.

1. Method 1. We choose Vk+2 and Mk, k ≥ 0. This is a generalization of
the conforming Qk+2 − Qk spaces with discontinuous pressure; see, e.g.,
[28].

2. Method 2. We take Vk+1 and Mk, k ≥ 0. This is a generalization of the
conforming Qk+1 − Qk spaces with continuous pressures, also known as
Taylor-Hood elements; see, e.g., [12, 13].

3. Method 3. We consider equal polynomial degrees for the velocity and
pressure: Vk and Mk, k ≥ 1.

10



Methods 1, 2, and 3 correspond to the choices k′ = k+2, k+1, k, respectively,
for the velocity space Vk′ in problem (19). Our numerical results show however
that an inf-sup condition holds for Method 3 with a constant that decreases as
Chk−1/2. Method 3 is stable but not uniformly in h and k, and thus unsuitable
both for h and p-version approximations.

Given a velocity space Vk′ , a pressure spaceMk, k′, k ≥ 0, and g ∈ H1/2(∂Ω),
we define the space

Z(g) = Zk′,k(g) =

{

u ∈ Vk′ | b(u, q) =

∫

∂Ω
g · n q ds, q ∈ Mk

}

⊂ Vk′ ,

and Z = Z(0). For elements in Vk′ we employ a discrete norm defined by

|u|2h =
∑

κ∈T

|u|21,κ +

∫

Γint∪∂Ω

σ|[u]|2 ds =
∑

κ∈T

|u|21,κ +

∫

∂Ω

σ|u|2 ds+

∫

Γint

σ|[u]|2 ds.

5 Numerical investigation of the divergence sta-

bility

The stability and accuracy of the discrete mixed problem depend on the a
discrete inf-sup condition for the bilinear form b(·, ·) and the approximation
spaces of velocities and pressures:

sup
0$=v∈Vk′

b(v, p)

|v|h
≥ γi‖p‖, p ∈ Mk, γi > 0, (21)

for i = 1, 2, 3, corresponding to the choices k′ = k + 2, k + 1, k.
In this section we show some estimates of the inf-sup constant of Methods

1, 2, and 3. We only consider two dimensional problems on the unit square
Ω = (0, 1)2 and uniform triangulations consisting of n× n square elements.

5.1 Numerical results for the h-version

For the results in this section, we fix the degree k and only consider the de-
pendence on the mesh-size h. Figure 1 shows the estimated inf-sup conditions
for Methods 1 and 2, as functions of the mesh size h = 1/n, for k = 0, 1, 2, 3.
The results plotted on the left for k′ = k + 2 are well-known since in this case
our pressure space coincides with that of the standard Qk+2-Qk elements but
with a larger (discontinuous) velocity space. In this case the inf-sup constant
can only improve. Our results are consistent with a stability constant which is
independent of h, as stated in Lemma 6.1.

The results plotted on the right however cannot be deduced from the corre-
sponding ones for the Qk+1-Qk Taylor-Hood elements with continuous pressure.
Indeed Qk+1-Qk elements with discontinuous pressure and continuous velocity
may show spurious pressure modes; see, e.g., [13]. On the other hand, our DG
method employing Qk+1-Qk elements with discontinuous pressure and velocity
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does not have any spurious pressure modes and our results are consistent with
a stability constant which is independent of h, as stated in Lemma 6.3. We also
note that the Q1-Q0 elements are stable. This case is not covered by Lemma
6.3.
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Figure 1: Estimated inf-sup conditions for Method 1 (left) and 2 (right), as
functions of the mesh size h = 1/n for different values of k

Figure 2 shows the estimated inf-sup conditions for Method 3, as functions
of the mesh size h = 1/n for k = 1, 2, 3, 4. We note that Qk-Qk elements
with discontinuous pressure and continuous velocity can show spurious pressure
modes. Our results show that our DG method with discontinuous pressure and
velocity does not have spurious pressure modes. However the stability constant
decreases with h, thus making Method 3 not suitable for h approximations. Our
results are consistent with a linear dependence

γ3 = ch,

with c depending on k. The error of the exact solution is then suboptimal of at
least one power of h.

5.2 Numerical results for the p-version

The numerical tests presented in the previous section for the h version show
that our DG methods exhibits better stability properties than the corresponding
conforming approximations. It is natural to ask then if this is also the case for
p-approximations and if, in particular, the stability constants of our methods
exhibit a weaker dependence on the polynomial degree k.

Figure 3 shows the estimated inf-sup conditions for Methods 1 (left) and
2 (right), as functions of the polynomial degree k, for different uniform tri-
angulations of Ω = (0, 1)2. We have also shown results for the corresponding
conforming approximations on a 3× 3 mesh: Qk+2-Qk with discontinuous pres-
sure on the left, and Qk+1-Qk Taylor-Hood elements with continuous pressure
on the right.
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Figure 2: Estimated inf-sup conditions for Method 3, as functions of the mesh
size h = 1/n for different values of k

For the plot on the left, we first remark the typical behavior of conforming
approximations, where the decrease of the stability constant as ck−1/2 is only
observed for large k. Our results for the corresponding DG approximation show
that such dependence is removed when the velocity space is made discontinuous
and the divergence bilinear form suitably modified: the stability constants tend
to a constant value when k becomes large.

What is remarkable is that exactly the same pattern is observed if we de-
crease the velocity space by one order (see Figure 3, right). We are unaware of
any theoretical bound for p approximations using Taylor-Hood elements. Our
results for conforming approximations show that the constants decrease like
ck−1/2 in two dimensions; see also Figure 3 in [2]. However such dependence
is removed if velocities and pressures are made discontinuous. We also note
that there is no appreciable difference when switching from a DG approxima-
tion based on Qk+2-Qk elements to one based on Qk+1-Qk elements. Indeed the
constants are only slightly smaller.

DG approximations using Qk+1-Qk appear particularly attractive since they
exhibit a stability constant that does not depend on k with only a gap of one
order between the velocity and the pressure. We note however that half a power
of k is lost in our error estimates; see Lemmas 8.1 and 8.2. This loss is typical
of p-version DG finite elements for second order problems; see, e.g., [19].

We now consider Method 3. Figure 4 shows the estimated inf-sup conditions
as functions of the polynomial degree k, for different uniform triangulations.
It is clear that choosing finite element spaces of equal order removes the uni-
form stability with respect to k as well as h. Our results are consistent with a
dependence

γ3 = c hk−1/2

for the inf-sup condition. This dependence on h and k is likely to be removed
if suitable stabilization procedures, as those in [16], are employed, but this gen-
eralization is beyond the scope of this paper. We will not consider Method 3 in
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Figure 3: Estimated inf-sup conditions for Method 1 (left) and 2 (right), as
functions of k for different values of the mesh-size.

our analysis.
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Figure 4: Estimated inf-sup conditions for Method 3, as functions of k for dif-
ferent values of the mesh-size.

We summarize the evidence found by our numerical results for two dimen-
sional problems in the following remarks.

Remark 1 (Method 1). There exists a constant γ1, independent of h and k,
such that, for k ≥ 0,

sup
0$=v∈Vk+2

b(v, p)

|v|h
≥ γ1‖p‖, p ∈ Mk, γ1 > 0. (22)

Remark 2 (Method 2). There exists a constant γ2, independent of h and k,
such that, for k ≥ 0,

sup
0$=v∈Vk+1

b(v, p)

|v|h
≥ γ2‖p‖, p ∈ Mk, γ2 > 0. (23)
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Remark 3 (Method 3). There exists a constant c, independent of h and k,
such that, for k ≥ 1,

sup
0$=v∈Vk

b(v, p)

|v|h
≥ γ3 ‖p‖ = chk−1/2 ‖p‖, p ∈ Mk. (24)

6 Divergence stability for the hp version

This section is devoted to the divergence stability for the hp version of Methods
1 and 2. In view of the numerical results presented in the previous section, the
dependence on h in our bounds is sharp, but that on k is not.

6.1 Method 1

The stability for the choice of spaces of Method 1 is a direct consequence of
the corresponding property for conforming approximations using Qk+2 − Qk

elements. We refer to [28]; in particular, see [23] and [31] for the case of non-
conforming meshes with hanging nodes in two and three dimensions, respec-
tively. Indeed, the pressure space is the same and the space of velocities that
are continuous across the elements and vanish on ∂Ω is contained in Vk+2. Fi-
nally, the integral contributions on Γint ∪∂Ω in the definitions of b(·, ·) and | · |h
vanish for continuous velocities. We thus have the following lemma

Lemma 6.1 (Method 1). There exists a constant c > 0, independent of h and
k, such that, for k ≥ 0,

sup
0$=v∈Vk+2

b(v, p)

|v|h
≥ γ1‖p‖ ≥ ck(1−n)/2‖p‖, p ∈ Mk. (25)

We remark that, even though this bound is not sharp with respect to k,
thanks to [23] and [31] the inf-sup constant γ1 is independent of the aspect ratio
of suitable boundary layer meshes.

6.2 Method 2

For the choice corresponding to Method 2, the proof proposed in [18] for simpli-
cial meshes, employing the so called BDM spaces, does not seem to extend to
our case. However stability can be proven in the same way as for the conforming
Taylor-Hood elements Qk+1 − Qk consisting of continuous velocities and pres-
sures, despite the fact that we consider here discontinuous pressures; see [12].
In addition, using some properties of the Legendre polynomials we are able to
track down the dependence on k as well; for some crucial steps of our analysis
we rely on [25]. We are unaware of a proof for the Taylor-Hood elements which
gives an explicit dependence on the polynomial degree k: numerical evidence
however shows that the inf-sup constant does depend on k; see, e.g., [2].

Even if our bound is not sharp, we have chosen to present the proof here for
various reasons:
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It is indeed a proof of an algebraic bound in k. For p- and hp-approximations
of problems with piecewise analytic data, exponential convergence is ensured
in case the solution of the continuous problem can be properly characterized;
see, e.g., [24, Sect. 4.5] for more details. In addition our proof is the same as
for Taylor-Hood elements and can be carried out exactly in the same way for
conforming approximations with continuous pressure, thus giving an algebraic
bound for them as well. Even for conforming approximations this bound does
not appear to be sharp, but is sufficient to ensure exponential convergence. Our
argument is dimension-independent and remains valid in the case of meshes with
hanging nodes.

We finally note that a bound for Method 2 gives also a bound for Method
1. For Method 1 however a better bound, even if not sharp, is given in Lemma
6.1.

We first need some additional notations and results. Given an integer k ≥ 1,
we denote by GGL(k) the set of Gauss-Lobatto points {ai; 0 ≤ i ≤ k} on
I = (−1, 1) in increasing order and by {wi > 0} the corresponding weights; see,
e.g., [21, Ch. 4]. For the square (−1, 1)2 we set GGL(k)2 = {aij = (ai, aj); 0 ≤
i, j ≤ k} and denote by {wij = wiwj > 0} the corresponding weights. These
definitions carry on in the three-dimensional case with the obvious modifications.
We recall that the quadrature formula based on GGL(k) has order 2k − 1 and
that

‖p‖20,I ≤
k

∑

i=0

p(ai)
2 wi ≤

(

2 +
1

k

)

‖p‖20,I , p ∈ Qk(I); (26)

see [21, Eq. 4.4.16]. In the following, we use the same notation for the mapped
Gauss-Lobatto nodes and corresponding weights for an element κ ∈ T . Similar
estimates as (26) hold in two and three dimensions and for affinely mapped
elements.

We also need the following lemma.

Lemma 6.2. Let S = I2, I = (−1, 1), and q ∈ Qk(S) such that
∫

S
q(x, y) dxdy = 0.

If k ≥ 1, then

‖q‖20,S ≤

∫

S

(

(1− x2)

∣

∣

∣

∣

∂q

∂x

∣

∣

∣

∣

2

+ (1− y2)

∣

∣

∣

∣

∂q

∂y

∣

∣

∣

∣

2
)

dxdy ≤ 4k2‖q‖20,S.

Analogous estimates hold in three dimensions for I3.

Proof. We only give the proof for the two-dimensional case. Since q ∈ Qk(S)
has mean value zero, it can be written as

q(x, y) =
k
∑

i=0

k
∑

j=0

qijLi(x)Lj(y),
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with q00 = 0. Here {Li} are the Legendre polynomials; see [9, Sect. 3].
We can write

(1− x2)

∣

∣

∣

∣

∂q

∂x

∣

∣

∣

∣

2

=
k
∑

i,n=1

k
∑

j,m=0

qijqnm
(

(1− x2)L′
i(x)L

′
n(x)

)

(Lj(y)Lm(y)) .

Using the conditions, see [9],

∫ 1

−1
Li(x)Ln(x) dx = ‖Li‖

2
0,I δin,

∫ 1

−1
(1− x2)L′

i(x)L
′
n(x) dx = i(i+ 1)

∫ 1

−1
Li(x)Ln(x) dx,

we find

∫

S
(1 − x2)

∣

∣

∣

∣

∂q

∂x

∣

∣

∣

∣

2

dxdy =
k

∑

i=1

k
∑

j=0

q2ij i(i+ 1)‖Li‖
2
0,I‖Lj‖

2
0,I .

Using similar arguments for the ∂q/∂y, we find

∫

S

(

(1− x2)

∣

∣

∣

∣

∂q

∂x

∣

∣

∣

∣

2

+ (1− y2)

∣

∣

∣

∣

∂q

∂y

∣

∣

∣

∣

2
)

dxdy

=
k
∑

i=1

k
∑

j=0

q2ij i(i+ 1)‖Li‖
2
0,I‖Lj‖

2
0,I +

k
∑

i=0

k
∑

j=1

q2ij j(j + 1)‖Li‖
2
0,I‖Lj‖

2
0,I

≥
k
∑

i=0

k
∑

j=0

q2ij‖Li‖
2
0,I‖Lj‖

2
0,I = ‖q‖20,S.

The upper bound can be found in a similar way.

We are now ready to prove the following lemma.

Lemma 6.3 (Method 2). There exists a constant c > 0, independent of h and
k, such that, for k ≥ 1,

sup
0$=v∈Vk+1

b(v, p)

|v|h
≥ γ2‖p‖ ≥ ck−4‖p‖, p ∈ Mk. (27)

Proof. The proof is similar to [12, Th. 3.1 and 3.2]. We also refer to [11] where
similar ideas where first employed. Here, we only consider the two-dimensional
case and find an explicit dependence on k of the constants. The extension to
three dimensions is straightforward.

Given p ∈ Mk, we first decompose it as

p = p0 + (p− p0) = p0 + p̃, (28)
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with p0 ∈ M0 the L2 projection of p. If we set pκ = p̃|κ , κ ∈ T , we have

∫

κ
pκ dx = 0.

Thanks to [28, Th. 5.1], there exists v0 ∈ V2 ∩H1
0 (Ω)

2, such that

b(v0, p0) =

∫

Ω
∇ · v0 p0 dx = ‖p0‖

2, |v0|h = |v0|1,Ω ≤ C0‖p0‖, (29)

with a constant C0 that is independent of h and k. If hanging nodes are present
(29) is a consequence of [23, Th. 4.9] (see [31, Lem. 7.3] for the three dimensional
case).

We next consider κ ∈ T , of diameter hκ, and construct a velocity vκ ∈ Q2
k+1

in κ. We first note that it is enough to assign the values of each component at
the (k + 2)2 nodes GGL(k + 1)2. We set

vκ(aij) = h2
κ∇pκ(aij)

at all the k2 internal nodes. In addition, we define

vκ(aij) · n = 0,

vκ(aij)× n = h2
κ ∇pκ(aij)× n,

on all the nodes on ∂κ (i.e., aij with i = 0, j = 0, i = k + 1, or j = k + 1)
and vκ = 0 at the four vertices of κ. These nodal values are then interpolated
in order to obtain a polynomial in Q2

k+1. We note in particular that the normal
component of vκ vanishes on ∂κ.

A global function ṽ ∈ Vk+1 can be defined by

ṽ|κ = vκ.

We remark that ṽ has a vanishing, and thus continuous, normal component on
Γint, but that its tangential component is in general discontinuous. In addition
its normal component vanishes on ∂Ω.

Since each component of vκ belongs to Qk+1, using the inverse estimate (10)
and (26), we find, for κ ∈ T ,

|ṽ|21,κ ≤ Ck4h−2
κ ‖ṽ‖20,κ ≤ Ck4h−2

κ

∑

0≤i,j≤k+1

|ṽ(aij)|
2wij .

Since the values of ṽ at the nodes GLL(k + 1)2 are either equal to h2
κ∇pκ or

vanish and the weights wij are positive, we can write

k4h−2
κ

∑

0≤i,j≤k+1

|ṽ(aij)|
2wij ≤ k4h2

κ

∑

0≤i,j≤k+1

|∇p(aij)|
2wij = k4h2

κ |p̃|
2
1,κ,

18



where for the last equality we have used the fact that |∇p̃|2 belongs to Q2
k and

the quadrature formula on GLL(k + 1)2 is thus exact. Using these last two
estimates and the inverse inequality (10) we find

∑

κ∈T

|ṽ|21,κ ≤ C1‖p̃‖
2
0 = C̃1k

8‖p̃‖20, (30)

with C̃1 independent of h and k.
We next consider the interface contributions. Let e ∈ Eint. Since each com-

ponent of the jump [ṽ] belongs to Qk+1 on e, using (26) and the definition of
σ, we find

∫

e
σ|[ṽ]|2 ds ≤ Ck2h−1

e

∑

0≤i≤k+1

|[ṽ(ai)]|
2wi,

where the sum is taken over the nodes GLL(k + 1) on e. Proceeding as before
and noting that the normal component of ṽ vanishes on e, we can write

k2h−1
e

∑

0≤i≤k+1

|[ṽ(ai)]|
2wi ≤ k2h3

e

∑

0≤i≤k+1

∣

∣

∣

∣

[

dp̃

dt
(ai)

]
∣

∣

∣

∣

2

wi

= k2h3
e

∑

0≤i≤k+1

∣

∣

∣

∣

(

d [p̃]

dt

)

(ai)

∣

∣

∣

∣

2

wi = k2h3
e |[p̃]|

2
1,e ≤ Ck6he

∫

e
[p̃]2 ds,

(31)

where t is the arc length along e and for the last inequality we have employed
the inverse inequality (10). Combining these last two estimates and noting that
a similar argument can be employed for e ∈ Eout, we obtain

∑

e∈E

∫

e
σ|[ṽ]|2 ds ≤ C

∑

e∈E

k6he

∫

e
[p̃]2 ds. (32)

Combining (30) and (32), and using the inverse inequality (11), we find

|ṽ|h ≤ C2 ‖p̃‖0 = C̃2k
4‖p̃‖0. (33)

We next consider b(ṽ, p̃). We first note that thanks to (20) and the fact that
the normal component of ṽ vanishes on Γint, we have

b(ṽ, p̃) =
∑

κ∈T

∫

κ
ṽ ·∇p̃ dx.

Since ṽ ·∇p̃ belongs to Q2k+1 in each element κ ∈ T , we have

∫

κ
ṽ ·∇p̃ dx =

∑

0≤i,j≤k+1

ṽ(aij) ·∇p̃(aij)wij

= h2
κ

∑

1≤i≤k
0≤j≤k+1

∣

∣

∣

∣

∂p̃

∂x
(aij)

∣

∣

∣

∣

2

wij + h2
κ

∑

0≤i≤k+1
1≤j≤k

∣

∣

∣

∣

∂p̃

∂y
(aij)

∣

∣

∣

∣

2

wij .
(34)
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We now assume for simplicity that

κ =

(

−hκ

2
,
hκ

2

)2

;

the more general case of an affinely mapped element can be dealt with in a
similar way. Since

−hκ/2 = a0 < a1 < · · · < ak < ak+1 = hκ/2,

for the first term on the right hand side of (34) we find

h2
κ

∑

1≤i≤k
0≤j≤k+1

∣

∣

∣

∣

∂p̃

∂x
(aij)

∣

∣

∣

∣

2

wij

= h2
κ

∑

i=0,k+1
0≤j≤k+1

(

1−

(

2ai
hκ

)2
)

∣

∣

∣

∣

∂p̃

∂x
(aij)

∣

∣

∣

∣

2

wij + h2
κ

∑

1≤i≤k
0≤j≤k+1

∣

∣

∣

∣

∂p̃

∂x
(aij)

∣

∣

∣

∣

2

wij

≥ h2
κ

∑

0≤i≤k+1
0≤j≤k+1

(

1−

(

2ai
hκ

)2
)

∣

∣

∣

∣

∂p̃

∂x
(aij)

∣

∣

∣

∣

2

wij

= h2
κ

∫

κ

(

1−

(

2x

hκ

)2
)

∣

∣

∣

∣

∂p̃

∂x
(x, y)

∣

∣

∣

∣

2

dxdy

= h2
κ

∫ 1

−1

∫ 1

−1
(1− x̂2)

∣

∣

∣

∣

∂p̂

∂x̂

∣

∣

∣

∣

2

dx̂dŷ,

where p̂(x̂, ŷ) = p̃(x(x̂), y(ŷ)) and [x(x̂), y(ŷ)] maps the reference square into κ.
We note that, since p̃ ∈ Qk, the function

(

1−

(

2x

hκ

)2
)

∣

∣

∣

∣

∂p̃

∂x
(x, y)

∣

∣

∣

∣

2

belongs to Q2k and the quadrature formula based on GGL(k + 1)2 is exact.
Using similar arguments for the second term on the right hand side of (34) and
Lemma 6.2, we find a constant C3, independent of h and k, such that

∫

κ
ṽ ·∇p̃ dx ≥ C3 ‖p̃‖

2
0. (35)

We next define
v = v0 + δṽ,

with δ > 0 to be specified later.
We first note that

b(ṽ, p0) = −
∑

κ∈T

∫

κ
∇ · ṽ p0 dx +

∫

Γint∪∂Ω

[ṽ · n] < p0 > ds = 0, (36)
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since p0 is constant on each element and ṽ · n vanishes on Γint ∪ ∂Ω. We also
have, thanks to (29),

∣

∣

∣

∣

∣

∑

κ∈T

∫

κ
∇ · v0 p̃ dx

∣

∣

∣

∣

∣

≤ C |v0|1 ‖p− p0‖0 ≤ C ‖p0‖0 ‖p− p0‖0, (37)

and, since v0 is continuous and vanishes on ∂Ω,

∫

Γint∪∂Ω

[v0 · n] < p̃ > ds = 0. (38)

Combining (37) and (38) yields

|b(v0, p̃)| ≤ C4‖p0‖0 ‖p− p0‖0, (39)

with C4 independent of h and k. Using (29), (35), (36), and (39), we can write

b(v, p) ≥ ‖p0‖
2
0+C3 δ ‖p−p0‖

2
0−C4‖p0‖0 ‖p−p0‖0 ≥

1

2
‖p0‖

2
0+

(

δC3 −
C2

4

2

)

‖p−p0‖
2
0,

and thus

b(v, p) ≥
1

2
‖p‖20,

with the choice δ = (1 + C2
4 )/(2C3). Finally (29) and (33) give

|v|h ≤ (C0 + δC2)‖p‖0.

The last two estimates thus give

γ2 =
1

2(C0 + δC2)
≥ ck−4.

We remark that the proof of the previous lemma is valid for general meshes
with hanging nodes. It also carries out in exactly the same way for the case of
conforming Taylor-Hood elements with hanging nodes.

7 Stability and consistency of the discrete prob-

lem

Throughout this and the following section, we assume that discrete inf-sup con-
ditions hold for Methods 1 and 2; see Lemmas 6.1 and 6.3, or, for p and hp ap-
proximations, Remarks 1 and 2. The following two corollaries are consequences
of these discrete inf-sup conditions; see [13, Pr. 1.2, Pg. 39].
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Theorem 7.1. Let k′ be equal to k + 2 or k + 1. If p ∈ Mk satisfies

b(v, p) = 0, v ∈ Vk′ ,

then p = 0.

Theorem 7.2. For i = 1, 2, corresponding to the choices k′ = k + 2, k + 1, we
have

sup
q∈Mk

b(v, q)

||q||
≥ γi inf

z∈Z
|v + z|h, v ∈ Vk′ .

Before proceeding, we note that our discrete bilinear forms a(·, ·) and b(·, ·)
are not continuous on the original spacesH1(Ω)n and L2

0(Ω), due to the interface
contributions. This makes the analysis more complicated. However two weaker
continuity properties hold.

We need to define two suitable stronger norms. For a velocity V we set

|||V|||2v = |V|2h +
∑

e∈E

∫

e

νk′2

he
|[V]|2 ds+

∑

κ∈T

∫

∂κ

ν2

σ
|∇V|2ds.

We note however that, in case v ∈ Vk′ , the inverse estimate (11) and the defini-
tion of σ ensure that

|v|h ≤ |||v|||v ≤ C|v|h, (40)

with a constant C that only depends on σ0.
We have the following continuity property.

Lemma 7.1. Let V ∈ L2(Ω)n, such that V ∈ H2(κ)n, for κ ∈ T , and w ∈ Vk′ .
Then there exist constants independent of V, w, h, and k′ such that

|a(V,w)| ≤ α|||V|||v |w|h,

and, in case V ∈ Vk′ ,
|a(V,w)| ≤ α′|V|h |w|h.

Proof. The proof is the same as that of [19, Lem. 4.3] which can be adapted to
the vector case in a straightforward way. The second bound is a consequence of
(40).

Analogously, we define a stronger norm for the pressure:

|||Q|||2p = ‖Q‖20,Ω +
∑

κ∈T

∫

∂κ

1

σ
Q2 ds.

In case q ∈ Mk, the inverse estimate (11) yields

‖q‖0,Ω ≤ |||q|||p ≤ C‖q‖0,Ω, (41)

with a constant that depends on σ0 and ν.
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Lemma 7.2. Let Q ∈ L2
0(Ω) and v ∈ L2(Ω)n, such that Q ∈ H1(κ) and

v ∈ H1(κ)n, for κ ∈ T . Then there exist constants independent of Q, v, h, k,
and k′, such that

|b(v, Q)| ≤ β|v|h |||Q|||p,

and, in case Q ∈ Mk,
|b(v, Q)| ≤ β|v|h ‖Q‖0.

Proof. We have

|b(v, Q)| ≤

∣

∣

∣

∣

∣

∑

κ∈T

(∇ · v, Q)κ

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∫

Γint

< Q > [v · n] ds

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∫

∂Ω

Qv · n ds

∣

∣

∣

∣

∣

∣

= I1+I2+I3.

We consider each one of the three terms. We clearly have

I21 ≤

(

∑

κ∈T

‖∇ · v‖20,κ

)

‖Q‖20 ≤ C|v|2h ‖Q‖20. (42)

We next consider e ∈ Eint, with e = ∂κ∩ ∂κ′. Using the definition of σ, we find

∣

∣

∣

∣

∣

∣

∫

e

< Q > [v · n] ds

∣

∣

∣

∣

∣

∣

2

≤

∫

e

σ−1 < Q >2 ds

∫

e

σ[v · n]2 ds.

In a similar way, for e ∈ Eout, we find

∣

∣

∣

∣

∣

∣

∫

e

Qv · n ds

∣

∣

∣

∣

∣

∣

2

≤

∫

e

σ−1Q2 ds

∫

e

σ|v · n|2 ds.

The proof of the first bound is concluded by summing over e ⊂ Γint ∪ ∂Ω and
combining the result with (42). The second bound is a consequence of (41).

We finally recall that the bilinear form a(·, ·) is coercive, i.e.,

a(u,u) = |u|2h, u ∈ Vk′ . (43)

Existence and uniqueness of the discrete problem (19) are ensured by (43),
the continuity properties in Lemmas 7.1 and 7.2, and the discrete inf-sup con-
ditions; see [13, Th. 1.1, Sect. II.1.1].

Lemma 7.3. Let k ≥ 0. Then problem (19) has a unique solution {u, p} ∈
Vk′ ×Mk, for the two choices k′ = k+2, k+1, corresponding to Methods 1 and
2.

As is the case for DG approximations, consistency is ensured under some
more stringent regularity assumptions on the exact solution. In order to prove
this property, we need some preliminary results.
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For D ⊂ Ω, we define H(div ,D) as the space of tensors τ ∈ L2(Ω)n×n, such
that ∇ · τ ∈ L2(Ω)n, equipped with the graph norm

(

‖τ‖2D + ‖∇ · τ‖2D
)1/2

.

If e ⊂ ∂D has non-vanishing (n − 1)-dimensional measure, we define the space

H−1/2
00 (e)n as the dual of H1/2

00 (e)n, the space of vectors of H1/2(∂D)n that

vanish on ∂D \ e. In case e = ∂D, we have H−1/2
00 (e)n = H−1/2(e)n.

The following result can be proved using analogous techniques as those for
spaces of vectors; see Sections III.1.1 and III.1.2 in [13].

Lemma 7.4. Let D ⊂ Ω and e ⊂ ∂D with positive measure.

1. There exists a continuous trace operator from H(div ,D) onto H−1/2
00 (e)n

that coincides with

τ : n|e

for τ ∈ C∞(Ω)n×n.

2. The Green’s formula (3) holds for τ ∈ H(div ,D) and v ∈ H1(D)n, where
the integral on the right hand side is to be understood as the duality pairing
between H1/2(∂D)n and H−1/2(∂D)n.

3. Let Ωi ⊂ Ω, i = 1, 2, two open disjoint subsets with outward normals
ni, such that the union of their closures coincides with Ω. Given τi ∈
H(div ,Ωi), the tensor in Ω defined by

τ|Ωi
= τi

belongs to H(div ,Ω) if and only if

τ1 : n1 = −τ2 : n2 = τ2 : n1, in H−1/2
00 (∂Ω1 ∩ ∂Ω2)n.

We are now ready to prove the consistency of our methods.

Lemma 7.5. Let {U, P} ∈ H1(Ω)n × L2
0(Ω) be the solution of the continuous

problem (4). If U ∈ H2(κ)n and P ∈ H1(κ), for κ ∈ T , then {U, P} satisfies
the discrete problem

a(U,v) + b(v, P ) = (f ,v)Ω +

∫

∂Ω

(σ g · v + g · (ν∇v : n)) ds, v ∈ Vk′ ,

b(U, q) =

∫

∂Ω
g · n q ds, q ∈ Mk,

(44)
with k′ = k + 2, k + 1, k and k ≥ 0.

24



Proof. We first note that, if T is the stress tensor of the exact solution, we have

−ν∆U+∇P = −∇ · (ν∇U − PI) = −∇ · T = f ∈ L2(Ω)n,
∇ ·U = 0.

Then T ∈ H(div ,Ω) and Lemma 7.4 holds. In particular, the normal component
T : n is well defined and continuous across every e ∈ Eint.

We will show that the residual

R(v, q) = (f ,v)Ω +

∫

∂Ω

(σ g · v + g · (ν∇v : n)) ds−

∫

∂Ω
g · n q ds

− a(u,v) − b(v, P ) + b(U, q)

vanishes for every v ∈ Vk′ and q ∈ Mk.
Using the fact that [U] = 0 on every e ∈ Eint and that U = g on ∂Ω, we can

write

R(v, q) =
∑

κ∈T

∫

κ
(f · v − ν∇U ·∇v +∇ · vP −∇ ·Uq) dx

+

∫

Γint

< ν∇U : n > ·[v] ds−

∫

Γint

< P > ·[v · n] ds

+

∫

∂Ω

(ν∇U : n) · vds−

∫

∂Ω

Pv · nds.

Taking into account the identities

∇ · vP = (PI) : ∇v, < P > ·[v · n] =< (PI) : n > ·v,

and the definition of T , we obtain

R(v, q) =
∑

κ∈T

∫

κ
(f · v − T ·∇v −∇ ·Uq) dx

+

∫

Γint

< T : n > ·[v] ds +

∫

∂Ω

(T : n) · v ds

=
∑

κ∈T

(
∫

κ
(f · v − T ·∇v −∇ ·Uq) dx+

∫

∂κ
< T : n > ·[v] ds

)

.

Since T : n is continuous across the interelement boundaries, and thus equal to
< T : n >, and the Green’s formula (3) can be applied, we find

R(v, q) =
∑

κ∈T

∫

κ
((f +∇ · T ) · v −∇ ·Uq) dx.

The proof is concluded by using the differential equation (1).

25



8 A priori error estimates

This section is devoted to the proof of a priori error estimates. We proceed
similarly as in [13]; see Section II.2.2, Propositions 2.4, 2.6, 2.7. However our
proofs are more involved due to the lack of continuity of the bilinear forms in
the continuous spaces; see Lemmas 7.1 and 7.2.

The next lemma gives a bound for the velocity.

Lemma 8.1. Let the exact solution {U, P} ∈ H1(Ω)n×L2
0(Ω) be in Hmκ(κ)n×

Hnκ(κ), κ ∈ T , with mκ ≥ 2 and nκ ≥ 1. Then for i = 1, 2, corresponding to
the choices k′ = k+2, k+1, there exists a constant C, independent of h and k,
but depending on ν and σ0, such that

|U− u|h ≤ C
∑

κ∈T

(

1

γi

hsκ−1
κ

kmκ−3/2
|U|mκ,κ +

hrκ
κ

knκ
|P |nκ,κ

)

, (45)

with 1 ≤ sκ ≤ min{k′ + 1,mκ}, 1 ≤ rκ ≤ min{k + 1, nκ}, and γi the inf-sup
constant of Method i.

Proof. We consider a vector w ∈ Z(g). We have

|w − u|2h = a(w− u,w − u) = a(w −U,w − u) + a(U− u,w − u).

Using Lemma 7.5 and (19), we can write

|w − u|2h = a(w −U,w − u)− b(w − u, P − p).

We then note that, since (w − u) ∈ Z, the discrete pressure p can be replaced
by any function q ∈ Mk. We have

|w− u|2h = a(w −U,w − u)− b(w − u, P − q),

and using Lemmas 7.2 and 7.1

|w − u|h ≤ α|||w −U|||v + β|||P − q|||p, w ∈ Z(g), q ∈ Mk. (46)

A bound for the error is obtained using the triangle inequality

|U− u|h ≤ |U−w|h + α|||w−U|||v + β|||P − q|||p, w ∈ Z(g), q ∈ Mk. (47)

Our second step is to find bounds that involve an arbitrary function of Vk′

instead of Z(g). In order to do so, given v ∈ Vk′ , we consider the problem of
finding a z(v) ∈ Vk′ , such that

b(z(v), q) = b(U− v, q), q ∈ Mk.

Thanks to Corollary 7.2 and [13, Pr. 1.2, Pg. 39], we can find a solution z ∈ Vk′ ,
such that

γi |z(v)|h ≤ sup
q∈Mk

b(z, q)

||q||
= sup

q∈Mk

b(U− v, q)

||q||
≤ β|U − v|h. (48)
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Since

b(z(v) + v, q) = b(U, q) =

∫

∂Ω
g · nq ds, q ∈ Mk,

we have
w(v) = z(v) + v ∈ Z(g).

We next go back to (47), and take w = w(v), with v ∈ Vk′

|U−u|h ≤ |U−v|h + |z(v)|h +α|||v−U|||v +α|||z(v)|||v + β|||P − q|||p, (49)

where we have used a triangle inequality for ||| · |||v.
Using (48), (49), and (41), we find

|U− u|h ≤
C

γi
|U− v|h + β|||P − q|||p + α|||U− v|||v , (50)

where we have assumed that γi ≤ 1. Here C is independent of h, k, and ν, but
depends on σ0.

We finally make a particular choice for v and p. We choose

v = Πh,k′V, q = Πh,kP.

We bound the single terms in the | · |h and ||| · ||| norms. They consists of
integrals over elements or part of the element boundaries. We start with the
pressure terms:
Thanks to the definition of ||| · |||p and σ, and the trace inequality (12), we can
write

|||P − q|||2p ≤ C‖P − q‖20,Ω+C
∑

κ∈T

(

hκ

k2
‖P − q‖0,κ |P − q|1,κ +

1

k2
‖P − q‖20,κ

)

,

and, using Lemma 3.1 with s = 0, 1,

|||P − q|||2p ≤ C
∑

κ∈T

h2rκ
κ

k2nκ
|P |2nκ,κ. (51)

We next consider the velocity contributions. Using the trace estimate (12) and
the shape-regularity of T , we find

∑

e∈E

σ0 ν
k′2

he

∫

e

|[U−v]|2 ds ≤ C
∑

κ∈T

(

k′2

hκ
‖U− v‖0,κ |U− v|1,κ +

k′2

h2
κ
‖U− v‖20,κ

)

,

and, using Lemma 3.1 with s = 0, 1,

∑

e∈E

σ

∫

e

|[U− v]|2 ds ≤ C
∑

κ∈T

h2sκ−2
κ

k2mκ−3
|U|2mκ,κ. (52)
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Similarly, for the gradient contributions Lemma 3.1 yields

∑

κ∈T

ν2

σ

∫

∂κ

|∇(U − v)|2 ds ≤ C
∑

κ∈T

h2sκ−2
κ

k2mκ−1
|U|2mκ,κ. (53)

Combining (52) and (53) with the definitions of ||| · |||v, | · |h, and σ, we obtain

|U− v|2h ≤ |||U− v|||2v ≤ C
∑

κ∈T

h2sκ−2
κ

k2mκ−3
|U|2mκ,κ. (54)

The proof is concluded by combining (50), (51), and (54).

A bound for the pressure is given in the following lemma.

Lemma 8.2. Let the exact solution {U, P} ∈ H1(Ω)n×L2
0(Ω) be in Hmκ(κ)n×

Hnκ(κ), κ ∈ T , with mκ ≥ 2 and nκ ≥ 1. Then for i = 1, 2, corresponding to
the choices k′ = k+2, k+1, there exists a constant C, independent of h and k,
but depending on ν and σ0, such that

‖P − p‖0 ≤ C
∑

κ∈T

(

1

γ2
i

hsκ−1
κ

kmκ−3/2
|U|mκ,κ +

1

γi

hrκ
κ

knκ
|P |nκ,κ

)

,

with 1 ≤ sκ ≤ min{k′ + 1,mκ}, 1 ≤ rκ ≤ min{k + 1, nκ}, and γi the inf-sup
constant of Method i.

Proof. Let q = Πh,kP ∈ Mk. Using the discrete inf-sup conditions for b(·, ·),
Lemmas 7.5, 7.1, and 7.2, we find find

‖q − p‖ ≤
1

γi
sup

0$=v∈Vk′

b(v, q − p)

|v|h
=

1

γi
sup

0$=v∈Vk′

b(v, q − P ) + b(v, P − p)

|v|h

=
1

γi
sup

0$=v∈Vk′

b(v, q − P )− a(U− u,v)

|v|h

≤
β

γi
|||P − q|||p +

α

γi
|||U− u|||v.

(55)

A bound for the velocity contribution can be found using the triangle inequality
and (40). Let v = Πh,k′V. We have

|||U− u|||v ≤ |||U− v|||v + |||u− v|||v ≤ |||U− v|||v + C|u− v|h

≤ |||U− v|||v + C|U− u|h + C|U − v|h

≤ C(|||U− v|||v + |U− u|h).

(56)

Since
‖P − p‖ ≤ ‖P − q‖+ ‖q − p‖,

the proof is concluded by combining (55) and (56), with the error estimates
(51), (54), and (45).
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We note the loss of optimality of half a power of k in the estimates of Lemmas
8.1 and 8.2, typical of DG approximations of second order problems; see [19].

Remark 4. We note that, if we assume that an inf-sup condition also holds
for Method 3, as stated in Remark 3, then Lemma 7.3 and the error estimates
in Lemmas 8.1 and 8.2 are also valid for Method 3 (i = 3). Lemma 7.5 is valid
for an arbitrary k′ ≥ 0.

We conclude with some comments on the optimality of the methods pro-
posed. We assume that the exact solution satisfies

P ∈ Hnk(κ), U ∈ Hnk+1(κ)n, κ ∈ T .

We then consider Lemmas 8.1 and 8.2 with

nκ ≥ k, mκ = nκ + 1 ≥ k + 1, rκ = k sκ = k + 1.

For the h-version, Lemmas 6.1 and 6.3 ensure that the given error estimates for
Methods 1 and 2 are optimal:

|U− u|h ≤ C
∑

κ∈T
hk
κ (|U|k+1,κ + |P |k,κ) ,

‖P − p‖ ≤ C
∑

κ∈T
hk
κ (|U|k+1,κ + |P |k,κ) .

We note that the two methods have the same rate of convergence. Since the
pressure spaces are the same, the increase in the velocity space of Method 1
does not present any advantage. Error estimates for Method 3 are suboptimal:
half a power of h is lost for the velocity, and one full power for the pressure; see
Remark 3.

We now consider p-approximations in two dimensions. Remarks 1 and 2
ensure

|U− u|h ≤ Ck−(nκ−1/2)
∑

κ∈T
(|U|nk+1,κ + |P |nk,κ) ,

‖P − p‖ ≤ Ck−(nκ−1/2)
∑

κ∈T
(|U|nk+1,κ + |P |nk,κ) ,

where half a power of k is lost both for the velocity and the pressure. We note
that for the case of conforming Qk+2-Qk approximations we have

|U− u|h ≤ Ck−(nκ−1/2)
∑

κ∈T
(|U|nk+1,κ + |P |nk,κ) ,

‖P − p‖ ≤ Ck−(nκ−1)
∑

κ∈T
(|U|nk+1,κ + |P |nk,κ) ,

since the inf-sup constant decreases as k−1/2. Conforming Taylor-Hood Qk+1-
Qk elements in two dimensions appear to satisfy the same error estimate, since
numerical results show the same behavior for the inf-sup constant; see Figure 3
and Figure 3 in [2].
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9 Extensions to other velocity-pressure pairs

As already noted for Lemma 6.1, stability results for approximations using con-
tinuous velocities and discontinuous pressures give lower bounds for the inf-sup
condition of the corresponding DG approximations employing discontinuous ve-
locities. In particular, we can choose for velocities and pressures

Vk+1, {q ∈ L2
0(Ω)| q|κ ∈ Pk(κ), κ ∈ T },

with Pk(κ) the space of polynomials of total degree k in κ. Alternatively, we can
employ

Vk, M[λk],

with [λk] the integer part of λk, with 0 < λ < 1, and k−λk ≥ 2. Uniform diver-
gence stability is ensured by the results in [10] for the corresponding conforming
approximations. We also refer to [1] for additional choices of velocity-pressure
pairs.
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