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Abstract

In this paper, we consider the Stokes problem in a three-dimensional poly-
hedral domain discretized with hp finite elements of type QF for the velocity
and Q"2 for the pressure, defined on hexahedral meshes anisotropically and
non quasi-uniformly refined towards faces, edges, and corners. The inf-sup
constant of the discretized problem is independent of arbitrarily large aspect
ratios and exhibits the same dependence on k as in in the case of isotropi-
cally refined meshes. Our work generalizes a recent result for two-dimensional
problems in [8, 9].
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1 Introduction

It is well-known that solutions of elliptic boundary value problems in polyhedral
domains have corner and edge singularities. In addition, boundary layers may
also arise in flows with large Reynolds numbers at faces, edges, and corners.
Suitably graded meshes, geometrically refined towards corners, edges, and/or
faces, are required in order to achieve an exponential rate of convergence of hp
finite element approximations; see, e.g., [2, 3, 6, 11, 12].

The Stokes and Navier—Stokes equations are mixed elliptic systems with
saddle point variational form. The stability and accuracy of the correspond-
ing finite element approximations depend on an inf-sup condition for the finite
element spaces chosen for the velocity and the pressure fields. Even for sta-
ble velocity—pressure combinations, the corresponding inf-sup constants may in
general be very sensitive to the aspect ratio of the mesh, thus degrading the
stability if very thin elements are employed, as required for boundary—layer and
singularity resolution. It has recently been shown in the two—dimensional case,
for corner and boundary—layer tensor—product meshes, that the inf-sup constant
of certain velocity/pressure space pairs for the Stokes problem retains the same
dependence on the polynomial degree as for isotropically refined triangulations,
independently of arbitrarily large aspect ratios of the mesh; see [11, 8, 9, 1].
Analogous results in three dimensional domains appear to be lacking.

In this paper, we prove that, for the most widely used Q"~Q" 2 spaces on
geometric boundary layer and edge meshes consisting of hexahedral elements in
R3, the inf-sup constant decreases as Ck~!, with a constant C that depends
only on the mesh grading factor, but is independent of the degree k, the level
of refinement, and arbitrarily large element aspect ratios. We note that this
dependence on k is optimal; see [4, §25].

This paper is organized as follows:

In Section 2, we introduce the continuous problem and the finite element spaces
for its discretization. They are built on geometric boundary layer and edge
meshes, described and constructed in Section 3. In Section 4, we describe the
macro—element technique that we repeatedly employ in our proofs. The stability
of face, edge, and corner patches for geometric boundary layer meshes is proven
in Sections 5, 6, and 7, respectively. The case of geometric edge meshes is
treated in Section 8.

2 Problem setting

Let © C R® be a bounded polyhedral domain. Given a vector f € L2(Q)3,
we consider the following problem: find a velocity u € Hg(2)® and a pressure
p € L3(Q), such that

v(Vu,Vv)g — (p,V-v)a = (f,v)a, v eV :=H}Q)3, 1)
(¢, V- u)o = 0, ge M :=LQ).
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Here, L3(2) denotes the subspace of L?(f2) of functions with vanishing mean
value in © and, for D C R? (u,v)p denotes the scalar product in L2() or
L?(Q)3.

In order to approximate (1), we replace the continuous spaces V x M by
two finite element spaces Viy x My C V x M. Let (un,pn) € VN X My be the
solution of the corresponding discrete problem:

V(quava)Q - (pNav : UN)Q = (fa UN)Qa UN € VNa (2)
(qNav'uN)Q = 0, QNEMN.

A crucial role in the analysis and approximation of (1) is played by the inf-sup
condition

V-
f qp Y wPa o 3)
0£pEL3(Q) oxvemt()® V1.0 [IPllo.o

which ensures its well-posedness. The corresponding discrete inf-sup condition
for the finite element spaces (Viv, M) (also referred to as divergence stability)
ensures the well-posedness and quasi—optimality of (2). Indeed, if a stability
condition (3) holds for the discrete velocity and pressure spaces, with a constant
N, then (2) has a unique solution, and the following error estimates hold

[u—unlie < Cyy'Ev(u,N)+Cv 'Ep(p,N),
lp—pnlloe < CANEv(u,N)+Cyy'Ep(p,N),
where
Ey(u,N) := inf |lu—v|1q,
veVN
E N) = inf —
P N) =t lp—dloe,

are the best approximation errors of the solution (u,p) of (1); see, e.g., [5].

We now specify a particular choice of finite element spaces. Given an affine
hexahedral mesh 7 and a polynomial degree k > 2, in order to discretize (1),
we consider the following finite element spaces:

Vv = Sg (TP o= {ue Hy(Q)?*] e € Qu(E)},

My = SE20T) = {peL3@] pp Qo). P

Here Q,,(K) is the space of polynomials of maximum degree k in each variable
on K. The mesh T is said to be regular if it is geometrically conforming, or
irregular if hanging nodes are present; see, e.g., [9, 10]. These spaces are also
known as Pr—IPx_5 in the spectral element literature. In the following, we also
use the polynomial spaces Qm_m of polynomials of degree r, s, and m in the
first, second, and third variable, respectively.
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Figure 1: Hierarchic structure of a boundary layer mesh.

3 Geometric meshes

In order to resolve boundary layers and/or singularities, geometrically graded
meshes can be employed. They are determined by a mesh grading factor o €
(0,1) and the number of layers n, the thinnest layer having width proportional
to ™. Robust exponential convergence of hp finite element approximations is
achieved if n is suitably chosen. For singularity resolution, n is required to be
proportional to the polynomial degree k; see [2, 3]. For boundary layers, the
width of the thinnest layer needs to be comparable to that of the boundary
layer; see [6, 11, 12]. In practical applications, for boundary layers of fixed
size, and edge and corner singularities, n is usually chosen proportional to the
polynomial degree k, with the assumption that & is sufficiently large.

3.1 Construction of geometric boundary layer meshes

A geometric
boundary layer mesh 7,7 is, roughly speaking, the tensor product of meshes
that are geometrically refined towards the faces. Figure 1 shows the construction
of a geometric boundary layer mesh 7,;"7

The mesh 7,;°7 is built by first considering an initial shape-regular mac-
ro—triangulation 7,, which is successively refined. This process is illustrated
in Figure 1. Every macro—element can be refined isotropically (not shown) or
anisotropically in order to obtain so—called face, edge, or corner patches (Figure
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1, level 2). Here and in the following, we only consider patches obtained by
triangulating the reference cube Q := I3, with I := (—1,1). A patch for an
element K € 7, is obtained by using an affine mapping Fi : Q — K. The
stability properties proven for patches on the reference cube are equally valid for
an arbitrary shape-regular element K € 7,,, with a constant that is independent
of the diameter of K.

A face patch is given by an anisotropic triangulation of the form

T ={K,xIxI| K;eT,}, (5)
where T, is a mesh of I := (—1,1), geometrically refined towards, say = = 1,
with grading factor o € (0,1) and total number of layers n; see Figure 1 (level
2, left).
An edge patch 7. is given by
Te = {sz x I | Kﬂcy S %y}a (6)

where T, is a triangulation of S := I? obtained by first considering an irregular
corner mesh, geometrically refined towards a vertex of S, say (x,y) = (1,1),
with grading factor o and n refinement levels (see Figure 2, level 2, left). The
elements of this macro—mesh are then anisotropically refined towards the two
edges x = 1 and y = 1, in order to obtain a regular mesh 7,,. We refer to
Figure 1 (level 2, center) for an example.

In order to build a corner patch 7., we first consider an initial, irregular,
corner mesh T¢ ,,, geometrically refined towards a vertex of Q, say (z,y,2) =
(1,1,1), with grading factor o and n refinement levels; see the mesh in bold
lines in Figure 1 (level 2, right). The elements of this macro—mesh are then
anisotropically refined towards the three faces t =1, y = 1, and z = 1 in order
to obtain a regular mesh 7.

Assuming that n = O(k), the number of elements in a face, edge, and corner
patch is O(k), O(k?), and O(k3), respectively. Consequently, the corresponding
FE spaces have O(k*), O(k%), and O(k®) degrees of freedom.

Our main result is the following theorem; see [7, 8, 9] for the corresponding
two—dimensional result.

Theorem 3.1 Let T =T, be a geometric boundary layer mesh. Then, there
exists a constant C, that depends on the grading factor o, but is independent of
k, n, and the aspect ratio of T, such that, for any n and k > 2,

V - v,
inf sup (V-vpla >Ck™ (7)
0pess 2R T) opvest (7 (Ve lIPllog

3.2 Construction of geometric edge meshes

When only singularities and no boundary layers are present (as, e.g., in Stokes
flows or in nearly incompressible elasticity), it is not necessary to refine geo-

metrically towards the faces. The corresponding geometric edge meshes ed"g"e
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Figure 2: Hierarchic structure of a geometric edge mesh 7, e

are tensor products of meshes that are geometrically refined towards the edges
only. Figure 2 shows the construction of a geometric edge mesh 7_ d’gae.

As in the case of a boundary layer mesh, 7;3;6 is built by first considering
an initial shape-regular macro—triangulation 7, which is successively refined.
This process is illustrated in Figure 2. Every macro—element can be refined
isotropically (not shown) or anisotropically in order to obtain so—called edge or
corner patches (Figure 2, level 2).

An edge patch 7. is given by
Te :={Kyy xI| Kyy € Tay}s (8)

where 7T, is an irregular corner mesh, geometrically refined towards a vertex of
S with grading factor o and n refinement levels; see Figure 2 (level 2, left).

In order to build a corner patch 7., we first consider an initial, irregular,
corner mesh 7¢ ,,, geometrically refined towards a vertex of Q, with grading
factor o and n refinement levels; see the mesh in bold lines in Figure 2 (level
2, right). The elements of this macro—mesh are then refined towards the three
edges adjacent to the vertex. We note that the macro—mesh 7. ., is the same
as for a boundary layer mesh, but 7, is in general irregular. Figure 3 shows the
difference between corner patches for boundary layer and edge meshes.

Assuming n = O(k), one can show that the number of elements in an edge
and a corner patch is O(k) and O(k?), respectively. Consequently, the corre-
sponding FE spaces have O(k?) and O(k®) degrees of freedom; see [3].

In section 8, we show that Theorem 3.1 also holds for an edge mesh T =

N
edge*
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- L

Figure 3: Geometrically refined corner patches for boundary layer (left) and
edge (right) meshes.

4 Macro—element technique

In order to prove Theorem 3.1, we repeatedly use a macro—element technique;
see [13, 14, 7, 9]. Given a mesh T, it is enough to prove the divergence—stability
for a couple of low dimensional spaces, typically Sg ’1((2, T)3 and SOO ’O(Q, T), on
a macro-mesh contained in or coinciding with 7", and the stability of local higher
order spaces defined on the single elements K of the macro-mesh, Sg ! (K)3 and
Ggh—2.0 . .
5 (K) in this case.
The following theorem holds. We refer to [13, 14, 7, 9] for a proof.

Theorem 4.1 Let F be a family of irreqular or reqular affine meshes on the
reference element Q On a bounded polyhedral domain 2 C R3, let T be an affine
mesh which is obtained from a (coarser) affine shape-regular macro-element
mesh Tp, in the following way: Some elements of T, are further partitioned
mto FK(7A') where T € F and Fx is the affine mapping between Q and K.
Let k > 2 be a polynomial degree. Assume that there exists a space Xy C
SeHQ, T)? € HL(Q)? such that

inf (v : vap)fl

ini = (O, (9)
0#£p€ Sy Y (Q,Tm) 0£VEX N v[1,0 lIpllog

with a constant Cy > 0 independent of k. Assume that on the reference element
Q the local stability condition

V-v,p)s
inf sup w

i >Cyk™',  Vk>2,  (10)
0#p€S; > %(Q) 0£veskE ()2 |”|1,QHPH0,Q

1s valid with Co > 0 independent of k. Assume further that the family F is
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uniformly stable in the sense that there holds

inf sup M > Cy k7t (11)
0£peSE~>%(Q.T) 0#veSHH(Q,T)3 |U|1,1%HPHO,Q
for all T e F and all k.
Then, there exists a constant C > 0 only depending on C1 and Cs, such
that the spaces Sp''(Q, T)3 and Sy~ >°(Q, T) satisfy (7). The constant C can
be bounded by

-~ C. .
C> C’K—; min{1, C}},

where k is the aspect ratio of the elements of T,, and C is independent of k, k,

Cq, and Cs.

We note that we apply the macro—element technique recursively in our anal-
ysis. This is illustrated in Figure 1. At the top level, we have the shape-regular
macro—mesh 7,,,, which is successively refined. Every macro—element can be re-
fined isotropically (not shown), or anisotropically towards a face (second level,
left), or an edge (second level, center), or a corner (second level, right). The
divergence stability for the shape-regular macro—mesh at the top level and the
isotropically refined patches is well-known; see [14]. We then prove the stability
of the single patches for the higher order spaces:

e Face patch. We build a Fortin operator, generalizing the analysis in
[8, Sect. 3].

e Edge patch. We use a macro—element technique. The corresponding
macro—mesh is displayed in bold lines in 1 (second level, center) and we
use the two—dimensional result for low order spaces defined on corner
patches. We then prove the local stability for the higher order spaces on
the single stretched elements (third level, center) using a Fortin operator.

e Corner patch. For the corner patch, we generalize the two—dimensional
analysis in [9, Sect. 4]. We prove the stability for low order spaces on the
corner mesh in bold lines in Figure 1 (second level, right) and then use
the stability of the other patches. We note that the refined elements of
this macro-mesh are face and edge patches.

5 Face patches
A face patch is given by a mesh 77 of the form (5). For this patch, we prove

that the inf-sup constant vy is independent of 7, and, consequently, of o and
n.
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In this section, we generalize the analysis in [8, Sect. 3] for boundary layer
patches in two-dimensions, by building a Fortin operator Il : H3(Q)? —
Sg’l(Q, T), that satisfies the following property.

Theorem 5.1 There exists a constant C, independent of k and the diameter
and the aspect ratio of T¢, such that, for all v € H}(Q)3,

|Hkv|1,(g < Ck|v|1,(ga (12)
(V-v,p)g = (V-Iw,p)s, p€ Sy Q. Tp). (13)

It is then immediate to see that if the inf-sup condition (3) for the continuous

spaces Hg(Q)3-L3(Q) holds and a Fortin operator IIj that satisfies Theorem
5.1 can be found, the following inf-sup condition for the discrete spaces holds
V.-u,p)a

inf sup 7( le > k7L, (14)

0pESE 20(Q.TH) opvest (0,1 [V1alIPloo

with a constant C' that is independent of k and the diameter and the aspect
ratio of Ty.

5.1 The Fortin operator for the face patch

We begin by defining an operator on the reference cube Q We first need to
define some of the geometric objects of @
Let the faces of ) perpendicular to the xz—axis be

Ti={r =41} x (-1,1)%

The two other sets of faces Iy, i = y,z, are defined in a similar way. The
edges of Q parallel to the z, y, and z—axis are denoted by E7, E}’, and E7,
j=1,...,4, respectively. Finally, let {P;, ¢=1,---,8} be the set of vertices
of Q. Similar definitions hold for an element K € Ts.

Definition 5.1 Let r,s,m > 2 and v € H€+3/2(AQ), e > 0. We define u =
L smv as the unique polynomial in Q, ., (Q) satisfying the following
(r+1)(s+1)(m+1) conditions:

w(P) =v(B), i=1,....8, (15)
/(U*’U)pd.ﬁ:(), pe@r72a i:17"'747 (16)
E®
/(u—v)pdyzo, peQ, 5, i=1,...,4, (17)
EY
[ w—opdz=0, peQua =14 (18)
E?
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[ w=opdydz =0, peQ s (19)
L
/ (U - U)p dxdz = Oa VS Qrflmf?a (20)
ry
/F (U - U)p dl'dy = Oa VS @T72,sf2a (21)
+
/ (u - U)p dIdde = 07 pe @T72,572,m72' (22)
Q

We note that I, ; ., cannot be defined on the whole space H 1(@) since values
at the edges or vertices of Q) are not defined in general. However, it can be
defined on the space

H(Q):={ve HY(Q)| v=00onT% and'%}.

In this case, v can be assumed to be zero on dQ \ (I'* U I'%) in Definition 5.1.
An interpolation operator IX, = can also be defined on an affinely mapped

T,8,M

element K = Fg(Q) € Ty, for functions in H(K). Here, H(K) is defined in a

similar way as H(Q).

Our Fortin operator is then defined locally using the operators {1, ,.}.

Definition 5.2 Let v = (vg,vy,v;) € H&(Q)?’ We define u = (ug, Uy, uy) :=
[xv as the unique vector in Sg’l(Q,’Ec)?’ that satisfies

Uj = I;fk,kvi, on K,
fori=uz,y,z and K € Ty.

Note that I is well defined, since, for v € HJ (Q)?’, the restrictions of v; to
K € Ty, for i = z,y, z, belong to H(K).

5.2 Proof of Theorem 5.1

Let Z(Q) be the set of polynomials on Q and Zy(Q) its subspace of polynomials
that vanish on I', and I';..

We will first consider the operator I, : Z(Q) — @m_m(Q) and intro-
duce a suitable basis for the two polynomial spaces, which allows a convenient
representation of I, s .

Let {L;(z), ¢ € No} be the set of Legendre polynomials of degree ¢ on I. We
alsoset L_; = L_g = 0. We consider the one-dimensional basis {U;(x), i € Ng}
defined by

Uo(z) =1, Ui(x) ==z,

Ui(z) = / Lia(dt, i>2. (23)

-1
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The set {U;(z)U;(y)Ui(2); 4,4,1 € No} is thus a basis for Z(Q). Indeed, each
v E I(Q) can be uniquely written as

v(x,y,z) = , Zzailei(x)Uj(y)Ul(z)a (24)

where only finitely many terms are non-vanishing. For a polynomial v €
Q, 5.m(Q) the sum is taken for i<r j<s 1<m.
We recall that, if ; := 1 € Ng, with v_; = 1 and v_5 = 0, we have

%+l +1’
and
Ul(l') = Yi—1 (LZ(,T) — Li_l(m)) , 1€ No. (26)

In addition, using (23), (25), and (26), we can show the identities

29 v, j=i=0,1,

292 (i +vim2), J=1i>2,

/Ui(z)Uj (x)de = 8 —2vi—1ViYiy1, J=1+2,92>0, (27)
! —27i_gVi—2Yi—1, J=1—2,1>2,

0, otherwise.

Lemma 5.1 Let v € Z(Q) be written in the form (24). Then

o0 o0
||'Um||§1Q = Z Z 8vi—17j M ((Vi—1V-1ai,5,0 — Vj—1M+1Gi j,142)
=1 j,1=0

{ (28)
2
(Vi+1Y1-1Gi j+2,0 = Vj+1V+1Gij+2,042))

loyll§ e = H%ngr + vy I3 =
29
ZZSVJ 11 (V=105 — Yig1aiig2)?s (29)
Iollgre = ||U|\3,r§ +vllg =
1 fe%e]
Z Z 8viv ((Vj—1=1Gi 51 — Yi—1Y41Gi ju+2)  (30)
i=0 j,1=0

2
= (WHM=1Gi 20— VY10 2,042))

The corresponding expressions for ||vy||§ o’ ||vz||3 o’
on the other faces are obtained by permutations of the indices.

H’UZH(%,Fwi; and for the norms
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Proof. The proof of (28) can be carried out in a similar way as in the two—
dimensional case (see [8]) and as in the simpler case where v € Z(Q) N H} (Q)
(see [14]).

For (29), it is enough to realize that the restriction of v to a face, e.g., x = 1,

’U(l,y, Z) = Z Z ZaleUz(l)U](y)Ul(z)a

is a polynomial in y and z. The expressions for the L2norm of the derivatives
of a polynomial in two variables proven in [8, Lem. 3.14], can be thus employed.
The proof of (30) can be carried out in a similar way as for (28). O

Lemma 5.2 Let v € Z(Q) be written in the form (24). Then
U(ZL', Y, Z) = (Ir,s,mv)(xv Y, Z) = Z Z Z ailei(x)Uj (y)Ul(Z)
=0 j=0 1=0

Proof. Let
u(z,y,z) = > i Us(@)U; (y)Ui(2).-

We first note that the only contributions that do not vanish on the boundary
in the expansions of v and uw arefor 0 <i<lor0<j<lor0<I[<1.
Condition (15) ensures that

biji = a1, 0<4,5,1<1, (31)

since u — v vanishes at the vertices of Q).

We next consider condition (16), with p(z) = L/, _;(x), n =2,...,r, and the

n—1
edge
Ef:{(%y»z), xEI’y:_l,Z:—l}_
We have
Z(bioo_bwl_bﬂo""bill)/UiL;ﬁldx = Z(aioo—aim—ailo-i-aiu)/UiL;lﬂdx.
1=0 I pard ,

Integrating by parts and using (31), we obtain
bn00 = bno1 — bni1o + bn11 = @noo — Gno1 — Gnio + an11, M=2,...,7.

Using (16) for the remaining edges, we obtain the four conditions, for n =
2,...,r,

(bnoo — anoo) £ (bno1 — ano1) £ (bn1o — anio) + (bn11 — an11) =0,
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and finally
bnij = anij, 2<n<r, 0<4,j<1L (32)

Using (17) and (18), we find, in a similar way,

binj = ainj, 2<n<s, 0<14,5<1, (33)
bijn = Qijn, QSHSTI’L, Ogl,jgl (34)

We next consider condition (19), with
p(y,2) = L1 (y)Ly_1(2), n=2,....8 ¢=2,...,m,

and the face I'* . We have

> (boji — bij1) /UjL;_ldy/UlL;_ldz

S

7=01=0
ZZ aO]l_aljl)/U Ln 1dy/Ul q— 1d2
7=01=0

Integrating by parts and using (31), (32), (33), and (34), we obtain

(bonq—blnq)—(aonq—alnq):0, 7’L:2,...,8, q:2,...,m.
Using then (16) for I'}, we obtain the two conditions, for n = 2,...,s and
q=2,...,m,

(ban - aan) =+ (blnq - alnq) =0,

and finally
bing = Ging, 2<n<s, 2<qg<m, 0<i<l. (35)

Using (20) and (21), we find, in a similar way,

(36)
bniq = Qnigq, 2 I < T, 2 < 0 < { < 17 (37)
bngi = Gngi, 2<n<r, 2 <s, 0<i<1 (38)

We finally consider condition (22), with
p(a,y,2) = Ly 1 (#) L1 (y) L1 (2), 2<n<r 2<q<s 2<t<m.
We have

me/IUiL;_ldx/IUjL;_ldy/IUlL;_ldz

1=0 j=0 [=

= Zzzaijl/UiL;_ldx/UjL’q_ldy/UlL;_ldz.
I I I

i=0 j=0 [=0
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Integrating by parts and using the previously proven conditions, we obtain
bnqt:anqt; 2§n§r,2§q<s

which concludes the proof O

Lemma 5.3 Let v € Zp(Q) be written in the form (24) and u := I 3 mv. Then

sl < Comlual? . (39)
lel2y < Crmll,+Cms,, (40)
HUZH(QJQ < C?‘SH’UZHaQ +CsS,, (41)
where
1 s m—2
Sy = D Y > Ay aviam(nerai — i jag2)?s
i=0 j=1 1=0
1 s—=1 m
S. = 247r717j7l71(7j71aijl*7j+1ai,j+2,l)2-
i=0 j=0 I=1

Proof. We will first prove a bound for u, in case v € Z(Q). Using Lemma
5.2 and (28), we see that the sums in (28) can be decomposed into four parts

r s—2m-—2 r o s—2 m s

=Y ST Y LY TaY Y %

i=1j=0 1=0 =1 j=0l=m—1 i=1 j=s—1 1=0 i=1 j=s—1l=m—1
= A+ By + By + D.

_|_

Using (28), we immediately have
2
A< o2
We next consider By and note that B; consists of just two terms in [, for

l=m—1 and [ = m. We first consider the term for [ = m and suppose that m
is odd. We can write, for ¢ and j fixed,

(’ijl')/mflaijm - 'YjJrl'melai,jJrQ,m)

m—3

I
M)

[—(Vj—1721@5,5,2041 — Vj+17210i,j+2,2141)
1=0
Yi—1721+205,5,214+3 — ’Yj+1’>’21+2az',j+2,21+3)]

(
+  (1-1Gi51 = V410 4+2,1)-
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Taking the square of both sides, we obtain

2
(’ijl')’mflaijm - ’YjJrl'melai,jJrQ,m)

m—3
2

< (m-—-1) Z [—(Vj—1721Gi,5,2041 — V4172005 j+2,21+1)
=0

+ (’Yj71’72l+211¢,j,2l+3 - ’Yj+172l+2&i,j+2,21+3)]2

+ o 2(7-10i 51 = Vi1 +2,1)°

The term for [ = m — 1 can be bounded in a similar way: for odd m, we obtain

2
(7j—17m—2ai,j,m—1 - '7j+1'7m—2ai,j+2,m—1)

m—3
2

< (m=1) > [=(Vi172-16i 2 — Vi1 V21-18i 12.21)
1=0
+ (UG-17204100 52142 — ViH1V2041G 42,2142)]

+ 2(7j-10i 5,0 — Vi+10ij4+2,0)°.
Analogous expressions can be found for even m. Using (28), we obtain

r s—2 1

By < Cmllve]l? 5+ C Y D0 4519 ¥m—1 (Y-18i0 = Vir1aig+20)°
i=1j=01=0
In a similar way, we also find
2

T 1 m

By < CSHUIHEQ +C Z 45— 1Ys— 1 (V1@ 1 — Vi41@igi42)>
i=1 j=0 1=0

We finally consider the last term D and note that D consists of four terms in
jandl, for j =s—1,s and Il = m — 1, m, which can be bounded as before, by
employing one telescoping series for j and one for [. We obtain

D< C’sm||vm||§@

T 1 m-2

+ sz Z Z 451 Vs 1N (V1@ g1 — V410 g i42)*

i=1 j=0 1=0
r s=2 1
+ Cs Z Z Z Ay 17 Ym—1 (V1@ g1 — V410 12.0)°
i=1 j=0 =0
T 1 1
O D eyl
i=1 j=0 =0

We note that the corresponding bounds for u, and u. can be found by permuta-

tions of the indices. Inequality (39) can be found by noticing that, if v € Zp(Q),
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we have
ai;;;=0, 0<j<1 or 0<[<I.

Inequalities (40) and (41) can be found in a similar way. O

Lemma 5.4 Letv € IO(Q) and u = I, s mv. Then

m
luyl2g < Crmlolg+C ™ oy, (12)
s
[l < Cralnllg+C 2 oldrs. (1)
4
ms
lul2g < Crmlul2o+C ™ ol (1)
4
sm
[l € CrafunlZ g+ ol (15)
2
ms
[y < Crmlol g+ ol o0rs (16)
2
sm
[l < Crsloall o+ € ol 0. (a7)
where
2 — 2 2
oll1)2,00,r2 = ||U||Hééz(Fi) + ||U||H342(F1)-

Proof. We only consider the terms in u,, in detail. Those in u, can be treated
in a similar way.

We immediately find (42) by using (29) and noting that v,_1 < C/r.

In order to prove (44), we need to bound

s m—2

1
Sy = ZZ Z A%y 1%j -1 (V—1@ij1 — Vis1ai042)°

=0 j=1 (=0
s m—2

2
= Z Z 4yr_1Yj—1n(Vi—1G0j1 — Vi4100,5,1+2)
j=1 1=0
s m-—2

+ Z Z 41V (M—1a151 — Yi4101,5,042)°
j=1 1=0
=: Sp+ 5.

We first consider Sy. Recalling that v,_1 < vj_1, for j < s, we can write
m—2 s

Yr—1
So < 4; > WD i1 (160 — Yir160,4.012)% (48)
s—1 3
=0 j=1

We next set, for a fixed [,

A= i21(M=10051 — Vi+100,5,1+2)
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and denote J = J(I) < s the index j such that

A= gmax 4}

We first assume that J is even. If A% > 0, then J > 2 since a;;; = 0 for
0 < j < 1. Noting that Ay = 0, we can then write

J—2

2

Ay == (Agj — Agjpa),
7=0

and bound A? by

]72

A% < J
J = 5 [(723‘—1%—1%,2]‘,1 - 72j—17l+1a0,2j,l+2)
7=0
2
- (72j+17l71a0,2j+2,l *72j+171+1ao,2j+2,l+2)] :

Using this bound and (48), we find

Yoo
=4 Z s Ajq)

Ys—1
.1—2
< 4’77" 1
> E %S— E 723‘—171—1&0,2]‘,1—72j—171+1a0,2j,l+2)
Vs—1
7=0
2
(72]+17171a0,2j+2,l - 72j+1’n+1ao,2j+2,z+2)]
~ m—2 o)
r—1 2
< 25 > s> wl(yo1-100,50 — V-1W4180,4042)
S 1=0 j=0

('Yj+17l71a0,j+2,l - ’Yj+171+1ao,j+2,l+2)]2,
and, using (30),

S0 < 5 )2
0> 7”“”0,1‘;-

We note that, in case A?, = 0, this bound trivially holds. The case of J odd can
be treated in a similar way.

Using a similar bound for S, we find (44).

Using now (42), (44), and an interpolation argument between the spaces
L*(T*) x L3(T'%) and Hg(T'") x H}(I'%), we find (47); see the proof of [8, Th.
3.5] for more details. [

The following corollary is a straightforward consequence of (46), (47), Lemma
5.4, the trace theorem, and the Poincaré inequality.
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Corollary 5.1 Letv € IO(Q) and w = I, s mv. Then

IN

Crmoylly o +C — Iv (49)

luy 2 4

IN

lusl2y < Crslosl g +C T of? (50)

We are now ready to give a bound for the case of a general element in 7%.

Lemma 5.5 Letv € HY(K), with K = (21,72) x (—=1,1)2. Suppose in addition
that v vanishes on all OK except on I'Y and I'. Then there exists a constant
C > 0, independent of v, r, s, m, and K such that

| s mv|iK <C (max{sm, rm,rs}t+ ? max{s,m}) |’U|3K.
If, in addition, r =s=m =k > 2, then
I wvli,x < Chloly k.
Proof. We first note that, since Zo(Q) is dense in H(Q), (39), (49), and (50)

also hold for v € H(Q). R
Let now h := (z2 — 21)/2. Then, Fk : Q — K is given by

x hey T2
_ 2
vl = ]
z z
If ¥ := v o Fk, we have

19115 5 = Plvald o 1Trsm®)zll} 5 =PI )2 lf 1
195115 6 1(Zr,s,m)3l5 6 —H( L m)ylld
1o:15. 5 = llv- 1(Zrs,m )15 —H(er )= 116, -

In addition, we have
1
|U 1.0 > |U|1 K-
Q h
Inequalities (39), (49), and (50) then give

M )5 < Csmhlval k.
2
_ ms _
Wm0yl e < CrmhHlull i + C == h7" ofi k,
2
_ sm= . _
W) N6 < Crsh™Ho:ll§ g +C—=h ol
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which concludes the proof. O

We are now ready to prove Theorem 5.1:
Inequality (12) is a direct consequence of Lemma 5.5. We then note that,
since the pressure space Sg _2’0(6:2, Tr) consists of discontinuous functions, it is
enough to prove (13) on a single element K € T;. Let p € SS_Q’O(Q,Tf) and

v e HL(Q)3. We have
(V ! vap)K = 7(1)5 vp)K + (U : nvP)@K-

Since Vp and p are polynomials of degree k — 2 on K, using the definition of
I, we find

(V : U,p)K = 7(Hkvv Vp)K + (Hkv : nvp)aK = (V : (Hk’l)),p)[{,

which concludes the proof.
We conclude this section by stating a corollary that will be useful to prove
the stability of edge patches.

Corollary 5.2 Let v € H}(K) and
K = (z1,22) x (y1,92) X (21, 22). (51)
Then, there exists a constant C, independent of v, r, s, m, and K such that
|Ifs,mv|iK < C (max{sm,rm,rs}) |v|iK.
If in addition r = s=m =k > 2, then
|Ilg,<k,kv|1,K < Cklvl1, k.

and
(V-v,p)k =(V- Ilg,(k,kvap)Kv pE S(])C_Q’O(K)-

We note that for v € Hj(K), I}, ,v is the operator introduced in [14].

6 Edge patches

An edge patch is given by a mesh 7. of the form (6). For this patch, we prove
that the inf-sup constant vy depends on o, but is independent of n and the
aspect ratio of 7Te.

In our analysis, 7. plays the role of macro—mesh. We first prove the stability
for low order spaces defined on 7, by employing the two—dimensional result for
corner patches 7y, in [9, Sect. 4]. Using then Corollary 5.2, which provides a
Fortin operator for an element anisotropically stretched along three directions,
we prove the stability for higher order spaces on the single elements of 7.
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We first recall the two—dimensional result proven in [9, Sect. 4]: there exists
a constant C, depending on o, but otherwise independent of the number n of
layers in the geometric mesh 7T, such that

inf sup Vevps ooy (52)

0#p€Sy " (5, Tay) 0£vESY ! (S, Tay)? |U|1,S HpHo,S
Condition (52) is equivalent to the existence of a linear operator
0,0/4 2,1/ 4
Tay 5o (9, Tay) — g7 (S, Tay)?,

such that
(vzy : (ﬂ-zyp)ap)g
|7rmyp|17é’

2
Clpl? 4.

53)
12l (

We have the following trivial result
Lemma 6.1 The spaces Sg’o(g, Tzy) and Sg’O(Q, Te) are isomorphic. We have
1912 & = 211125,

forallp € Sg’O(Q,’E). In addition, p € S%°(Q,T;) belongs to Sg’O(Q,’E) if and

only if
/pdw = 0.
s

We next need to build a low—order velocity space which is stable on 7.. We first
decompose a three—dimensional vector v € S?, (@, 72)? into a component in the
zy—plane and one along the z—direction:

V= (Vgy,Vz), Upi=U-€y Ugyi=0—0;€,,

with e, the unit vector parallel to the positive z—direction. We then define an
operator Iy : S(Q)’l(S,’Ey)2 — S§’1(Q,72)3, such that u = Iy v is given by

Upy = (1 = 2%)v, u, =0.
Let Xy := Range(Iy) C Sg''(Q, T2)?. We have

Lemma 6.2 The spaces Sg’l(g, Tay)? and Xy are isomorphic. There exist two
constants c¢1 and Cs, such that, for v € Sg’l(S,sz)Q,

01|v|i§ < |IVU|?,Q < C’2|v|i§.
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Proof. Let u = Iyv, with v € Sg' (8, T2,)?. We have

|u|fQ = /Idz/g|V((1ZQ)v(:c,y))|2d:17dy.

For the upper bound, we can write

|u|?@ S 2/d2/ ((1 - z2)2|vmyvl2 +422|’U|2) dl’dy
’ I s

< c/ (IVayol? + o) dady < Colof? ¢
i ,

where, for the last step, we have used the Poincaré inequality for functions in
H}(S). The lower bound can be proven in a similar way. O
We are now ready to prove the following result.

Lemma 6.3 There exists an operator
™ 850NQ ) — SN QL T,

such that
|7TP|1,Q

2
Clpl? o,

’ (54)
HpHO,Qa

>
<

where C' depends on o, but is otherwise independent of n and the aspect ratio

of Te.

Proof. In order to define 7, we use the two—dimensional operator 7;,. Given
peSIQ,To), u=mpe Xy is defined by

u = Iy (myyp) = ((1 — 2*)mayp,0).

We note that 7 is well-defined due to Lemma 6.1.
In order to prove the first inequality of (54), we write

(V- (7p).p)g = /(1 —2%)dz / Vay - (ayp) pdzdy
I S
4
= (Y ) )5 2 Il > Cll,
where we have used (53) and Lemma 6.1.
For the second inequality of (54), we use Lemmas 6.1 and 6.2, and (53), to
obtain

Impl? < Clmeypl? ¢ < Cllpl2 5 < Clipl2 -

O

We are now left with the task of proving the divergence-stability for the
spaces Se'(K)3 and Sp~2(K), for K € T,.
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Lemma 6.4 There exists a constant C' independent of k and the diameter and
the aspect ratio of K € T., such that

nf qp | Vo UPE

—1
R e
0#pESy N (K) ozvest (k)3 IVILE IIPI0K

Proof. We first note that every K € 7. is of the form (51). The existence
of a Fortin operator IX, , : HL(K)®* — Sg''(K)?® that satisfies Corollary 5.2
and the inf-sup condition (3) for the continuous spaces ensure that the inf-sup
condition for the discrete spaces Sy'' (K)3-S§~%°(K) holds with a constant yy
that is bounded from below by Ck~!. O

Lemmas 6.3 and 6.4, and the macro—element technique then allow us to
prove the divergence stability of the edge patch.

Theorem 6.1 Let 7. be an edge triangulation with grading factor o and n
layers. Then, there exists a constant C, that depends on o, but is independent
of k, n, and the aspect ratio of T, such that

V-v,p)s
inf sup g
0#£peSy > (Q.Te) 0£vesEt(Q,7.)3 |U|1,QHPH0,Q
Proof. 1t is enough to use Theorem 4.1 with 7 =7, and 7,,, = 7T.. O
We note that the dependency on the grading factor o only comes from the
constant C' in (53). Consequently the constant in Theorem 6.1 has the same

dependence on ¢ as in the two—dimensional case. The analysis in [1] and the
numerical tests in [9, Sect. 3.1] show that

C=C(o >C\/ (1-o0).

>Ck™ !, (55)

7 Corner patches

A corner patch is given by a geometric mesh 7., with grading factor ¢ and n
layers. For this patch, we prove that the inf-sup constant v depends on o, but
is independent of n and the aspect ratio of 7.

In our analysis, we generalize the result in [9, Sect. 4] for two—dimensional
corner patches.

We first need to introduce a low—order velocity space Eé’l(Q,’Eﬁm) on the
corner macro—mesh ¢ .

Sy (Q, Teom)® € Ly (Q, Toom) € Sa™(Q, Tom)®.

Given an element K € 7., such that, K = FK(Q), we introduce some no-

tations associated to its faces. Let the faces of Q perpendicular to the z—axis
be

Iy {@:4}x( 12,
'Y = {&=+1}x (—1,1)2.
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The two other sets of faces f‘z ,for j =y,z and i = 1,2, are defined in a similar
way. Let Fg, for j = x,y,z and i = 1,2, be the corresponding faces of K and
n;,; the unit vectors, which are perpendicular to them, pointing outward.

To the two z—faces of Q, f‘f, 1= 1,2, we can associate the two functions

Gog = (1=2)-1+9A—-9) Q+2)(1-2),

respectively. We note that, ¢, for instance, vanishes on all the faces except

on f‘f and, when restricted to this face, is a polynomial in QQ,. The functions
dj,i, for j = y,z and i = 1,2, associated to the other faces can be defined in a
similar way by suitable permutations of the indices.

We now define, for j = x,y, z and i = 1, 2, the vector functions

wji =15 (G500 Fi') € Qq(K)?,
and the local space
LYEK) == Qi (K)® © span{w;;;  j=,y,2 i=1,2},

The corresponding global space is
£51(Q. Tem) = £51(Q) 1= {v € HHQ) vy € LK), K € Tom }-

Before proving the divergence stability for the low—order spaces L',Cl)’l (Q, Teom)
and 8’8’0(@, Te,m), we need to introduce a Clément—type interpolation operator
for the three-dimensional irregular mesh 7. ,,. We begin by introducing some
notations for the corner macro-mesh 7. ., = 7.7, refined towards a vertex, e.g.,
V= (1,1,1).

The corner macro—mesh 7,7 can be constructed recursively. This is illus-
trated in Figure 4. Let 7%7 = Q. Then, 7.1, is obtained by partitioning 727
into eight elements by dividing its sides in a o:(1 — o) ratio. Let

TJ,Z ={Q1, 1 <i<8},

with {251 denoting the element that contains V. At the next refinement level [ =
2, we partition (g ; into eight parallelepipeds in a similar way. The final mesh
T is obtained after [ = n refinement steps. At an intermediate refinement
level 1 <[ < n — 1, there are seven new parallelepipeds introduced at level [
that do not touch V:

{Qis, 1<i<7y, 1<i<n-1.

For [ = n, let
{Qi,na 1 S 1 S 8}a
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{Qj1 }

{Qi2}
{Qin}

Figure 4: Recursive construction of an irregular corner mesh 7 .

be the new eight parallelepipeds obtained after the last refinement. We remark
that the {Q;;, 1 <i <7, 1 <n} are disjoint and that

We next consider the linear space Sé’l(Q, T257). It is spanned by the n nodal
basis functions {¢;} associated to the regular nodes {F;, 1 <1 < n} of 777,
We note that P, is the node that is common to the elements {€;,, 1 <i <7}
at level [; (see Figure 4) and that

Oy = supp{d} = (Uzzl ﬁu) U (Uzzl ﬁi,m) , I<i<n-—1,

O, = supp{qﬁn} = U§:1 Qi,n-

Let finally £(7.";7) be the set of all faces e of the elements in 7,7 and, for
e € E(T ), let he be the diameter of e.
Our Clément type operator is then defined in the following way.

Definition 7.1 Given u € H}(Q), let

Tu := Zal o€ Séﬂl(Q’ﬁﬁf)’

=1

where
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and |Oy] is the volume of O;.

The following error estimate holds; see [9, Prop. 4.5] for the corresponding
two—dimensional result.

Lemma 7.1 There exists a constant C, that depends on o but is otherwise
independent of T',7, such that

Yo onlu-Tuli g+ Yo fu-Tufe+ Y b u—Tulf. < Cluf .
KeTlw KeTlhw ec&(TI)

Proof. Given an element K = €;;, of diameter hg, let wg be the union of
the supports of the basis functions {¢;} associated to its nodes. We note that
there are at most two such functions. We then have

K|
ITulf e <2 > lalloillge <2 D o lulfo, <2 > lullgo, < 4llullfw,
ODK O DK ! ODOK
(56)
We now define
U:=u— |wK|_1/ udx.
WK
Using (56), we can write
lu—Tullo.x = [|[& = Ttflo,x < 3|Elo.wr-

Since the diameter of wg is comparable to hg, using the Poincaré inequality,
we obtain
lu — Tullo,xxr < Chrlit1,wy = Chiclul1wg, (57)

with a constant C' that only depends on the shape of wg, and thus on ¢ but
not on hg.
Using an inverse estimate on K, we can write

[Tul,k = [Tal1,x < Chy! | Tallo,x < Chi ([@llo,wic + 1 — Tallo,r)-
By applying the Poincaré inequality on wg and (57), we obtain
|IU|1,K S C|u|1,wK7 (58)

with a constant that only depends on o.
We are now left with the bounds for the face contributions. Given a face
e C 0K, we can use a trace estimate and obtain

hellu = Tullg . < C(hillu = Tullg ¢ + |u = Tul? k).

We note that the constant C' depends on the aspect ratio of K, and thus on o,
but not on hg. Using (57) and (58), we find

hetllu = Tull o < Clulf (59)
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The proof is concluded by using (57), (58), and (59) and by summing over the
elements. 0O
For the macro—mesh 7.)%7, we are now ready to prove the following result.

c,m >

Lemma 7.2 There exists a constant C, depending on o, but otherwise inde-
pendent of T, such that

,m

V- U, D)o
inf sup 7( o >C. (60)
0£peST QT overtt Q7 VL lIPlloo

Proof. The proof is similar to [9, Th. 4.9] and presented it here for complete-
ness.

We first need to define some local spaces associated to the patches {O;}. For
1 <1< n, we set

S%0(Or) {pe L2(0)] p € Qo K C O}
Ly (O) {ve HYNO)?| v, € LYK), K C O}
Nl = QO(Ol)a

and consider the orthogonal decomposition

SO’O(Ol) =N oW, (61)

We then define £(0;) as the set of all interelement faces in O; and £,(O;) as
the subset of £(O;) of faces that do not have hanging nodes in their mid—point.
Analogous definitions hold for the global sets £(7.,7) and &(7."7).

On each patch O, we define a mesh—dependent seminorm by

= Y ke [lblPds pestoo.

ecéy (Ol) €

where [p]. is the jump of p across a face e. The global seminorm is defined by

i S b [k,

e€€o(Tlh7)  °°
A scaling argument gives, for p € Wj,

(V-v,p)o,
sup —_—

>7 |p|(’)ja (62)
0£veLy(O)) lvh,0,

with 4 depending on the shape of O, and thus depending on ¢ but not on h or
l.
Given p € Sg’O(Q,ﬂ?,;‘;), we set py = pjo, - According to (61), we have the
decomposition
n=c+q,
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where ¢; € N is constant and ¢ € W;. The stability condition (62) implies
that, for each ¢; there exists v; € Lé’l((’)l), such that

(V-u,q)o, > 'ﬂQll?Ql’ |Ul|1,oz <lalo,
and therefore

(V-oup)o, = Aol viho < Ipilo,-
If we define v := )"} | v, we have

n

n n
(V-u,p)o=> (V- u,p)g=> (V- u,po sz%lzcmli,
=1 =1

and

[0]f 5 < Z [ulf o < Cloul,
which are equivalent to

(V-v,p)g
sup _—

: > C1lpla- (63)
0£veLY (Q,TIHT) vly0

We now show that we can replace the seminorm with a norm in (63). The
continuous stability condition (3) ensures that for p € Sg°(Q, T2 ) there exists

ve H} (Q), such that
(V-0 = 2 g 10 o < Ipl2
We define u € Sy (Q, T.%2,)® by
u; = Iv;, 1=wz,y,2

Using integration by parts over the elements, Cauchy—Schwarz, and Lemma 7.1,
we find

(V uvP)Q = (v ’ (’(,L*’U),p> y + (V 'va>Q

> 2 [t s+l

e€& (T )
1/2
> = > htu—vlge | lple IRl ,
ecE(Tm)
h
> l2, <c3_02 i )

Ipllo.0
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Since |u[, 5 < C|lplly g, we have

(V-u,p)s
sp P e e B ) (e

oruect @z Ul Ipllo,¢

Combining (63) and (64), we then have

(v 'va) 9

< > |lpllg,o min f(2),

su
p o

0#veLl M (Q, TS vly.0

with ¢ := |p[a/|[pllg.o and f(t) := max{Cy — Cst,C1t}. The proof is concluded
by noticing that min;>q f(t) = (C1C4)/(C1 + C5) > 0. O

We then obtain the following stability result for corner patches, by using
Lemma 7.2 and noticing that the anisotropically refined elements in 7.7 are
particular face and edge patches.

Theorem 7.1 Let 7. be a corner patch with grading factor o and n layers.
Then, there exists a constant C, that depends on o, but is independent of k, n,
and the aspect ratio of T, such that

V-v,p)s
inf sup V-v.plg > CkL. (65)
0peSE 0@ Te) ovest @7 [V10lIPlloo

Proof. Tt is enough to use Theorem 4.1 with 7 = 7. and T, = Tem. O

8 Stability of geometric edge meshes

We now consider the case of geometric edge meshes 7 = 7 d’gae, introduced in
Section 3.2. In a similar way as before, we employ a macro—element technique,
described in Figure 2.

At the top level, we have the shape-regular macro—mesh 7,,, which is suc-
cessively refined, either isotropically, or anisotropically towards an edge (second
level, left) or a corner (second level, right). The divergence stability for the
shape-regular macro—mesh at the top level and the isotropically refined patches
is proven in [14]. We then need to prove the stability of the single patches for
the higher order spaces.

8.1 Edge patches

For an edge patch, the same analysis for the case of a boundary layer mesh in
Section 6 can be carried out here. Indeed, an edge patch is given by a mesh
7. of the form (8), where the two-dimensional triangulation 7, is an irregular
corner mesh, with grading factor ¢ and n layers. The following theorem holds.
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Theorem 8.1 Let 7. be an edge triangulation with grading factor o and n
layers. Then, there exists a constant C, that depends on o, but is independent
of k, n, and the aspect ratio of Te, such that

V-v,p)s
inf sup V-0.plg. > Ck™ (66)
0#pESE 20(Q.T) ovest (@7 [V11.0lIPlloo

Proof. We use a macro—element technique; 7T, itself plays the role of macro—
mesh. The stability for the low—order, two—dimensional spaces Sg - (S , Tay)? and
S0°(8, Tsy) is proven in [9, Sect. 4]. Then, there exists an operator m,, that
also satisfies (53), with a constant C' that only depends on o. Using 7, we can
prove Lemma 6.3 in exactly the same way as for boundary layer meshes, and this
ensures that the low—order spaces Sg’l(Q,’E)Q and Sg’O(Q, T.) are divergence
stable, with a constant that only depends on ¢ but is otherwise independent of
n and the diameter and the aspect ratio of 7e.

The existence of a Fortin operator that satisfies Corollary 5.2 and the inf-
sup condition (3) for the continuous spaces ensure that the inf-sup condition for
the local spaces Sg’l(K)ng*Q’O(K) holds with a constant yy that is bounded
from below by Ck~!, and is independent of the diameter and the aspect ratio
of K € 7.

The proof is concluded by applying Theorem 4.1 with 7 = 7, and T, = Te.
a

8.2 Corner patches

For a corner patch, the analysis is similar to that in Section 7. A corner patch
is given by a mesh 7. obtained by refining an initial irregular corner mesh 7T ,
towards the edges only. The following theorem holds.

Theorem 8.2 Let T, be a corner patch with grading factor o and n layers.
Then, there exists a constant C, that depends on o, but is independent of k, n,
and the aspect ratio of T, such that

V.-u,p)s
inf sup V-oplg > Ck L (67)
0£p€S; Q. Te) 0£vesE 1 (Q,Te)? lvly g llpllo.o

Proof. We use a macro—element technique with 7 ,, as macro-mesh. The
macro-mesh 7 ,, is the same as in the case of boundary layer meshes and,
consequently, Lemma 7.2 holds.

The proof is concluded by noticing that the anisotropically refined elements
in 7¢,m are particular edge patches and by using Theorem 4.1 with 7 = 7. and
Tm = 7—c,m- 0
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