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1 Introduction

The origins of Galerkin methods for the numerical solution of initial value ODEs can be traced
back to the seventies. In 1972, Hulme [8, 9] introduced and analyzed such methods with continuous
approximations. The first analysis of a Galerkin method for ODEs with discontinuous approxima-
tions, the so-called Discontinuous Galerkin (DG) method, seems to be contained in Lesaint and
Raviart [11]. Generalizations of this method has been proposed by Delfour, Hager and Trochu [2].
The DG method is an implicit single-step scheme which allows for arbitrary variation in the time
step At as well as in the approximation order r. Despite the underlying Galerkin approach, the
DG methods of order r correspond to the first subdiagonal Padé approximations of the function
exp(At) and, hence, are equivalent to certain implicit schemes of Runge-Kutta (RK) type [11].
For recent developments of the DG time-stepping method we mention here the papers of Bottcher
and Rannacher [1], Estep [3] and Johnson [10] where issues such as optimal order error estimates, a
posteriori error analysis and adaptivity have been addressed. DG methods have also been applied
successfully to partial differential equations and, especially, in the context of parabolic problems
a series of important papers has been written by Eriksson, Johnson, Thomée and their coworkers
(we refer here only to the recent monograph [18] and the references there).

The known error analyses, however, are mainly concerned with the so-called “h-version” of the DG
method where convergence is achieved by decreasing the time step At at a fixed approximation
order r. For solutions depending smoothly on ¢, this A-version approach yields asymptotic error
estimates of the form CA¢"*!. Error bounds that are explicit in the order r as well, i.e., where the
dependence of C = C(r) on r is given explicitly, do not seem to be available in the literature. Such
bounds are not known either for the corresponding RK schemes.

Typically, exact solutions of initial value problems become very smooth (in many cases even ana-
lytic) after a possibly non-smooth initial phase. This behavior suggests that concepts from the p-
and hp-version of the Galerkin method can also be applied in the time integration of ODEs (see
[17] for a survey on p- and hp-methods). In this context, the “p-version” approach is to increase the
approximation order r on fixed time time steps, whereas the “hp-approach” combines judiciously
h- and p-refinement techniques. In [15], such hp-concepts have recently been applied in the DG
time discretization of linear parabolic problems.

In the present work we introduce and analyze the hp-version of the DG method for a class of
non-linear initial value ordinary differential equations. We derive a-priori error bounds that are
completely explicit in the time step A#, in the approximation order r, and in the regularity of the
exact solution. While these estimates allow us to recover the optimal convergence rates in At, they
also show that the DG method converges if the order + — oo and the time steps are kept fixed. We
are able to prove that this p-version DG approach gives spectral accuracy for solutions with smooth
time dependence, i.e., the convergence rates are of arbitrarily high algebraic order. Moreover, for
analytic solutions, the convergence is even exponential. In conjunction with geometric time steps
and linearly increasing approximation orders, we show that the hp-version of the DG method can
approximate piecewise analytic solutions exhibiting start-up singularities at exponential rates of
convergence.

The outline of this paper is as follows: In Section 2, we describe the DG method and prove the



existence of discrete DG solutions. Section 3 is the main part of this paper. It is devoted to the
hp a-priori error analysis of the DG method. In Section 4 we perform some numerical experiments
that verify our theoretical results and in Section 5 we end with concluding remarks.

Throughout, standard notations and conventions are followed: We denote by (-,) (respectively by
|- ) the Euclidean inner product (respectively the Euclidean norm) in R%. We write LP(I;R%),
1 < p < oo, for the Lebesgue spaces of functions I — R?. The norm in L (I; R%) is denoted || - ||.
WkP(I;R?) are the Sobolev spaces of order k € Ny equipped with the usual norms || - [ or(rsme
and seminorms | - [yykp(;re). The fractional order spaces W*P(I; R%), s > 0, are defined via the
K-method of interpolation. We set H*(I; R?) = W*2(I;RY). P"(I;R?) is the set of all polynomials
of degree < r with coefficients in R%. We denote by ¢,d,C,D,C;,Cs,... generic constants not
necessarily identical at different places, but always independent of the parameters of interest (such
as time steps and approximation orders).

2 The Discontinuous Galerkin Method

In this section we introduce the DG method and prove the existence of DG solutions provided
that a certain “CFL condition” is obeyed. It turns out, however, that this condition is completely
independent of the approximation order.

2.1 DG Discretization of Initial Value Problems

Let J = (0,T) for some T > 0. For a given continuous function f : J x R¢ — R?% and a vector
up € R? we consider the initial value problem (IVP)

u'(t) = f(t,u(t)), ted, u(0) = uyp. (2.1)
Let the function f(¢,u) be uniformly Lipschitz continuous with respect to u, i.e.
1F(tw) = f(&0)| < Lljw =0,  woveR) te] (2.2)

for some Lipschitz constant L > 0. Under assumption (2.2) there exists a unique solution u : J — R?
of (2.1) which is continuously differentiable.

Let now M be a partition of J into N time intervals {I,}Y_, given by I, = (t,_1,t,) with nodes
0=ty <t1 <...<ty_1 <ty :=T. ky is the length of I,,, i.e. k, :=t, — t,_1. We set further
k := max’_, k,. At the nodes {t,}Y ; the left- and right-sided limits of piecewise continuous
functions ¢ : J — R? will be important. They are defined as follows:

oy = lim_ oty +s), 0<Sn<N—1, @, = lim ot,—s), 1<n<N.

s—0, s> s—0, s>0

The jumps across the nodes are also of interest and are given by [¢], = ¢ — ¢, .
On M we introduce the space

C(M;RY) = {p € L*(J;R%) : ¢|r, is continuous and bounded}. (2.3)



Then the solution u of (2.1) satisfies

N N
3 /I (W'(8) = F(t,u®), o)t + 3 ([l 107 1) + (o 00) = (orgd)  (24)
n=1 n

n=2

for all p € C(M;RY).

We assign to each time interval I, an approximation order r, > 0 and store these elemental orders
in the vector r := {r,})_,. We set |r| := max?_, r,,. The tupel (M, r) is called an hp-discretization
of (2.1).

In the DG method the continuous space in (2.3) is replaced by the discrete space

VM, r:RY = {p € L2(J:RY) : |5, € P (I,;RY), 1 <n< N} (2.5)

If r, = r in each time step I,,, we simply write V(M,r; R?).

We set also N = NRDOF(V(M, r; R?)) := 227:1(7% +1) for the number of degrees of freedom of the
time discretization. Since the DG method amounts in each step I, to the solution of a stationary
problem of size r, + 1 (see (2.6) ahead), the number N can be viewed as a crude measure for the

cost of the discretization.

Definition 2.1 The Discontinuous Galerkin (DG) Method for the IVP (2.1) is:
Find U € V(M,r;R?) such that

N N
Z/I (U'(t) = F(EU®), (0)dt + Y ([Uln-1, 05 1) + (Ug',05) = (w0, o)
n=1"""

n=2
for all ¢ € V(M,r;R?).

Remark 2.2 The DG method can be interpreted as a time stepping scheme: If U is given on the
time intervals Iy, 1 <k <n — 1, we find U|;, € P™ (I,; R?) by solving

/1 (U'(t) = f(&U @), e@)dt + (U1 on_1) = Upliion_y), @ € P (I RY). (2.6)

Here, we set U, = uy.

Remark 2.3 In practice, the integrals in (2.6) have to be evaluated by numerical quadrature
which introduces additional quadrature errors. In order to concentrate on the discretization of the
differential equation only, the impact of numerical quadrature is not considered in this paper and
has to be addressed in future work. We note that, by the use of interpolatory quadrature rules of
Gauss-Radau type, (2.6) coincides with certain RK methods [11]. In this context we mention also
[12] and the references there where fast integration techniques are presented for hAp-methods.



2.2 Existence of DG Solutions

The DG method amounts in each time step to the solution of a nonlinear system of the form (2.6).
It is well known that this system is uniquely solvable provided that the “CFL” condition

E<c-Lt (2.7)

is satisfied for some sufficiently small constant ¢ > 0 (see, e.g., [1, 3]). An analogous condition is
encountered for implicit RK methods (see [5, 6]). In the hp-context, however, the dependence of
the constant ¢ on the approximation orders r has to be clarified as well. This will be done in the
present section. We start with the subsequent lemma:

Lemma 2.4 Let I = (a,b) and k =b—a > 0. There holds

b d b b
[ vewitar < g3 wwan? 5 o= 06 - o (2.9

for all p(t) = (p1(t),... ,0a(t)) € P"((a,b);R?), r € Ng. (This estimate is in particular indepen-
dent of r.)

Remark 2.5 Estimate (2.8) is a kind of a weighted Poincaré inequality and does even hold for
more general classes of functions (e.g., for (p1,...,0q) € H'((a,b);R?)). However, we need this
inequality only for polynomial functions and the extension to other function spaces is straight
forward.

Proof: Up to summation it is enough to show (2.8) componentwise and therefore we may assume
d = 1. We consider first the case I = (—1,1). We denote by L;, i > 0, the usual Legendre
polynomial of degree i on I and develop ¢, ¢’ into the series

r r
o(t) = a;Li(t), o) = a;Lj(t).
1=0 1=1
There holds 2ay = f}l ©(t)dt. Since
1 1 cy.
i 25(7 +1
/ Li(t) Ly (t)(1 — t2)dt = j(j + 1)/ Li(t)L;(t)dt = Maﬁ
-1 -1 25 +1
for i,j > 1, the {L.} are orthogonal with respect to the measure (1 — t?)dt. We get

! 2 2 ! 2 - 2 ! 2 2 2
/ S 21—t )dt+(/ o(t)dt) :;ai /_IL;(t) (1= 2)dt + 402

—1 -1
r 1 r 1 1
:Za§¢(¢+1)/ Li(#)2dt + a2 222%2/ Li(t)Zdt:2/ o(1)2dt.
i=1 -1 i=0 -1 -1

This proves (2.8) in the case where I = (—1,1). If I = (a,b), the assertion is obtained by scaling
(a,b) back on (—1,1) via the transformation @ : (—=1,1) = (a,b), 7~ t =a + £(r +1). O

We hayve:



Theorem 2.6 Let (M,r) be an hp-discretization of (2.1) with kL < 1, i.e. satisfying (2.7) with
¢ = 1. Then there exists a unique DG solution U € V(M,r;R?). (In particular, this ezistence
criterion is independent of r and the dimension d.)

Remark 2.7 The result in Theorem 2.6 shows that the constant ¢ in (2.7) can be chosen completely
independent of the approximation orders r. In this sense, it extends the hA-version results of e.g.
[1, 3] as in the approaches there ¢ is growing for increasing approximation orders.

Remark 2.8 If r,, > 1 on time step I, the local problem in (2.6) is even solvable for &, L <
as can be inferred from the proof of Theorem 2.6 below.

Proof: Given the initial value U, ; (with U; = uo) it is sufficient to show that the problem (2.6)

on time step I, has a unique solution Ul;, € P™ (In; R%). To do so, we define for U € P (I,; R%)
the polynomial U = TU € P (I,,; R?) as the solution of

/I (U (1), ()t + (U 10t ) = (Un 1,07 1) + /I (T (1)), () dt (2.9)

for all ¢ € P (I, R%). (2.9) is a linear system of rp, + 1 equations in R¢ which is uniquely solvable
and hence TU is well defined. A fixed point U of T' (i.e. U = TU) is a solution of (2.6). We show
that the operator T is a contraction on P™ (I,; R%) for k sufficiently small and the assertion then
follows from Banach’s fixed point theorem.

To prove the contraction property, fix U V in P (I,; RY) and set U = Tﬁ, V= Tf/, W=U-V
and W = U — V. We have by definition of T" in (2.9)

/l (W', @)t + (W, 1,08 1) = /l (F0) = f(E V). 0)dt,  pe P (IuRY).  (210)

Remark that by integration by parts (2.10) is equivalent to

- / (W, @)t + (W7, 97) = / (F(6.0) = f(EV).o)dt,  pePr(IuRY).  (211)

Consider first the case where r, = 0: Selecting ¢ = W in (2.10) yields
W3, = Wi > < B LIW 5, [W i,
or
ITU — TV |1, <koL|U — V1, (2.12)

Hence, T' is a contraction for k,L < 1.



Assume now that r,, > 1: Selecting ¢(t) = W'(t)(t —t,_1) in (2.10) yields (since ;" | = (0,... ,0))

/ W12 = b 1)dt = / (F(.T) = F(L V), W) (E — b))t
In I

IN

L /I I NIt~ b 1)t

IN

and therefore

IW/IIP(t = ta—)dt < Lk | |W|%dt.
I In

Fix a component 7 € {1,...,d} and choose in (2.11) ¢ = (0,...,0,¢, —¢,0,...,0

with non-vanishing i-th entry. This results in (since ¢, = (0,...,0))

. Bl (b — o2
wani= [ g, tdt</fzdt /In<tn 2 dt)

where W is the i-th component of W and f;(t) = [f(t,U) — f(t,V)];. We get

. 2745 . NI274) 5
L(/In(t bu2) W] 2dt) (/Inu o) [ W] 2d2)

k3
(| Widt)> <=2 [ f2dt, i=1,....d.
I 3 Jr,
Summing over all components gives
d
i=1 Y1In I" =1
k3 n 2
= Hf (t,U) — f(t,V)]|?dt < L HWH dt. (2.14)
Applying Lemma 2.4, (2.13) and (2.14) ylelds
1< 1
/ WPt < = (] Wit)dt)* + / (tn = £)(t — to1) W' (1) |*dt
I kn, 4 I 2/
n i=1 n n
1 1
< X wawa? gk [ o)
moi=1 e
k2 L? k2L2 5k2L2
< (B [ =5 [ ipar
which is
N - 5 -
HTU - TVHLQ(In;Rd) S \/ngLLHU - VHLQ(In,Rd)' (215)
Thus, the operator T is a contraction for k;, < \/EL*I.
Referring to (2.12) and (2.15) finishes the proof. O



3 Error Analysis

In this section we derive our a-priori estimates. They are completely explicit in the time steps k,,, the
approximation orders r,, and in the regularity of the exact solution. From an approximation theory
point of view, the bounds are optimal in terms of the step size k£ and slightly suboptimal in terms
of the approximation order r. However, the estimates give spectral accuracy for smooth solutions
and exponential accuracy for solutions which are analytic on J. They enable us also to prove
exponential rates of convergence in the approximation of start-up singularities on geometrically
refined time partitions.

3.1 Preliminaries

We need the following inverse inequality:

Lemma 3.1 For I = (a,b) and any r € Ny, there holds

b
lellF < Clog(r + 1)/ le" (1% (t = a)dt + Cllp()|”

for all o(t) = (p1(t),... ,04(t)) € P"((a,b);R?). The constant C is independent of v, a, b and the
dimension d.

This estimate can not be improved asymptotically as r — oo, i.e., there s a constant C such that
for each v > 2 there exists @, € P"((a,b); R?) with o, (b) = f el ()2 (t — a)dt < C
and maxyeo |ior ()2 > Clog(r).

Proof: Since maxc(q,p) lo(t)]|? < Z?Zl MaX;e (q.p) @7 (t), it is sufficient to prove this estimate com-
ponentwise and we may thus assume that d = 1. Further, we assume r > 1 (the case r = 0 being
trivial).

We consider first I = (—1,1). Denote by Pi(a’ﬂ) the (a, 3)-Jacobi polynomial of order 7 on I. The
polynomials {Pi(o’l)}izo are orthogonal with respect to the measure (1 4 t)dt, i.e.

/PZ.(U’I)(t)Pj(O’l)(t)(l +t)dt = .i(sij, 1,7 > 0. (3.1)
T 141

We will also make use of the following relations (cf. [4, formulae 8.96])

2i+2P" ) = (+2P" @) - 6+ 1)P50 @),

d

1,1

P = 2P,
which yields

POV ) = (T () = L), (32



where {L;};>o are the Legendre polynomials on (—1,1) (note that L;(t) = pY (t)). If now

)

p € P"(I;R), we write ¢(t) = — ft ©'(s)ds + (1) and develop ¢'(t) into the series
r—1
= aP"Vt). (3.3)
i=0
Because of (3.1),
r—1
/ "(t)%(1 + t)d 2Za . (3.4)
I 1=0
Integrating (3.3) and using (3.2) gives then
r—1 1
o) = = o [ PO+ )
P t
r—1 @
= 3 O (L 0) ~ L) + ) (3.5
i=0
and
S~ 2ail o )
<2 - 20(1)°.
o0 <20 F 2600

The Cauchy-Schwarz inequality yields with (3.4)

r—1

1 942 9
p(t)? < 2(22.;1)(22.“)+290(1)2
1=0 1=0

< C(1+1log(r)) /b @' (t)2(t — a)dt + Cp(1)2.

This is the desired estimate on (—1, 1), the general case follows by a scaling argument.
To prove the optimality of thls estimate, let ¢/ (¢) be given again on I = (—1,1) by (3 3) with a; =

(—=1)"*1/log(r)"/? and set ¢, (t) = — ft ol (s)ds. Wlth the use of (3.4) we have [} ¢).(t)%(1+t)dt <
C. From (3.5), we get ¢ (— ) = 2/ log(r )1/2 Zl 0 z+1 > C'log(r)'/?. Therefore, maxcs @, ()% >
¢r(—1)% > Clog(r). This finishes the proof. O

Further, our error analysis is based on the discrete form of the Gronwall inequality which we review
here for the convenience of the reader. The proof can be found, e.g., in [19].

Lemma 3.2 Let {a,})_, and {b,}Y_, be two sequences of non-negative real numbers with by <
by < ...<by. Assume that for C > 0 and weights (k1,... ,kn_1) € Rffl there holds

n—1
a1 < by, angbn—l—CZkiai, n=2,...,N.
=1

Then we have ap < by exp(C 17 ki) forn=1,... ,N.



3.2 An Abstract Error Bound
We introduce the projector II" which is also used in h-version approaches (see [1, 18]).
Definition 3.3 Let I = (—1,1). For u € L®(I;R?) let the polynomial II"u € P (I; R?) be defined
by

Mu(+1) = wu(+1), (3.6)

/(H’"u,q)dt = /(u,q)dt, Vge PrY(IRY)  (if r>0). (3.7)
1 I

Lemma 3.4 II" in Definition 3.3 is well defined. If u = Y2 u;L; is the expansion of u into
Legendre polynomials {L;}, we have the unique representations

r—1 00 00 00
Mu = ZUiLi + (Z ;) Ly, u—1I"y = Z u; Ly — ( Z u;) Ly. (3.8)
=0 i=r i=r+1 i=r+1
Proof: The proof can be found in [15]. O

On an arbitrary interval I = (a,b) of length k& = b — a we define the projector II} as IIju =
" (uo Q)o@ ! where Q : (—1,1) — (a,b) is the linear transformation 7 +— t = 1/2(a + b + 7k).
For the exact solution u of (2.1) the interpolant Zu € V(M,r;RY) is defined intervalwise as

Tuly, = U} u, n=1,... ,N. (3.9)

If U is the DG solution in V(M, r;R%), it can be seen that the difference 7 := Zu — U satisfies

/I (s o)t + (1, ) = / (f(tu) — F(6T) )it + (s ) (3.10)

for all ¢ € P (I,,; R?). Equivalently,
- [ @it + ) = [ (60 = £+ ) (3.11)

for all ¢ € P (I,; R?). In (3.10) and (3.11), we set , = (0,... ,0).

Lemma 3.5 We have

P < 2L /, leli2dt + 3L /I Inldt + 1% (3.12)
/I 1Pt = ta_r)dt < 202, /I \€lPdt + 202k, /1 nl2dt, (3.13)
d

IN

4L°K3 AL2K3 _
S mnan? < g [ jera 0 [ a2k (31)
i:l n n n



Proof: To prove (3.12), we take ¢ =7 in (3.10) and get

1, _ 1 1, _ 1
ol 2+ Sl < L [ Nellalds + Sl + 5 i
In

which yields

o2 < 2L / lelllnllde + ln_y 11> (3.15)

Since [[e|l|[n]| < I€]1% + 2|, the assertion (3.12) follows.
To establish (3.13), select now ¢ = 7n/(¢)(t — t,,—1) in (3.10). As in the proof of (2.13) in Theorem
2.6 we derive with the Cauchy-Schwarz inequality that

i 1'% ( = tn-1)dt < Lk, i lle]|dt. (3.16)

The estimate (3.13) follows then with ||e]|? < 2||€]|? + 2[|n|/.

Finally, to show (3.14), we can assume that 7, > 1 (for r, = 0 the estimate is trivial). Fix
i € {1,...,d} and choose ¢ = (0,... ,0,t,_1 —t,0,...,0) € P (I,; R?) with a non-vanishing i-th
component in (3.10). We get

/ ni(t)dt — kn(ni), = | fi(tn—1 —t)dt.

I, I,
Hence, with Cauchy-Schwarz

(/In m(t)dt>2 < 2k3[(n)n]? + 2/In F2dt - /In (tnor — #)2dt.

Here, f; = [f(t,u) — f(¢,U)]; is the i-th component of f(¢,u) — f(¢,U). Since fln (th_1 —t)%dt = %,
summing up yields
d

_ 2k3 L2
S mityie < 2 |+ 25 [ el

i=1 7 1In
Observing again that ||e||? < 2||€]|? + 2||n||?, finishes the proof of (3.14). 0
We can now state and prove the following error bound for the DG method:
Theorem 3.6 Let (M, 1) be an hp-discretization of (2.1) which satisfies
k-L<c (3.17)

for a sufficiently small constant ¢ > 0 (independent of r and d). Let U be the discrete DG solution
in VM, r;RY) and let Tu € V(M,r;RY) be the interpolant of u defined in (3.9). Then we have the
error bound

lu=Ully < K(L, T, r)||lu — Zull; (3.18)
with
K(L,T,r)?* < Cylog(max(|r|,2))(1 + LT exp(C> LT)). (3.19)

10



Remark 3.7 Up to the logarithmic factor in (3.19), the estimate (3.18) is independent of r and the
convergence rates of the DG method are completely determined by the hp approximation properties
of Zu which are investigated in Section 3.3 ahead. Theorem 3.6 generalizes the h-version bounds
as e.g. in [1, 3]

Proof: We split the error e = u—U = &+n into ¢ := u—ZTu and 1) := Zu—U where Tu € V(M, r; R?)
is the interpolant in (3.9). Assuming that (quasioptimal) estimates for ¢ are available we must
control 1. We proceed in several steps:

Step 1: We claim that for ¢ in (3.17) small enough

d
S / ni(t)dt)? < ORZ | |1> + CR3L? / \€|%dt + CKAL? / I O = to_)dt.  (3.20)

i=1 7 1In
To see (3.20), we combine (3.14) and Lemma 2.4 into

d

S / n()dt)? < Ry | + CEL? / €|12dt
In

i=1 7In

d
+ORLP Y / ni(t)d)? + CKAL? /l I (O12(¢ = tu_1)dt.

i=1 7 In

For kL small enough the third term on the right-hand side can be hidden on the left-hand side.
This proves (3.20).

Step 2: We have
/ln I (DI (= tn—1)dt + |In,, [I* < Ck:nL(/In I’ (DI (= tn—1)dt + |In,, II*)
+ot [ et + (3.21)
To prove (3.21), we combine (3.12), (3.13) and Lemma 2.4 to obtain
/ O bt

< CL/I ||£||2dt+CL/I Inll?dt + |1, [*

d
CL _
<L [ felPat+ 52 S md?+ CLb [ 1P =t )it + 1P
n n n

i=1 7 1In

Applying now (3.20) in Step 1 proves the assertion.

11



Step 3: Iterating the estimate (3.21) in Step 2 yields
[ IO =t s)d +
! n n
<CLY kel + OLS k[ /12— tam)dt + 7).
i=1 i=1 Ii
For kL small enough Gronwall’s Lemma (Lemma 3.2) can be applied and gives
/1 ' @)t = ta—1)dt + |In, |? < CLT|€]|7 exp(CLT). (3.22)

Referring to Lemma 3.1 results in
Inll7, < log(max(ry,2))CLT |7 exp(CLT).

The triangle inequality finishes the proof. O

3.3 Approximation Properties of 11"

We analyze the approximation properties of the projector II" in Definition 3.3.
Lemma 3.8 Let I = (—1,1), u € H'(I;R?) and r € Ny. Then we have

lu—Tullr < O + )lu — all 2mey + Ol = ol 2rmay
for any q € P"(I;RY).

Proof: Let u = "2 u;L; be the Legendre series of u and denote by P" the L?(I; R?)-projection
onto P"(I;R?). Then we have u—P"u = Y7° _, u;L; and obtain with Lemma 3.4 (since | L;(t)| < 1)

o0
lu—T"ull} < 2llu— Prulf +2] Y il
i=r+1

In [15] it is proved that
o0
1
| Z ugl|* < 27“——|—1Hu,”%2(15Rd)'
i=r+1
Thus, inserting u — ¢ for a polynomial ¢ € P"(I;R?) into the above bounds and observing that
IT"q = q yields

2
2 2 2 2
= Tull7 < dllu = qll7 + 4P (u = QT + 5= ' = ¢l me)- (3.23)

Due to the imbedding H'(I;R?) — L>®(I;R%), the first term on the right hand side of (3.23) can
be estimated as
I — gl < Cllu— al2s 100y + Clle’ — ¢ sy

12



For the second term on the right hand side of (3.23) we use an L*-stability result for the L2-
projection from [7], i.e.,

1Pl < 4 12l ey w € LT RY.
Hence, we obtain
o = Tall? < OO+ 12w — gl g + Ol — 122 (3.24)
for any q € P"(I;R?). O
Theorem 3.9 Let [ = (—1,1), u € H°FY(I;RY) and r € Ng. Then we have

L(r+1-s)
2 2
lu —T"ull7 < Cm|“|Hs+1(1;Rd)

for any integer 0 < s < min(sg, 7).
Proof: In Schwab [17] it is proved that there exists ¢ € P"(I; R?) with
L(r+1-s)
2 2
I = a W) < Cpyas) M ame
I TI'(r+1-s)
2 2
le=dlliereey < (r+1)20(r+1+s) [ulizs 2 (e

for any 0 < s < min(sg, 7). Combining these hp-approximation results with Lemma 3.8 finishes the
proof of the assertion. O

Interpolating between integral Sobolev spaces and scaling to an arbitrary time interval I yields
immediately:

Corollary 3.10 Let I = (a,b), k=b—a, r € Ny and u € H*T(I;R?) for sy > 0. Then we have

E)QS-I—IF(T +1- 8) H HZ
2 T(r+1+s) Ulrrs1(rrd)

for any real 0 < s < min(r,sq). Further, if u € W5+tLo (I, RY), we have also

E)ZS—I—?F(T +1-— 8) H HZ
2 L(r+1+s) Ulwstioo(1re)

lu — T7ull7 < C(

lu — T7ull7 < C(

for any real 0 < s < min(r, sg).

Remark 3.11 The error bounds in Corollary 3.10 are optimal in terms of the length of the interval,
k. They are, however, not optimal in terms of the asymptotic rate of convergence as r — oco. Using
Stirling’s formula, we find that, as r — oo at fixed s,

lu = Whully < CEHY2r =S ull gesrgry,  llu—Thullr < CE ™ uflyresr oo r)-

Hence, in the L*-setting the estimate falls a power of r short of being optimal. However, the
L*®-bound for the L?-projection employed in the proof of Lemma 3.8 is optimal in terms of the
regularity v € H**1(I;R?), as can be inferred from the estimates in Melenk and Schwab [13].
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3.4 Convergence Rates

We combine now the abstract error estimate in Theorem 3.6 and the approximation properties of
II" explored in Section 3.3. We assume always that the discretization (M, r) of (2.1) satisfies (3.17).

Theorem 3.12 Let U be the DG solution in V(M,r;R?). Let the ezact solution u satisfy
uly, € Weontloe(r R, som >0, n=1,..., N.

Then we have

772 2 N kn s, ol (rn +1—8n), 1o
HU UHJ S CK(L7T7£) %lai({( 9 ) F(’f‘n n 1 _i_sn)HuHWSnJrlsoo(In;Rd) )

for any real 0 < s, < min(sgp,r,). Here, K(L,T,r) is the bound in (3.19).

Remark 3.13 The estimates in Theorem 3.12 are explicit in the time steps k,, in the approxima-
tion order r, and in the regularity of the exact solution s,,.

Remark 3.14 The result in Theorem 3.12 holds also when R? is replaced by Hilbert space with
norm || - || and inner product (-, -).

From the general error bound in Theorem 3.12 the following convergence rates can be deduced for
the h- and p-version DG method:

Corollary 3.15 Let r, = r, k = max{k,} and U € V(M,r;R?). For u € W+tL>(J;RY) there

holds
kmin(so,r)-l—l

lu =Ulls < CK(L, T, 1)~ llullwso+ioosma)-
Proof: The assertion follows from Theorem 3.12 and Stirling’s formula. O

Remark 3.16 The estimates in Corollary 3.15 are uniform in r and k. They show the DG method
converges either as the time steps are refined (kK — 0) or as r is increased (r — 00). In k they are
optimal and have already been obtained e.g. in [1, 3], whereas in the approximation degree r they
are slightly suboptimal (see Remark 3.11). However, this seems to be the first error bound of the
DG method where the dependence on the approximation order r is estimated explicitly.

Remark 3.17 In the h-version DG, the error at the endpoints of the time intervals I, is of order
k> *1 for smooth solutions, due to superconvergence properties of the method (see [2, 3]). For
linear (parabolic) problems, analogous results hold true in the p-version as well (see [16]).

In terms of N = NRDOF(V(M,r;R%)), we have in the “h-version” of the DG method where
convergence is achieved by decreasing the time steps at a fixed approximation order r

lu—U|; < CN~™inlsor)=1, (3.25)
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For the “p-version” of the DG method where convergence is obtained by increasing the approxima-
tion order on a fixed time partition M we get

lu—Ull; < CN—*. (3.26)

Hence, it can be seen that for smooth solutions for which sq is large it is more advantageous to
increase 1 rather than to reduce k at fixed, low r. Indeed, arbitrarily high algebraic convergence
rates are possible if the approximation order r is raised. This is referred to as spectral convergence.
It turns out, however, that the p-version of the DG method converges in fact exponentially if the
solution u is analytic in J. This result can be derived immediately from Lemma 3.10, Theorem 3.6
and standard approximation theory for analytic functions.

Theorem 3.18 Let the exact solution u be analytic in J. Let the r, = r and let U be the DG
solution in V(M,r;R?) on a fized partition M. Then there holds

lu—U||l; < Cexp(—br)

with constants C,b > 0 which are independent of r.

3.5 Exponential Convergence for Singular Solutions

Typically, solutions of initial value problems become very smooth after a non-smooth initial phase
due to start-up singularities. The numerical resolution of such singular solution components usually
requires locally refined time steps. We show in this section that the hp-version of the DG method
where geometrically refined time steps are combined with linearly increasing approximation orders
leads to exponential rates of convergence for piecewise analytic solutions exhibiting singularities.
Consider J = (0,1) for simplicity. Assume that the exact solution u is analytic in J \ {0} and has
a radical t’-singularity at ¢ = 0, i.e., there are constants Cy,d, > 0 such that

W) ()] < CudiT(s+1)t°7%,  seNy, teJ, 6>1. (3.27)

The exponent 0 is a measure for the strength of the singularity at ¢ = 0. Note that @ > 1 ensures
the continuity of u' on J, as required in (2.1).

Definition 3.19 A geometric partition My, = {In}i‘l/[:ﬁl of J = (0,1) with grading factor o €
(0,1) and N := M + 1 time intervals I, is given by the nodes

to =0, t, = gMt1 1<n<M+1.

For 2 <n < M + 1 the time steps k,, = t, — t,_ satisfy k, = A, with A = 1=,

(o

Lemma 3.20 Assume (3.27). Let Mur, = {I,}M5" be a geometric partition of J. Then we have

||U||%/V1,oo([1;Rd) < C,
HUH%/VSTLJI’laOO(In;Rd) < Cd2SnF(2Sn + 1)0.2(M—n+2)(0—s—1)7 2 S n S M —+ ]_, Sn Z 0

with constants C,d independent of n, M and sy,.
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Proof: This is a simple consequence of (3.27), Definition 3.19 and of properties of the Gamma
function. O

Definition 3.21 An approzimation degree vector r = {r,}H!

the geometric partition Myr s if r, = [pn] for 1 <n < M + 1.

15 called linear with slope pu > 0 on

Theorem 3.22 Assume (5.27). Let U be the DG solution in V(M q,r;RY) for a geometric
partition Myr, and a linearly increasing degree vector r. Then there exists pg > 0 such that for
all linear polynomial degree vectors r = {rn}ﬁ/[;il with slope p > po we have the error estimate

lu= Ul < Cexp(~bN?)
with constants C and b independent of N = NRDOF(V(My,,1;R?)).

Proof: From Theorem 3.12 we have

lu = Ull% < C(L,T) log(max(rar+1,2))* mix e,
n=

with
_ knas, 1o C(rp,+1—sy)
en=(5) " s
2 C(rp + 14 sp)
Due to (3.27), so,, can be chosen arbitrarily large on the elements away from ¢ = 0.

On the first element I; near ¢ = 0, we select s1 = 0 and have from Lemma 3.20

||u||%/VSn+1,00([n;Rd)7 0<s, < min(SO,n,Tn)~

e1 < Ck} = Co*M,

Now, fix an element I, away from ¢ = 0, i.e., with 2 <n < M + 1. From Lemma 3.20, we get

e, < C(AUM—nJrQ )2sn+2F(’l"n +1-— Sn) (O_M—n+2)2(0—sn—1)d25nr(2sn + 1)

2 C(r,+14sp)
L(rn + 1+ sn)

= CoM=m+220[()\q) (25, +1)].

Setting now s, = a,r, with a,, € (0,1), we obtain with Stirling’s formula

1 —ap,)t—on
(7 )

Tn

en < CU(M7n+2)20,r,TIL/2[(>\d)2an[
The function f) 4(r) = (Ad)m% satisfies
. . 1
0< 0<lg£1 f)\,d(Oé) = f/\,d(amm) <1 with Ain = W

Set fmin = fmin(A d) =: f a(min) and select oy, = qpin for 2 < n < M +1. Hence, for r, = [un|
we have

e, < CU(M_n+2)20’Ié Tn < CU(M_n+2)20(un)% un < CO’MQG(,U(M-F 1))%(0_(—7;—1—2)20 un )
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Let

201n(o)
Then, f4% < 6"2% and, consequently,
en < Co™P (u(M + 1))%(049) < Co™M2 (M + 1))%
Combining the above estimates yields
lu = U3 < Clogmax(u(M + 1), 2)] max[o?M, M2 (1(M +1))3].
Observing that N = NRDOF(V(M 5,73 RY)) < CM? completes the proof. O

Remark 3.23 From a practical point of view it may be more convenient to use a fixed approxi-
mation order r on a geometric partition Mjys,. In this case, exponential convergence results for
all o € (0,1) provided that r is proportional to the number of layers, i.e., r = |u(M + 1)]. Indeed,
we see from the proof of Theorem 3.22, that

lu = Ully < Cmax(c®,r32 f7,,) < Cexp(~br) < Cexp(~bN'/?).

Note that condition (3.28) on the slope p > 0 is not necessary in this case.

4 Numerical Experiments

In this section we verify the theoretical results of Section 3 in a series of numerical experiments. The
non-linear problems of the form (2.6) are solved very accurately with Newton’s iteration method
so that the overall error is governed by the error of the DG discretization.

4.1 Smooth Solution

We consider the DG performance for

u'(t) = cos(w

), t € J=(0,10), u(0) =0 (4.1)
with exact solution u(t) = —t+10arctan(f). Obviously, this solution is analytic in J. In Figure 1 we
present the h- and p-version of the DG method for this problem and plot the relative L°(J)-errors
against NRDOF (V(M, r; R%)).

For the h-version DG method, M is chosen to be an equidistant time mesh consisting of 2¢ time
steps, ¢ > 0. The approximation r order is kept fixed and results for » = 0,... ,4 are shown. We
can clearly see the slopes —(r + 1) predicted by Corollary 3.15 and (3.25). These slopes correspond
to algebraic convergence rates of order r + 1.

In the p-version DG method, we increase the order r on fixed partitions consisting of 1, 5, 10 and 20
time steps, respectively. For the analytic solution of (4.1), the p-version results in exponential rates
of convergence, in agreement with Theorem 3.18. Note that we achieve a relative error of 1074
with less than 100 degrees of freedom, whereas an order of magnitude more degrees of freedom has
to be employed in the h-version with r = 4 to obtain the same accuracy.
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Performance for smooth solution on equidistant meshes
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Figure 1: Results for smooth solution on equidistant time steps.

4.2 Singular Solution

The second example we consider is

u'(t) = Visin(u(t)), t € J = (0,1), u(0) = 2arctan(exp(0)), (4.2)

3

with exact solution u(t) = 2arctan(exp(242)). This solution is analytic in J \ {0} and has a
singularity of the form (3.27) near ¢ = 0. Globally, we only have u € WH°(J) and u & W2>2(J).
Due to this lack of global smoothness the performance on equidistant time meshes is rather poor. In
Figure 2 we present results for the h- and p-version. In the h-version on uniform temporal meshes,
we see an optimal convergence rate of —1 for » = 0, whereas for higher orders r the optimal rates
are not achieved anymore. We obtain a slope of about —1.5, which is justified theoretically by the
N—min(r50)=1 hound in (3.25) (see also Corollary (3.15)). The p-version for (4.2) results also in
algebraic rates of convergence as predicted in Section 3. Corollary 3.15 gives an algebraic rate of
at least —0.5. Since this estimate is slightly suboptimal with respect to r (see Remarks 3.11 and
3.16), a rate of —1.5 can be expected. In Figure 2, however, we see an algebraic rate of —3 for the
p-version. This doubling of the convergence rate is a well known phenomenon in the p-version (see,
e.g., [17]) and can be explained if the regularity of the exact solution is measured in certain weaker,
weighted Sobolev spaces. We refer also to [14] for results in this direction for the DG discretization
of parabolic partial differential equations. However, for non-smooth solutions the use of high-order
approximations is not particularly advantageous without any local h-refinement towards ¢ = 0.
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Performance for singular solution on equidistant meshes
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Figure 2: Results for singular solution on equidistant time steps.

In the hp-version DG method we employ geometrically refined partitions Mjs, and we select an
approximation order r that is proportional to the number of the layers, r = int(u(M + 1)). In
Figure 3 the performance of the hp-version is considered for various values of y and for o = 0.2.
All the curves show exponential rates of convergence and confirm the result in Theorem 3.22. From
the proof of Theorem 3.22, we can see that the “optimal” value of u depends on the strength of the
singularity. However, this dependence on z seems not to be very sensitive. A relative error of 10715
can be obtained with already around N = 256 degrees of freedom. It is also known that the error
in the hp-version of the DG method can be orders of magnitude smaller when the grading factor o
is optimally chosen. This question is addressed numerically in Figure 4 where the performance for

1 = 2.25 and various grading factors is depicted. The best results are obtained for ¢ in the range
of 0.2 and 0.25.
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Performance for singular solution on geometric meshes
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Figure 3: Results for singular solution on geometric time steps.

Performance for singular solution on geometric meshes
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Figure 4: Results for singular solution on geometric time steps.
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5 Conclusions

In this paper we have derived a-priori error estimates for the DG method that are explicit in the
time steps, the approximation orders, and in the regularity of the exact solution. To our knowledge,
these are the first estimates that rigorously prove that p-version and spectral convergence is possible
in the integration of initial value problems. Our results and numerical experiments indicate in fact
that the use of high-order approximations is very advantageous in those parts of the time interval
where the solution is very smooth or analytic, whereas in the presence of solution singularities an
appropriate h-refinement is necessary. For the hp-version of the DG method, it has been shown
that a geometric refinement gives exponential rates of convergence for piecewise analytic solutions
with temporal singularities.

The adaptive selection of the temporal meshwidth k£ and the approximation order r will be dealt
with in future work.
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