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Abstract

The type of problem under consideration is

(∗)























ut = ∆u+ f(u) in Ω× (0, T )

∂u

∂n
+ g(u) = 0 on ∂Ω× (0, T )

u(x, 0) = u0(x) .

Here Ω is a finite domain of lRN .

The solution of (*) is compared with a corresponding solution of the N -ball
or a finite interval whose size depends on different quantities of an associated
linear elliptic problem for Ω, such as e.g. the fixed membrane problem.

Possible applications include estimates for the blow-up or finite vanishing
time.

t



1 Introduction

Let Ω be a finite domain of RN and consider the semilinear problem

(1.1)































∂u

∂t
= ∆u+ f(u) in Ω× (0, T )

∂u

∂n
+ g(u) = 0 on ∂Ω × (0, T )

u(x, 0) = u0(x) ,

where n is the exterior normal on ∂Ω. Concerning smoothness we will assume that Ω has

a C2+ε boundary and f and g have all the derivatives that are used in the assumptions
of the theorems.

Sub- or supersolutions play an important role in proving existence theorems or solution

bounds and in many other questions.

In this paper sub- or supersolutions are constructed which are optimal in the sense

that they are the solution of (1.1) if Ω is the N -ball (N ≥ 1) of an appropriate size.

The corresponding construction for the steady state has been given in [6], [7] and was
motivated by a paper of Payne [3].

In the parabolic case new features come in, and in particular the assumptions on f(u),

g(u) are different from the elliptic case. The main idea can be used again and consists in

considering two auxiliary problems:

a) the associated radially symmetric problem

(1.2)































∂R

∂t
=

1

rN−1

∂

∂r

(

rN−1 ·
∂R

∂r

)

+ f(R) in (0, r0)× (0, T1)

∂R

∂r
(0, t) = 0,

∂R

∂r
(r0, t) + g(R(r0, t)) = 0

R(r, 0) = R0(r) ,

and

b) a standard linear elliptic problem, for example the so-called torsion problem

(1.3)

{

∆ψ + 1 = 0 in Ω ,
ψ = 0 on ∂Ω .

Problem (1.3) serves to “transplant” the solution of (1.2) from an interval (0, r0) to the

given domain Ω. This is motivated by the following observation.

For the N -ball one can write the solution of (1.3) as

ψ(r) =
1

2N
(N2τ 2 − r2), τ = |∇ψ| on ∂Ω, N ≥ 1

or as

ψ(x) = ψm − 1

2
x2, ψm = max

Ω
ψ(x), N = 1 .

1



Hence for N ≥ 1 one has
r =

√

N2τ 2 − 2Nψ(r) ,

and for N = 1 we may also write

x =
√

2(ψm − ψ(x)) .

These relations suggest the choice of sub- or supersolutions of the form

(1.4) v(x, t) = R(r(x), t)

with r(x) =
√

N2τ 2 − 2Nψ(x), τ = max
∂Ω

|∇ψ| or else

(1.5) v(x, t) = X(s(x), t)

with s(x) =
√

2(ψm − ψ(x)) and X(s, t), being the solution of (1.1) for an interval (0, s0),

i.e. N = 1 in (1.2).

Instead of the torsion problem one can select the clamped membrane problem

(1.6)







∆ϕ + λϕ = 0 in Ω

ϕ = 0 on ∂Ω .

Then the solution for an interval now leads to the choice

(1.7) s(x) =
1√
λ1

arccos
(ϕ(x)

ϕm

)

,

with ϕm = max
Ω

ϕ(x), λ1 = first eigenvalue with associated eigenfunction ϕ(x).

Another choice of an elliptic problem is w(x), where






∆w − c2w(x) = 0 in Ω

w = 1 on ∂Ω .

This choice has been made in [6] already in the steady state case.

2 The N-ball as optimal domain

Let x be a point of Ω and set

(2.1) r(x) =
√

N2τ 2 − 2Nψ(x) ,

ψ(x) being the solution of (1.2). The notation indicates that for the N -ball r(x) =
distance from the center. We denote by R(r, t) the solution of (1.2) and use a prime for a

derivative with respect to r or else a derivative with respect to R for f(R), g(R). Time

derivatives will be denoted by a dot.

The first result can then be stated as

2



Theorem 1 Suppose the following assumptions hold

a) g(R) ≥ 0, g′(R) ≥ 0, f ′′(R) ≥ 0 and

(f(R)

g(R)
+

H ·N
r0

log g(R)
)′

≥ 0, r0 = Nτ .

b) The initial distribution R0(r) of (1.2) satisfies for 0 < r < r0,

(R′
0(r)

r

)′
≥ 0 ,

and
R0(r(x)) ≥ u0(x) .

Then

u(x, t) = R(r(x), t)

is a supersolution of (1.1) for 0 ≤ t ≤ T1.

Proof: From (2.1) we calculate

(2.2) ∇r = −
N∇ψ

r
,

(2.3) ∆r =
N

r

(

1−
N |∇ψ|2

r2

)

.

For u(x, t) ≡ R(r(x), t) we then have

(2.4) ut −∆u− f(u) = Ṙ−
N · R′

r

(

1−
N |∇ψ|2

r2

)

− R′′ ·
N2 |∇ψ|2

r2
− f(R) ,

and using the differential equation for R(r, t) to eliminate Ṙ− f(R), (2.4) takes the form

(2.5) ut −∆u− f(u) =
(

R′′ −
R′

r

){

1−
N2 |∇ψ2|

r2

}

.

It was proven by Payne [4] that

|∇ψ|2 +
2

N
ψ ≤ τ 2 ,

and this inequality in turn implies that the bracket term { } is nonnegative because of

the defining equation (2.1) for r(x).

It remains therefore to investigate the sign of the other bracket term on the right of

(2.5). We write the radially symmetric part of the Laplacian as ∆r and set

(2.7) h(r, t) = rN
(

R′′ −
R′

r

)

= rN ∆r R−NrN−1 · R′ .

3



After a routine calculation one finds that

(2.8) ḣ−∆r h+
2N

r
h′ − f ′(R) · h = rN · f ′′(R) ·R′2 .

At the end point r = 0 we have h(0, t) = 0 so that it remains to check the endpoint r = r0.

To this end, we form

h′(r0, t) + g′(R) · h(r0, t)

and use that

(2.10) h′ = rN(∆rR)′ = rN(Ṙ − f(R))′ .

The expression Ṙ′ can be eliminated by means of the time derivative of the boundary

condition for R. A little manipulation shows then that ( ′ = d
dR)

(2.11)
∂h

∂r

∣

∣

∣

r0
+ g′(R) · h = rN0 · g2

(f(R)

g(R)
+

N

r0
log[g(R)]

)′
≥ 0 .

Since h(r, 0) ≥ 0 by assumption, the maximum principle again implies that

h(r, t) ≥ 0 in (0, r0)× (0, T1) ,

and hence

(2.12) ut −∆u− f(u) ≥ 0 in Ω× (0, T1) .

On ∂Ω × (0, T ) we have

(2.13)
∂u

∂n
+ g(u) = R′ ·

∂r

∂n
+ g(R) = g(R)

{

1−N
|∇ψ|
r0

}

≥ 0 ,

if we choose r0 = Nτ = N max∂Ω |∇ψ|. Finally u(x, 0) = R0(r(x)) ≥ u0(x) by assumption

and the proof is completed.

Remarks on Theorem 1

1) One can check that if all inequality signs except for g′, are reversed in the assump-

tions of Theorem 1 then

u(x, t) = R(r(x), t)

is a subsolution.

2) In the case of Dirichlet boundary conditions in (1.1) and (1.2) one can modify the

arguments. It follows from the Maximum Principle that the solution R(r, t) of (1.2)
with R(r0, t) = 0 now and R0(r) ≥ 0 remains nonnegative in (0, r0)×(0, T1) if f ≥ 0.

Hence R′(r0, t) ≤ 0. The differential equation for R(r, t) evaluated at the end-point

r0 and the assumption f(0) = 0 then imply that h(r0, t) ≥ 0.

4



Hence for Dirichlet boundary conditions assumption a) has to be replaced by

(a∗) f(0) = 0, f(R) ≥ 0, f ′′ ≥ 0 .

Reversion of the inequality signs in (a∗), (b) again yields a subsolution.

For the steady states of (1.1) and (1.2), denoted by us(x) or Rs(r) respectively, the

proof of Theorem 1 needs only a slight adjustment to show that one has

Corollary 1 Let us(x) and Rs(r) denote steady states of (1.1) and (1.2) and suppose that
f ≥ 0, f ′ ≥ 0 and g ≥ 0. Then

us(x) = Rs(r(x))

is a supersolution of the steady state case of (1.1).

Proof: The calculations leading to (2.5) now show that

(2.14) ∆us + f(us) = −
(

R′′
s −

R′
s

r

) {

1−
N2 |∇ψ|2

r2

}

.

The function

h(r) = rN
(

R′′
s −

1

r
R′

s

)

= rN∆r Rs −NrN−1 · R′
s

satisfies

h(0) = 0

and
h′(r) = rNf(Rs) · R′

s =: r · f(Rs) · v(r) .

But, if f(Rs) ≥ 0, then we have

v(r)′ = (rN−1 · R′
s)

′ ≤ 0 .

Since v(0) = 0, it follows that v(r) ≤ 0 and therefore h′(r) ≥ 0, so that h(r) ≥ 0. Hence

one has

(2.15) ∆us + f(us) ≤ 0 in Ω ,

and since (2.13) also holds for us the proof of Corollary 1 is completed.

Remark on Corollary 1:

If the inequality signs are reversed in Corollary 1 one obtains a subsolution.
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3 The slab as optimal domain

As mentioned in the introduction there is another possibility of using the auxiliary problem

(1.3). Let X(s, t) be the solution of

(3.1)



















Ẋ = X ′′ + f(X) in (0, s0)× (0, T1) ,

X ′(0, t) = 0, X ′(s0, t) + g(X(s0, t)) = 0

X(s, 0) = X0(s) ,

with a prime denoting a derivative with respect to s. We select now

(3.2) s(x) =
√

2(ψm − ψ(x)), ψm = max
Ω

ψ(x) .

The analogue of Theorem 1 is then

Theorem 2 Suppose one has

a) f ′′ ≥ 0, g ≥ 0, g′ ≥ 0 and
(f

g
+

1

s0
log g

)′
≥ 0

for s0 =
√
2ψm.

b)
(X ′

0(s)

s

)′
≥ 0, X ′

0(0) = 0, and

X0(s(x)) ≥ u0(x) .

c) The mean curvature of ∂Ω is nonnegative everywhere. Then

u(x, t) = X(s(x), t)

is a supersolution of (1.1).

Proof: Straightforward calculation gives

(3.3) ∇s = −
∇ψ

s
,

(3.4) ∆s =
1

s

(

1−
|∇ψ|2

s2

)

and

(3.5) ut −∆u− f(u) =
(

X ′′ −
1

s
X ′

){

1−
|∇ψ|2

s2

}

.

It was shown by Payne [4] that the {} term is nonnegative if the mean curvature of ∂Ω is

nonnegative.

We can now just repeat the calculations from (2.7) on to (2.13) with N = 1 there and

r0 replaced by s0. This proves Theorem 2.

6



The remarks (1) and (2) on Theorem 1 also apply to Theorem 2, with the appropriate
changes: s(x) in the place of r(x), N = 1, s0 instead of r0. In particular one has

Corollary 2 Let us(x), Xs(x) be the steady states of (1.1) and (3.1) and assume that

f ≥ 0, f ′ ≥ 0 and g ≥ 0. Then

us(x) = Xs(s(x))

with s(x) =
√

2(ψm − ψ(x)) is a supersolution of (1.1).

If the membrane problem (1.6) is used in the place of the torsion problem one is

led to

Theorem 3 Assume that the following assumptions hold:

a) f ′′ ≥ 0, g ≥ 0, g′ ≥ 0 and
(f

g

)′
− λ1

g
≥ 0.

b)
( X ′

0(s)

sin(
√
λ1s)

)′
≥ 0, X ′

0(0) = 0, X0(s(x)) ≥ u0(x), with s(x) =
1√
λ1

arccos
(ϕ(x)

ϕm

)

,

s0 =
π

2
√
λ1

as defined in (1.6), (1.7).

c) The mean curvature of ∂Ω is nonnegative everywhere. Then

u(x, t) = X(s(x), t)

is a supersolution of (1.1) for x ∈ Ω, 0 ≤ t ≤ T1.

Proof: A routine calculation shows that u satisfies

(3.6) ut −∆u− f(u) =
(X ′′

λ1
−

cot(
√
λ1s)√
λ1

X ′
) {

1−
|∇ϕ|2

λ1(ϕ2
m − ϕ2)

}

.

By a result of Payne & Stakgold [8] the bracket term {} is nonnegative if the mean

curvature of ∂Ω is nonnegative. We have to find conditions to ensure the sign of the other

bracket term in (3.6). To this end we now set

(3.7) h(s, t) = X ′′ · sin(
√

λ1s)− cos(
√

λ1s) ·X ′ ·
√

λ1 .

After some manipulation one obtains the parabolic equation

(3.8) ḣ− h′′ + 2
√

λ1 cot(
√

λ1s) · h′ − (f ′ − λ1) h = sin(
√

λ1s) · f ′′ ·X ′2 ,

where the prime is used for derivatives with respect to s and with respect toX (for f(X)).

For 0 < s ≤ s0 =
π

2
√
λ1

the right side of (3.8) is nonnegative. For s = 0 we have h = 0 and

we therefore check the endpoint s = s0. If we use the time derivative of the boundary

condition for X(s, t) and the differential equation in (3.1) we see that for s = s0 one has

(3.9) h′ + g′(X) · h = g2
[(f

g

)′
+

λ1

g

]

≥ 0 .

7



Finally h(s, 0) ≥ 0 by the first inequality of assumption and therefore h(s, t) ≥ 0 in
(0, s0)× (0, T1) by the maximum principle. On the boundary ∂Ω one has

(3.10)
∂u

∂n
+ g(u) = X ′ ·

∂s

∂n
+ g(X) = g(X)

{

1−
|∇ϕ|

√

λ1(ϕ2
m − ϕ2)

}

≥ 0 ,

since g ≥ 0 and the bracket term is nonnegative by the result of Payne-Stakgold [8].

By assumption u(x, 0) = X0(s(x)) ≥ u0(x) which completes the proof.

Remarks on Theorem 3

1. One can check that for zero Dirichlet boundary date assumption a) reduces to
f(0) = 0, f ≥ 0, f ′′ ≥ 0.

2. If all inequality signs, except for g′, are reversed in assumptions a), b) then one

obtains a subsolution.

3. A possible choice for X0(s) is e.g. for Dirichlet boundary conditions X0(s) =

cos(
√
λ1s) if ϕm can be chosen such that

ϕ(x)

ϕm
≥ u0(x) .

4. In the steady state situation a corresponding result can be proven:

Corollary 3 Let us(x) and Xs(x) be steady state solutions of (1.1) and (3.1) respectively.

Assume that g ≥ 0, f ≥ 0 and f ′(Xs) ≥ λ1. Then

us(x) := Xs

( 1√
λ1

arccos
(ϕ(x)

ϕm

))

≥ us(x) .

Proof: From (3.6) we deduce that now

(3.11) ∆us + f(us) =
(−X ′′

s

λ1
+

cot(
√

λ, s)
√
λ1

X ′
)

·
{

1−
|∇ϕ|2

λ1(ϕ2
m − ϕ2)

}

.

Since we know already that {} ≥ 0 it remains to check

(3.12) h(s) = f(Xs) · sin(
√

λ1s) + cos(
√

λ1s) ·X ′
s

√

λ1 .

But h(0) = 0 and

(3.13) h′(s) = X ′
s sin(

√

λ1s)(f
′(Xs)− λ1) ≤ 0

since

X ′
s ≤ 0

8



if f ≥ 0 and X ′
s(0) = 0. Hence one has

∆us + f(us) ≤ 0 in Ω .

In addition the boundary inequality (3.10) still holds for us which shows that us is a

supersolution.

As a last possibility we select (1.8) as an auxiliary problem and let X(σ, t) be the

solution of the one-dimensional case of (3.1) for the interval (0, σ0). For given value c > 0

in problem (1.8) let w0 = min
Ω

w(x).

One then has

Theorem 4 Assume that the following assumption hold:

a) f ′′ ≥ 0, g ≥ 0, g′ ≥ 0 for positive arguments and

(f

g

)′
+

c
√

1− w2
0

(log g)′ +
c2

g
≥ 0 .

b) The initial distribution X0(σ) of (3.1) satisfies

( X ′
0

Sinh(cσ)

)′
≥ 0 and X0(σ(x)) ≥ u0(x)

with σ(x) = 1
c Arch (w(x)

w0
), σ0 =

1
c Arch ( 1

w0
).

c) The mean curvature of ∂Ω is nonnegative everywhere. Then

u(x, t) = X(σ(x), t)

is a supersolution of (1.1) for 0 ≤ t ≤ T1.

Proof: A calculation shows that

(3.14) ut −∆u− f(u) = [X ′′ − c ·X ′ · Coth(cσ)]
{

1−
|∇w|2

c2(w2 − w2
0)

}

,

where the prime here denotes a derivative with respect to the variable σ. Again by the

result of Payne & Stakgold [8] the bracket term {} is nonnegative if c) holds.

One has to ensure again that the other bracket term in (3.14) is nonpositive. To show

this, set

(3.15) h(σ, t) = X ′′ · Sinh(cσ)− Cosh(c · σ) ·X ′ .

9



A straightforward calculation shows that

(3.17)
∂h

∂t
− h′′ + 2c · Coth(cσ) · h′ − (f ′ + c2)h = f ′′ ·X ′2 · Sinh(cσ) .

Here f ′, f ′′ again denote derivatives of f(X) with respect to X .

By assumption the right hand side of (3.17) is nonnegative. For σ = 0 we have h = 0

and we therefore investigate the endpoint σ0 =
1
c Arch ( 1

w0
). There we use the boundary

condition for X(σ, t), the differential equation and their derivatives with respect to t.

After some routine steps one obtains

(3.18) h′(σ0, t) + g′(X(σ0, t))h(σ0, t) = Sinh(cσ0) g
2
[(f

g

)′
+ Coth(cσ0) · (log g)′ +

c2

g

]

.

The relation Cosh(cσ0) =
1
w0

and assumption a) allow to apply the maximum principle.

Together with the fact that h(σ, 0) ≥ 0 if the first inequality of assumption b) is satisfied

we can then deduce that h(σ, t) ≥ 0 in (0, σ0)× (0, T1). On ∂Ω we have

(3.19)
∂u

∂n
+ g(u) = X ′ ·

∂σ

∂n
+ g(X) = g(X)

{

1−
|∇w|

c
√

w2 − w2
0

}

≥ 0 ,

again as a consequence of Payne-Stakgold [8].

Finally

u(x, 0) = X0(σ(x)) ≥ u0(x)

is assumed to hold so that all properties of a supersolution are as required.

Remarks on Theorem 4

1. In the case of homogeneous Dirichlet boundary conditions one can check again as

before that assumption a) has to be replaced by

(a∗) f(0) = 0, f ≥ 0 and f ′′ ≥ 0 .

2. If all inequality signs except for g′, are reversed in assumptions a) and b) then

u(x, t) = X(σ0(x), t) is a subsolution.

3. The analogue of Corollary 3 can be deduced as well and is stated as

Corollary 4 Let us(x) and Xs(σ) be the steady state solutions of (1.1) and (3.1) respec-

tively. Assume that g ≥ 0, f ≥ 0 and f ′(Xs) ≥ −c2 for some c > 0.

Then

us(x) = Xs

(1

c
Arch

(w(x)

w0

))

≥ us(x) .

10



Proof: From (3.14) we see that us(x) satisfies

(3.20) ∆us + f(us) = [f(Xs) + cX ′
s · Coth(cσ)]

{

1−
|∇w|2

c2(w2 − w2
0)

}

.

Furthermore the function

(3.21) h(σ) = Sinh(cσ) f(Xs(σ)) + cX ′
s(σ) · Cosh(cσ)

satisfies h(0) = 0 and

(3.22) h′(σ) = Sinh(cσ) ·X ′
s(σ)(f

′(Xs(σ)) + c2) .

But if f ≥ 0 and g ≥ 0, then X ′
s(σ) ≤ 0 so that h′(σ) and therefore h(σ) ≤ 0 for σ ≥ 0,

implying that the right side of (3.20) is nonnegative.

On the boundary we have as in (3.19)

∂us

∂n
+ g(us) ≥ 0

so that us is a supersolution, which is the statement of Corollary 4.

4 Examples

4.1 Finite blow-up for nonlinear reaction

Consider the problem

(4.1)











ut = ∆u+ u2 + γu in Ω = ball in lR3 of radius 1, u = 0 on ∂Ω

u(x, 0) = ϕ1(x) = first eigenfunction =
1

2

sin(πr)

r
(r = |x| ≤ 1) .

It is well known that the solution of (4.1) blows up in finite time T .

Let us first mention some known bounds for T . Recall first Kaplan’s method [2] which

consists in considering the function

(4.2) z(t) =
∫

Ω
u(x, t)ϕ1(x) dx .

Using Jensen’s inequality and the scaling
∫

Ω ϕ1 dx = 1 one finds

(4.3) ż ≥ z2 + (γ − λ1) z, z(0) =
∫

Ω
ϕ2
1 dx = z0 ,

and therefore one has the estimate

(4.4) T ≤
∫ ∞

z0

dz

z2 + (γ − λ1)z
, (γ > λ1 − z0) .
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A different bound was given in [5], p. 161, namely

(4.5) T ≤
γ

γ − λ1

∫ ∞

ϕm

dz

z2 + γz
, ϕm = max

Ω
ϕ1(x) .

By Theorem 3 we have the lower bound

(4.6) T ≥ T1 ,

where T1 is the blow-up time of the one-dimensional case, i.e. problem (1.2) with N = 1,

Dirichlet boundary conditions and r0 =
π

2
√
λ1

= 1
2 , so that R0(r) =

π
2 cos(πr).

In the next table we list a few values:

upper bounds
γ Exact value T lower bound (4.6) (4.4) (4.5)

10 0.921 0.710 1.178 15 · 3
20 0.226 0.210 0.260 0.259
30 0.141 0.135 0.163 0.149

4.2 Finite vanishing time

We consider now the problem

(4.7)























ut = ∆u− µ · up in Ω = ball of radius 1 in lR3

u = 0 on ∂Ω

u(r, 0) = ϕ1(r) =
1

2

sin(πr)

r
.

It is well known that for 0 < p < 1 the solution vanishes identically in Ω if t → T0 < ∞.

Kaplan’s method also works in this case and a similar reasoning yields the bound

(4.8) T0 ≥
∫ z0

0

dz

µzp + λ1z
,

with the same meaning of z0 and λ1 as in (4.4). The reasoning leading to (4.5) now gives

the alternative lower bound

(4.9) T0 ≥
1

µ+ λ1 ϕ
1−p
m

∫ ϕm

0

dz

zp
.

The application of Theorem 3 as in Section 4.1 leads to the bound

(4.10) T0 ≤ T1

12



where T1 is the vanishing time of problem (1.2) withN = 1, Dirichlet boundary conditions,
and as before, r0 =

1
2 , R0(r) =

π
2 cos(πr).

In the next table some numerical values obtained by (4.8), (4.9), (4.10) are compared

with the exact values.

p = 1
2 lower bounds upper bound
µ Exact value T0 (4.8) (4.9) (4.10)

5 0.220 0.205 0.144 0.238
10 0.141 0.127 0.112 0.153
30 0.061 0.052 0.059 0.065

4.3 Steady state in a degradation-absorption process

Consider a linear degradation reaction whose steady state concentration u is modeled by

the equation

(4.11) ∆u− γ2u = 0 in Ω

and the absorption through the boundary is described by

(4.12)
∂u

∂n
= σ(1− u)p on ∂Ω .

Here γ, σ, p are given positive parameters and the exterior concentration is 1.

Let us first write down the solution of (4.11), (4.12) for an interval, a disk and a ball:

For an interval (−s0, s0) the solution is

(4.13) X(s) = α1 · Cosh(γs)

where α1 is the unique solution of

(4.14) α1γ Sinh(γs0) = σ(1− α1Cosh(γs0))
p .

For a disk of radius r0 the solution is

(4.15) R2(r) = α2 I0(γr), I0 = Besselfunction ,

and α2 is the unique solution of

(4.16) α2γI1(γr0) = (1− α2I0(γr0))
p .

Finally for a ball a radius r0 one obtains the solution

(4.17) R3(r) = α3
Sinh(γr)

r

13



with α3 being the solution of

(4.18) α3
1

r20
(γ Cosh(γr0) · r0 − Sinh(γr0)) = σ

(

1− α3
Sinh(γr0)

r0

)p
.

Let us denote the minimum value of the concentration u(x) by µ. Then it is not hard to

see from (4.13), (4.14) that µ is the unique solution in (0, 1) of the equation

(4.19) µγ Sinh(γs0) = σ(1− µ Cosh(γs0))
p

if Ω is the intervall (−s0, s0). It is easy to see that µ is decreasing with increasing s0.

Hence one would like to have s0 as small as possible.

Now Corollary 1 gives s0 = τ (N = 1), Corollary 2 has s0 =
√
2ψm and Corollary 3

uses s0 =
π

2
√
λ1

.

The difference between Corollary 1 and Corollaries 2, 3 is that the first needs no

assumption on ∂Ω, but the latter need a boundary whose mean curvature is nonnegative.

One has (see [4]) for any geometry of Ω

(4.20) 2ψm ≤ Nτ 2

and also (see [5])

(4.21) λ1 ≥
π2

8ψm

if the mean curvature of ∂Ω is nonnegative. Clearly (4.20), (4.21) show that Corollary 3

gives the best value for s0. For a general domain one will have to use bounds for τ,λ1 or

ψm and then it is no longer clear which bound is best. Hence all three Corollaries may be

useful.

A typical result one could derive by combining e.g. Corollary 3 with the inequality

(see [5])

(4.22) λ1 ≥
π2

4ρ2
, ρ = radius of largest ball contained in Ω ,

is stated as

Corollary 5 Assume that the mean curvature of ∂Ω is nonnegative. Then the minimum

of the concentration u of (4.11), (4.12) is bounded below by the unique solution µ in (0,1)

of the equation
µ · γ Sinh(γρ) = σ(1− µ · Cosh(γρ))p ,
ρ = radius of largest ball contained in Ω .

14



In order to get an idea of how close the bounds for umin = µ derived e.g. from Corollary
5 are, we compare in the following table the exact value µ with the lower bound. We take

γ = σ = 1, Ω a disk or a ball of radius 1 and different values of p.

Ω = disk
λ1 = 5.78 p µ = µ ≥

0.5 0.675 0.649
2 0.410 0.391
4 0.288 0.271

Ω = ball
λ1 = π2

0.5 0.781 0.751
2 0.490 0.455
4 0.344 0.320

4.4 Gelfand problem

The problem under consideration is

(4.23)

{

∆u+ λeu = 0 in Ω
u = 0 on ∂Ω .

It is well known that this problem has a positive solution only for 0 < λ ≤ λ∗ < ∞. For
a disk of radius r0 one has the solution

(4.24) R(r) = Rm − 2 log
[

1 + (eRm/2 − 1)
( r

r0

)2]

,

where Rm = max
0<r<r0

R(r) and

(4.25) λ =
8

r20
(e−Rm/2 − e−Rm) ≤

2

r20
= λ∗ ,

where λ∗ is attained for Rm = log 4 and for λ < λ∗ one has two solutions with values

(4.26) Rm = −2 log
[1

2
±

√

1

4
−

λr2
0

8

]

.

For the interval (−L, L) the solution can be written as

(4.27) X(s) = Xm − 2 log
[

Cosh
( s

L
Arch(eXm/2

))]

, Xm = max
s

X(s) .

In this case the relation between λ and Xm is

(4.28) λ =
2

L2
e−Xm · Arch2[eXm/2 ] ≤

0.8785

L2
= λ∗ ,
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and the maximum value of λ is attained for the solution of

(4.29) m = 2 log
[

Cosh
(

√

em

em − 1

)]

∼= 1.1868 .

Some implications of Corollaries 2 and 3 are now considered. Since u ≡ 0 is a subsolution

to (4.23) it suffices to find a positive supersolution.

By Corollary 2 we can select the supersolution

(4.30) u(x) = X(
√

2(ψm − ψ(x))

for any λ ≤ 0.8785
2ψm

and hence one has

Corollary 6 Let Ω be a domain such that the mean curvature of ∂Ω is nonnegative. Then

the critical value λ∗ satisfies

(4.31) λ∗ ≥
0.4392

ψm

For given value of λ ∈ (0, 0.4392ψm
) an upper bound for um = max

Ω
u can be derived (u =

minimal solution of (4.23))

(4.32) um ≤ M(λ)

where M(λ) is the first positive solution of

(4.33)
1

ψm
e−M · Arch2[eM/2] = λ .

A lower bound for um can be given as well. It is easy to check from (3.13) that the

function

(4.34) u(x) = X
( 1√

λ1
arccos

(ϕ(x)

ϕm

))

is a subsolution to (4.23) if

(4.33) λeXm ≤ λ1 .

By (4.28) (with L = π
2
√
λ1

there) a little manipulation shows that (4.32) holds provided

(4.34) λ ≤
λ1

Cosh2[ π
2
√
2
]
∼=

λ1

2.83227
=: λ0 .

Therefore, for λ ≤ λ0 one has a lower bound for um given by the first positive solution

m(λ) of

(4.35)
8

π2
λ1 e

−m ·Arch2[em/2] = λ .

Remark: The bounds (4.33), (4.35) were proven in [3] by different methods.
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Some general bounds for λ∗, um in problem (4.23) for two-dimensional domains can
be found in [1]. One has for a two-dimensional region Ω

(4.36)
2π

A
≤ λ∗ ≤

2

ṙ2
,

where A = area of Ω, ṙ = maximal conformal radius of Ω. Equality holds in (4.36) if Ω

is a disk. An alternative bound is

(4.37) λ∗ ≤
λ1

e
.

For given λ with µ = λA
2π ≤ 1 one has (see [1], p. 199)

(4.38) um ≤ log 4− 2 log
( µ

1−
√
1− µ

)

.

In the next table we compare different bounds for λ∗, um(λ) for the case that Ω is a square

or a rectangle.

Domain bounds for λ∗ um(λ) ≥ (4.35) λ u(λ)
m ≤ (4.32) (4.38)

Square (4.36): 0.066 1 0.0787 0.085
side 1 6.283 ≤ λ∗ ≤ 6.875 0.141 2 0.170 0.182

Ψm = 0.07367 (4.31):
λ1 = 2π2 5.96 ≤ λ∗ 0.226 3 0.279 0.298
ṙ = 0.5394 0.329 4 0.418 0.443

0.458 5 0.616 0.641

(4.36):
Rectangle 3.14 ≤ λ∗ ≤ 5 0.110 1 0.127 0.182
sides 2,1

(4.31), (4.37): 0.245 2 0.290 0.443
ψm = 0.11387 3.86 ≤ λ∗ ≤ 4.538 0.429 3 0.533 1.00
λ1 =

5
4 π2

ṙ = 0.63189

5 Extensions

5.1 Systems

For diffusion-reaction systems of the form

(5.1) uk
t = Dk∆uk + fk(uj) in Ω× (0, T ), k, j = 1, . . . , n

17



there are possible extensions of Theorem 1 to 4, provided one has among other things

∂fk

∂uj
≥ 0 for k .= j and the matrices

Ak
'm :=

( ∂2fk

∂u'∂um

)

are positive semidefinite for k = 1, . . . , n .

Another version are systems with a mixed quasimonotone structure (see e.g. [9]).

5.2 Elliptic operator L instead of ∆

If the Laplacian is replaced by a general uniformly elliptic operator one has to use a gener-

alisation of the result of Payne & Stakgold [8] applied in this paper. Such generalisations

are discussed in [5]. An important case is that L is the Laplace-Beltrami operator. For a
surface and an elliptic problem this is treated in [7].
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