
!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
! Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Swiss Federal Institute of Technology Zurich

Look-Ahead Procedures for Lanczos-Type Product
Methods Based on Three-Term Lanczos

Recurrences∗

M.H. Gutknecht and K.J. Ressel†

Research Report No. 99-20
October 1999

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

∗To appear in SIAM J. Matrix Anal. Appl. (accepted June 4, 1999). This paper is a completely
revised version of Ref. [26] and differs also in the algorithm proposed.

†German Aerospace Research Establishment (DLR), German Remote Sensing Data Center
(DFD), D-82234 Oberpfaffenhofen, Germany

Look-Ahead Procedures for Lanczos-Type Product Methods Based
on Three-Term Lanczos Recurrences∗

M.H. Gutknecht and K.J. Ressel†

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

Research Report No. 99-20 October 1999

Abstract

Lanczos-type product methods for the solution of large sparse non-Hermitian
linear systems either square the Lanczos process or combine it with a local
minimization of the residual. They inherit from the underlying Lanczos pro-
cess the danger of breakdown. For various Lanczos-type product methods
that are based on the Lanczos three-term recurrence, look-ahead versions are
presented, which avoid such breakdowns or near breakdowns at the cost of a
small computational overhead. Different look-ahead strategies are discussed
and their efficiency is demonstrated by several numerical examples.

Keywords: Lanczos-type product methods, look-ahead, iterative methods, non-
Hermitian matrices, sparse linear systems

AMS Subject Classification: 65F15, 65F10

∗To appear in SIAM J. Matrix Anal. Appl. (accepted June 4, 1999). This paper is a completely
revised version of Ref. [26] and differs also in the algorithm proposed.

†German Aerospace Research Establishment (DLR), German Remote Sensing Data Center
(DFD), D-82234 Oberpfaffenhofen, Germany

1. Introduction. Lanczos-type product methods (LTPMs) like (Bi)CGS [42],
BiCGStab [44], BiCGStab2 [22], and BiCGStab(!) [38], [41] are among the most
efficient methods for solving large systems of linear equations Ax = b with nonsym-
metric sparse system matrix A ∈ CN×N . Compared to the biconjugate gradient
(BiCG) method they have the advantage of converging roughly twice as fast and of
not requiring a routine for applying the adjoint system matrix AH to a vector. Nev-
ertheless, they inherit from BiCG the short recurrence formulas for generating the
approximations xk and the corresponding residuals rk := b−Axk.

As for BiCG, where the convergence can be smoothed by applying the quasi-
minimal residual (QMR) method [16] or the local minimum residual process (MR
smoothing) [37], [47], product methods can be combined with the same techniques
[14], [47] to avoid the likely “erratic” convergence behavior [11], [36]; the benefit of
these smoothing techniques is disputed, however.

A well-known problem of all methods that make implicit use of the Lanczos poly-
nomials generated by a non-Hermitian matrix is the danger of breakdown. Although
exact breakdowns are very rare in practice, it has been observed that near-breakdowns
can slow down or even prevent convergence [15]. Look-ahead techniques for the Lanc-
zos process [15], [21], [23], [34], [35], [43] allow us to avoid this problem when we
use variants of the BiCG method with or without the mentioned smoothing tech-
niques. However, the general look-ahead procedures that have so far been proposed
for (Bi)CGS or other LTPMs are either limited to exact breakdowns [8], [9] or are
based on different look-ahead recursions: in fact, the look-ahead steps proposed by
Brezinski and Redivo Zaglia [5] to avoid near-breakdowns in CGS and those in [6],
which are applicable to all LTPMs, are based on the so-called BSMRZ algorithm,
which is itself based on a generalization of coupled recurrences (different from those
of the standard BiOMin and BiODir versions of the BiCG method) for implementing
the Lanczos method. For a theoretical comparison of the two approaches we refer to
[25, § 19]. Recently, a number of further “look-ahead-like” algorithms for Lanczos-
type solvers have been proposed by Ayachour [1], Brezinski et al. [7], Graves-Morris
[19], and Ziegler [48]. Their discussion is beyond the scope of this paper, but it seems
that [1, 7, 48] are restricted to exact breakdowns.

In this paper, we start from the approach in [15] and [23, § 9] and derive an
alternative look-ahead procedure for LTPM algorithms that make use of the Lanczos
three-term recurrences. Compared to the standard coupled two-term recurrences they
have the advantage of being simpler to handle with regard to look-ahead, since they
are only affected by one type of breakdown. In contrast to the first version of this work
[26], we also capitalize upon an enhancement for the look-ahead Lanczos algorithm
pointed out by Hochbruck recently (see [28], [25]), which is here adapted to LTPMs.
Other improvements help to further reduce the overhead and stabilize the process.

Starting with an initial approximation x0 and a corresponding initial residual
y0 := b−Ax0, LTPMs generate in n steps a basis of the 2n-dimensional Krylov space
K2n := K2n(A, y0) in such a way that the even indexed basis vectors are of the form

τn(A)ρn(A)y0,(1.1)

where ρn is the nth Lanczos polynomial (see below) and τn is another suitably chosen
polynomial of exact degree n. In the algorithms we discuss, these vectors will be either
the residual of the nth approximation xn or a scalar multiple of it. By allowing them
to be multiples of the residuals, that is, by considering so-called unnormalized [20]
or inconsistent [25] Krylov space solvers, we avoid the occurrence of pivot (or ghost)

1

breakdowns. (For the various types of breakdowns and their connection to the block
structure of the Padé table see [20, 24, 30, 31]. In the setting of [5, 6], they have been
addressed particularly in [4].)

More generally, we define a doubly indexed sequence of product vectors wl
n by

wl
n := τl(A)yn := τl(A)ρn(A)y0.(1.2)

The aim is to find in the (n + 1)th step of an LTPM an improved approximation
xn+1 by computing a new product vector wn+1

n+1 from previously determined ones in a
stable way. To visualize the progression of an algorithm and the recurrences it uses
we arrange the product vectors wl

n in a w-table1. Its n-axis points downwards and
its l-axis to the right. We describe then how an algorithm moves in this table from
the upper left corner downwards to the right.

This paper is organized as follows. In Section 2 we review the look-ahead Lanczos
process. Versions based on the Lanczos three-term recurrences of various LTPMs are
introduced in Section 3. In Section 4 we present for these LTPMs look-ahead proce-
dures and analyze their computational overhead, and in Section 5 several look-ahead
strategies are discussed. Our preferred way of applying the look-ahead procedures
to obtain the solution of a linear system is presented in Section 6. In Section 7 the
efficiency of the proposed algorithms is demonstrated by numerical examples, and in
Section 8 we draw some conclusions.

2. The Look-Ahead Lanczos Process. The primary aim of the Lanczos pro-
cess [32] is the construction of a pair of biorthogonal bases for two nested sequences of
Krylov spaces. Given A ∈ CN×N and a pair of starting vectors, (ỹ0, y0), the Lanczos
Biorthogonalization (BiO) Algorithm generates a pair of finite sequences, {ỹn}νn=0

,
{yn}νn=0

, of left and right Lanczos vectors, such that

yn ∈ Kn+1 := span {y0, Ay0, . . . , Any0},

ỹn ∈ K̃n+1 := span {ỹ0, AH ỹ0, . . . , (AH)nỹ0},
(2.1)

and

〈ỹm, yn〉 =
{

0 if m %= n or m = n = ν,
δn %= 0 if m = n < ν,

(2.2)

or, equivalently,

ỹn ⊥ Kn, K̃n ⊥ yn.(2.3)

Here, 〈·, ·〉 denotes the inner product in CN , which we choose to be linear in the second
argument, and ⊥ indicates the corresponding orthogonality.

The sequence of pairs of Lanczos vectors can be constructed by the three-term
recursions

yn+1 = (Ayn − ynαn − yn−1βn)/γn

ỹn+1 = (AH ỹn − ỹnαn − ỹn−1βn)/γn,
(2.4)

with coefficients αn and βn that are determined from the orthogonality condition
(2.2) and nonvanishing scale factors γn that can be chosen arbitrarily. Choosing

1The w-table is different from the scheme introduced by Sleijpen and Fokkema [38] for
BiCGstab(!).

2

γn = −αn − βn would allow us to consider the right Lanczos vectors yn as residuals
and to update the iterates xn particularly simply. But this choice also introduces the
possibility of a breakdown due to αn + βn = 0. Therefore, we suggest in Section 6 a
different way of defining iterates.

From (2.4) it follows directly that the Lanczos vectors can be written in the form

yn=ρn(A)y0,(2.5)

ỹn=ρn(A
H)ỹ0,(2.6)

where ρn denotes the n-th Lanczos polynomial. Since we aim here at LTPMs, we
consider for the Krylov spaces K̃n more general basis vectors of the form

z̃n = τn(A
H)z̃0,(2.7)

with arbitrary, but suitably chosen polynomials τn of exact degree n and z̃0 := ỹ0. In
general, z̃n+1 ⊥ Kn+1 will no longer hold, but K̃n+1 ⊥ yn+1 can still be attained by
enforcing z̃n−1 ⊥ yn+1 and z̃n ⊥ yn+1, which means choosing the coefficients αn and
βn in (2.4) in the following way: if n > 0 we need

0 = 〈z̃n−1, yn+1〉 = (〈z̃n−1, Ayn〉 − 〈z̃n−1, yn〉αn − 〈z̃n−1, yn−1〉βn) /γn,

but since 〈z̃n−1, yn〉 = 0, we have, with δτn := 〈z̃n, yn〉,

βn =
〈z̃n−1, Ayn〉
〈z̃n−1, yn−1〉

=
〈z̃n−1, Ayn〉

δτn−1

.(2.8)

When n = 0, we set β0 = 0. Similarly, from the orthogonality condition 〈z̃n, yn+1〉 = 0
we obtain

αn =
〈z̃n, Ayn − yn−1βn〉

〈z̃n, yn〉
=

〈z̃n, Ayn − yn−1βn〉
δτn

.(2.9)

Equations (2.7)–(2.9) and the first recurrence of (2.4) specify what one might call the
one-sided Lanczos process, formulated in [36] to derive LTPMs.

Clearly, this recursive process terminates with yν = 0 or z̃ν = 0, or it breaks
down with δτν = 0 and yν %= 0, z̃ν %= 0. The look-ahead Lanczos process [23, § 9], [15]
overcomes such a breakdown if curable, i.e., if for some k, 〈z̃ν , Akyν〉 %= 0. However,
its role is not restricted to treating such exact breakdowns with δτn = 0: it allows us
to continue the biorthogonalization process whenever for stability reasons we choose
to enforce the orthogonality condition (2.2) only partially for a couple of steps. We
will come back later to the conditions that make us start such a look-ahead phase.
In the look-ahead Lanczos process the price we have to pay is that the Gramian
matrix D := (〈z̃m, yn〉) becomes block-lower triangular instead of triangular (as in
the generic one-sided Lanczos algorithm) or diagonal (as in the generic two-sided
Lanczos algorithm). In other words, we replace the conditions K̃n ⊥ yn and δτn %= 0
by

K̃nj ⊥ yn, if n ≥ nj (j = 0, . . . , J),(2.10)

and

Dj := (〈z̃k, yl〉)
nj+1−1

k,l=nj
nonsingular if j < J,(2.11)

3

where 0 = n0 < n1 < · · · < nJ = ν ≤ N is the subsequence of indices of (well-condi-
tioned) regular Lanczos vectors ynj ; for the other indices the vectors are called inner
vectors. Likewise, we refer to n as a regular index if n = nj for some j, while n is
called an inner index otherwise. Note that there is considerable freedom in choosing
the subsequence {nj}Jj=0

: for example, we might request that the smallest singular
value σmin(Dj) is sufficiently large.

The sequence {yn} is determined by the condition K̃nj ⊥ yn if nj ≤ n < nj+1 and

hence it does not depend directly on the sequence {z̃n} but only on the spaces K̃nj

that are spanned by the first nj elements of {z̃n}. On the other hand, the smallest
singular value of each Dj depends on the basis chosen, a fact that one should take
into account. Forming the blocks

Yj :=
[
ynj ynj+1 · · · ynj+1−1

]
, Z̃j :=

[
z̃nj z̃nj+1 · · · z̃nj+1−1

]
,

we can express relation (2.10) as

Z̃H
l Yj =

{
Dj if l = j,
0 if l < j.

(2.12)

The look-ahead step size is in the following denoted by hj := nj+1 − nj .
In the look-ahead case the Lanczos vectors {yn} can be generated by the recursion

[23, § 9], [15]:

yn+1 = (Ayn − Ŷjαn − Yj−1βn)/γn (nj < n+ 1 ≤ nj+1),(2.13)

where Ŷj :=
[
ynj . . . yn

]
denotes the not yet fully completed j-block if n + 1

is an inner index, while Ŷj = Yj if n + 1 is regular, that is, if n + 1 = nj+1. The
coefficient vector βn is determined by the condition

0 = Z̃H
j−1yn+1 = Z̃H

j−1Ayn − Z̃H
j−1Yj−1βn,

thus,

βn = D−1
j−1Z̃

H
j−1Ayn.(2.14)

The coefficient vector αn can be chosen arbitrarily if n+1 is an inner index. Obviously,
the choice αn = 0 yields the cheapest recursion, but we may gain numerical stability
by choosing αn %= 0. On the other hand, if n+ 1 is a regular index, αn results from
the condition

0 = Z̃H
j yn+1 = Z̃H

j Ayn − Z̃H
j Yjαn − Z̃H

j Yj−1βn,

that is

αn = D−1
j Z̃H

j (Ayn − Yj−1βn) .(2.15)

Recently, it was pointed out by Hochbruck [28] that the recursion (2.13) can
be simplified since the contribution of the older block Yj−1 can be represented by
multiples of a single auxiliary vector y′j−1. This is due to the fact (noticed in [23])
that the matrix made up of the coefficient vectors βnj , . . ., βnj+1−1 for block j is of
rank one; see also [25, § 19]. This simplification has also been capitalized upon in

4

the look-ahead Hankel solver of Freund and Zha [17], which is closely related to the
look-ahead Lanczos algorithm.

In particular, due to (2.10) or (2.12) we have

〈z̃l+1, yn〉 = 0 and 〈z̃l, Ayn〉 = 0 if l < nj − 1 < n.(2.16)

Therefore, (2.14) simplifies to

βn = D−1
j−1Z̃

H
j−1Ayn = D−1

j−1 ! z̃
H
nj−1Ayn =: D−1

j−1! β
′
n,(2.17)

where ! := [0, . . . , 0, 1]T and

β′
n := 〈z̃nj−1, Ayn〉.(2.18)

Introducing the auxiliary vector

y′j−1 := Yj−1

(
D−1

j−1!
)
,(2.19)

we have

Yj−1βn =
(
Yj−1D

−1
j−1!

) (
z̃Hnj−1Ayn

)
= y′j−1β

′
n,(2.20)

so that the recurrence (2.13) becomes

yn+1 =
(
Ayn − Ŷjαn − y′j−1β

′
n

)
/γn (nj < n+ 1 ≤ nj+1),(2.21)

and (2.15) changes to

αn = D−1
j Z̃H

j

(
Ayn − y′j−1β

′
n

)
.(2.22)

3. Lanczos-Type Product Methods (LTPMs). LTPMs are based on two
ideas. The first one is to derive for a certain sequence of product vectors wl+1

n+1

recursion formulas that involve only previously computed product vectors, so that
there is no need of explicitly computing the vectors z̃l and yn. By multiplying the
three-term recursion (2.4) for the right Lanczos vectors yn with τl(A) we obtain

wl
n+1 =

(
Awl

n − wl
nαn − wl

n−1βn

)
/γn.(3.1)

This recursion can be applied to move forward in the vertical direction in the w-table.
To obtain a formula for proceeding in the horizontal direction, the recursion for the
chosen polynomials τl(ζ) is capitalized upon in an analogous way.

The second basic idea is to rewrite the inner products that appear in the Lanczos
process in terms of product vectors:

〈z̃l, yn〉 = 〈τ l(AH)z̃0, yn〉 = 〈z̃0, τl(A)yn〉 = 〈z̃0, wl
n〉,

〈z̃l, Ayn〉 = 〈τ l(AH)z̃0, Ayn〉 = 〈z̃0, Aτl(A)yn〉 = 〈z̃0, Awl
n〉.

For the coefficients αn and βn of (2.8) and (2.9) this results in

βn =
〈z̃0, Awn−1

n 〉
〈z̃0, wn−1

n−1〉
, αn =

〈z̃0, Awn
n − wn

n−1βn〉
〈z̃0, wn

n〉
.(3.2)

5

LTPMs still have short recurrence formulas if the polynomials τl have a short
one. In addition, they have two advantages over BiCG: first, multiplications with
the adjoint system matrix AH are avoided; second, for an appropriate choice of the
polynomials τl(ζ) smaller new residuals rl := wl

l = τl(A)yl can be expected because of
a further reduction of yl by the operator τl(A). Different choices of the polynomials
τl(ζ) lead to different LTPMs. In the following we briefly review some possible choices
for these polynomials. We start with the general class where they satisfy a three-term
recursion. Since then both the ‘left’ polynomials τl and the ‘right’ polynomials ρn
fulfill a three-term recursion, we say that this is the class of (3, 3)-type LTPMs.

In the following we briefly review some possible choices for these polynomials.
For a more detailed discussion and a pseudocode for the resulting algorithms we refer
to [36].

3.1. LTPMs based on a three-term recursion for {τl}: BiOxCheb and
BiOxMR2. Assume the polynomials τl(ζ) are generated by a three-term recursion
of the form [22]

τl+1(ζ) = (ξl + ηlζ) τl(ζ) + (1− ξl) τl−1(ζ),(3.3)

with τ−1(ζ) ≡ 0, τ0(ζ) ≡ 1, ξ0 = 1, and ηl %= 0 for all l. Note that, by induction, τl
has exact degree l and τl(0) = 1 for all l. Hence, the polynomials qualify as residual
polynomials of a Krylov space method.

Multiplying yn by τl+1(A) from the left and applying (3.3) yields the horizontal
recurrence

wl+1
n = Awl

nηl + wl
nξl + wl−1

n (1− ξl).(3.4)

By applying (3.1) and (3.4) the following loop produces a new product vector wn+1
n+1

from previously calculated ones, namely wl
m, (m, l) := (n, n), (n−1, n), (n, n−1), (n−

1, n−1), and the product Awn−1
n also evaluated before. At the end of the loop, besides

wn+1
n+1 also wn+1

n , wn+1
n−1 and Awn

n+1, which will be needed in the next run through the
loop, are available.

Loop 3.1. (General (3, 3)-type LTPM)
1. Compute Awn

n and determine βn and αn.
2. Use (3.1) to compute wn−1

n+1 (if n > 0) and wn
n+1.

3. Compute Awn
n+1 and determine ξn and ηn.

4. Use (3.4) to compute wn+1
n and wn+1

n+1.

Next we discuss two ways of choosing the polynomials τl, that is, of specifying
the recurrence coefficients ξl and ηl.

One possibility is to combine the Lanczos process with the Chebyshev method
[13], [45] by choosing τl as a suitably shifted and scaled Chebyshev polynomial. This
combination was suggested in [3, 22, 44]. Let us call the resulting (3, 3)-type LTPM
BiOxCheb. It is well known that these polynomials satisfy a recurrence of the form
(3.3). After acquiring some information about the spectrum of the matrix A, for
example, by performing a few iterations with another Krylov space method, one can
determine the recursion for the scaled and shifted Chebyshev polynomials that corre-
spond to an ellipse surrounding the estimated spectrum [33]. However, the necessity
to provide spectral information is often seen as a drawback of this method.

Another idea is to use the coefficients ξl and ηl of (3.3) for locally minimizing
the norm of the new residual wl+1

l+1
. This idea is borrowed from the BiCGStab and

6

BiCGStab2 methods [44], [22] reviewed below: ξl and ηl are determined by solving
the two-dimensional minimization problem

min
ξ,η∈C

∥∥wl−1
l+1

+ (wl
l+1 − wl−1

l+1
)ξ +Awl

l+1η
∥∥ .(3.5)

Introducing the N × 2 matrix Bl+1 :=
[
(wl

l+1 − wl−1
l+1

) Awl
l+1

]
we can write (3.5)

as the least-squares problem

min
ξ,η∈C

∥∥∥∥w
l−1
l+1

+Bl+1

[
ξ
η

]∥∥∥∥ .

Therefore, ξl and ηl can be computed as the solution of the normal equations

(
BH

l+1Bl+1

) [ξl
ηl

]
= −BH

l+1w
l−1
l+1

.(3.6)

In view of the two-dimensional local residual norm minimization performed at
every step (except the first one) we call this the BiOxMR2 method2. A version based
on coupled two-term Lanczos recurrences of this method was introduced by the first
author in a talk in Oberwolfach (April 1994). Independently it was as well proposed by
Cao [10] and by Zhang [46], whose Technical Report is dated April 1993. Zhang also
considered two-term formulas for τl and presented very favorable numerical results.

3.2. LTPMs based on a two-term recursion for {τl}: BiOStab. In Van
der Vorst’s BiCGStab [44] the polynomials τl(ζ) are built up successively as products
of polynomials of degree 1:

τ0(ζ) ≡ 1, τl+1(ζ) = (1− χlζ)τl(ζ) for l ≥ 0.(3.7)

Inserting here for ζ the system matrix A and multiplying by yn from the right yields

wl+1
n = wl

n −Awl
nχl.(3.8)

The coefficient χl is determined by minimizing the norm of wl+1
l+1

= wl
l+1 −Awl

l+1χl,
that is by solving the one-dimensional minimization problem

min
χ∈C

∥∥wl
l+1 −Awl

l+1χ
∥∥ ,(3.9)

which leads to

χl =
〈Awl

l+1, w
l
l+1〉

〈Awl
l+1

, Awl
l+1

〉
.(3.10)

Recurrences (3.1) and (3.8) can be used to compute a new product vector wn+1
n+1

from wn
n and wn

n−1 as described in Loop 3.1 with ξn = 1 and ηn = −χn, where χn

is calculated from (3.10). However, since (3.8) is only a two-term recurrence, there is
no need now to compute wn−1

n+1 in substep 2 of the loop.
We call this algorithm BiOStab since it is a version of BiCGStab that is based on

the three-term recurrences of the Lanczos biorthogonalization process3.

2The letter ‘x’ in the name BiOxMR2 reflects the fact that the residual polynomials of this method
are the products of the Lanczos polynomials generated by the BiO process with polynomials obtained
from a successive two-dimensional minimization of the residual (MR2). Similarly, BiOxCheb means
a combination of the BiO process with a Chebyshev process.

3Eijkhout [12] also proposed such a variant of BiCGStab; however, his way of computing the
Lanczos coefficients is much too complicated.

7

3.3. BiOStab2. BiOStab2 is the version of BiCGStab2 [22] based on the three-
term Lanczos recurrences. The polynomials τl(ζ) satisfy the recursions

τ0(ζ) ≡ 1,
τl+1(ζ) = (1− χlζ) τl(ζ) if l is even,
τl+1(ζ) = (ξl + ηlζ) τl(ζ) + (1− ξl) τl−1(ζ) if l is odd.

(3.11)

Here χl may be obtained by solving the one-dimensional minimization problem (3.9),
so χl is given by (3.10). However, if |χl| is small, this choice is dangerous since the
vector component needed to enlarge the Krylov space becomes negligible [38]. Then
some other value of χl should be chosen. Except for roundoff, the choice has no
effect on later steps, because ξl and ηl are determined by solving the two-dimensional
minimization problem (3.5).

Multiplying yn by τl+1(A) and applying (3.11) leads to

wl+1
n =

{
wl

n −Awl
nχl if l is even

Awl
nηl + wl

nξl + wl−1
n (1 − ξl) if l is odd.

(3.12)

Now, Loop 3.1 applies with ξn = 1, ηn = −χn if n is even, while ξn and ηn are chosen
as indicated above if n is odd. If n is even, there is no need to compute wn−1

n+1 in
substep 2 of the loop.

3.4. BiO-Squared (BiOS). BiOS is obtained by “squaring” the three-term
Lanczos process: among the basis vectors generated are those Krylov space vectors
that correspond to the squared Lanczos polynomials. By complementing BiOS with
a recursion for Galerkin iterates we will obtain BiOResS, a (3, 3)-type version of
Sonneveld’s (2, 2)-type conjugate gradient squared (CGS) method [42]. The method
fits into the framework of LTPMs if we identify

τl(ζ) = ρl(ζ).(3.13)

The vectors z̃n = τn(AH)z̃0 = ρn(A
H)ỹ0 = ỹn are then exactly the left Lanczos

vectors so that now yn ⊥ K̃n as well as z̃n ⊥ Kn is fulfilled. Thus, the coefficient αn

in (3.2) simplifies to

αn =
〈z̃0, Awn

n〉
〈z̃0, wn

n〉
,(3.14)

and the w-table becomes symmetric since

wl
n = ρl(A)ρn(A)y0 = ρn(A)ρl(A)y0 = wn

l .(3.15)

Consequently, we have in analogy to (3.1)

wl+1
n =

(
Awl

n − wl
nαl − wl−1

n βl

)
/γl.(3.16)

8

These two recursions lead to the following loop:

Loop 3.2. (BiOS)
1. Compute Awn

n and determine βn and αn.
2. Use (3.1) to compute wn−1

n+1 (if n > 0) and wn
n+1.

3. Compute Awn
n+1.

4. Use (3.16) to compute wn+1
n+1.

Note that we exploit in substep 2 the symmetry of the w-table: the product vector
wn

n−1, which is needed for the calculation of wn
n+1 by (3.1), is equal to wn−1

n and need
not be stored. We also point out that (3.16) is not of the form (3.4); in particular,
the coefficients of wl−1

n and wl
n need not sum up to 1.

4. Look-Ahead Procedures for LTPMs. Look-ahead steps in an LTPM serve
to stabilize the Lanczos process, the vertical movement in the w-table. Except for
BiOS, the recursion formulas for the horizontal movement remain the same. The
vertical movement is now in general based on the recurrence formula (2.21) for the
Lanczos vectors, but we need to replace these vectors by product vectors wl

n; see (1.2).
We introduce the blocks of product vectors

Ŵ l
j :=

[
wl

nj
. . . wl

n

]
, W l

j−1 :=
[
wl

nj−1
. . . wl

nj−1

]

and the auxiliary product vector w′ l
j−1 defined by

w′ l
j−1 := τl(A)y

′
j−1 = τl(A)Yj−1

(
D−1

j−1!
)
= W l

j−1

(
D−1

j−1!
)
.(4.1)

Again Ŵ l
j = W l

j if n + 1 = nj+1 is a regular index, while Ŵ l
j denotes the not yet

completed jth block if n+1 is an inner index. Now, multiplying (2.21) by τl(A) from
the left, we obtain

wl
n+1 =

(
Awl

n − Ŵ l
jαn − w′ l

j−1β
′
n

)
/γn (nj < n+ 1 ≤ nj+1).(4.2)

As in Section 3, the coefficient vectors β′
n and, in the regular case, αn can be

expressed in terms of the product vectors by rewriting all inner products in such a
way that the part τ l(AH) of z̃l on the left side is transferred to the right side of the
inner product. For the diagonal blocks Dj of the Gramian this yields

Dj =
[
〈z̃0, wi

k〉
]nj+1−1

i,k=nj
,(4.3)

and β′
n of (2.18) becomes

β′
n = z̃H0 Awnj−1

n (nj < n+ 1 ≤ nj+1).(4.4)

Likewise, αn of (2.22) turns into

αn = D−1
j





〈z̃0, Aw
nj
n − w

′ nj

j−1β
′
n〉

...

〈z̃0, Aw
nj+1−1
n − w

′nj+1−1

j−1 β′
n〉



 (n+ 1 = nj+1).(4.5)

9

For advancing in the horizontal direction of the w-table we will still use (3.4), (3.8),

the combination (3.12), or (3.16). Substituting Aw
nj−1
n in (4.4) according to these

formulas and letting δ
nj
n = 〈z̃0, w

nj
n 〉 be the (nj , n)-element of D (4.4) simplifies to

β′
n =






δ
nj
n /ηnj−1, if (3.4) holds for l = nj − 1,
−δ

nj
n /χnj−1, if (3.8) holds for l = nj − 1,

δ
nj
n γnj−1, if (3.16) holds for l = nj − 1.

(4.6)

We remark that by using (4.6) instead of 〈z̃0, Aw
nj−1
n 〉 we avoid to compute and

store the complete W j−1

j block. Now only few elements of this block are needed, see

Figure 4.1 below. In this figure we display those entries wl
n and products Awl

n in the
w-table that are needed to compute by (4.2) a new vector wl

n+1 marked by ‘∗’.

inner case

nj−1 nj . . . l

nj−1 d d d

d d d

d d d v′

nj V

... V

n V
A

n+ 1 ∗

regular case

nj−1 nj . . . l n nj+1

nj−1 d d d

d d d

d d d α′ α′ v′ α′

nj D D V D

... D D V D

... D D V D

n D
A

D
A

V
A

D
A

nj+1 ∗

Fig. 4.1. Entries in the w-table needed for the construction of a new inner or regular vector
marked by ‘∗’ by recurrence formula (4.2). Here, ‘v′’ indicates entries needed for w′ l

j−1
, ‘V’ those

for Ŵ l
j , ‘d’ those for Dj−1, ‘D’ those additionally required for Dj. Moreover, ‘α′’ marks auxiliary

vectors w′k
j−1 (nj ≤ k < nj+1) in the formula (4.5) for αn, and ‘A’ stands for a matrix-vector

product (MV) with A in this formula. One such product also appears explicitly in (4.2).

Note that the horizontal recursions are valid for the auxiliary product vectors
w′ l

j−1 too: for example, (3.4) and (4.1) imply

w′ l+1
j−1 = Aw′ l

j−1ηl + w′ l
j−1ξl + w′ l−1

j−1 (1− ξl),(4.7)

while (3.8) and (4.1) provide

w′ l+1
j−1 = w′ l

j−1 −Aw′ l
j−1χl .(4.8)

Thus, the auxiliary vector can be updated in the horizontal direction at the cost
of one matrix-vector product (MV) per step.

Combining the recursions for the vertical movement with those for the horizontal
movement leads to the look-ahead version of an LTPM. (Actually, we will also need
to compute approximations to the solution A−1b of the linear system; but we defer
this till section 6). Because of the additional vectors involved in the above recurrence
formulas, it seems that such a look-ahead LTPM requires much more computational
work and storage than its unstable, standard version. However, the number of look-
ahead steps as well as the size of their blocks is small in practice, so that the overhead

10

is moderate. Moreover, we describe in the following for various choices of polynomials
τn(ζ) how MVs that are needed can be computed indirectly by applying the recurrence
formulas. In the same way also the values of inner products can be obtained indirectly
at nearly no cost.

4.1. Look-ahead LTPMs based on a three-term recursion for {τl}: LA-
BiOxCheb and LA-BiOxMR2. For methods incorporating a horizontal three-
term recurrence, such as BiOxCheb and BiOxMR2, applying the above principles for
look-ahead LTPMs leads to the general Loop 4.1. Note that the first four substeps are
identical in both cases. We will see in Section 5 that the decision between a regular
and an inner loop is made during substep 5.

In Figure 4.2 we display the action of this loop in the w-table, but now we use a
different format than before, which, on the one hand specifies what has been known
before the current sweep through the loop and what is being computed in this sweep.
In particular, the following symbols and indicators are used:

• ‘V’ indicates that the corresponding product vector is already known;

• ‘A’ as ‘denominator’ indicates that the product of the vector represented by
‘V’ with the matrix A was needed;

• a solid box around a ‘fraction’ means that this product by A required (or
requires) an MV;

• no box around a ‘fraction’ means that this product can be obtained by ap-
plying a recurrence formula;

• a number as entry specifies in which substep of the current sweep this entry
is calculated;

• a prime indicates that the vector is an auxiliary one, as defined in (4.1)
(these vectors are displayed in the last row of the corresponding block of the
w-table);

• ‘A′’ as ‘denominator’ indicates that the product of the vector represented by
‘V′’ with the matrix A was needed;

• double primes will indicate that the vector is an auxiliary one of the type
defined in (4.11) used in LA-BiCGS (these vectors are displayed in the lower
right corner of the corresponding block of the w-table);

• ‘S’ will indicate that the vector or the MV is obtained for free due to the
symmetry of the w-table of LA-BiCGS.

11

Loop 4.1. (Look-ahead for (3, 3)-type LTPM.) Let µ := min {nj, n− 1}.

Inner Loop: (nj < n+ 1 < nj+1)

1. Compute Awn
n.

2. If n > nj , use (4.2) to compute
indirectly Awn

nj
, . . ., Awn

n−1.

3. If n ≥ nj + 2, compute Awµ
n.

4. If n ≥ nj+3, use (3.4) to compute
indirectly Awµ+1

n , . . ., Awn−2
n .

5. Use (4.2) to compute wn
n+1, w

n−1
n+1 ,

. . ., wµ
n+1.

6. Compute Awn
n+1 and ξn, ηn.

7. Use (3.4) to compute wn+1
nj

, . . .,

wn+1
n+1.

8. Compute Aw′n
j−1 and use (4.7) to

compute w′n+1
j−1 .

Regular Loop: (n+ 1 = nj+1)

1. Compute Awn
n.

2. If n > nj , use (4.2) to compute
indirectly Awn

nj
, . . ., Awn

n−1.

3. If n ≥ nj + 2, compute Awµ
n.

4. If n ≥ nj+3, use (3.4) to compute
indirectly Awµ+1

n , . . ., Awn−2
n .

5. Use (4.2) to compute wn
n+1 and

wn−1
n+1 .

6. Compute Awn
n+1 and ξn, ηn.

7. Use (3.4) to compute wn+1
nj

, . . .,

wn+1
n+1.

8. Compute w′n
j and w′n+1

j accord-
ing to definition (4.1).

Inner Loop (n = nj)

nj−1 nj n + 1

nj−1
V
A

V
A

V
A V

V
A

V
A

V
A V

V
A

V
A

VV′

A
VV′

8′
8′

nj V V
A

V
1 7

n + 1 5 5
6 7

Regular Loop (hj = 1, n = nj)

nj−1 nj nj+1

nj−1
V
A

V
A

V
A V

V
A

V
A

V
A V

V
A

V
A

VV′

A V V’

nj V V
A

V8′

1 7 8′

nj+1 5 5
6 7

Inner Loop (n = nj + 3)

nj−1 nj n n + 1

nj−1
V
A

V
A

V
A V

V
A

V
A

V
A V

V
A

V
A

VV′

A
VV′

A′
V′

A′
V′

A′
V′

8′
8′

nj V V
A

V
A

V
A

V
A

V
2 7

V V
A

V
A

V
A

V
2 7

V
A

V
A

V
A

V
2 7

n V
3

V
4

V
A

V
1 7

n + 1 5 5 5 5
6 7

Regular Loop (hj = 5)

nj−1 nj n nj+1

nj−1
V
A

V
A

V
A V

V
A

V
A

V
A V

V
A

V
A

VV′

A
VV′

A′
V′

A′
V′

A′
V′

A′
V’

nj V V
A

V
A

V
A

V
A

V
A

V
2 7

V V
A

V
A

V
A

V
A

V
2 7

V
A

V
A

V
A

V
A

V
2 7

V
A

V
A

V
A

V
A

V
2 7

n V
3

V
4

V
4

V
A

V 8′

1
7 8′

nj+1 5 5
6 7

Fig. 4.2. Action of Loop 4.1 (Look-ahead for (3, 3)-type LTPM) in the w-table. For blocks of
different sizes an inner step (at left) and the following regular step (at right) are shown.

In the first two w-tables of Figure 4.2 we display what happens in a first inner
step (at left) and in a regular step (at right) that follows directly a regular step (so
that hj = 1). In the second pair of w-tables of Figure 4.2 we consider an inner and a

12

regular step in case of a large block size. Note that the substeps 2–4 of the loop do
not appear in the first pair, and that substep 4 would still not be active in the regular
loop at the end of a look-ahead step of length hj = 3, while, when hj ≥ 4, it becomes
active.

For such a look-ahead step of length hj , the cost in terms of MVs is 4hj − 3
MVs if hj > 1. In fact, in the first substep of the hj − 1 inner and the one regular
loops hj MVs are consumed; another hj − 2 MVs are needed in substep 3, further
hj MVs in substep 6, and the remaining hj − 1 MVs are used in substep 6 of the
inner loops. If no look-ahead is needed, that is if hj = 1, then 2 MVs are required,
both in our procedure and in the standard one that does not allow for look-ahead.
Hence, in a step of length 2, we have 25% overhead, in a step of length 3 there is 50%
overhead, and for even longer steps, which are very rare in practice, the overhead
grows gradually towards 100%.

4.2. Look-ahead for BiOStab and BiOStab2. Since the horizontal recur-
rence (3.8) for BiOStab is only a two-term one, there is no need to compute elements
of the second subdiagonal of the w-table as long as we are not in a look-ahead step.
In case of a look-ahead step, this remains true for those of these elements that lie in
a subdiagonal block, but, of course, not for those in a diagonal block. For Loop 4.1
this means that µ simplifies to µ := nj and that in substep 5 of a regular loop there
is no need to compute wn−1

n+1 . All the other changes refer to equation numbers or the
coefficients ξn and ηn. In summary, we obtain Loop 4.2. Again the first four substeps
are the same in both cases, and the choice between them will be made in substep 5.
In Figure 4.3 we display for this loop the two sections of w-tables that correspond to
the second pair in Figure 4.2.

Since those product vectors from Loop 4.1 that are no longer needed in Loop 4.2
were found without an extra MV before, the overhead in terms of MVs remains the
same here.

Look-ahead for BiOStab2 could be defined along the same lines, by alternating
between steps of Loop 4.1 and Loop 4.2. At this point it also becomes clear how to
obtain a look-ahead version of BiOStab(!), an algorithm analogous to BiCGStab(!)
of Sleijpen and Fokkema [38], but based on the three-term Lanczos process instead of
coupled two-term BiCG formulas.

4.3. Look-ahead (bi)conjugate gradient squared: LA-BiOS. For BiOS,
which will be the underlying process for our BiOResS version of BiCGS, the horizontal
recurrence (3.4) has to be substituted by the Lanczos recurrence given in (3.16), which
may need to be replaced by the look-ahead formula that is analogous to (4.2) with
l and n exchanged and with suitably defined auxiliary vectors and blocks of vectors.
But since the w-table is symmetric, we can build it up by vertical recursions only and
reflections at the diagonal.

We only formulate the recursion for w′ l
j−1 as a horizontal one that replaces (4.7):

if nk < l + 1 ≤ nk+1,

w′ l+1
j−1 =

(
Aw′ l

j−1 − Ŵ ′ k
j−1αl −W ′ k−1

j−1 βl

)
/γl ,(4.9)

where now

Ŵ ′ k
j−1 :=

[
w′nk

j−1 . . . w′ l
j−1

]
, W ′ k−1

j−1 :=
[
w′ nk−1

j−1 . . . w′nk−1
j−1

]
.(4.10)

Recurrence (4.9) follows from the horizontal Lanczos look-ahead recurrences for com-
puting wl+1

nj−1
, . . ., wl+1

nj−1, derived from (2.13) instead of (2.21), which can be gathered

13

Loop 4.2. (Look-ahead for BiOStab.)
Inner Loop: (nj < n+ 1 < nj+1)

1. Compute Awn
n.

2. If n > nj , use (4.2) to compute
indirectly Awn

nj
, . . ., Awn

n−1.

3. If n ≥ nj + 2, compute Aw
nj
n .

4. If n ≥ nj+3, use (3.8) to compute

indirectly Aw
nj+1
n , . . ., Awn−2

n .

5. Use (4.2) to compute wn
n+1, w

n−1
n+1 ,

. . ., w
nj

n+1.

6. Compute Awn
n+1 and χn.

7. Use (3.8) to compute wn+1
nj

, . . .,

wn+1
n+1.

8. Compute Aw′n
j−1 and use (4.8) to

compute w′n+1
j−1 .

Regular Loop: (n+ 1 = nj+1)

1. Compute Awn
n.

2. If n > nj , use (4.2) to compute
indirectly Awn

nj
, . . ., Awn

n−1.

3. If n ≥ nj + 2, compute Aw
nj
n .

4. If n ≥ nj+3, use (3.8) to compute

indirectly Aw
nj+1
n , . . ., Awn−2

n .

5. Use (4.2) to compute wn
n+1.

6. Compute Awn
n+1 and χn.

7. Use (3.8) to compute wn+1
nj

, . . .,

wn+1
n+1.

8. Compute w′n
j and w′n+1

j accord-
ing to definition (4.1).

Inner Loop (n = nj + 3)

nj−1 nj n n + 1

nj−1
V
A

V
A

V
A V

V
A

V
A

V
A V

V
A

V
A

VV′

A
VV′

A′
V′

A′
V′

A′
V′

8′
8′

nj
V
A

V
A

V
A

V
A

V
2 7

V
A

V
A

V
A

V
2 7

V
A

V
A

V
A

V
2 7

n V
3

V
4

V
A

V
1 7

n + 1 5 5 5 5
6 7

Regular Loop (hj = 5)

nj−1 nj n nj+1

nj−1
V
A

V
A

V
A V

V
A

V
A

V
A V

V
A

V
A

VV′

A
VV′

A′
V′

A′
V′

A′
V′

A′
V’

nj
V
A

V
A

V
A

V
A

V
A

V
2 7

V
A

V
A

V
A

V
A

V
2 7

V
A

V
A

V
A

V
A

V
2 7

V
A

V
A

V
A

V
A

V
2 7

n V
3

V
4

V
4

V
A

V 8′

1 7 8′

nj+1
5
6 7

Fig. 4.3. Action of Loop 4.2 (Look-ahead for BiOStab) in the w-table. An inner step (at left)
and the following regular step (at right) are shown.

into one recurrence for these hj−1 columns of W l+1
j−1 and then post-multiplied by

D−1
j−1!, as in (4.1).
Again, (4.9) can be simplified: if we define for block k − 1 and the needed values

of j the auxiliary vector

w′′ k−1
j−1 := W ′ k−1

j−1 D−1
k−1

!,(4.11)

and for each l with nk ≤ l < nk+1 the same coefficient β′
l := δnk

l γnk−1 as in (4.6),
then in view of (2.17) and (4.6),

W ′ k−1
j−1 βl = W ′ k−1

j−1 D−1
k−1

!β′
l = w′′ k−1

j−1 β′
l .(4.12)

14

Loop 4.3. (Look-ahead for BiOS.)
Inner Loop: (nj < n+ 1 < nj+1)

1. Compute Awn
n.

2. If n ≥ nj+2, use (4.2) to compute
indirectly Awn

nj
, . . ., Awn

n−2.

3. Use (4.2) to compute wn
n+1, w

n−1
n+1 ,

. . ., w
nj

n+1.

4. Compute Awn
n+1 and Aw′n

j−1.

5. Use (4.13) to compute w′n+1
j−1 .

6. Use (4.2) to compute wn+1
n+1.

Regular Loop: (n+ 1 = nj+1)

1. Compute Awn
n.

2. If n ≥ nj+2, use (4.2) to compute
indirectly Awn

nj
, . . ., Awn

n−2.

3. Use (4.2) to compute wn
n+1,

wn−1
n+1 , . . ., w

nj

n+1.

4. Compute Awn
n+1 and Aw′n

j−1.

5. Use (4.13) to compute w′n+1
j−1 .

6. Use definition (4.1) to compute

w
′nj

j , . . . , w
′nj+1−1

j and use defi-

nition (4.11) to compute w′′ j
j .

7. Use (4.2) to compute wn+1
n+1.

8. Use definition (4.1) to compute
w′n+1

j .

Inner Loop (n = nj + 3)

nj−1 nj n n + 1

nj−1
V
A

V
A

V
A V

V
A

V
A

V
A

V

V V
′

A
V V

′

A
V V

′
V

′′

A
VV′

AA′
V′

A′
V′

A′
V′

4′
5′

nj V V V
A

V
A

V
A

V
A

V
2 S

V
A

V
A

V
A

V
2 S

V
A

V
A

V
A

V
A

S

n V
S

V
S

V
A

V
1

S
S

n + 1 3 3 3 3
4 6

Regular Loop (hj = 5)

nj−1 nj n nj+1

nj−1
V
A

V
A

V
A V

V
A

V
A

V
A V

V V
′

A
V V

′

A
V V

′
V

′′

A
VV′

AA′
V′

A′
V′

A′
V′

A′
V′

4′
5′

nj V V V
A

V
A

V
A

V
A

V
A

V
2 S

V
A

V
A

V
A

V
A

V
2 S

V
A

V
A

V
A

V
A

V
2 S

V
A

V
A

V
A

V
A

V
A S

n V6′

S
V6′

S
V6′

S
V 6′

A
V6′ 6′′

1
S 8′

S

nj+1 3 3 3 3 3
4 7

Fig. 4.4. Action of Loop 4.3 (Look-ahead for BiOS) in the w-table. An inner loop (at the top)
and the following regular loop (at the bottom) are shown.

15

Consequently, (4.9) simplifies to

w′ l+1
j−1 =

(
Aw′ l

j−1 − Ŵ ′ k
j−1αl − w′′ k−1

j−1 β′
l

)
/γl .(4.13)

A step of the resulting LA-BiOS algorithm is summarized as Loop 4.3.
Here, the decision between a regular and an inner loop is made in substep 3 (which

corresponds to substep 5 in Loops 4.1 and 4.2). Now even the first five substeps of
the two versions of the loop are identical. In Figure 4.4 we display for LA-BiOS the
same pair of loops as we did in Figure 4.3 LA-BiOStab.

For a look-ahead step of length hj , the cost in terms of MVs is now 3hj MVs if
hj > 1 and hj−1 > 1, while it is only 3hj − 1 if hj−1 = 1. As the standard, non-look-
ahead algorithm requires 2 MVs per step, this means that the overhead is at most
50%. Here, in the first substep of the hj − 1 inner and the one regular loop hj MVs
are consumed, and another 2hj MVs are needed in substep 4.

4.4. Overhead for Look-Ahead. In this subsection we further discuss the
overhead of the look-ahead process in terms of MVs, inner products (IPs) and the
necessary storage of N -vectors.

First we note that all IPs required in the look-ahead algorithms have the fixed
initial vector z̃0 as their first argument. Therefore, if the second argument of an IP
was computed by a recurrence formula, then also the IP of this vector with z̃0 can be
computed indirectly by applying the same recurrence formula. Thus, only IPs of the
form 〈z̃0, Awl

n〉, for which Awl
n is computed directly, need to be computed explicitly.

This means that in all algorithms the number of required IPs is equal to the number
of required MVs. We must admit, however, that such recursively computed inner
products, as well as the recursively computed matrix-vector products, may be the
source of additional roundoff, which may cause instability.

Actually, for understanding how to compute all the inner products needed, the
reader may want to introduce a δ-table and a σ-table with entries δln := 〈z̃0, wl

n〉
and σl

n := 〈z̃0, Awl
n〉, respectively. Our loops and figures about generating the w-

table then hold as well for these two tables. Note that the δ-table just contains the
transposed of the matrix D.

Table 4.1
Cost and overhead of look-ahead LTPMs when constructing a look-ahead step of length hj > 1.

The construction of iterates is not yet included. By further capitalizing upon storage locations that
become available during a look-ahead step, the storage overhead could be reduced by roughly 50 %.

method total cost cost overhead storage overhead

(MVs, IPs) (MVs, IPs) relativ (N -vectors)

(3, 3)-type LA-LTPM 4hj − 3 2hj − 3 25%–100% 2h2
j + 3hj + 5

LA-BiOStab 4hj − 3 2hj − 3 25%–100% 2h2
j + 3hj + 3

LA-BiOS (if hj−1 > 1) 3hj hj 50% h2
j + 4hj + 4

LA-BiOS (if hj−1 = 1) 3hj − 1 hj − 1 25%–50% h2
j + 4hj + 4

In terms of MVs, the cost of a look-ahead step of length hj > 1 has been specified
in the previous subsection. By subtracting the cost for hj non-look-ahead steps, that
is 2hj MVs, we obtain the overhead summarized in Table 4.1. We stress that when

16

hj = 1 our algorithm has no overhead except for the necessary test of regularity,
which, if it fails, would reveal an upcoming instability and initiate a look-ahead step.
The table lists additionally the overhead in storage of N -vectors in a straightforward
implementation that is not optimized with respect to memory usage.

For comparison, we cite from page 60 of [5] or page 180 of [6] that the CGS look-
ahead procedure of Brezinski and Redivo Zaglia requires 6hj − 3 MVs if hj ≤ nj + 1
(the typical case) and 5hj +nj − 2 MVs if hj > nj +1 (which means that a relatively
large look-ahead step is needed in one of the first few iterations). Therefore, compared
to our numbers, the overhead in terms of MVs is about four times (if hj is large, but
hj ≤ nj+1) to five times (if hj = 2) larger than in our LA-BiOS (assuming as the basis
a standard CGS implementation requiring 2MVs per ordinary iteration). However,
we also note that, according to the above numbers, for a step without look-ahead
(hj = 1), the methods of [5] and [6] need 3MVs instead of 2MVs.

5. Look-Ahead Strategies. In this section we address the delicate issue of
when to perform a look-ahead step, which means in an LTPM to decide whether the
new vertical index n+1 is a regular index or an inner index, i.e., whether the required
product vectors wl

n+1 in the (n + 1)th row of the w-table should be computed as
regular or as inner vectors. Therefore, the look-ahead procedure in LTPMs serves
to stabilize the underlying Lanczos method, the vertical movement of the product
method in the w-table. Consequently, the criterion, when to carry out a look-ahead
step in an LTPM can be based on the criterion given in [15] for the Lanczos algorithm.
However, since the Lanczos vectors ỹn and yn are not computed explicitly in a product
method, we need to rewrite the conditions of this criterion in terms of the product
vectors wl

n. Let us first motivate these conditions.

In the case of an exact breakdown, where 0 = δτn = 〈z̃0, wn
n〉 = 〈z̃n, yn〉 and

z̃n %= 0, yn %= 0, a division by zero would occur in the next Lanczos step. The first
task of the look-ahead process is to circumvent these exact breakdowns without the
necessity of restarting the Lanczos process and loosing its superlinear convergence.

In finite precision arithmetic, exact breakdowns are very unlikely. However, near
breakdowns, where |δτn| is very small, may occur and cause large relative roundoff errors
in the Lanczos coefficients αn and βn given by (3.2). To be more precise, we recall
that the relative roundoff error in the computation of the inner product δτn = 〈z̃0, wn

n〉
is bounded by [18, p. 64]

|fl(δτn)− δτn|
|δτn|

≤ 1.01Nε
〈|z̃0| , |wn

n |〉
|δτn|

≤ 1.01Nε
‖z̃0‖ ‖wn

n‖
|δτn|

,

where ε denotes the roundoff unit. Thus, a small value of |δτn| leads in finite precision
arithmetic to a big relative roundoff error in the computation of the inner product
δτn, which also causes a perturbation of the Lanczos coefficients αn and βn, since they
depend on δτn and δτn−1 respectively. The second task of the look-ahead process is
therefore, to avoid a convergence deterioration due to perturbed Lanczos coefficients.
Of course, similar roundoff effects may come up in the numerators of the formulas
(3.2) for αn and βn, but large relative errors in those will only be harmful if the
denominators are small too.

We would like to point out that in an LTPM the inner products δτn can be enlarged
to a certain extent by an appropriate adaptive choice of the polynomials τn [39, 40],
as long as 〈

(
AH

)n
z̃0, yn〉 %= 0. For example, considering the BiOStab case, where

17

wn
n = wn−1

n −Awn−1
n χn−1, we obtain, since 〈z̃0, wn−1

n 〉 = 0:

‖z̃0‖ ‖wn
n‖

|δτn|
=

∥∥wn−1
n −Awn−1

n χn−1

∥∥
|χn−1|

‖z0‖
〈z̃0, Awn−1

n 〉
.

Thus, minimizing the relative roundoff error in the calculation of δτn is equivalent
to choosing χn−1 such that it minimizes

∥∥wn−1
n −Awn−1

n χn−1

∥∥ /|χn−1|. This leads

to χOR
n−1 :=

∥∥wn−1
n

∥∥2 /〈wn−1
n , Awn−1

n 〉, which corresponds to the use of orthogonal
residual polynomials of degree 1 instead of minimal residual polynomials of degree 1
in the recursive definition of τl(ζ). Therefore, minimizing the relative roundoff error in
the inner product δτn conflicts often with the objective of avoiding large intermediate
residuals in order to prevent the recursive residual to drift apart from the true residual
[40]. Performing a look-ahead step is then the only possible remedy.

We need now to find a criterion for deciding when a look-ahead step should be
performed so that both the above objectives can be attained. In view of the recursion
(4.2) for the product vectors in the case of look-ahead, it follows that a block can
be closed and a new product vector can be computed as regular vector only if the
diagonal blocks Dj−1 and Dj of the Gramian are numerically nonsingular. Thus, the
first condition that needs to be fulfilled in order to compute a new product vector
wl

n+1 as regular vector (n+ 1 = nj+1) is given by

σmin(Dj) ≥ ε,(5.1)

where σmin(Dj) denotes the minimal singular value of the block Dj. Note that this
does not mean that Dj is well conditioned; it just guarantees numerical nonsingu-
larity. In practice, (5.1) can be replaced by some other condition that implies this
nonsingularity, for example by one implemented in a linear solver used for computing
D−1

j−1! in (2.19) and αn in (2.22).
Freund et al. [15] use a second condition to guarantee that the Krylov space is

stably extended in the next Lanczos step in the sense that the basis of Lanczos vectors
is sufficiently well conditioned. In terms of product vectors, this second condition
amounts to computing, for any l, the new product vector wl

n+1 as regular vector if in
addition to (5.1) the following conditions for the coefficients αn and βn are fulfilled:

‖αn‖1 ≤ n(A), ‖βn‖1 ≤ n(A).(5.2)

Here ‖·‖
1
denotes the !1-norm and n(A) is an estimate for ‖A‖ which is updated

dynamically to ensure that the blocks Wn
j do not become larger than a user specified

maximal size [15]. The motivation for (5.2) was to ensure that in the new regular
vector

wn
n+1 =

(
Awn

n −Wn
j αn −Wn

j−1βn

)
/γn =

(
Awn

n −Wn
j αn − w′n

j−1β
′
n

)
/γn

(obtained from (4.2) with Ŵn
j = Wn

j since n+1 = nj+1 is regular) the component in
the new direction Awn

n is sufficiently large, which will be the case if

‖Awn
n‖ ≥ tol2 ‖wt‖ ,(5.3)

where wt := Wn
j αn +Wn

j−1βn = Wn
j αn − w′n

j−1β
′
n and tol2 is a chosen tolerance.

Compared to (5.2), condition (5.3) costs additional two inner products and the
calculation of wt, which only in the regular case can be reused for the computation
of the new product vector wn

n+1. Since we have

‖wt‖ ≤ C (‖αn‖1 + |β′
n|) with C := max

{∥∥w′n
j−1

∥∥ ; ‖wn
k ‖ : nj ≤ k < nj+1

}
,(5.4)

18

we could replace (5.3) by the less expensive condition

‖Awn
n‖ ≥ tol2 C (‖αn‖1 + |β′

n|) .(5.5)

However, in an LTPM it is not possible to normalize all product vectors wl
n (see

Section 6); so C is not equal to 1. Moreover, (5.5) is less strict than (5.3) and (5.2).
Since a look-ahead step is more expensive than regular steps providing the same

increase of the Krylov space dimension, a tight look-ahead criterion can save overall
computational cost. Therefore, it is reasonable to spend extra effort for it. For this
reason we favor criterion (5.3).

A drawback of (5.3) is that it does not take the angle between Awn
n and wt into

account. If Cc := 1 − |〈Awn
n , wt〉|/ (‖Awn

n‖ ‖wt‖) is small, tol2 in (5.3) should be
chosen larger than in the case where it is nearly 1. This motivates the choice

tol2 =
C1

1− (1 − C2)
∣∣∣ 〈Awn

n,wt〉
‖Awn

n‖‖wt‖

∣∣∣
,(5.6)

with suitably chosen constants C1 = C1(ε) and C2 = C2(ε) depending on the roundoff
unit ε. This criterion requires an extra inner product and an appropriate choice for
C1 and C2. For many small problems C1 = 10−3 and C2 = 10−2 worked well, but
for larger problems we observed that Cc decays dramatically with the block size.
Therefore, the probability that (5.3) with tol2 as defined in (5.6) will be fulfilled
decreases with the block length and leads very often (especially in BiOS) to situations
where the maximal user specified block size was reached. Further investigations are
needed to see if this problem can be solved by a better choice of C1 and C2 or by
a more appropriate selection for αn in the inner case, instead of using, as in [15],
αn
n = 1,αn−1

n = 1, αk
n = 0 for k = 1, . . . , n− 2.

6. Obtaining the solution of Ax = b. So far we have only introduced various
algorithms for constructing a sequence of product vectors wl

n that provide a basis for
Km. However, our goal is to solve the linear system Ax = b. We now describe how
to accomplish this with these algorithms. There are several basic approaches to con-
structing approximate solutions of linear systems from a Krylov space basis. Ours is
related to the Galerkin method, but avoids the difficulty that arises when the Galerkin
solution does not exist. (This difficulty causes, for example, the so-called pivot break-
down of the biconjugate gradient method.) Our approach is a natural generalization
of the one that lead to “unnormalized BiORes” introduced in [20] and renamed “in-
consistent BiORes” in [25]. In contrast to the BiOMin, BiODir, and BiORes versions
of the BiCG method, the inconsistent BiORes variant is not endangered by pivot
breakdowns. An alternative would be to construct approximate solutions based on
the quasi-minimal residual (QMR) approach [16]. For a combination of this approach
with LTPMs we refer the reader to [36].

Let the doubly indexed sequence of scalars ρ̇ln be given by

ρ̇ln := τl(0)ρn(0).(6.1)

We define a doubly indexed sequence of product iterates xl
n as follows. Starting with

an arbitrary x0
0 ∈ CN , we choose the initial product vector w0

0 so that

w0
0 = bρ̇00 −Ax0

0(6.2)

19

Here, ρ̇00 = 1 since τ0(ζ) = ρ0(ζ) ≡ 1. For l, n > 0 the product iterates are now
implicitly defined by

bρ̇ln −Axl
n := wl

n, so that b−A
xl
n

ρ̇ln
=

wl
n

ρ̇ln
if ρ̇ln %= 0.(6.3)

Of course, xl
n will be constructed only when wl

n is. If ρ̇ln %= 0, it follows from (6.3) that
xl
n/ρ̇

l
n can be considered as an approximate solution of Ax = b, whose corresponding

residual is wl
n/ρ̇

l
n. In order to derive recursions for the scalars ρ̇ln and the product

iterates xl
n, we introduce the blocks

X l
j−1 :=

[
xl
nj−1

· · · xl
nj−1

]
, X̂ l

j :=
[
xl
nj

· · · xl
n

]
,

P l
j−1 :=

[
ρ̇lnj−1

· · · ρ̇lnj−1

]
, P̂ l

j :=
[
ρ̇lnj

· · · ρ̇ln
]
,

as well as the auxiliary product iterates x′l
j−1 and auxiliary scalars ρ̇′lj−1 defined by

x′l
j−1 := X l

j−1D
−1
j−1!, ρ̇′lj−1 := P l

j−1D
−1
j−1!.(6.4)

Again, X̂ l
j = X l

j and P̂ l
j = P l

j if n+ 1 is a regular index.
Then, by (6.3), (4.1), and (6.4),

Ŵ l
j = bP̂ l

j −AX̂ l
j , w′ l

j−1 = bρ̇′lj−1 −Ax′l
j−1.(6.5)

Next, using (4.2) we conclude that

bρ̇ln+1 −Axl
n+1 = wl

n+1 =
(
Awl

n − Ŵ l
jαn − w′ l

j−1β
′
n

)
/γn

=
(
Awl

n −
[
bP̂ l

j −AX̂ l
j

]
αn −

[
bρ̇′lj−1 −Ax′l

j−1

]
β′
n

)
/γn

= b
[
−P̂ l

jαn − ρ̇′lj−1β
′
n

]
/γn +A

[
wl

n + X̂ l
jαn + x′l

j−1β
′
n

]
/γn.

This shows that

xl
n+1 = −

[
wl

n + X̂ l
jαn + x′l

j−1β
′
n

]
/γn, ρ̇ln+1 = −

[
P̂ l
j + ρ̇′lj−1β

′
n

]
/γn.(6.6)

If we arrange the product iterates xl
n and the scalars ρ̇ln in two tables analogous to

the w-table (with the n-axis pointing downwards and the l-axis to the right), these
two recursions can be used to proceed in vertical direction.

To obtain recursions for a horizontal movement, we assume first that the polyno-
mials τn(ζ) are given by the normalized three-term recurrence (3.3). This covers all
algorithms described in this paper except look-ahead BiOS. Using (3.4) and (6.3) we
see that the product iterates satisfy

xl+1
n = −wl

nηl + xl
nξl + xl−1

n (1− ξl).(6.7)

For the scalars ρ̇ln the recursion ρ̇l+1
n = ρ̇lnξl + ρ̇l−1

n (1 − ξl) are valid, but since the
polynomials τl are normalized (that is, τl(0) = 1 for all l), the scalars ρ̇ln do not change
with the index l, and we have simply ρ̇ln = ρ̇0n = ρn(0).

In look-ahead BiOS only one horizontal movement is explicitly computed per
step, namely in substep 5 of Loop 4.3 based on the recurrence (4.13). If we define in
analogy to (4.10) and (4.11)

X̂ ′k
j−1 :=

[
x′nk
j−1 . . . x′l

j−1

]
, X ′k−1

j−1 :=
[
x′nk−1j−1 . . . x′nk−1

j−1

]
,

P̂ ′k
j−1 :=

[
ρ̇′nk
j−1 . . . ρ̇′lj−1

]
, P ′k−1

j−1 :=
[
ρ̇′nk−1j−1 . . . ρ̇′nk−1

j−1

]
,

20

and

x′′k−1
j−1 := X ′k−1

j−1 D−1
k−1

!, ρ̇′′k−1
j−1 := P ′k−1

j−1 D−1
k−1

!,(6.8)

recurrences for the auxiliary iterates and the corresponding scalars are given by

x′l+1
j−1 = −

[
w′l

j−1 + X̂ ′k
j−1αl + x′′k−1

j−1 β′
l

]
/γl,

ρ̇′l+1
j−1 = −

[
P̂ ′k
j−1αl + ρ̇′′k−1

j−1 β′
l

]
/γl.

(6.9)

Using for the scaling parameter γn in (4.2) the special choice

γn =

{
−1T

hj
αn − 1T

hj−1
βn if n+ 1 = nj+1

−1T
n−nj+1αn − 1T

hj−1
βn if nj < n+ 1 = nj+1,

(6.10)

with 1m := [1 · · · 1]Tm×1, also the Lanczos polynomials ρn could be normalized (ρn(0) =
1), so that ρ̇ln = 1 for all n, l ≥ 0. However, as we mentioned before, some γn might
turn out to be zero, which would lead to a so-called pivot breakdown. Moreover, to
avoid overflow or underflow, in the Lanczos process the scaling parameter γn is often
used to normalize the Lanczos vectors yn. But since the Lanczos vectors yn are not
explicitly computed in an LTPM, we cannot base the choice of γn here on their norm.
However, independent of the size of the blocks generated by the look-ahead process,
it is always necessary to compute the product vectors wn

n+1 in an LTPM. Therefore,
we chose here γn to normalize wn

n+1, that is,

γn :=
∥∥∥Awn

n − Ŵn
j αn −Wn

j−1βn

∥∥∥ , if nj < n+ 1 ≤ nj+1.(6.11)

7. Numerical Examples. In this section we demonstrate the practical perfor-
mance of our look-ahead versions of LTPMs in numerical examples. The tests are
restricted to BiOStab, BiOxMR2 and BiOS. The look-ahead versions of these LTPMs
are denoted by LABiOStab, LABiOxMR2, and LABiOS, respectively. For all tests
the initial iterate x0 = 0 is used, and the iteration is terminated when the norm of
the recursive residual is less than

√
ε, the square root of the roundoff unit. The test

programs were written in FORTRAN90/95 and run on workstations with 64-bit IEEE
arithmetic. We start with small, artificially constructed model problems and move
gradually to large real-world problems.

Example 1. The following small test example was proposed by Joubert [29] and
also used by Brezinski and Redivo-Zaglia [6]:

A :=





1 −1 0 0
1 1 0 0
0 0 3 −1
0 0 1 3



 , b :=





0
2
2
4



 ,(7.1)

x0 = 0, and z̃0 = [1, 1, 1, 1]T . The Lanczos process, and hence, BiOStab, BiOxMR2,
and BiOS without look-ahead break down at step 2. On the contrary, all look-ahead
versions avoid this breakdown and converge after 4 iterations as shown in our plots
of the true residual norms ‖b−Axl

n
1
ρ̇l
n
‖ in Figure 7.1.

21

1e-20

1e-10

1

1e+10

0 1 2 3 4
iteration number

true residual LABiOSstab

1e-20

1e-10

1

1e+10

0 1 2 3 4
iteration number

true residual LABiOxMR2

1e-20

1e-10

1

1e+10

0 1 2 3 4
iteration number

true residual LABiOS

Fig. 7.1. The true residual norm history (i.e. log(‖b − Axl
n

1

ρ̇ln
‖) vs. n) for the linear system

defined in (7.1) solved by different LTPMs with look-ahead.

Example 2. Our second example is taken from [6], Example 5.2: the matrix

A :=





2 1
0 2 1
1 0 2 1

1 0 2
. . .

. . .
. . .

. . .




(7.2)

of order 400 and the right-hand side b = (3, 3, 4, . . . , 4, 3, 3)T imply that the solution is
x = (1, 1, . . . , 1)T . With x0 = 0, z̃0 = (0, 0, 0,−1, 1, . . . , 0)T the Lanczos process, and
thus the LTPMs break down in the first iteration. Our look-ahead versions perform
two inner steps at the first and second iteration. All following iterations are regular
steps. This is a typical behavior: there are only few and short look-ahead steps, and
therefore the resulting mean overhead per iteration is nearly negligible.

1e-20

1e-10

1

1e+10

0 10 20 30 40 50 60 70 80 90 100
iteration number

true residual

LABiOStab
LABiOxMR2

LABiOS

Fig. 7.2. The true residual norm history (i.e. log(‖b − Axl
n

1

ρ̇ln
‖) vs. n) for the linear system

defined in (7.2) solved by different LTPMs with look-ahead.

22

Table 7.1
Indices of regular steps in LTPMs for three problems with a p-cyclic system matrix.

Example LABiOStab LABiOxMR2 LABiOS
3 1,5,6,10,11,15 1,5,6,10,11,15 1,5,6,10,11,15
4 1,4,5,8,9,12,13,16 1,4,5,8,9,12,13 1,4,5,8,9,12,13,16
5 1,8,9,16,17 1,8,9,16,17 1,8,9,16,17

In the next set of examples we consider p-cyclic matrices of the form

A :=





I1 B1

B2 I2
. . .

. . .
Bp Ip




.(7.3)

Hochbruck [27] showed that the computational work for solving a linear system with
a p-cyclic system matrix by QMR with look-ahead can be reduced by approximately
a factor 1/p (compared to a straight-forward implementation using sparse matrix-
vector multiplications with A), if the initial Lanczos vectors have only one nonzero
block conforming to the block structure of A, if the inner vectors are chosen so that
the nonzero structure of (A − I)yn is not destroyed, and if the blocks Bk are used
for generating only possibly nonzero components of the Krylov space basis. Then it
can be proven that in each cycle of p steps there are at least p− 2 consecutive exact
breakdowns for p > 2. But when using directly the system matrix A to generate the
Krylov subspace, we have only in the first cycle of p steps p − 2 consecutive exact
breakdowns, while in the following cycles these will, in general, no longer persist,
but must be expected to become near-breakdowns. Therefore, such problems provide
good test examples for look-ahead algorithms.

Example 3. In this example we consider a 5-cyclic matrix with Bk = B for
k = 1, . . . , 5, where B is a randomly generated 10 × 10 matrix. As right-hand side
and as initial left Lanczos vector we choose

b =

[
f1
0

]
, z̃0 =

[
g1
0

]
,(7.4)

where f1, g1 have random entries. The convergence history for the different LTPMs
applied to this problem are shown in Figure 7.3, and the indices of the regular steps
are listed in Table 7.1. Those are found exactly where predicted.

Example 4. We move now to a bigger 4-cyclic system matrix with Bk = B for
k = 1, . . . , 4, where B is a 100× 100 matrix with random entries. The results for this
problem are shown in Figure 7.4, and the indices of the regular steps are depicted
also in Table 7.1. Again, they occur where predicted.

Example 5. Finally, we consider an 8-cyclic system matrix with B defined as
in Example 4. The convergence history plotted in Figure 7.5 shows oscillations in
the residual norm history of LABiOS, but overall LABiOS needs one iteration step
less than LABiOStab and LABiOxMR2 to fulfill the convergence condition. For
all methods the same look-ahead criterion ((5.3) with tol2 defined as in (5.6) and
C1 = 10−3, C2 = 10−2) is used. Especially for LABiOS the correct choice of the
look-ahead criterion seems to be crucial. While with the above values of C1 and C2

the breakdowns occurred only where expected, we discovered for this larger problem

23

0 5 10 15
10

!10

10
!8

10
!6

10
!4

10
!2

10
0

10
2

LABiOStab !!! LABiOxMR2 !.!. LABiOS

Fig. 7.3. The true residual norm history (i.e. log(‖b − Axl
n

1

ρ̇ln
‖) vs. n) for the linear system

with the 5-cyclic system matrix defined in Example 3 solved by different LTPMs with look-ahead.

0 2 4 6 8 10 12 14 16
10

!10

10
!8

10
!6

10
!4

10
!2

10
0

10
2

10
4

LABiOStab !!! LABiOxMR2 !.!. LABiOS

Fig. 7.4. The true residual norm history (i.e. log(‖b − Axl
n

1

ρ̇ln
‖) vs. n) for the linear system

with the 4-cyclic system matrix defined in Example 4 solved by different LTPMs with look-ahead.

that in BiOS the maximal user specified block length of 10 was reached very often
for C1 . 10−3 and C2 / 10−2, which indicates, that the constructed inner vectors
become more and more linear dependent. Therefore, further investigations are needed
to figure out a better choice for the coefficient vector αn in the inner case. For
example, following the proposal in [21], Hochbruck used in [27] a Chebyshev iteration
for the generation of the inner vectors instead of αn

n = 1,αn−1
n = 1 and αk

n = 0 for
k = 1, . . . , n− 1, which we adapted from [15].

Example 6. In our last example we take a real world problem from the Harwell-

24

0 2 4 6 8 10 12 14 16 18
10

!10

10
!8

10
!6

10
!4

10
!2

10
0

10
2

10
4

LABiOStab !!! LABiOxMR2 !.!. LABiOS

Fig. 7.5. The true residual norm history (i.e. log(‖b − Axl
n

1

ρ̇ln
‖) vs. n) for the linear system

with the 8-cyclic system matrix defined in Example 5 solved by different LTPMs with look-ahead.

Boeing Sparse Matrix Collection, namely SHERMAN1, a matrix of order 1000 with
3750 nonzero entries. The right-hand side b and the initial left Lanczos vector z̃0
were generated as different unit vectors with random entries. Without look-ahead,
all LTPMs introduced here break down (BiOStab at step 186, BiOStab2 at step 176,
BiOxMR2 at step 145 and BiOS at step 352). On the contrary, the look-ahead
versions in combination with the look-ahead criterion (5.3) with tol2 defined as in
(5.6) and C1 = 10−3 and C2 = 10−2 converge as shown in Figure 7.6. Due to the real
spectrum of the system matrix A, there is only a slight difference in the convergence
of LABiOStab and LABiOxMR2. It was reported to us that BiCGStab(!) with ! = 8
and no look-ahead can handle this problem in about the same number of MVs as our
BiCGStab with look-ahead.

8. Conclusions. We have proposed look-ahead versions for various Lanczos-
type product methods that make use of the Lanczos three-term recurrences. Since
they are based on the Lanczos look-ahead version of Gutknecht [23] and Freund et al.
[15], they can handle look-ahead steps of any length and avoid steps that are longer
than needed. The algorithms proposed in this work should be easy to understand due
to the introduction of an array of product vectors, symbolically displayed in the w-
table, and the visualization of the progress in this w-table. Furthermore, the w-table
proved to be a useful tool to derive optimal variants, for which the computational
work in terms of MVs is minimized.

A variety of numerical examples demonstrate the practical performance of the
proposed algorithms. However, larger problems indicate that further work should
be directed to finding an improved look-ahead criterion that more reliably avoids
critical perturbations of the Lanczos coefficients by roundoff errors. Moreover, one
should investigate if there is a better way of constructing inner vectors than the choice
adapted from [15]. Alternatives would be to orthogonalize them within each block [2]
or to construct them by Chebyshev iteration [21]; but it is not clear if the additional
cost involved pays off.

25

0 50 100 150 200 250 300 350 400 450 500
10

!10

10
!8

10
!6

10
!4

10
!2

10
0

10
2

10
4

10
6

10
8

LABiOStab !!! LABiOxMR2 !.!. LABiOS

Fig. 7.6. The true residual norm history (i.e. log(‖b − Axl
n

1

ρ̇ln
‖) vs. n) for a real-world

problem with the SHERMAN1 matrix from the Harwell-Boeing collection solved by different LTPMs
with look-ahead.

The look-ahead process in an LTPM stabilizes primarily the vertical movement
in the w-table, except in the BiOS algorithm where the w-table is symmetric. For
the horizontal movement it is also important to generate the Krylov space stably,
and both BiOStab2 and BiOxMR2 (in particular when suitably modified) do that
more reliably than BiCGStab, since the two-dimensional steps offer more flexibility.
This has also a lasting positive effect on the roundoff in the vertical movement. To
stabilize the horizontal movement further, a local minimal residual polynomial of
degree ! ≥ 1 with an adaptive choice of !, as in BiCGStab(!) could be used. A
further possibility is to adapt ! to the size hj of the current Lanczos block, which
would mean to perform in each regular step an hj-dimensional local minimization of
the residual. An alternative is to trade in the local residual minimization for a more
stable Krylov space generation whenever the former causes a problem. Yet another
possibility, indicated in Section 4.2, is to combine the Lanczos process with a hybrid
Chebyshev iteration.

It is known that in finite-precision arithmetic BiORes is usually more affected
by roundoff than the standard BiOMin version of BiCG, at least with regard to the
gap between recursively and explicitly computed residuals. Therefore, we are in the
process to extend this work to look-ahead procedures for LTPMs that are based on
coupled two-term recurrences.

REFERENCES

[1] E. Ayachour, Avoiding the look-ahead in the Lanczos method, Tech. Report ANO-363, Uni-
versité Lille Flandres Artois, September 1996.

[2] D. L. Boley, S. Elhay, G. H. Golub, and M. H. Gutknecht, Nonsymmetric Lanczos and
finding orthogonal polynomials associated with indefinite weights, Numerical Algorithms,

26

1 (1991), pp. 21–43.
[3] C. Brezinski, CGM: a whole class of Lanczos-type solvers for linear systems, Tech. Report

ANO-253, Université Lille Flandres Artois, November 1991.
[4] C. Brezinski and M. Redivo Zaglia, Breakdowns in the computation of orthogonal poly-

nomials, in Nonlinear Numerical Methods and Rational Approximation II, A. Cuyt, ed.,
Kluwer, Dordrecht, The Netherlands, 1994, pp. 49–59.

[5] , Treatment of near-breakdown in the CGS algorithms, Numerical Algorithms, 7 (1994),
pp. 33–73.

[6] , Look-ahead in Bi-CGSTAB and other product methods for linear systems, BIT, 35
(1995), pp. 169–201.

[7] C. Brezinski, M. Redivo Zaglia, and H. Sadok, New look-ahead Lanczos-type algorithms
for linear systems, Numer. Math. To appear.

[8] C. Brezinski and H. Sadok, Avoiding breakdown in the CGS algorithm, Numerical Algo-
rithms, 1 (1991), pp. 199–206.

[9] Z.-H. Cao, Avoiding breakdown in variants of the BI-CGSTAB algorithm, Linear Algebra
Appl., 263 (1997), pp. 113–132.

[10] , On the QMR approach for iterative methods including coupled three-term recurrences
for solving nonsymmetric linear systems, 1998.

[11] T. F. Chan, E. Gallopoulos, V. Simoncini, T. Szeto, and C. H. Tong, A quasi-minimal
residual variant of the Bi-CGSTAB algorithm for nonsymmetric systems, SIAM J. Sci.
Comput., 15 (1994), pp. 338–347.

[12] V. Eijkhout, LAPACK Working Note 78: Computational variants of the CGS and BiCGstab
methods, Tech. Report UT-CS-94-241, Computer Science Department, University of Ten-
nessee, August 1994.

[13] D. A. Flanders and G. Shortly, Numerical determination of fundamental modes, J. Appl.
Phys., 21 (1950), pp. 1326–1332.

[14] R. W. Freund, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear
systems, SIAM J. Sci. Comput., 14 (1993), pp. 470–482.

[15] R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal, An implementation of the look-
ahead Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci. Comput., 14 (1993),
pp. 137–158.

[16] R. W. Freund and N. M. Nachtigal, QMR: a quasi-minimal residual method for non-
Hermitian linear systems, Numer. Math., 60 (1991), pp. 315–339.

[17] R. W. Freund and H. Zha, A look-ahead algorithm for the solution of general Hankel systems,
Numer. Math., 64 (1993), pp. 295–321.

[18] G. H. Golub and C. F. van Loan, Matrix Computations, Johns Hopkins University Press,
Baltimore, MD, 2nd ed., 1989.

[19] P. R. Graves-Morris, A “look-around Lanczos” algorithm for solving a system of linear
equations, Numerical Algorithms, 15 (1997), pp. 247–274. May 28, 1997.

[20] M. H. Gutknecht, The unsymmetric Lanczos algorithms and their relations to Padé approx-
imation, continued fractions, and the qd algorithm. in Preliminary Proceedings of the
Copper Mountain Conference on Iterative Methods, April 1–5, 1990, 1990.

[21] , A completed theory of the unsymmetric Lanczos process and related algorithms, Part
I, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 594–639.

[22] , Variants of BiCGStab for matrices with complex spectrum, SIAM J. Sci. Comput., 14
(1993), pp. 1020–1033.

[23] , A completed theory of the unsymmetric Lanczos process and related algorithms, Part
II, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 15–58.

[24] , The Lanczos process and Padé approximation, in Proceedings of the Cornelius Lanczos
International Centenary Conference, J. D. Brown, M. T. Chu, D. C. Ellison, and R. J.
Plemmons, eds., SIAM, Philadelphia, PA, 1994, pp. 61–75.

[25] , Lanczos-type solvers for nonsymmetric linear systems of equations, Acta Numerica, 6
(1997), pp. 271–397.

[26] M. H. Gutknecht and K. J. Ressel, Look-ahead procedures for Lanczos-type product meth-
ods based on three-term recurrences, Tech. Report TR-96-19, Swiss Center for Scientific
Computing, June 1996.

[27] M. Hochbruck, Lanczos- und Krylov-Verfahren für nicht-Hermitesche lineare Systeme, PhD
thesis, Fakultät für Mathematik, Universität Karlsruhe, 1992.

[28] , The Padé table and its relation to certain numerical algorithms. Habilitationsschrift,
Universität Tübingen, Germany, 1996.

[29] W. D. Joubert, Generalized conjugate gradient and Lanczos methods for the solution of non-
symmetric systems of linear equations, PhD thesis, Center for Numerical Analysis, Uni-

27

versity of Texas at Austin, 1990.
[30] , Iterative methods for the solution of nonsymmetric systems of linear equations, Tech.

Report CNA-239, Center for Numerical Analysis, University of Texas at Austin, 1990.
[31] , Lanczos methods for the solution of nonsymmetric systems of linear equations, SIAM

J. Matrix Anal. Appl., 13 (1992), pp. 926–943.
[32] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential

and integral operators, J. Res. Nat. Bureau Standards, 45 (1950), pp. 255–281.
[33] T. A. Manteuffel, The Tchebyshev iteration for nonsymmetric linear systems, Numer. Math.,

28 (1977), pp. 307–327.
[34] B. N. Parlett, Reduction to tridiagonal form and minimal realizations, SIAM J. Matrix Anal.

Appl., 13 (1992), pp. 567–593.
[35] B. N. Parlett, D. R. Taylor, and Z. A. Liu, A look-ahead Lanczos algorithm for unsym-

metric matrices, Math. Comp., 44 (1985), pp. 105–124.
[36] K. J. Ressel and M. H. Gutknecht, QMR-smoothing for Lanczos-type product methods based

on three-term recurrences, SIAM J. Sci. Comput., 19 (1998), pp. 55–73.
[37] W. Schönauer, Scientific Computing on Vector Computers, Elsevier, Amsterdam, 1987.
[38] G. L. G. Sleijpen and D. R. Fokkema, BiCGstab(l) for linear equations involving unsymmet-

ric matrices with complex spectrum, Electronic Trans. Numer. Anal., 1 (1993), pp. 11–32.
[39] G. L. G. Sleijpen and H. A. van der Vorst, Maintaining convergence properties of BiCGstab

methods in finite precision arithmetic, Numerical Algorithms, 10 (1995), pp. 203–223.
[40] , An overview of approaches for the stable computation of hybrid BiCG methods, Appl.

Numer. Math., 19 (1995), pp. 235–254.
[41] G. L. G. Sleijpen, H. A. van der Vorst, and D. R. Fokkema, BiCGstab(l) and other hybrid

Bi-CG methods, Numerical Algorithms, 7 (1994), pp. 75–109.
[42] P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J.

Sci. Statist. Comput., 10 (1989), pp. 36–52.
[43] D. R. Taylor, Analysis of the Look Ahead Lanczos Algorithm, PhD thesis, Dept. of Mathe-

matics, University of California, Berkeley, 1982.
[44] H. A. van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for

the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992),
pp. 631–644.

[45] H. E. Wrigley, Accelerating the Jacobi method for solving simultaneous equations by Cheby-
shev extrapolation when the eigenvalues of the iteration matrix are complex, Comput. J.,
6 (1963), pp. 169–176.

[46] S.-L. Zhang, GPBI-CG: generalized product-type methods based on Bi-CG for solving non-
symmetric linear systems, SIAM J. Sci. Comput., 18 (1997), pp. 537–551.

[47] L. Zhou and H. F. Walker, Residual smoothing techniques for iterative methods, SIAM J.
Sci. Comput., 15 (1994), pp. 297–312.

[48] M. Ziegler, Generalized biorthogonal bases and tridiagonalisation of matrices, Numer. Math.,
77 (1977), pp. 407–421.

28

Research Reports

No. Authors Title

99-20 M.H. Gutknecht,
K.J. Ressel

Look-Ahead Procedures for Lanczos-Type
Product Methods Based on Three-Term
Lanczos Recurrences

99-19 M. Grote Nonreflecting Boundary Conditions For Elas-
todynamic Scattering

99-18 J. Pitkäranta,
A.-M. Matache, C. Schwab

Fourier mode analysis of layers in shallow
shell deformations

99-17 K. Gerdes, J.M. Melenk,
D. Schötzau, C. Schwab

The hp-Version of the Streamline Diffu-
sion Finite Element Method in Two Space
Dimensions

99-16 R. Klees, M. van Gelderen,
C. Lage, C. Schwab

Fast numerical solution of the linearized
Molodensky problem

99-15 J.M. Melenk, K. Gerdes,
C. Schwab

Fully Discrete hp-Finite Elements: Fast
Quadrature

99-14 E. Süli, P. Houston,
C. Schwab

hp-Finite Element Methods for Hyperbolic
Problems

99-13 E. Süli, C. Schwab,
P. Houston

hp-DGFEM for Partial Differential Equations
with Nonnegative Characteristic Form

99-12 K. Nipp Numerical integration of differential algebraic
systems and invariant manifolds

99-11 C. Lage, C. Schwab Advanced boundary element algorithms
99-10 D. Schötzau, C. Schwab Exponential Convergence in a Galerkin Least

Squares hp-FEM for Stokes Flow
99-09 A.M. Matache, C. Schwab Homogenization via p-FEM for Problems

with Microstructure
99-08 D. Braess, C. Schwab Approximation on Simplices with respect to

Weighted Sobolev Norms
99-07 M. Feistauer, C. Schwab Coupled Problems for Viscous Incompressible

Flow in Exterior Domains
99-06 J. Maurer, M. Fey A Scale-Residual Model for Large-Eddy

Simulation
99-05 M.J. Grote Am Rande des Unendlichen: Numerische Ver-

fahren für unbegrenzte Gebiete
99-04 D. Schötzau, C. Schwab Time Discretization of Parabolic Problems by

the hp-Version of the Discontinuous Galerkin
Finite Element Method

99-03 S.A. Zimmermann The Method of Transport for the Euler Equa-
tions Written as a Kinetic Scheme

99-02 M.J. Grote, A.J. Majda Crude Closure for Flow with Topography
Through Large Scale Statistical Theory

