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1 Introduction

We wish to calculate numerically the time dependent wave field u(x, t) scattered

from a bounded scattering region in an unbounded three-dimensional elastic

medium. In this region, there may be one or more scatterers and the equation for

the displacement umay have variable coefficients and nonlinear terms. As usual,

we surround the scattering region by an artificial boundary B and confine the

computation to the region Ω bounded by B. Then, to complete the formulation

of the problem in Ω we require that u satisfy a boundary condition on B. The
boundary conditions commonly imposed produce spurious reflection from B. To
avoid this spurious reflection we have devised an exact nonreflecting boundary

condition [1]. It is the extension to the elastic wave equation of the exact

nonreflecting boundary condition which we derived for the scalar wave equation

[2, 3] and for Maxwell’s equations [4]. In doing so, we chose B to be a sphere of

radius R, and we assumed that the elastic medium is homogeneous and isotropic

outside B. The boundary condition is local in time and nonlocal on B, and it

involves only first derivatives of u on B.
Usually various approximate boundary conditions are used, which are local

differential operators on B – see for instance Givoli [5] or the recent review article

by Tsynkov [6]. Well-known examples are the ’viscous’ boundary conditions by

Lysmer and Kuhlemeyer [7], and the paraxial boundary conditions by Clayton

and Engquist [8] and Engquist and Majda [9, 10]. Higdon [11, 12] constructed

absorbing boundary conditions, which perfectly annihilate impinging waves at

selected angles of incidence, but not at others, by combining first-order differ-

ential operators in time and the normal space variable. Earlier Lindman [13]

devised a non-local absorbing boundary condition for the scalar wave equation.

It requires solving the inhomogeneous wave equation on the artificial boundary

a number of times. Randall [14, 15] extended it to the elastic wave equation

by applying the absorbing boundary condition of Lindman to a decomposition

of the displacement into potentials which satisfy acoustic wave equations; this

procedure requires at each time step a Fourier transform in the tangential space

variables.

A different approach to eliminating reflection has been to append an artificial

transition layer outside B, which is supposed to absorb outgoing waves. Two

popular methods for doing this, the mapping technique [16] and the perfectly
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matched layer method [17], were adapted recently to the absorbtion of elastic

waves, and they yielded comparable results [18].

Neither the local boundary conditions nor the use of absorbing layers leads

to complete absorption of waves at all angles of incidence. Although most ap-

proximate boundary conditions perform well at nearly normal incidence, their

performance degrades rapidly as grazing incidence is approached. In complex

situations the scattered waves arrive at the artificial boundary from all interior

angles and at all frequencies, so these methods then yield some spurious re-

flection. Moreover, errors due to spurious reflection accumulate with time and

prevent accurate long-time integration. Thus it is often necessary to move B
far from the region of interest, or to use a thick absorbing layer, to reduce the

amount of reflection below a few percent and to achieve high accuracy. An-

other difficulty is that approximate boundary conditions can result in ill-posed

formulations – see Howell and Trefethen [19].

Some of these difficulties are avoided by exact nonreflecting boundary con-

ditions. In the frequency domain, Givoli and Keller [20] derived a Dirichlet-to-

Neumann map for two-dimensional elastodynamics; it was further developed by

Harari and Shohet [21]. In the time domain, an exact nonreflecting boundary

condition for the wave equation was proposed by Ting and Miksis [22] and later

implemented by Givoli and Cohen [23]. It is based on a Kirchhoff integral rep-

resentation of the solution on B and requires storing the solution at a surface

inside B for the length of time it takes a wave to propagate across Ω. To up-

date the solution value at any point on the two-dimensional artificial boundary

B requires computing a two-dimensional integral in space and time. Therefore

using this boundary condition may be more expensive than using the numerical

scheme itself inside Ω.

It is to avoid the various difficulties mentioned above that we developed the

exact nonreflecting boundary condition for the special case when B is a sphere

[1]. Now we shall show how to combine this boundary condition with the finite

difference method, or with the finite element method, to obtain a computational

problem in Ω. We shall also examine the stability of the ordinary differential

equations which occur in the boundary condition. Finally, we shall solve numer-

ically two standard test problems by using an explicit finite difference method

and the nonreflecting boundary condition. We shall also solve the same problems
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with the local boundary condition of Lysmer and Kuhlemeyer [7]. Comparison

of these solutions with the “exact” solution, obtained in a very large domain so

that spurious reflections are postponed, shows that our boundary condition is

much more accurate. We also show that it remains accurate when the artificial

boundary is moved closer to the scatterer, so that the computational domain is

reduced.

2 Displacement Formulation

We consider time-dependent scattering from a bounded scattering region in

three-dimensional space. We surround this region by a sphere B of radius R.

Outside B, we assume that the elastic medium is homogeneous and isotropic,

with constant density ρ0 and Lamé constants λ and µ. In addition, we assume

that at t = 0 the scattered field is confined to the computational domain Ω,

which is the interior of B. Outside B the scattered displacement field u(x, t)

satisfies the elastic wave equation ([24]),

∂2u

∂t2
− c2p ∇∇ · u+ c2s ∇×∇× u = 0, (1)

with initial conditions

u = 0,
∂u

∂t
= 0, t = 0. (2)

Here cp and cs are the propagation speeds of compressional waves and shear

waves, respectively,

c2p =
λ+ 2µ

ρ0
, c2s =

µ

ρ0
. (3)

In Ω, we consider the following initial-boundary value problem problem:

ρ
∂2u

∂t2
− 2µ∆u− λ∇∇ · u− µ∇×∇× u = f, in Ω× (0, T ), (4)

u(x, 0) = u0(x),
∂u(x, 0)

∂t
= v0, x ∈ Ω. (5)

When f = 0 and µ, λ, and ρ are constant, equation (4) is equivalent to (1). On

B we impose the exact nonreflecting boundary condition derived by Grote and

Keller [1]:

∂u

∂r
+

u

R
+

1

cs

∂utan

∂t
+

r̂

cp

∂ur

∂t
+

cp − cs
cs

r̂ ×∇× (r̂ ur) +
cp − cs

cp
r̂∇ · utan

3



= −
1

R2

∑

n≥1

∑

|m|≤n

{dn · ψnmVnm + an ·ΨnmUnm} (6)

+
1

R2

∑

n≥0

∑

|m|≤n

bn ·ΨnmYnmr̂, on B × (0, T ),

d

dt
ψnm =

1

R
Anψnm + (utan |r=R ,Vnm)en, ψnm(0) = 0, (7)

d

dt
Ψnm =

1

R
BnΨnm +

[

cs (utan |r=R ,Unm) en+1

−cp (ur |r=R , Ynm) en+1

]

, Ψnm(0) = 0.(8)

Here we have introduced the polar coordinates r, ϑ, φ and the unit vectors

r̂, ϑ̂, φ̂, while ur and utan denote the normal and tangential components of

u = (ur, uϑ, uφ),

utan =





0
uϑ

uφ



 , r̂ ur =





ur

0
0



 . (9)

Furthermore, Ynm denotes the nm-th spherical harmonic normalized over the

unit sphere,

Ynm(ϑ,φ) =

√

(2n+ 1)(n− |m|)!
4π(n+ |m|)!

P |m|
n (cosϑ)eimφ, n ≥ 0, |m| ≤ n. (10)

If the problem considered is real, it is advantageous to use the real spherical

harmonics, given by the real and imaginary parts of (10). Then everything

remains the same except for the normalization constant in (10), which must be

multiplied by
√
2 for m (= 0. The vector spherical harmonics Unm and Vnm are

defined by

Unm(ϑ,φ) =
r∇Ynm

√

n(n+ 1)
=

1
√

n(n+ 1)

[

∂Ynm

∂ϑ
ϑ̂+

1

sinϑ

∂Ynm

∂φ
φ̂

]

, n ≥ 1 (11)

Vnm(ϑ,φ) = r̂ ×Unm =
1

√

n(n+ 1)

[

−1

sinϑ

∂Ynm

∂φ
ϑ̂+

∂Ynm

∂ϑ
φ̂

]

, n ≥ 1. (12)

They form an orthonormal basis for the space of tangential L2 fields on the unit

sphere with respect to the L2 inner product ([25]). In (4) we assume that λ

and µ are positive constants and require that ρ = ρ(x) > 0. The source term

f(x, t,u,∇u) may be nonlinear.

Equation (6) is the exact nonreflecting boundary condition which was derived

in [1]. It involves the vector functions ψnm(t) and Ψnm(t), which are solutions

4



of the linear first-order ordinary differential equations (7) and (8). In (7) and

(8) en is the n-component unit vector

en = [1, 0, . . . , 0]#. (13)

To simplify the definitions of the remaining quantities we first let

γn = n(n+ 1), n ≥ 0. (14)

Then dn = {dn(j)} denotes the constant n-component vector

dn(j) =
j γn
2

, j = 1, . . . , n, (15)

The constant 2(n+ 1)-component vectors an and bn are given by

an =

[

a1
n

a2
n

]

, bn =

[

b1n
b2n

]

(16)

where the (n + 1)-component vectors a1
n = {a1n(j)} and a2

n = {a2n(j)}, j =

1, . . . , n+ 1, are

a1n(j) =

[

1

2
−

1− cp/cs
1 + γj−1/γn

]

j γn, a2n(j) =

√
γn j2 cp/cs

1 + γj−1/γn
. (17)

and the (n+1)-component vectors b1n = {b1n(j)} and b2n = {b2n(j)}, j = 1, . . . , n+

1, are

b1n(j) =
j(1 + (j − 1) cs/cp)

√
γn

1 + γj−1/γn
, b2n(j) =

[

1

2
+

j − (1 − cs/cp)γn
γn + γj−1

]

j γn,

(18)

In (7) the constant n× n matrix An = {An(i, j)} is

An(i, j) =







−csγn/2 if i = 1,
cs(γn − γj)/(2(j + 1)) if i = j + 1,
0 otherwise.

(19)

Finally, in (8) the constant 2(n+1)×2(n+1) matrixBn consists of the following

block partition,

Bn =

















−csz#
n

csSn 0

−cpz#
n

0 cpT n

















, (20)
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where the (n+ 1)-component vector zn = {zn(j)} is defined by

zn(j) =
j
√
γn

1 + γj−1/γn
, j = 1, . . . , n+ 1. (21)

The (n+ 1)× (n+ 1) matrix Sn = {Sn(i, j)} is

Sn(i, j) =







−γn/2 if i = 1,
(γn + γj)(γn − γj−1)/[2(j + 1)(γn + γj−1)] if i = j + 1,
0 otherwise.

(22)

and the (n+ 1)× (n+ 1) matrix T n = {Tn(i, j)} is

Tn(i, j) =







−[1 + 2j/(γn + γj−1)]γn/2 if i = 1,
(γn + γj)(γn − γj−1)/[2(j + 1)(γn + γj−1)] if i = j + 1,
0 otherwise.

(23)

The definitions of An, Sn, T n, dn, en, and zn coincide with those used in [1],

except for an improved scaling in inverse powers of R, suggested by Thompson

and Huan [26] for the scalar wave equation. This new scaling has no effect if

R = 1. The constants a1
n, a

2
n, b

1
n, and b2n were previously denoted in [1] by qn,

pn, bn, and an, respectively.

The somewhat special case n = 0 corresponds to the 0-th Fourier component

of the displacement field, which consists of a spherically symmetric compression

wave, u = r̂ur(r, t). Thus the first component of Ψ0 vanishes and the only

nonzero constants needed in (6) and (8) for n = 0 are

b0 =

[

0
1

]

, B0 =

[

0 0
0 −cp

]

. (24)

Suppose that the initial value problem (4)-(5), with Ω replaced by IR3, has

a unique smooth solution. Then so does the initial-boundary value problem

(4)-(8) and the two solutions coincide in Ω ([1]). The Cauchy problem (4)–(5),

with Ω replaced by IR3 and f ≡ 0, is well-posed with respect to the initial

data u0 and v0. Since its solution coincides with that of the initial-boundary

value problem (4)–(8), we immediately conclude that (4)–(8) is well-posed with

respect to u0 and v0 when f = 0.

3 Finite Element Formulation

We shall now derive the weak formulation of (4)–(8) in the computational do-

main Ω. First, we let V = [H1(Ω)]3, the Sobolev space of square-integrable

6



vector functions with square-integrable first derivatives, and we denote by (., .)

and (., .)B the L2 inner products over Ω and B, respectively. To derive the weak

formulation we multiply (4) by a test function w and integrate over Ω. Then

we use integration by parts to obtain

(w, ρ∂ttu) + 2µ(∇w,∇u) + λ(∇ ·w,∇ · u) + µ(∇×w,∇× u)

= (w, f) + (w,T r̂)B. (25)

Here T r̂ is the traction on B,

T r̂ = 2µ
∂u

∂r
+ λ r̂∇ · u+ µ r̂ ×∇× u. (26)

The traction requires a priori unknown radial derivatives of u, which we shall

now express in terms of known quantities. First, we write (26) componentwise

as

(T r̂)r = (2µ+ λ) ∂ru
r +

2λ

R
ur + λ∇ · utan, (27)

(T r̂)tan = µ

(

∂ru
tan −

utan

R
+∇tanur

)

(28)

Similarly, we rewrite the boundary condition (6) as

∂ru
r +

1

cp
∂tu

r +
ur

R
+

cp − cs
cp

∇ · utan = gr, (29)

∂ru
tan +

1

cs
∂tu

tan +
utan

R
+

cp − cs
cs

∇tanur = gtan, (30)

where g(ϑ,φ, t) denotes the right side of (6). Next, we use (29) in (27) and (30)

in (28) to eliminate ∂ru. Thus,

1

ρ0
(T r̂)r = c2p g

r − cp ∂tu
r +

2(c2p − 2c2s)

R
ur + cs(cp − 2cs)∇ · utan,(31)

1

ρ0
(T r̂)tan = c2s g

tan − cs ∂tu
tan − c2s

utan

R
− cs(cp − 2cs)∇tanur. (32)

To simplify the notation we define the two symmetric bilinear forms on V :

A[w,v] = 2µ(∇w,∇v) + λ(∇ ·w,∇ · v) + µ(∇×w,∇× v) (33)

+
µ

R
(wtan,vtan)B −

2λ

R
(wr , vr)B + cs(cp − 2cs)ρ0

(

(wtan,∇tanvr)B + (∇tanwr ,vtan)B
)

C[w,v] = cp ρ0(w
r , vr)B + cs ρ0(w

tan,vtan)B. (34)

We remark that the nonreflecting boundary condition affects the bilinear form

A only if the supports of both v and w contain part of the artificial boundary B.
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Similarly, the bilinear form C is zero except for functions v and w whose support

intersects B. We now replace the traction in (25) by using (31) and (32) and

collect terms that involve u, ∂tu, or ∂ttu. Moreover, by applying integration

by parts over B, we replace −(wr,∇ · utan)B by (∇tanwr ,utan)B; no additional

boundary integral appears because B has no boundary. These calculations lead

to the weak form of the problem, which can be stated as follows:

Find u(t) ∈ V such that for all w ∈ V ,

(w, ρü) + C[w, u̇] +A[w,u] = (w, f) +
2µ+ λ

R2

∑

n≥0

∑

|m|≤n

bn ·Ψnm(wr , Ynm)B(35)

−
µ

R2

∑

n≥1

∑

|m|≤n

{

dn ·ψnm(wtan,Vnm)B + an ·Ψnm(wtan,Unm)B
}

,

(w,u(0, ·)) = (w,u0), (36)

(w, u̇(0, ·)) = (w,v0), (37)

ψ̇nm =
1

R
Anψnm + (utan |r=R ,Vnm)en, ψnm(0) = 0, (38)

Ψ̇nm =
1

R
BnΨnm +

[

cs (utan |r=R ,Unm) en+1

−cp (ur |r=R , Ynm) en+1

]

, Ψnm(0) = 0.(39)

The finite element method is obtained by approximating the weak form (35)–

(39) in a finite-dimensional subspace Vh ⊂ V . The domain Ω is discretized into

a finite number of elements, and each element is associated with a finite number

of nodes. Then u and w are approximated by

uh(x, t) =
∑

i∈η

zi(t)Θi(x), (40)

wh(x, t) =
∑

i∈η

wiΘi(x). (41)

Here η is the set of indices representing the degrees of freedom for uh, zi(t)

and wi are coefficients, and Θi(x) are suitable shape functions associated with

node i. We denote by β ⊂ η the set of indices representing degrees of freedom

corresponding to nodes on B. Next, we substitute (40) and (41) in (35)–(39),

with the sums over n truncated at some finite value N , and require the resulting

equations to hold for all values of wi. This yields the finite element matrix form

of the problem for the vector of unknowns z(t) = {zi(t)}:

Mz̈ +Cż +Kz = f̃ (42)
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ψ̇nm =
1

R
Anψnm +

∑

i∈β

zi(Θ
tan
i |r=R ,Vnm)en, ψnm(0) = 0,(43)

Ψ̇nm =
1

R
BnΨnm +

∑

i∈β

zi

[

cs (Θ
tan
i |r=R ,Unm) en+1

−cp (Θ
r
i |r=R , Ynm) en+1

]

, Ψnm(0) = 0(44)

z(0) = z0 (45)

ż(0) = ż0. (46)

The matrices M = {M(i, j)}, C = {C(i, j)}, and K = {K(i, j)} are defined by

M(i, j) = (ρΘi,Θj), C(i, j) = C[Θi,Θj)], K(i, j) = A[Θi,Θj)]. (47)

The vectors f̃ = {f̃(i)}, z0 = {z0(i)}, and ż0 = {ż0(i)} are defined by

f̃(i) = (Θi, f) +
2µ+ λ

R2

N
∑

n≥0

∑

|m|≤n

bn ·Ψnm(Θr
i , Ynm)B (48)

−
µ

R2

N
∑

n≥1

∑

|m|≤n

{

dn · ψnm(Θtan
i ,Vnm)B + an ·Ψnm(Θtan

i ,Unm)B
}

,

z0(i) = (Θi,u0), ż0(i) = (Θi,v0). (49)

The quantities z, ż, and z̈ are the displacement, the velocity, and the accela-

ration vectors, respectively. M is the mass matrix, K is the stiffness matrix,

and C is a damping term. The matrix C is almost empty, since only terms

on the artificial boundary yield nonzero entries. For the numerical integration

of (42) one can use any suitable time-marching scheme, such as the explicit

central difference method. Then the solutions of (43) and (44) are computed

concurrently; here we recommend an implicit method, such as the trapezoidal

rule, since all the eigenvalues of the matrices An and Bn lie in the left half

of the complex plane – see sections 4 and 5. Further implementation details

on the combination of the finite element method with nonreflecting boundary

conditions for the scalar wave equation can be found in [26].

4 Finite Difference Method

Instead of using the finite element method, we can use the finite difference

method to solve (4)–(8). We shall now describe how to do this, choosing ρ(x) =

1 in Ω for simplicity. We opt for the finite difference method of Kelly et al. [27],

9



which is a standard explicit time-marching method for the simulation of elastic

waves. Then the elastic wave equation (4) is discretized both in time and in

space at (x, t) using second-order accurate centered finite differences.

At B we use the boundary condition (6) to advance the numerical solution

from time tk to time tk+1 = tk+∆t. The right side of (6) involves infinite sums,

which are truncated at a finite value N . It requires the values of ψnm(t) and

Ψnm(t) at time tk. These are computed concurrently with the solution inside

Ω, using the linear ordinary differential equations (7) and (8). We apply (6) at

t = tk and r = R, and approximate both time and tangential derivatives by

centered second order accurate finite differences. The radial derivatives in (6)

are approximated by one-sided second order accurate finite differences. These

are not evaluated at t = tk, but instead at tk−1 and tk+1, since their evaluation

at tk would lead to an unstable finite difference scheme. This instability is not

particular to elastic waves. It also arises with centered finite difference approx-

imations of the one-dimensional scalar wave equation utt − uxx = 0 together

with the nonreflecting boundary condition ut + ux = 0.

We now describe the finite difference approximation used at the boundary

for the radial component of the nonreflecting boundary condition. The inner

product of (6) with r̂ yields

∂ur

∂r
+

ur

R
+

1

cp

∂ur

∂t
+

cp − cs
cp

∇ · utan =
1

R2

N
∑

n≥0

∑

|m|≤n

bn ·ΨnmYnm, (50)

which we rewrite as

1

R

(

∂

∂r
+

1

cp

∂

∂t

)

[rur] = g, r = R. (51)

Here g = g(ϑ,φ, t) contains the remaining tangential derivatives of utan and

the sum over n. We now let Uk denote the numerical solution for the radial

displacement ur at time tk, and gk the numerical approximation of g at time

tk; both Uk and gk are known. Next, let r% = R denote the *-th grid point in

the radial direction. Hence, r%−1 = R−∆r and r%−2 = R− 2∆r. As mentioned

above, we approximate the time derivative by centered finite differences about

tk. The radial derivative at r% = R and t = tk is approximated by averaging the

one-sided finite differences evaluated at tk−1 and tk+1. This yields the following

10



finite difference update for the radial displacement Uk+1
% at B:

Uk+1
% =

[(

1

2cp∆t
−

3

4∆r

)

Uk
% +

( r%−1

R∆r

)

(

Uk+1
%−1 + Uk−1

%−1

)

−
( r%−2

4R∆r

)

(

Uk+1
%−2 + Uk−1

%−2

)

+ gk
]

/

[

1

2cp∆t
+

3

4∆r

]

. (52)

The discretization of the tangential components of (6) parallels that described

above for the radial component and leads to similar finite difference formulas.

To solve (7) and (8) numerically, we opt for the trapezoidal rule, because the

eigenvalues of the matrices An and Bn lie in the left half of the complex plane

(see section 5). Since the trapezoidal rule is unconditionally stable, there is no

restriction on the time-step in the integration of (7) and (8). The trapezoidal

rule approximation of (7) is

(

I −
∆t

2R
An

)

ψk+1
nm =

(

I +
∆t

2R
An

)

Ψk
nm +

∆t

2

[(

uk + uk+1 |r=R ,Vnm

)]

en.

(53)

The trapezoidal rule approximation of (8) is

(

I −
∆t

2R
Bn

)

Ψk+1
nm =

(

I +
∆t

2R
Bn

)

Ψk
nm

+
∆t

2

[

cs (uk + uk+1 |r=R ,Unm) en+1

−cp (r̂ · (uk+1 + uk) |r=R , Ynm) en+1

]

(54)

The inner products in (7) and (8) are computed over the sphere r = R using the

fourth order Simpson rule. The work required in solving the linear systems (53)

and (54) is negligible, because the matrices involved are very small; furthermore

they remain constant in time if ∆t remains constant.

The complete algorithm proceeds as follows:

0. Initialize u at t0 and t1, and set ψnm = 0 and Ψnm = 0 at t0 and t1.

1. Compute uk+1 at tk+1 = tk+∆t at all inner points ofΩ using the difference

form of (4).

2. Compute uk+1 at tk+1 and r = R using (52) for ur and two similar

equations, obtained from (6) applied at r = R and t = tk, for utan.

3. Compute ψk+1
nm and Ψk+1

nm at tk+1 using (53) and (54), respectively, and

return to 1.

11



Most of the work involved in applying the boundary condition results from

computing the inner products over B on the right side of (6). To compute

the inner products it is not necessary to compute O(N2) inner products over

the entire sphere. Indeed, since the spherical harmonics Unm, Vnm, and Ynm

separate in θ and φ, it is sufficient to computeO(N) inner products with cos(mφ)

and sin(mφ) over the sphere, and then to computeO(N2) one-dimensional inner

products in θ over [0,π]. The same method can be used to calculate the sums

over n and m on the right of (7) and (8). In all our computations we have found

N ≤ 25 to be sufficient. If very large values of N were needed, the work and

storage required could be reduced by an order of magnitude by combining the

fast discrete polynomial transform of Driscoll, Healy, and Rockmore [28] with

the recent work of Alpert, Greengard, and Hagstrom [29] on the approximation

of boundary integral kernels – see also Hagstrom [30].

5 Stability

When used in computation, the boundary condition is approximated numer-

ically. This introduces both discretization errors and rounding errors, which

could lead to numerical instability. We shall now discuss the stability of the

first-order systems of ordinary differential equations (7) and (8), which are used

to compute the auxilliary quantities ψnm(t) and Ψnm(t).

The stability of the ordinary differential equation (7) is determined by the

eigenvalues of An. In [3] we showed that the eigenvalues of An, here scaled

by cs, strictly lie in the left half of the complex plane and that the differential

equation (7) is asymptotically stable. In fact, as n increases the maximal real

part of the eigenvalues of An moves farther away from the imaginary axis. This

results in a stronger obliteration of the past for higher Fourier modes of the

displacement on B.
The stability of the ordinary differential equation (8) is determined by the

eigenvalues of Bn. For n ≥ 1, the matrix Bn has a zero eigenvalue with asso-

ciated eigenvector v = {v(j)}, j = 1, . . . , 2(n+ 1),

v(j) =







−1 if j = n+ 1,
√

n/(n+ 1) if j = 2(n+ 1),
0 otherwise.

(55)

Moreover, there exists a second vector w, linearly independent of v, such that
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Bnw = v. It is

w(j) =























−1/cs if j = n,
1/cs if j = n+ 1,
√

n/(n+ 1)/cp if j = 2n+ 1,
−
√

n/(n+ 1)/cp if j = 2(n+ 1),
0 otherwise.

(56)

Thus (Bn)2w = 0 and the two-dimensional subspace V = {v,w}, spanned by

v and w, is invariant under Bn. Moreover, the forcing term on the right of (8)

is clearly orthogonal to v and w. Therefore, the projection of Ψnm(t) on V is

identically zero for all time, that is v · Ψnm(t) ≡ 0 and w · Ψnm(t) ≡ 0, and

does not play any role in (8).

Because of rounding errors the 2× 2 Jordan block associated with the zero

eigenvalue could possibly lead to spurious linear growth in time. However, a di-

rect calculation reveals that an and bn are orthogonal to both v and w. There-

fore, the component of Ψnm(t) in V plays no role in the boundary condition

(6).

Next, we shall show how to remove the superfluous invariant subspace V and

obtain an equivalent formulation, which is asymptotically stable for all n. To

do so, we seek a matrix representation of the projection on V ⊥, the orthogonal

complement of V . First, we find two othonormal vectors q1 = {q1(j)} and

q2 = {q2(j)}, j = 1, . . . , 2(n+ 1), which are orthogonal to both v and w:

q1(j) =











(

1 + [(n+ 1) c2p]/[n c2s]
)−1/2

if j = n,
(

1 + [n c2s]/[(n+ 1) c2p]
)−1/2

if j = 2n+ 1,
0 otherwise.

(57)

q2(j) =























−
√

(n+ 1)/n (cp/cs)C if j = n,
√

n/(n+ 1)D if j = n+ 1,
C if j = 2n+ 1,
D if j = 2(n+ 1),
0 otherwise.

(58)

where the constants C and D are given by

C =



1 +
(n+ 1)(cp/cs)2

n
+

(

n

n+ 1
+ 1

)

(

(n+ 1) c2p + n c2s
n(cp − cs)cs

)2




−1/2

,(59)

D = −

[

(n+ 1) c2p + n c2s
n(cp − cs)cs

]

C. (60)
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Next, we let Qn denote the 2(n + 1) × 2n matrix, whose columns form an

orthonormal basis of V ⊥:

Qn =

























1 0
. . . 0

0 1
q1 q2

1 0

0
. . .

0 1

























(61)

The upper left and the lower right blocks ofQn correspond to two (n−1)×(n−1)

identity matrices.

We now let

B̃n = Q#
nBnQn, Ψ̃nm(t) = Q#

nΨnm(t), (62)

and multiply (8) by Q#
n from the left to obtain the equivalent linear system of

ordinary differential equations

d

dt
Ψ̃nm =

1

R
B̃nΨ̃nm +

[

cs (utan |r=R ,Unm) en
−cp (ur |r=R , Ynm) en

]

, Ψ̃nm(0) = 0. (63)

We have calculated the eigenvalues of B̃n and they are shown for n = 10 in

the left frame of Figure 1. We observe that all the eigenvalues of B̃n, here for

n = 10, have strictly negative imaginary parts. Furthermore, as shown in the

right frame of Figure 1, they tend to move farther away from the imaginary axis

with increasing n. Again this results in a stronger obliteration of the past for

higher Fourier modes of the displacement on B. We verified numerically that

different cp/cs ratios always lead to the same conclusion. Thus, by removing

the two-dimensional subspace V associated with the zero eigenvalue, we have

obtained the equivalent differential equation (63), which is asymptotically stable

for all time. With

ãn = Q#
nan, b̃n = Q#

n bn, (64)

the exact nonreflecting boundary condition is now given by (6) but with an, bn,

and Ψnm(t) replaced by ãn, b̃n, and Ψ̃nm(t), respectively. We summarize the

main results of this section in the following proposition.

Proposition 1 For n ≥ 1, let v, w, and Qn be defined by (55), (56), and (61).

Then
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1. Bnv = 0, Bnw = v, and Q#
n is an orthogonal projection on V ⊥, where

V = span{v,w},

2. v ·Ψnm(t) ≡ 0 and w ·Ψnm(t) ≡ 0,

3. an · v = bn · v = an ·w = bn ·w = 0,

4. Numerical calculations indicate that the eigenvalues of B̃n = Q#
nBnQn

have strictly negative real parts.

Both formulations (8) and (63) were implemented and they lead to identical

results.

Remark:

For large values of n, the problem of computing the eigenvalues of either An,

Bn, or B̃n is extremely ill-conditioned, so that meaningful results cannot be

obtained even in double precision. This fact is of no consequence for the use

of the nonreflecting boundary condition, because these eigenvalues are never

needed – for further details refer to ([3], Section 6).

6 Numerical results

We shall now combine the finite-difference method with the nonreflecting bound-

ary condition (6), as described in section 4, to evaluate its accuracy and con-

vergence properties. First, we shall consider a model problem, for which the

exact solution is known. It is just to find the field of a transient point dipole

source in a homogeneous medium. Second, we shall present computations for a

standard test problem: scattering from a spherical cavity. Both problems are

symmetric about the z-axis and therefore u is independent of φ. Moreover, the

φ-component of u decouples from the r− and ϑ−components of u in (1) and

(6); it is governed by a scalar wave equation. In [3] we have presented examples

which show the accuracy of this method for the scalar wave equation, and we

have discussed storage requirements and other computational issues. To avoid

repetition, we shall set the φ-component of u to zero and focus on the main

new feature of the nonreflecting boundary condition for elastic waves, namely

the coupling of compression and shear modes through Ψnm(t) in (6) and (8).
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6.1 Model problem

We consider the displacement wave field produced by a time dependent dipole

source, P (t), located at S1 = (0, 0, z0). If z0 = 0 the exact solution is

u(r,ϑ, t) =

[

ϕ′′
p

c2p
+

2ϕ′
p

cpr
+

2ϕp

r2
+
√
2

(

ϕ′
s

csr
+

ϕs

r2

)]

Y10(ϑ)

r
r̂ (65)

−
[

ϕ′′
s

c2s
+

ϕ′
s

csr
+

ϕs

r2
+
√
2

(

ϕ′
p

cpr
+

ϕp

r2

)]

U10(ϑ)

r
, (66)

where

ϕp = P (t− r/cp), ϕs = P (t− r/cs), (67)

and Y10 and U10 are defined by (10) and (11), with n = 1 and m = 0. Next, we

shift the source by a distance z0 from the origin: now all Fourier modes of the

solution unm are nonzero. The time dependence of the source, shown in Fig. 2,

is a Gaussian pulse centered at t = t0:

P (t) =







0 t < 0,

e−(t−t0)
2/σ2

0 ≤ t ≤ 2t0,
0 t > 2t0.

(68)

We choose t0 = 1 and set σ so that P (t) is equal to 10−16 at t = 0 and t = 2t0.

We impose the exact displacement at r = r0 and compute its propagation

outwards up to the artificial boundary r = R. Because of the inherent symmetry,

the computational domain Ω can be reduced to the two-dimensional region

r0 ≤ r ≤ R, 0 ≤ ϑ ≤ π, shown in Fig. 3. Inside Ω we use polar coordinates and

a uniform mesh in r and ϑ. We non-dimensionalize the distance by the diameter

2r0 of the inner sphere and time by 2r0/cp, the travel time of a compression

wave across the inner sphere. Thus, r0 = 0.5, cp = 1. Furthermore, we set

R = 1 and cs = 1/
√
3.

We shall compare the numerical solution using (6), where the sums are

truncated at N , with that obtained using the ’viscous’ boundary condition of

Lysmer and Kuhlemeyer [7],

T rr + cp
∂ur

∂t
= 0 (69)

T rϑ + cs
∂uϑ

∂t
= 0, (70)

in which T rr and T rϑ are the normal and shear stress, respectively. We denote

the former by NBC(N), where N indicates the upper limit in the sums, and
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the latter by L-K. The boundary condition (6) is implemented as described in

section 4, albeit ψnm(t) ≡ 0 because uφ is identically zero.

In figure 4 we check the accuracy and convergence rate of our numerical

method. In the left frame the maximal error in the L2-norm over the time

interval [0, 10] is shown versus the mesh parameter∆r, for the following sequence

of meshes: 20 × 120, 30 × 180, 40 × 240, 60 × 360, 80 × 480, and 100 × 600.

We observe the expected second order convergence rate of the full scheme using

NBC(25) as the mesh is refined. This indicates that setting N = 25 ensures

that the error introduced at the artificial boundary is smaller than that of the

numerical scheme. However, the error in the numerical solution obtained with

L-K barely decreases as the mesh is refined, indicating that the error introduced

by using L-K dominates the computation. Indeed, the numerical solution does

not converge to the solution of the original problem, but instead converges to the

solution of a different problem with L-K imposed at B. To reduce the amount

of spurious reflection at B one would need to increase the size of Ω. In contrast,

for the exact boundary condition, NBC(N), N can be chosen large enough to

reduce the error introduced at B below the discretization error of the numerical

method inside Ω, without moving the artificial boundary farther away from the

scatterer. In the right frame of figure 4 we follow the evolution of the total errors

in the 2-norm over Ω, ‖uexact(., t) − unum(., t)‖2, which result from the use of

L-K and NBC(25). We observe that NBC(25) leads to an additional reduction

in the error of two orders of magnitude. Moreover, the error in the numerical

solution obtained with NBC(25) decays much faster with increasing time once

the transient wave field has left Ω. This indicates that using the nonreflecting

boundary condition may be useful even in calculations where the transient field

is of no interest, since the numerical solution may reach the final state much

faster.

Next, we compare the numerical solutions, obtained on the finest mesh using

L-K and NBC(25), with the exact solution at two different locations inside Ω at

r = 0.75 : P1 (θ = 30◦) and Q1 (θ = 150◦). The inner and outer radii remain

at their current locations r0 = 0.5 and R = 1. In figure 5, the ϑ-component of

the displacement uϑ is shown at the first location P1. The numerical solution

obtained with NBC(25) is hardly distinguishable from the exact solution. While

the relative error due to the L-K boundary condition lies within 20 percent of
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the maximum of the exact solution at P1, this seemingly accurate behavior is

deceptive. Indeed these locally small reflections travel back into the computa-

tional domain, and contaminate the solution everywhere inside Ω, in particular

in regions where the solution is of lesser magnitude. To demonstrate this point,

we select the next location farther away from the source at Q1, where the dis-

placement field is weaker. The ϑ-component of the displacement at Q1 is shown

in figure 6, and again it agrees completely with the numerical solution obtained

using NBC(25). The solution obtained using L-K agrees with the exact solution

up to t = 3. It then diverges from it, as the spurious reflection due to the

imposition of L-K reaches this location. Since this spurious reflection is as large

as the amplitude of the true solution at Q1, the numerical solution with L-K

imposed at B becomes meaningless after t = 3.

6.2 Spherical cavity

We shall now compute the scattered field of a radially symmetric compression

wave impinging upon a spherical cavity of radius r0 embedded in an infinite

elastic medium. At the free surface of the cavity the traction is zero. The source

is located nearby outside the spherical obstacle at S2 = (0, 0, z0), z0 > r0, at

distance z0 from the origin. The time dependence of the point load, shown in

figure 2, is the same Gaussian pulse centered in time about t0 = 1 and given by

(68). Again, this problem is symmetric about the z-axis and the φ-component

of u is identically zero. Next, we split the total displacement field u into the

incident field, ui, and the scattered field, us, with u = ui + us. The incident

field is known and can be found in [24], p. 475. Since the normal and shear stress

components of the total displacement vanish at r = r0, the stress components of

the scattered field us simply equal those of the incident field, but with opposite

sign: T [us]r̂ = −T [ui]r̂.

We nondimensionalize time and space as before and set cp = 1, cs = 1/
√
3,

r0 = 0.5, and z0 = 0.6. Hence the source S2 is located at distance 0.1 away

from the spherical cavity. Since we do not have a simple analytic expression for

the time dependent scattered field, we shall use the numerical solution in the

infinite domain as our reference solution; we refer to it as the exact solution. To

compute it inside Ω we use a much larger domain which extends as far as r = 6.

This enables us to compute the solution of the initial-boundary value problem
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in the infinite region outside the cavity up to t = 10. Indeed the truncation at

r = 6 will not be sensed inside Ω until t = 10.5.

Inside Ω we use a 60×360 mesh, which we extend with constant mesh spacing

∆r up to r = 6. In figure 7 the contour lines for the displacement |u| of the
exact solution are shown at t = 5 for r0 ≤ r ≤ 5. The scattered field consists of

various types of waves which propagate at different speeds. The impact above

the north pole immediately creates a pure compression wave moving upward,

followed by a shear wave propagating away from the cavity. At the surface of

the cavity, a Rayleigh wave propagates along longitudes down to the south pole,

while its tail interacts in a complex pattern with the only slightly faster shear

wave. The surface waves merge at the south pole at about t = 5, as shown

in figure 7, and then pursue their journey around the cavity back to the north

pole, and so forth, indefinitely.

We now compare the numerical solutions, obtained inside Ω with L-K and

NBC(25) applied at B (R = 1), with the exact solution at two different locations

on the free surface: P2 (θ = 30◦) and Q2 (θ = 150◦). In figure 8, the radial

displacement ur is shown at the first location P2. The solution obtained using

L-K agrees with the exact solution up to t = 2.5. It then diverges from it, as

the spurious reflection due to the imposition of L-K reaches this location. To

demonstrate the long-time accuracy of our method, we have magnified the scale

and concentrate on the second wave packet, which arrives at P2 around t = 7

after traveling counter-clockwise around the entire cavity. At this stage, the

main part of the scattered field has left Ω and the remaining part is of much

smaller magnitude. Yet even after an entire trip around the cavity, the scattered

field obtained with NBC(25) agrees perfectly with that in the unbounded region.

In contrast, the local boundary condition L-K has generated multiple spurious

reflections which bounce back and forth between the sphere and the artificial

boundary, and completely dominate the numerical solution at later times.

Finally, we follow the evolution of the ϑ-component of the displacement at

Q2, which is located on the obstacle in the shadow region behind the cavity.

Here the amplitude of the scattered field is of smaller magnitude. As depicted

in figure 9, the numerical solution obtained with NBC(25) follows the exact

solution closely and cannot be distinguished from it. In contrast, the spurious

reflections introduced by L-K at the outer boundary are larger than the true
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solution and spoil the solution right up to the obstacle as they travel back into

Ω. The accuracy of the numerical solution obtained with L-K remains poor in

the shadow region and does not converge to the exact solution, as the underlying

mesh is refined. To study the performance of the boundary conditions as the

outer boundary B is moved closer to the inner one, we now set R = 0.6. The

mesh size remains identical, so that the mesh now has 12 × 360 points. In

figure 10, the ϑ-component of the displacement is again shown at Q2 below the

spherical cavity. Again, the numerical solution obtained using NBC(25) agrees

with the exact solution; this demonstrates the robustness of the exact boundary

condition with respect to the location of the artificial boundary. The numerical

solution obtained with L-K agrees with the exact solution for a short time. It

then strongly overshoots, completely misses the subsequent arrival of the shear

wave, and slowly starts to approach zero.

7 Conclusion

The exact nonreflecting boundary condition (6) has been found to be very ac-

curate in numerical computations. It involves only first-order derivatives of the

displacement, which makes it robust and easy to use. The boundary condition

fits easily into finite-difference methods and allows the artificial boundary to

be brought as close as desired to the scatterer. It is easy to implement and

requires little extra storage and computer time. It also fits naturally into the

variational formulation of the elastic wave equation; hence it is well-suited for

use with the finite element method. Although the formulation is global over the

artificial boundary, it is explicit and does not require the solution of any large

linear system. It only requires inner products with spherical harmonics of the

displacement on the artificial boundary. Although the artificial boundary must

be spherical, the boundary condition is not tied to any coordinate system, and

the grid used inside Ω can be arbitrary. With the nonreflecting boundary con-

dition the overall numerical scheme retains its optimal rate of convergence, as

the error introduced at the artificial boundary can always be reduced below the

discretization error due to the numerical method in the interior computational

domain.
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Figure captions

Figure 1: Left: the eigenvalues of the matrix B̃n for n = 10, cp = 1, and cs = 1/
√
3.

Right: the maximal real part of the eigenvalues of B̃n as a function of n.

Figure 2: The time dependence P (t) of the source

Figure 3: The computational domain Ω is shown drawn to scale, with r0 = 0.5 and

R = 1. The source is located at S1 = (0, 0, 0.4) for the model problem

and at S2 = (0, 0, 0.6) for scattering from a spherical cavity.

Figure 4: Left: the maximal error in the L2 norm over the time interval [0, 15] is

shown versus the mesh parameter ∆r. Right: the maximal error is shown

as a function of time for the finest mesh 80× 480 used.

Figure 5: Model problem. The numerical solutions for uϑ, computed using the

boundary conditions L-K and NBC(25), are compared with the exact so-

lution at P1.

Figure 6: Model problem. The numerical solutions for uϑ, computed using the

boundary conditions L-K and NBC(25), are compared with the exact so-

lution at Q1.

Figure 7: Spherical cavity. Contour lines of the exact solution are shown at t = 5.

The dotted circle in the center shows the initial location of the spherical

cavity.

Figure 8: Spherical cavity. The numerical solutions for ur, computed using the

boundary conditions L-K and NBC(25) at R = 1, are compared with the

exact solution at P2.

Figure 9: Spherical cavity. The numerical solutions for uϑ, computed using the

boundary conditions L-K and NBC(25) at R = 1, are compared with the

exact solution at Q2.

Figure 10: Spherical cavity. The numerical solutions for uϑ, computed using the

boundary conditions L-K and NBC(25) at R = 0.6, are compared with

the exact solution at Q2.
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