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Abstract

The Streamline Diffusion Finite Element Method (SDFEM) for a two dimensional
convection-diffusion problem is analyzed in the context of the hp-version of the Finite
Element Method (FEM). It is proved that the appropriate choice of the SDFEM
parameters leads to stable methods on the class of “boundary layer meshes” which
may contain anisotropic needle elements of arbitrarily high aspect ratio. Consistency
results show that the use of such meshes can resolve layer components present in the
solutions at robust exponential rates of convergence. We confirm these theoretical
results in a series of numerical examples.
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1. Introduction

Standard Galerkin Finite Element Methods (FEM) for convection-dominated convection-
diffusion problems are known to produce often wildely oscillatory solutions due to intrinsic
stability problems in the schemes. To circumvent these stability problems the Streamline
Diffusion Finite Element Method (SDFEM) was introduced by T. Hughes, C. Johnson and
their coworkers. We mention here only the pioneering work [4, 6, 7, 11, 12, 13] and the
references there. In the meantime, numerous papers have appeared where the SDFEM
and related Streamline Upwind Petrov Galerkin (SUPG) techniques have been applied
successfully to incompressible fluid flow problems and to solid mechanics problems with
analogous mathematical structure (see, e.g., [8, 29, 30] and the references there).
However, all these approaches were mainly concerned with the h-version FEM where conver-
gence is achieved by refining the mesh T at fixed, low polynomial degree p. The convergence
rates were consequently at best algebraic. In the 1980ies, the p- and hp-FEM were intro-
duced by I. Babuška, B.A. Szabó and their coworkers, and it was shown that the hp-FEM
achieves exponential convergence for elliptic problems with piecewise analytic solutions (cf.
the survey paper [1] and the references therein).
The hp-version of the SDFEM for convection-dominated problems in one space dimension
was analyzed in [17]. There, robust exponential convergence of the hp-SDFEM (and of the
hp-Galerkin FEM) is proved in global norms (mainly the L2 norm and the “energy norm”,
cf. (2.14)) provided that boundary layers and fronts in the solution are resolved. Whereas
in the h-version FEM this requirement of scale resolution amounts to the use of anisotropic,
so-called Shishkin meshes (cf. [20, 22]), in the hp-version context this can be achieved very
efficiently by inserting anisotropic needle elements of the proper width into the layer (see,
e.g., [15, 16, 17, 18, 24, 27]). Furthermore, the behavior of the hp-SDFEM was investigated
under the assumption that layers are not resolved which may happen, for example, when
the precise location of the layer is unknown. In this case, the hp-SDFEM can lead to
robust exponential convergence on compact subsets upstream of the layer/shock while the
performance of the hp-Galerkin FEM is poor throughout the domain. This is important
in adaptive schemes that try to locate and resolve the layers. In the one dimensional case,
a complete convergence analysis of the hp-SDFEM was possible in [17] because precise
regularity results for the exact solution were available.
In two space dimensions, however, the regularity theory is much more complex and analytic
regularity to prove robust exponential convergence does not seem to be available at present.
Usually, the regularity of the exact solution is described by means of asymptotic expansions.
There, the solution is decomposed into a smooth (piecewise analytic) part, a layer part, and
a (small) remainder. While the regularity of the smooth and layer parts are well understood,
it is the analytic regularity of the remainder, containing, for example, corner layers, that is
not very well understood. Nevertheless, mesh design principles for the robust exponential
approximation of the dominant solution components, the smooth part and the layer part,
are available [18].
In the present work we extend the hp-SDFEM to convection-diffusion problems in two space
dimensions and show that:

1. The appropriate choice of the SDFEM parameters leads to stable methods on bound-
ary layer meshes which may contain anisotropic needle elements of arbitrarily high
aspect ratio.



2. Boundary layer meshes can resolve the layer components present in the exact solution;
the SDFEM based on such boundary layer meshes can lead to exponential rates
of convergence where the constants depend only very weakly on the perturbation
parameter.

3. The SDFEM on shape regular meshes yields optimal hp-convergence rates for smooth
solutions.

The performance of the hp-SDFEM is studied in a series of numerical examples. We illus-
trate that the hp-version mesh design principles indeed permit the resolution of localized
small scale features such as boundary layers and lead to robust exponential convergence
in the global energy norm. Under the assumption that the layers are not resolved, we can
still observe exponential rates of convergence upstream of the layer, in agreement with the
corresponding results in one dimension [17]. We point out, however, that this convergence
behavior upstream is fairly sensitive to the choice of the SDFEM parameters.
The outline of the paper is as follows: In Section 2 we present our model convection-diffusion
problem and review the SDFEM formulation in the hp-context. In Section 3 we introduce
the class of “boundary layer meshes” and discuss the hp-approximation of layer components
on such meshes. Section 4 is devoted to the stability analysis of the SDFEM on boundary
layer meshes. In Section 5 we prove consistency results for the hp-SDFEM and show that
smooth and layer components can be resolved at robust exponential rates of convergence.
On shape regular meshes optimal hp error bounds are derived for smooth solutions. We
conclude our presentation with numerical results in Section 6.
Standard notations and conventions are followed in this paper. For a domain D the
Lebesgue space of square integrable functions is denoted L2(D). We write (·, ·)D for the
L2(D) inner product where the index D is omitted if clear from the context. The corre-
sponding norm is ‖ · ‖L2(D). L∞(D) is the space of all bounded functions equipped with
the supremum norm ‖ · ‖∞. The Sobolev spaces of order k ≥ 0 are denoted by Hk(D).
We write ‖ · ‖Hk(D) and | · |Hk(D) for the corresponding norms and semi-norms. H1

0 (D) is
the space of H1(D)-functions with vanishing trace on the boundary ∂D of D. The Sobolev
spaces of L∞-functions are denoted by W k,∞(Ω). We use the notation Qp(D) for the set
of all polynomials of degree ≤ p in each variable and Pp(D) for the set of all polynomi-
als of total degree ≤ p. In the following we denote by c, C, C1, C2, . . . generic constants
not necessarily identical at different places but always independent of the meshwidths, the
polynomial degrees, and the singular perturbation parameter ε. Similarly, the constant σ
arising in expressions of the type e−σp is independent of the polynomial degree p and the
perturbation parameter ε but not necessarily the same in different instances.

2. The Streamline Diffusion Finite Element Method (SDFEM)

In this section we introduce the SDFEM discretization of convection-diffusion problems
based on hp Finite Element spaces.



2.1. The Convection-Diffusion Problem

In a curvilinear Lipschitzian polygon Ω ⊂ R2 we consider the convection-diffusion problem

−ε∆u(x) + $a(x) ·∇u(x) + b(x)u(x) = f(x) in Ω, (2.1)

u = 0 on ∂Ω. (2.2)

Here, the parameter ε ∈ (0, 1] may approach zero, the right-hand side f is in L2(Ω), and
the coefficients $a = (a1, a2) and b are assumed to be bounded, differentiable and to satisfy

b(x)−
1

2
∇ · $a(x) ≥ µ > 0, x ∈ Ω. (2.3)

Condition (2.3) guarantees the stability and the unique solvability of (2.1), (2.2) for all
ε ∈ (0, 1]. The standard weak formulation of (2.1), (2.2) is:
Find u ∈ H1

0 (Ω) such that

ε

∫

Ω

∇u ·∇vdx+

∫

Ω

($a ·∇u+ bu)vdx =

∫

Ω

fvdx ∀v ∈ H1
0 (Ω). (2.4)

2.2. Finite Element Spaces

In order to solve (2.1), (2.2) numerically by a Finite Element Method the infinite dimen-
sional space H1

0 (Ω) in (2.4) is replaced by a finite dimensional FE-space of functions which
are piecewise mapped polynomials on a mesh T :
A mesh T on Ω ⊂ R2 consists of curvilinear quadrilateral and/or triangular elements {K}
satisfying the following standard assumptions:

(i) The elements {K} partition the domain, i.e., they are open, pairwise disjoint and
there holds Ω = ∪K∈T K.

(ii) Each element K is the image of the generic reference element K̂ which is either the
reference triangle T̂ = {(x, y) : 0 < x < 1, 0 < y < x} or the reference square
Q̂ = (0, 1)2, i.e., with K ∈ T there is associated an element mapping FK : K̂ → K.

FK is an analytic diffeomorphism in a neighborhood of K̂ with detDFK > 0 on K̂.

(iii) The intersection K ∩ K ′ of two elements K and K ′ is either empty, one common
vertex or one entire side. (Vertices and sides are the images of the vertices and sides
of the reference element K̂ under FK .)

(iv) The parametrization is the same “from both sides”: Let γ = K ∩K ′ be the common
side of K and K ′ with endpoints P1 and P2. Then for any point P on γ we have
dist(F−1

K (P ), F−1
K (Pi))/lK = dist(F−1

K ′ (P ), F−1
K ′ (Pi))/lK ′ for i = 1, 2 where lK and lK ′

denote the lengths of the corresponding edges of the reference elements of K and K ′,
respectively.

We denote by hK,max and hK,min the maximal and minimal lengths of the sides of K ∈ T .
The mesh T is called shape regular if

(i) There is a constant κ > 0 independent of the elements and the partition such that
hK,max ≤ κhK,min.



(ii) On K̂ we have ‖DβFK‖∞ ≤ ChK,max for multi-indices β with 1 ≤ |β| ≤ 2 and
C1h2

K,min ≤ detDFK ≤ C2h2
K,max with constants C, C1 and C2 independent of the

elements.

T is called affine if the element mappings FK are affine transformations.
Let now p = {pK : K ∈ T } be a degree vector on T which associates with each element
K ∈ T a polynomial degree pK . The space S

p(T ) of piecewise mapped polynomials is then
defined as follows:

Sp(T ) := {u ∈ H1(Ω) : u|K ◦ FK ∈ SpK (K̂), ∀K ∈ T }. (2.5)

Here, the generic polynomial space Sp(K̂) is to be understood as Qp(Q̂) if K̂ = Q̂ and as
Pp(T̂ ) if K̂ = T̂ . Further, we define S

p
0(T ) := Sp(T ) ∩H1

0 (Ω). If pK = p for all K ∈ T , we
simply write Sp(T ) and Sp

0(T ), respectively.

2.3. SDFEM Discretization

The standard Galerkin Finite Element Method for (2.1), (2.2) is:
Find U ∈ S

p
0(T ) such that

B(U, V ) := ε

∫

Ω

∇U ·∇V dx+

∫

Ω

($a ·∇U + bU)V dx = F (V ) :=

∫

Ω

fV dx (2.6)

for all V ∈ S
p
0(T ).

To improve the stability of the scheme (2.6), the test function V is replaced by a test function
“upwinded” in stream direction $a given on each element K by V |K+δKρK($a ·∇V )|K where
ρK ≥ 0 is a mesh-dependent parameter (depending on hK,max, hK,min and pK) and δK ≥ 0
is a user-specified parameter to be selected later on. This yields the SDFEM formulation:

Find U ∈ S
p
0(T ) such that BSD(U, V ) = FSD(V ) for all V ∈ S

p
0(T ) (2.7)

where

BSD(U, V ) := B(U, V ) +
∑

K∈T

δKρK

∫

K

(−ε∆U + $a ·∇U + bU)($a ·∇V )dx, (2.8)

FSD(U, V ) := F (V ) +
∑

K∈T

δKρK

∫

K

f($a ·∇V )dx. (2.9)

If f ∈ L2(Ω), the exact solution u of (2.1), (2.2) satisfies BSD(u, V ) = FSD(V ) for all
V ∈ S

p
0(T ) and hence there holds the orthogonality property

BSD(U − u, V ) = 0 ∀V ∈ S
p
0(T ). (2.10)

We assume the SDFEM parameters {δK} and {ρK} to be given by

0 ≤ δK ≤ δ0, ρ2K =
1

p2αK

h2
K,minh

2
K,max

h2
K,max + h2

K,min

(2.11)



for some constants δ0 > 0 and α ≥ 0. We will make use of the following short-hand notation

h2
K :=

h2
K,minh

2
K,max

h2
K,max + h2

K,min

, K ∈ T . (2.12)

We will come back to the choice of the parameter α in our numerical experiments ahead.
We note that the parameter δK = 0 is not excluded in (2.11) and leads to the standard
Galerkin FEM (2.6). In order to be able to analyze the “true” SDFEM, it will be convenient
to assume occasionally the following non-degeneracy condition:

∃δ > 0 such that δK ≥ δ ∀K ∈ T . (2.13)

Our analysis will be performed in the framework of the “energy norm” ‖ · ‖E and mesh-
dependent SDFEM norm ‖ · ‖SD given on H1

0 (Ω) as:

‖u‖2E := ε‖∇u‖2L2(Ω) + µ‖u‖2L2(Ω), ‖u‖2SD := ‖u‖2E +
∑

K∈T

δKρK‖$a ·∇u‖2L2(K). (2.14)

Remark 2.1 In the subsequent analysis the parameters {ρK} in (2.11) can equivalently be

chosen as ρ2K =
h2
K,min

p2αK
because there holds hK ∼ hK,min by the standard two-sided bound

1
2 min {a, b} ≤ ab

a+b ≤ min {a, b}, valid for all a, b > 0.

3. Approximation on Boundary Layer Meshes

Due to the singular perturbation parameter ε solutions of (2.1), (2.2) exhibit boundary layer
phenomena. The numerical approximation of these layers requires carefully designed meshes
with anisotropic needle elements. In Section 3.2 the class of “boundary layer meshes” is
introduced and in Section 3.3 it is shown that layers can be resolved on such meshes at
exponential rates of convergence.

3.1. Properties of the Solutions

For the design of hp methods for (2.1), (2.2), it is important to have precise information
about the solution behavior, that is, to have some regularity theory. The best tool available
at present for describing the regularity are asymptotic expansions. There, the solution u is
decomposed in a number of components, typically in the form

u = usmooth + ulayer + urem. (3.1)

Each solution component accounts for a different feature of the solution. In practice,
the “smooth” part is piecewise analytic. The “layer” part consists of (possibly several)
components which have a typical layer behavior: With respect to a special, fitted coordinate
system (r, s) the layer component ulayer = ulayer(r, s) behaves smoothly in the variable s
but decays sharply in the other variable r. From an analysis of the simpler one dimensional
case in [16, 17] and the related reaction-diffusion equation in two dimensions, [18], we can
expect the layer parts to satisfy the following regularity properties:



Definition 3.1 An analytic function u = u(r, s) is said to be of layer type with length scale
l > 0 if there are constants C, γ, d > 0 such that

|∂m
r ∂n

s u(r, s)| ≤ Cγm+nn! max{m, l−1}me−dr/l, m, n ∈ N0, r > 0. (3.2)

For the solutions of (2.1), (2.2) it is known that only two length scales l arise: l = O(ε),
giving so-called exponential layers and l = O(ε1/2) for the so-called parabolic layers.
For such small length scales, we see that Definition 3.1 reflects the typical, anisotropic
behavior of layers, namely, the rapid decay in one direction (here: for r → ∞) and the
fact that successive differentiation with respect to the variable r produces negative powers
of the length scale on the one hand and a smooth (here: analytic) behavior in the other
direction.
Layers appear as boundary layers near the outflow boundary Γ+ = {x ∈ ∂Ω |$a(x)·$n(x) > 0}.
There, the fitted coordinate system (r, s) is given by r = dist (x,Γ+) and s is the arc-length
parameter for Γ+. The layers near Γ+ are of exponential type. A similar situation holds for
the characteristic part Γ0 = {x ∈ ∂Ω |$a(x) · $n(x) = 0}, where parabolic layers are present.
Another instance of parabolic layers is given by internal layers, caused by unsmoothness of
the data near the inflow boundary Γ− = {x ∈ ∂Ω |$a(x) · $n(x) < 0}. The remainder urem is
defined such that (3.2) holds true once the smooth part usmooth and the layer part ulayer are
defined by means of asymptotic analysis. Little can be found in the literature about the
regularity of urem (we hint at some of the difficulties by pointing out that in the case of a
polygonal domain Ω, the solution has to exhibit corner singularities which can interact with
boundary layers near some of the vertices). Fortunately, the remainder urem is in practice
small and the components usmooth, ulayer do indeed capture the dominant features of the
solution u. In our analysis, we will therefore neglect the effects of the urem.

3.2. Boundary Layer Meshes

We introduce the class of “boundary layer meshes” that are designed to resolve layer com-
ponents arising in solutions of (2.1), (2.2):

Definition 3.2 A mesh T is called boundary layer mesh if for each element K ∈ T there
exists a triangle R̂K = {(ξ, η) : 0 < ξ < hx, 0 < η < hy

hx
ξ} or a rectangle R̂K = (0, hx) ×

(0, hy) such that the mapping F̃K(ξ, η) := FK(
ξ
hx
, η
hy
), (ξ, η) ∈ R̂K , satisfies on R̂K

C−1
1 ≤ detDF̃K ≤ C1, ‖DβF̃K‖∞ ≤ C2C

|β|
F̃
|β|! ∀ multi-indices β ∈ N

2
0 (3.3)

with constants C1, C2 and CF̃ independent of the elements.

Definition 3.2 formalizes the idea that for boundary layer meshes the element mappings FK

can be factorized into two transformations F1 and F̃K ,

FK(x̂, ŷ) = F̃K ◦ F1(x̂, ŷ), F1(x̂, ŷ) =

(

hx 0
0 hy

)(

x̂
ŷ

)

. (3.4)

This is indicated in Figure 1. The scaling and anisotropy properties of the element K are
coded into the map F1, while F̃K is completely independent of these issues due to (3.3).



K̂
x̂

ŷ
η

ξ

FK
F̃K

K

R̂K

F1

Figure 1: The factorization of the element mapping in boundary layer meshes.

The rather technical assumptions in (3.3) may be difficult to check in practice. A possibility
to construct boundary layer meshes is the use of a macro-element technique. This approach
is based on certain two-level families of meshes: We start with a macroscopic shape regular
mesh Tm = {M}. Some of these macro-element patches M are now further partitioned by
mapping a corresponding refinement T̂ of the reference element into M with the element
transformation FM . We will be interested in the following reference patches T̂ which are
defined in terms of additional parameters such as polynomial degrees p, length scales l,
grading factors q and number of layers L (cf. Fig. 2):

(P1) The trivial patch: T̂ = K̂.

(P2) The two-element patch: T̂κpl = {(0, κpl)× (0, 1), (κpl, 1)× (0, 1)}.

(P3) The geometric patch: The reference element K̂ is refined geometrically and anisotrop-
ically towards the line x = 0 with grading factor q ∈ (0, 1) and a number of layers
L ∈ N0 such that qL ≈ l. That is, the mesh is given as T̂ = {(xi+1, xi) × (0, 1) | i =
0, . . . , L+ 1} where xL+1 = 0 and xi = qi for i ∈ {1, . . . , L}.

(P4) The tensor product patch: For two length scales l1, l2 and grading factor q ∈ (0, 1)
let L1, L2 ∈ N0 such that qL1 ≈ l1, qL2 ≈ l2. Then the reference element K̂ is refined
geometrically towards the lines x = 0 and y = 0 with L1 layers in the x-direction
and L2 layers in the y-direction. That is, the mesh is given as T̂ = {(xi+1, xi) ×
(yj+1, yj) | i = 0, . . . , L1 + 1, j = 0, . . . , L2 + 1} where xL1+1 = 0, yL2+1 = 0, and
xi = qi, i = 0, . . . , L1, yj = qj, j = 0, . . . , L2.

Remark 3.3 We restricted ourselves to quadrilateral mesh patches. However, analogous
refinement strategies can also be defined on triangular patches.

3.3. Approximation of Layers on Boundary Layer Meshes

The purpose of the present section is to illustrate that the mesh patches presented above
are well-suited for the approximation of layer functions at robust exponential rates. The
approximation results presented here cover not only the approximation in “energy norms”
but also in stronger norms in order to enable us to analyze the SDFEM below. As the
construction of the interpolants is fairly technical, the actual proofs are collected in Ap-
pendix A.
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0
κpl

l l1
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Figure 2: Reference patches (P1)–(P4).

We start at this point by showing that the property of being a function of boundary layer
type in the sense of Definition 3.1 is invariant under analytic changes of variables. This will
be our tool to be able to restrict our attention to very few reference configurations.
Throughout, let S denote the closed reference square, i.e., S = [0, 1]2.

Lemma 3.4 Let S = [0, 1]2 and F : S → R2, (x, y) 2→ (r, s) = F (x, y) be an analytic
diffeomorphism in a neighbourhood of S. Assume that r = r(x, y) satisfies r(0, y) = 0 (i.e.,
that F maps the the line x = 0 into the line r = 0). Let u be of boundary layer type and
satisfy (3.2) on F (S). Then there are C ′, γ′, d′ > 0 depending only on the constants C, γ,
d of (3.2) and the mapping F such that the function ũ := u ◦ F satisfies on S:

|∂m
x ∂n

y ũ(x, y)| ≤ C ′(γ′)m+nn! max {m, l−1}me−d′x/l ∀(m,n) ∈ N
2
0, (x, y) ∈ S. (3.5)

Proof : The proof is essentially the one presented in Lemma 3.6 of [19]. !

The merit of Lemma 3.4 is that it allows us to perform approximation theory on reference
configurations in the framework of the mesh patches introduced above. We may therefore
assume for the purpose of the present section that a function u of boundary layer type is
given on S and satisfies (3.5).
We can now formulate the following three approximation results for functions satisfying
(3.5). The proofs are relegated to Appendix A. We start with the two-element patch (P2).

Theorem 3.5 For κ > 0, p ∈ N let x := min {1/2, κpl} and define the “two-element mesh”
T̂κpl = {(0, x)×(0, 1), (x, 1)×(0, 1)}. Let u satisfy (3.5). Then there are C, σ, κ0 depending
only on C, γ, d of (3.5) such that for κ ∈ (0, κ0) there is πp ∈ Sp(T̂κpl) with

κpl‖∇(u− πp)‖L2(S) + ‖u− πp‖L2(S) ≤ Cl1/2e−σκp,

κpl‖∇(u− πp)‖L∞(S) + ‖u− πp‖L∞(S) ≤ Ce−σκp.



Remark 3.6 The two-element patch (P2) is essentially the minimal mesh that can resolve
functions of layer type at a robust exponential rate; we refer to [24] where necessity of a
small element of size O(pl) in the layer was demonstrated for a 1-D model problem.

The next theorem circumvents the need to choose κ by considering meshes that are graded
geometrically towards the line x = 0. These meshes are the ones presented as type (P3):

Theorem 3.7 Let u satisfy (3.5) on S. Let q ∈ (0, 1) be a fixed grading factor and let
L ∈ N0 be such that qL ≈ l. Let T̂x be a mesh on (0, 1) given by the points xL+1 = 0, xi = qi

for i = 0, . . . , L. Let T̂y be an arbitrary mesh on (0, 1) and T̂ = T̂x × T̂y. Then there are
constants C, σ > 0 depending only on C and γ of (3.5) and an interpolant πp ∈ Sp(T̂ )
such that

l‖∇(u− πp)‖L2(S) + ‖u− πp‖L2(S) ≤ Cl1/2e−σp,

l‖∇(u− πp)‖L∞(S) + ‖u− πp‖L∞(S) ≤ Ce−σp,
∑

K∈T̂

hK,minhK,max

l
l2‖∇(u− πp)‖2L∞(K) ≤ Ce−σp,

∑

K∈T̂

hK,min‖∇(u− πp)‖2L2(K) ≤ Ce−σp.

It should be noted that the number of elements in the meshes considered in Theorem 3.7 is
not independent of the length scale l of the layer: From the condition qL ≈ l we immediately
get L = O(| ln l|). Nevertheless, this is a rather weak side condition. The preceding two
theorems were concerned with the approximation of a single layer. Let us now turn to the
problem of approximating two layers on S located at the lines x = 0 and y = 0. Specifically,
let u1, u2 be two functions of boundary layer type satisfying

|∂m
x ∂n

y u1(x, y)| ≤ Cγm+nn! max {l−1
1 , m}me−dx/l1 ∀(m,n) ∈ N

2
0, (x, y) ∈ S, (3.6)

|∂m
y ∂n

xu2(x, y)| ≤ Cγm+nn! max {l−1
2 , m}me−dy/l2 ∀(m,n) ∈ N

2
0, (x, y) ∈ S. (3.7)

The simultaneous approximation of these two different layers on the same domain S can
be handled by tensor product meshes of the type (P4):

Theorem 3.8 Let u1, u2 satisfy (3.6), (3.7), q ∈ (0, 1) be a fixed grading factor and let
L1, L2 ∈ N0 be such that qL1 ≈ l1, qL2 ≈ l2. Let T̂1, T̂2 be two meshes on (0, 1) given by the
points

xL1+1 = 0, xi = qi, i = 0, . . . , L1 yL2+1 = 0, yj = qj , j = 0, . . . , L2,

respectively, and set T̂ := T̂1 × T̂2. Then there are constants C, σ > 0 independent of p, l1,
l2 and interpolants πi ∈ Sp(T̂ ), i = 1, 2, such that for i = 1, 2 there holds:

li‖∇(ui − πi)‖L2(S) + ‖ui − πi‖L2(S) ≤ Cl1/2i e−σp,

li‖∇(ui − πi)‖L∞(S) + ‖ui − πi‖L∞(S) ≤ Ce−σp,
∑

K∈T̂

hK,minhK,max

li
l2i ‖∇(ui − πi)‖2L∞(K) ≤ Ce−σp,

∑

K∈T̂

hK,min‖∇(ui − πi)‖2L2(K) ≤ Ce−σp.



Remark 3.9 Our meshes consist of quadrilaterals only. However, similar results hold true
on triangular patches as well.

4. Stability of the SDFEM

In this section we address the stability of the SDFEM on boundary layer meshes. This
problem is closely related to inverse inequalities on anisotropic elements which are presented
in Section 4.1.

4.1. Inverse Inequalities

We recall the basic inverse estimate valid on the reference element K̂ (= Q̂ or T̂ ) [23]:

Lemma 4.1 There exists a constant C independent of p such that

‖∇Πp‖L2(K̂) ≤ Cp2‖Πp‖L2(K̂), ‖Πp‖L1(∂K̂) ≤ Cp‖Πp‖L2(K̂)

for all polynomials Πp ∈ Sp(K̂).

On a boundary layer mesh T we have:

Proposition 4.2 Let K be an element of the boundary layer mesh T and Πp a mapped
polynomial on K, that is Πp ◦FK ∈ Sp(K̂). Then there exists a constant Cinv > 0 indepen-
dent of p and of the elements of T such that

Cinv
h2
K

p4
‖∇Πp‖2L2(K) ≤ ‖Πp‖2L2(K), (4.1)

Cinv
h2
K

p4
‖D2Πp‖2L2(K) ≤ ‖∇Πp‖2L2(K), (4.2)

Cinv

p2
hK,min

hK,max
‖Πp‖2L1(∂K) ≤ ‖Πp‖2L2(K). (4.3)

Proof : The element mapping FK : K̂ → K can be factorized into FK = F̃K ◦ F1, where F1

is the change of variables ξ = hxx̂, η = hy ŷ from K̂ onto R̂K . hx and hy are the scaling
factors in accordance to Definition 3.2 and (3.4). Taking into account (3.3) we see that

C−1hK,max ≤ max{hx, hy} ≤ ChK,max, (4.4)

C−1hK,min ≤ min{hx, hy} ≤ ChK,min.

Fix now a mapped polynomial Πp on K, i.e., Πp ◦ FK ∈ Sp(K̂). We set Π̃p(ξ, η) =
Πp ◦ F̃K(ξ, η) and Π̃p(x̂, ŷ) = Πp ◦ FK(x̂, ŷ). Using again (3.3) we have

‖∇Πp‖L2(K) ≤ C‖∇Π̃p‖L2(R̂K), ‖Π̃p‖L2(R̂K) ≤ C‖Πp‖L2(K), (4.5)

‖∇Π̃p‖L2(R̂K) ≤ C‖∇Πp‖L2(K),

‖D2Πp‖L2(K) ≤ C‖Π̃p‖H2(R̂K). (4.6)



From a Poincaré inequality for convex sets (see, e.g., Section 7.8 of [9]) there holds

inf
c∈R

‖Π̃p − c‖L2(R̂K ) ≤ C
h2
x + h2

y
√

hxhy

‖∇Π̃p‖L2(R̂K).

Thus, observing that the right-hand side of (4.6) does not change if Πp is replaced with
Πp + c, c ∈ R, we obtain

‖D2Πp‖2L2(K) ≤ C

[

‖D2Π̃p‖2L2(R̂K )
+

h2
x + h2

y

hxhy
‖∇Π̃p‖2L2(R̂K)

]

,

where we additionally exploited the trivial fact that h2
x + h2

y is bounded. The inverse

estimates in Lemma 4.1 and a scaling argument applied to Π̃p ◦ F1 yield

‖
∂Π̃p

∂ξ
‖L2(R̂K ) ≤ Ch−1

x p2‖Π̃p‖L2(R̂K), ‖
∂Π̃p

∂η
‖L2(R̂K) ≤ Ch−1

y p2‖Π̃p‖L2(R̂K). (4.7)

Combining (4.4), (4.5) and (4.7) results in

h2
K,maxh

2
K,min

h2
K,max + h2

K,min

‖∇Πp‖2L2(K) ≤ C
h2
xh

2
y

h2
x + h2

y

‖∇Π̃p‖2L2(R̂K)

= C
h2
xh

2
y

h2
x + h2

y

{‖
∂Π̃p

∂ξ
‖2
L2(R̂K)

+ ‖
∂Π̃p

∂η
‖2
L2(R̂K)

}

≤ Cp4
h2
y + h2

x

h2
x + h2

y

‖Π̃p‖2L2(R̂K )
≤ Cp4‖Πp‖2L2(K).

Analogously,

h2
K,maxh

2
K,min

h2
K,max + h2

K,min

‖D2Πp‖2L2(K) ≤ C
h2
xh

2
y

h2
x + h2

y

‖D2Π̃p‖2L2(R̂K)
+ C‖∇Π̃p‖L2(R̂)

≤ C
h2
xh

2
y

h2
x + h2

y

{‖Π̃p,ξξ‖2L2(R̂K )
+ 2‖Π̃p,ξη‖2L2(R̂K)

+ ‖Π̃p,ηη‖2L2(R̂K )
}+ C‖∇Π̃p‖L2(R̂)

≤ C
p4

h2
x + h2

y

{h2
y‖Π̃p,ξ‖2L2(R̂K )

+ h2
x‖Π̃p,ξ‖2L2(R̂K)

+ h2
x‖Π̃p,η‖2L2(R̂K)

}+ C‖∇Π̃p‖L2(R̂)

≤ C
h2
y + h2

x

h2
x + h2

y

p4‖∇Π̃p‖2L2(R̂K)
≤ Cp4‖∇Πp‖2L2(K).

This shows (4.1) and (4.2).
To prove (4.3), we calculate similarly:

‖Πp‖L1(∂K) ≤ C‖Π̃p‖L1(∂RK ) ≤ ChK,max‖Π̂p‖L1(∂K̂),

‖Π̂p‖L2(K̂) =

√

1

hK,maxhK,min
‖Π̃p‖L2(RK) ≤ C

√

1

hK,maxhK,min
‖Πp‖L2(K).

(4.3) can now be inferred from these last two estimates together with Lemma 4.1. !



4.2. Stability in the SDFEM Norm

Let T be a boundary layer mesh. We show that the bilinear form BSD of the SDFEM is
coercive on S

p
0(T )× S

p
0(T ).

Proposition 4.3 Let the weights ρK be given by

ρK =
hK

pK
if p7Kh

−3
K ε2 ≤ C for some constant C > 0, (4.8)

ρK =
hK

p2K
else.

Then there exists a constant δ0 just depending on Cinv in Lemma 4.2, the constant C of
(4.8), and on the data $a, b such that for parameters δK satisfying 0 ≤ δK ≤ δ0 the SDFEM
(2.7) is coercive, i.e.

1

2
‖U‖2SD ≤ BSD(U, U) ∀U ∈ S

p
0(T ).

Proof : Assume first that 0 ≤ δK ≤ δ′0 with δ′0 to be chosen later on. We have

BSD(U, U) = B(U, U) +
∑

K∈T

δKρK

∫

K

(−ε∆U + $a ·∇U + bU)($a ·∇U)dx.

Due to assumption (2.3) we have B(U, U) ≥ ‖U‖2E and it remains to estimate the critical
terms

A1 :=
∑

K∈T

A1,K :=
∑

K∈T

δKρK

∫

K

−ε∆U($a ·∇U)dx,

A2 :=
∑

K∈T

δKρK

∫

K

bU($a ·∇U)dx.

We first bound A1: Fix K ∈ T and consider the case where ρK = hK

p2K
. We use Cauchy-

Schwarz and the inverse estimates in Proposition 4.2 to get

|A1,K | ≤ δKρKε‖∆U‖L2(K)‖$a ·∇U‖L2(K)

≤ CδKρK
p2K
hK

ε‖∇U‖2L2(K) ≤ Cδ′0ε‖∇U‖2L2(K).

If ρK = hK

pK
, we use (4.8) and get by a twofold application of Proposition 4.2:

|A1,K | ≤ δKρKε
2‖∆U‖2L2(K) +

1

4
δKρK‖$a ·∇U‖2L2(K)

≤ Cδ′0ρKε
2 p

8
K

h4
K

µ‖U‖2L2(K) +
1

4
δKρK‖$a ·∇U‖2L2(K)

≤ Cδ′0µ‖U‖2L2(K) +
1

4
δKρK‖$a ·∇U‖2L2(K).

Hence, we get for A1 the bound

|A1| ≤ Cδ′0‖U‖2E +
1

4

∑

K∈T

δKρK‖$a ·∇U‖2L2(K).



The second term A2 is estimated as follows:

|A2| ≤ C
∑

K∈T

δKρK‖U‖L2(K)‖$a ·∇U‖L2(K)

≤ C
∑

K∈T

√

δKρK‖U‖L2(K)

√

δKρK‖$a ·∇U‖L2(K)

≤ C
∑

K∈T

δKρK‖U‖2L2(K) +
1

4

∑

K∈T

δKρK‖$a ·∇U‖2L2(K)

≤ Cδ′0µ‖U‖2L2(Ω) +
1

4

∑

K∈T

δKρK‖$a ·∇U‖2L2(K).

Combining the above estimates gives

BSD(U, U) ≥ (1− Cδ′0)‖U‖2E +
1

2

∑

K∈T

δKρK‖$a ·∇U‖2L2(K).

Selecting now δ′0 ≤ δ0 :=
1
2C finishes the proof. !

Remark 4.4 In Proposition 4.3 we chose ρK = hK/pK when ε is small compared with
hK and 1/pK in the sense of (4.8). This particular choice is motivated by our analysis on
quasiuniform meshes in Remark 5.9 to give optimal hp-error bounds. By similar techniques
stability of the SDFEM can also be obtained for ρK = hK/pαK for α ≥ 0 when a condition
analogous to (4.8) is satisfied. The performance of the SDFEM in dependence on α is
investigated numerically in Section 6.

5. Consistency of the SDFEM

In this section the hp-approximation results of Section 3 and the stability properties in
Section 4 are combined into our main result: We prove in Section 5.1, 5.2 and 5.3 that
exponential rates of convergence can be achieved in the hp-SDFEM provided that all layer
components present in the solutions are resolved. Moreover, in Section 5.4 we derive optimal
hp convergence results on shape regular meshes valid for smooth solutions.

5.1. Exponential Convergence

By Proposition 4.3 we may assume that the SDFEM is coercive on S
p
0(T ) × S

p
0(T ), i.e.,

there holds for some c0 > 0

c0‖U‖2SD ≤ BSD(U, U) ∀U ∈ S
p
0(T ).

We use the Galerkin orthogonality in (2.10) and obtain for every interpolant Iu ∈ S
p
0(T )

c0‖U − Iu‖2SD ≤ BSD(u− Iu, U − Iu)

= ε

∫

Ω

∇(u− Iu)∇(U − Iu)dx+

∫

Ω

($a ·∇(u− Iu) + b(u− Iu))(U − Iu)dx

+
∑

K∈T

δKρK

∫

K

(−ε∆(u− Iu) + $a ·∇(u− Iu) + b(u− Iu))($a ·∇(U − Iu))dx

=: S1(η, U − Iu) + S2(η, U − Iu) + S3(η, U − Iu),



where we wrote η = u− Iu. Next, we introduce the semi-norms

Ti(η) := sup
0%=π∈S

p

0
(T )

Si(η, π)

‖π‖SD
, i ∈ {1, 2, 3} (5.1)

and then get

‖u− U‖E ≤ ‖u− Iu‖E + ‖U − Iu‖SD ≤ ‖η‖E + c−1
0 [T1(η) + T2(η) + T3(η)] . (5.2)

Note that the interpolant Iu ∈ S
p
0(T ) was so far not specified and is still at our disposal.

Let us write Iu ∈ S
p
0(T ) in the form Iu = Iusmooth+Iulayer+Iurem and introduce ηsmooth =

usmooth − Iusmooth, ηlayer = ulayer − Iulayer, ηrem = urem − Iurem. As the expressions Ti are
semi-norms on H1(Ω), we get the a priori bound

‖U − Iu‖SD ≤ ‖ηsmooth‖E + ‖ηlayer‖E + ‖ηrem‖E

+c−1
0 (

3
∑

i=1

Ti(ηsmooth) + Ti(ηlayer) + Ti(ηrem)). (5.3)

The smooth component usmooth and the layer component ulayer are (piecewise) analytic and
they can be approximated at robust exponential rates of convergence using, for example,
the mesh patches introduced in Section 3.2. This approximability result holds for the
SDFEM as well. As no regularity theory is available for the remainder urem we will restrict
ourselves to the assumption that urem vanishes (or at least is negligible). In this context,
we can formulate the following main result of this paper:

Theorem 5.1 Let u be the solution of (2.1), (2.2). Assume that u is of the form u =
usmooth + ulayer with usmooth being (piecewise) analytic and ulayer consisting of finitely many
layer components in the sense of Definition 3.1. Let U ∈ Sp

0(T ) be the SDFEM solution
where we assume that the method is stable according to Proposition 4.3 and satisfies (2.11),
(2.13). Let T be a boundary layer mesh on Ω generated by mesh patches of the form (P1),
(P3), or (P4) such that all layer components can be resolved. Then there are C, σ > 0 such
that for the error u− U there holds

‖u− U‖E ≤ C|T |1/2e−σp,

where |T | stands for the number of elements in the triangulation T .

Remark 5.2 We excluded the use of the “two-element” patch in Theorem 5.1 as we wanted
to be able to handle the case of the simultaneous approximation of two different layers on
the same patch. The mesh patches of type (P2) can be used if only one type of layer has to
be approximated on each patch. A careful inspection of the proof of Proposition 5.7 shows
that the factor |T |1/2 stems from the approximation of parabolic layers on meshes of type
(P3) and (P4). Hence, the factor |T |1/2 could be avoided if only exponential layers occur.
If mesh patches of type (P3) or (P4) are used in the generation of the mesh, then the
number of elements (and hence also the number of degrees of freedom) does depend weakly
on ε, i.e. |T | ≤ C(ln ε)2 and DOF ≤ Cp2(ln ε)2.



Section 5.2 and Section 5.3 are devoted to the proof of Theorem 5.1, i.e., to obtaining
bounds for the terms Ti(ηsmooth) and Ti(ηlayer) in (5.3). The proof of Theorem 5.1 will then
follow from (5.3), the fact that the macro element maps are analytic diffeomorphism and
from Propositions 5.4, 5.7 ahead. Strictly speaking, one has to check that the patchwise
defined interpolants of these propositions lead to an element of Sp

0(T ); this is indeed the
case.

5.2. hp-Approximation of the Smooth Part

For the smooth part usmooth we have the following lemma (cf., e.g., [22]):

Lemma 5.3 Let T be an arbitrary boundary layer mesh in the sense of Definition 3.2 and
let η ∈ H1

0 (Ω)∩ΠK∈T H2(K). Then there is C > 0 depending only on Ω and the coefficient
functions $a, b such that

|T1(η)| ≤ ε1/2
(

∑

K∈T

‖η‖2H1(K)

)1/2

,

|T2(η)| ≤ Cmin







‖η‖H1(Ω),

(

∑

K∈T

1

ε+ δKρK
‖η‖2L2(K)

)1/2






,

|T3(η)| ≤ C(
∑

K∈T

δKρK{ε2‖η‖2H2(K) + ‖η‖2H1(K) + ‖η‖2L2(K)})
1

2 .

Proof : The bounds for T1(η) and T3(η) are obvious. To estimate T2(η), let π ∈ S
p
0(T ) and

integrate the expression S2(η, π) in (5.1) by parts to get
∫

Ω

($a ·∇η)π dx = −
∫

Ω

η$a ·∇π dx−
∫

Ω

(div$a)ηπ dx.

Hence, we have
∣

∣

∣

∣

∫

Ω

$a ·∇ηπ dx

∣

∣

∣

∣

≤
∑

K∈T

‖η‖L2(K)‖$a ·∇π‖L2(K) + C‖η‖L2(Ω)‖π‖L2(Ω).

As by the choice of the parameters ε, δKρK there holds ε+ δKρK ≤ C for some C > 0, we
can estimate

‖η‖L2(Ω)‖π‖L2(Ω) ≤ C

{

∑

K∈T

1

ε+ δKρK
‖η‖2L2(K)

}1/2

‖π‖SD.

Next, the Cauchy-Schwarz inequality for sums gives
∑

K∈T

‖η‖L2(K)‖$a ·∇π‖L2(K)

≤

{

∑

K∈T

1

ε+ δKρK
‖η‖2L2(K)

}1/2{
∑

K∈T

(ε+ δKρK)‖$a ·∇π‖2L2(K)

}1/2

≤ C

{

∑

K∈T

1

ε+ δKρK
‖η‖2L2(K)

}1/2

‖π‖SD



The desired bounds for T2(η) now follow. !

For the smooth part usmooth, we can now formulate:

Proposition 5.4 Let T be boundary layer mesh in the sense of Definition 3.2 consisting
of quadrilaterals only. Assume that (2.11) and (2.13) hold. Let usmooth be analytic on Ω.
Let Iusmooth ∈ Sp(T ) be the piecewise Gauss-Lobatto interpolant of usmooth. Then there are
C, σ > 0 such that, upon writing ηsmooth = usmooth − Iusmooth, there holds

‖ηsmooth‖E +
3

∑

i=1

|Ti(ηsmooth)| ≤ Ce−σp.

Proof : The proof follows directly from the observation that for each element K there holds
‖ηsmooth‖W 2,∞(K) ≤ Ce−σp. !

5.3. hp-Approximation of the Layer Part

For the approximation of exponential boundary layers, Lemma 5.3 is not appropriate as it
cannot lead to robust estimates. For estimates of the layer part, we have to treat the term
T3 differently. This is accomplished in the next lemma.

Lemma 5.5 Let T be an arbitrary boundary layer mesh in the sense of Definition 3.2 and
let η ∈ W 1,∞(Ω). Then there is C > 0 depending only on Ω and the coefficient functions $a,
b such that

|T1(η)| ≤ ε1/2
(

∑

K∈T

‖η‖2H1(K)

)1/2

,

|T2(η)| ≤ C

(

∑

K∈T

1

ε+ δKρK
‖η‖2L2(K)

)1/2

,

|T3(η)| ≤ C
[

E1(η) + E2(η) + E3(η) + ‖η‖L2(Ω)

]

where

E1(η) :=

{

∑

K∈T

(δKρK)
2 p4

p4ε+ h2
K,min

p4ε

h2
K,min

[

ε‖∇η‖2L2(K)

]

}1/2

, (5.4)

E2(η) :=

{

∑

K∈T

(δKρK)
2 p4

p4ε+ h2
K,min

p2hK,max

hK,min

[

ε2‖∇η‖2L∞(K)

]

}1/2

, (5.5)

E3(η) :=

{

∑

K∈T

min {F1,K(η), F2,K(η)}

}1/2

, (5.6)

F1,K(η) := (δKρK)
2 p4

p4ε+ h2
K,min

[

p4

h2
K,min

‖η‖2L2(K) +
p2hK,max

hK,min
‖η‖2L∞(K)

]

, (5.7)

F2,K(η) := δKρK‖$a ·∇η‖2L2(K). (5.8)



Remark 5.6 On polygons, the exact solution u has corner singularities such that estimates
that contain terms like ‖∇η‖L∞(K) are not directly applicable. However, the proof of
Lemma 5.5 shows that these L∞ bounds are not necessary in all elements. Nevertheless, to
get meaningful bounds avoiding these L∞ estimates, more information about the regularity
of the exact solution in the vicinity of the corners is necessary. Such regularity issues must
be addressed in future work.

Proof of Lemma 5.5 : The bounds on the terms T1 and T2 are those of Lemma 5.3. We
can therefore turn directly to bounding T3(η). For any π ∈ S

p
0(T ), the term S3(η, π) is a

sum of integrals over elements K. Each term of this sum can be written as δKρK(t1(K) +
t2(K) + t3(K)) with

t1(K) = −ε

∫

K

∆η$a·∇π dx, t2(K) =

∫

K

($a·∇η) ($a·∇π) dx, t3(K) =

∫

K

bη$a·∇π dx.

To estimate t1(K), t2(K), t3(K), we use that any π ∈ S
p
0(T ) satisfies for some C > 0

‖π‖H1(K) ≤ C

√

p4

p4ε+ h2
K,min

‖π‖1,ε,K, (5.9)

‖π‖H2(K) ≤ C
p2

hK,min

√

p4

p4ε+ h2
K,min

‖π‖1,ε,K, (5.10)

where we wrote ‖π‖21,ε,K := ε‖∇π‖2L2(K) + ‖π‖2L2(K). The estimate for ‖π‖H2(K) follows
immediately from that for ‖π‖H1(K) by Proposition 4.2. For the latter one, we use

‖∇π‖L2(K) ≤ ε−1/2
(

ε1/2‖∇π‖L2(K)

)

, ‖∇π‖L2(K) ≤ C
p2

hK,min
‖π‖L2(K)

and thus arrive at

‖∇π‖2L2(K) ≤ C
(

min{ε−1/2, p2h−1
K,min}

)2
[

ε‖∇π‖2L2(K) + ‖π‖2L2(K)

]

≤ C
p4

ε+ h2
K,min

‖π‖21,ε,K.

We estimate now ti(K) and start with t1(K): An integration by parts yields

t1(K) = ε

∫

∂K

∂nη ($a ·∇π)− ε

∫

K

∇η ·∇πdiv$a dx− ε

∫

K

∇η · ($aD2π) dx,

where D2π here stands for the Hessian of π. Each of these three terms is now estimated
separately. The first term can be bounded by

∣

∣

∣

∣

ε

∫

∂K

∂nη ($a ·∇π)

∣

∣

∣

∣

≤ Cε‖∇η‖L∞(K)‖∇π‖L1(∂K) ≤ Cp

√

hK,max

hK,min
ε‖∇η‖L∞(K)‖∇π‖L2(K)

≤ Cp

√

hK,max

hK,min

√

p4

p4ε+ h2
K,min

ε‖∇η‖L∞(K)‖π‖1,ε,K,



using Proposition 4.2 and (5.9). For the remaining two components of t1 we have
∣

∣

∣

∣

ε

∫

K

∇η ·∇π div$a dx

∣

∣

∣

∣

≤ Cε‖∇η‖L2(K)‖∇π‖L2(K)

≤ C

√

p4

εp4 + h2
K,min

ε‖∇η‖L2(K)‖∇π‖1,ε,K,
∣

∣

∣

∣

ε

∫

K

∇η$a ·D2π dx

∣

∣

∣

∣

≤ Cε‖∇η‖L2(K)‖π‖H2(K)

≤ C
p2

hK,min

√

p4

p4ε+ h2
K,min

ε‖∇η‖L2(K)‖π‖1,ε,K.

Therefore, we get for t1(K):

|t1(K)| ≤ C

√

p4

p4ε+ h2
K,min

[

ε1/2
p2

hK,min
ε1/2‖∇η‖L2(K) + p

√

hK,max

hK,min
ε‖∇η‖L∞(K)

]

‖π‖1,ε,K.

The Cauchy-Schwarz inequality for sums now gives
∑

K∈T

δKρK |t1(K)| ≤ C [E1(η) + E2(η)] ‖π‖SD.

We now turn to t2(K). We have

|t2(K)| =
∣

∣

∣

∣

∫

K

$a ·∇η$a ·∇π

∣

∣

∣

∣

≤ ‖$a ·∇η‖L2(K) · ‖$a ·∇π‖L2(K)

and this gives immediately the term F2,K(η) in the minimum occuring in E3(η). We there-
fore have to see that t2(K) can also be bounded by F1,K(η). To that end, we start just as
in the treatment of t1(K) by an integration by parts to arrive at

t2(K) =

∫

∂K

η($a ·∇π)($a · $n) ds−
∫

K

η($a ·∇π) div$a dx−
∫

K

η$a ·∇($a ·∇π) dx.

Proceeding along the same lines as above, we get

∣

∣

∣

∣

∫

∂K

η($a ·∇π)($a · $n) ds
∣

∣

∣

∣

≤ Cp

√

hK,max

hK,min

√

p4

p4ε+ h2
K,min

‖η‖L∞(K)‖π‖1,ε,K,
∣

∣

∣

∣

∫

K

η($a ·∇π) div$a dx

∣

∣

∣

∣

≤ C‖η‖L2(K)‖$a ·∇π‖L2(K) ≤ C‖η‖L2(K)‖π‖H1(K)

≤ C‖η‖L2(K)

√

p4

p4ε+ h2
K,min

‖π‖1,ε,K,
∣

∣

∣

∣

∫

K

η($a ·∇($a ·∇π)) div$a dx

∣

∣

∣

∣

≤ C‖η‖L2(K)‖π‖H2(K)

≤ C‖η‖L2(K)
p2

hK,min

√

p4

p4ε+ h2
K,min

‖π‖1,ε,K.



Therefore,

|t2(K)| ≤ C

√

p4

p4ε+ h2
K,min

[

p2

hK,min
‖η‖L2(K) + p

√

hK,max

hK,min
‖η‖L∞(K)

]

‖π‖1,ε,K.

We recognize that this bound leads directly to F1,K(η). Finally, bounding

|t3(K)| ≤ ‖b‖L∞(Ω)‖η‖L2(Ω)‖π‖L2(Ω)

finishes the proof of the assertions. !

The terms Ti(ηlayer) are exponentially small for meshes that do resolve localized small scale
features:

Proposition 5.7 Let Ω = K̂ and let u be a function of boundary layer type defined on K̂
satisfying (3.5) for l = ε or l = ε1/2. Assume that the SDFEM parameters {ρK} satisfy
(2.11) and the non-degeneracy condition (2.13). Let T̂ be one of the patches of type (P2),
(P3), or (P4) (in case of (P4) the number of layers in the y-direction is arbitrary). Then
there is π ∈ Sp(T ) such that the error η := u − π satisfies on K̂ for some C, σ > 0
independent of p and l

‖η‖E +
3

∑

i=1

|Ti(η)| ≤ C|T̂ |1/2e−σp.

|T̂ | denotes the number of elements of T̂ .

Proof : Theorems 3.5, 3.7, 3.8 immediately give that for all patches of type (P2)–(P4) that
can resolve the layer there holds

‖η‖E ≤ Ce−σp, ε1/2‖η‖H1(K̂) ≤ l1/2‖η‖H1(K̂) ≤ Ce−σp.

In order to estimate T2(η), we observe that

1

ε+ δKρK
‖η‖2L2(K) ≤ C

1

ε+ δhK,minp−α
hK,minhK,max‖η‖2L∞(K) ≤ Ce−σp

for some appropriate constants C, σ > 0. Hence,
∑

K∈T̂

1

ε+ δKρK
‖η‖2L2(K) ≤ |T̂ |e−σp.

It remains to bound T3(η). To that end, we have to estimate E1, E2, E3, and ‖η‖L2(Ω)

of Lemma 5.5. The reader may easily convince himself that E1(η) and E2(η) satisfy the
desired bounds (even with constants independent of the number of elements of T̂ ). For
bounds on E3(η), we see that for the cases (P3) and (P4) Theorems 3.7 and 3.8 yields
immediately the desired bound via

E2
3(η) ≤

∑

K∈T̂

F2,K(η) ≤ Ce−σp.

For the two-element patch (P2) we see that we can bound

F1,K ≤ Ce−σp if hK,min ∼ hK,max,
F2,K ≤ Cκpl‖η‖2H1(K) ≤ Ce−σp if hK,min = κpl.

This concludes the argument. !



5.4. hp-Approximation on Shape Regular and Quasiuniform Meshes for Smooth
Solutions

As a consequence of Lemma 5.3, we derive in this section optimal convergence results in
h and p on shape regular meshes. To do so, we assume throughout the section that the
condition (4.8) is satisfied and the weights ρK are chosen to be hK/pK on all elements.
Let T be a shape regular mesh on Ω and let the solution u of (2.1), (2.2) be inHs(Ω)∩H1

0 (Ω)
for some s ≥ 2. Particularly, we assume that usmooth = u, ulayer = urem = 0. U is the
SDFEM solution in S

p
0(T ). We denote by Iu a suitable hp-interpolant of u in S

p
0(T ) which

will be specified in (5.12) ahead. From (5.3) and Lemma 5.3 we see that ‖U − Iu‖SD can
be bounded by

C(
∑

K∈T

(ε+ δKρK)‖η‖2H1(K) + δKρKε
2‖η‖2H2(K) + (δKρK +1+

1

ε+ δKρK
)‖η‖2L2(K))

1

2 . (5.11)

We can now choose the interpolant Iu ∈ S
p
0(T ) in such a way that the following hp-

approximation properties hold [23]:

‖u− Iu‖Hr(K) ≤ C
hνK−r
K

ps−r
K

‖u‖Hs(K), 0 ≤ r ≤ pK , νK = min(pK + 1, s). (5.12)

Inserting this into the bound (5.11) we get

‖U − Iu‖2SD ≤ C
∑

K∈T

aK
h2νK−2
K

p2s−2
K

‖u‖2Hs(K) (5.13)

with

aK = {(ε+ δKρK) + δKρKε
2 p

2
K

h2
K

+ (δKρK + 1 +
1

ε+ δKρK
)
h2
K

p2K
}. (5.14)

Proposition 5.8 Let T be a shape regular mesh on Ω and u ∈ Hs(Ω) ∩H1
0 (Ω). Let U be

the SDFEM solution obtained with weights ρK given by ρK = hK/pK . Assume (2.13) and
(4.8). Then we have

‖u− U‖SD ≤ C

{

∑

K∈T

h2νK−2
K

p2s−2
K

‖u‖2Hs(K)(ε+
hK

pK
)

}
1

2

with νK = min(pK + 1, s).

Proof : Due to assumption (4.8) we can bound the term δKρKε2
p2K
h2
K
in (5.14) by C

h2
K

p6K
. Hence,

from (5.13) and (5.14) we get that

‖U − Iu‖2SD ≤ C
∑

K∈T

h2νK−2
K

p2s−2
K

‖u‖2Hs(K)(ε+
hK

pK
).

The claim follows now by an application of the triangle inequality. !



Remark 5.9 If the mesh T is quasiuniform, i.e. hK ∼ h, and if we use a uniform polyno-
mial degree p on all elements, i.e. pK = p, we get

‖u− U‖SD ≤ C
h(min(p+1,s)−1)

p(s−1)
(ε

1

2 + (
h

p
)
1

2 )‖u‖Hs(K).

Remark 5.10 The error estimate for the SDFEM in Proposition 5.8 and Remark 5.9 is half
a power of h/p away from being quasi-optimal [23]. For the h-version of the SDFEM this
is a well known fact, which is extended in Proposition 5.8 to the p-version of the SDFEM.

6. Numerical Examples

In this section we confirm the theoretical results in a series of numerical examples.

6.1. Model Problems

We consider two convection-diffusion model problems of the form (2.1), M1 and M2, where
we explicitly prescribe the exact solution u:

Model Problem M1: Here, Ω = (−1, 0)× (−1, 1), $a(x) = (1, 0)t, b(x) = 1 and the right-

hand side is chosen as f(x) = c1(ε)x1 + c1 + c2 with c1(ε) = exp(−(1+
√
1+4ε)

2ε )− 1 and
c2 = −1. The exact solution is

u(x) = exp(
1 +

√
1 + 4ε

2ε
x1) + c1(ε)x1 + c2.

This solution satisfies (2.1) with zero Dirichlet conditions at the boundaries {x = −1},
{x = 0} and symmetry conditions at {y = −1}, {y = 1}. It has an exponential
boundary layer along the right side of Ω. u is essentially one dimensional and we use
this model problem to confirm the numerical results of [17].

Model Problem M2: Here, Ω = (0, 1)2, a(x) = (1, 1)t, b(x) = 1 and

f(x) = c1(x)x2 − c1(x)c2(x)x2 + x1c2(x)− x1c1(x)c2(x) + x2 − x2c2(x) + x1

−x1c1(x) + x1x2 − x1x2c2(x)− x1c1(x)x2 + x1c1(x)c2(x)x2

with c1(x) = exp ((x1 − 1)/ε) and c2(x) = exp ((x2 − 1)/ε). The exact solution is

u(x) = x1x2(1− exp (−(1 − x1)/ε))(1− exp (−(1 − x2)/ε)).

It satisfies (2.1), the zero Dirichlet boundary conditions in (2.2) and has two expo-
nential boundary layers along the top and right side of Ω.

To discretize these equations by the hp-SDFEM in (2.7) we use the Fortran 90 code HP90,
a general hp-FEM framework for Finite Element implementations (see [2]). The SDFEM
parameters are chosen as in (2.11), i.e., ρK = hK/pαK with the constant α still at our
disposal. We are mainly interested in α = 1 and α = 2. In addition, we will also compare
the Galerkin approach (2.6) with the SDFEM (2.7) which can easily be done by setting
δK = 0 for all K ∈ T .



6.2. Results for M1

We present the results for the model problem M1: We consider first the SDFEM and
Galerkin performance for ε = 0.1 on a four element mesh given by an equidistant partition
in x-direction. For this large value of ε the layer is of course very weak and the element on
the right resolves it already. We measure the relative H1 error in the element on the left
side, i.e., in the element that is farthest away from the boundary layer. From Figure 3 we
see that the Galerkin method performs best followed by the SDFEM with ρK = hK/p2K .
We observe that ρK = hK/pK is not the correct choice for the SDFEM parameter, in the
case that ε is small compared to hK and 1/pK, just as asserted in in Proposition 4.3.
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Figure 3: M1: Local H1 error upstream on uniform 4 element mesh.
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Figure 4: M1: Local H1 error upstream on uniform 4 element mesh.

In Figure 4 we perform the same experiment on exactly the same mesh with ε = 10−8.
This time the behaviour of the three curves is different. We clearly see that the Galerkin
method does not give any reasonable solution. The SDFEM with ρK = hK/pK performs
best and indeed converges exponentially, whereas the SDFEM with ρK = hK/p2K diverges



and the error is several orders of magnitude worse. Therefore, for ε small compared to hK

and 1/pK the stabilization parameter should be chosen as ρK = hK/pK .
The pointwise error along the line y = 0 through Ω for the three methods is shown in Figure
5 and we clearly see that the SDFEM error with ρK = hK/pK decays exponentially in the
upstream direction. The decay with ρK = hK/p2K is still exponential outside the boundary
layer but again several orders of magnitude worse.
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Figure 5: M1: Pointwise error on uniform 4 element mesh.

Of interest is now the question for which parameter α in the h/pα factor the performance
of the SDFEM is best. For ε = 10−8 we investigate this on a quasiuniform mesh which
is not aligned with the coordinate axes. Again, we measure the relative H1 error in the
element farthest away from the boundary layer. The results in Figure 6 indicate the superior
performance of the SDFEM for α = 1, which is consistent with one dimensional numerical
results in [17] and with the theoretical analysis for the limiting case ε = 0 in [5]. In
particular, we note again that α = 2 is not the correct choice for small values of ε.
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Figure 6: M1: Local H1 error upstream on quasiuniform non-aligned 16 element mesh.
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Figure 7: M1: Local H1 error upstream on geometrically graded non-aligned mesh.

In Figure 7 we show the performance for M1 on geometric boundary layer meshes. We start
with p = 2 on a four element mesh that is not aligned with the flow. We insert geometrically
graded layers towards the boundary {x = 0} and also uniformly increase p. We show the
results for the Galerkin method, which does not converge in the range of p = 1, . . . , 8, for
ρK = hK/p2K and for ρK = hK/pK . In the last case we see again a superior performance.

6.3. Results for M2

The results for M1 are now confirmed for M2. We use here a uniform mesh with 16 elements
that are either aligned or slightly perturbed. These meshes are shown in Figure 8.

Figure 8: Uniform aligned mesh and non-aligned mesh.

We again perform similar experiments and present in Figures 9 and 10 the local relative
H1 error in the element that has largest distance to the boundary layers. The results are
for ε = 10−8 and, as expected from the previous results, the SDFEM with ρK = hK/pK
performs best and converges exponentially. It is remarkable that the SDFEM with ρK =
hK/p2K diverges in the practical range of p.
Finally, we present the global relative H1 error on a boundary layer mesh with anisotropic
needle elements of width 10ε (this mesh is essentially a tensor product construction corre-
sponding to the patch (P2) in order to resolve the layers at both outflow boundaries x = 1
and y = 1). From Figure 11 we see that the performance of the Galerkin method is superior
in this case, whereas the SDFEM does perform rather poorly for ρK = hK/pK . There is no
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Figure 9: M2: Local H1 error upstream on aligned mesh.
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Figure 10: M2: Local H1 error upstream on non-aligned mesh.

need for the SDFEM stabilization if the mesh already resolves the layers. However, we get
exponential convergence in all cases as predicted in Section 5.
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A. Proof of Theorems 3.5, 3.7, 3.8

A.1. Approximation in One Dimension

We start by introducing the following two projectors: Let T be an arbitrary mesh on (0, 1).
Then we introduce

1. ixp : C([0, 1]) → Sp(T ) is the piecewise Gauss-Lobatto interpolation operator.

2. Let x ∈ (0, 1) an arbitrary mesh point of T . Then the projector P x
p : C([0, 1]) →

Sp(T ) is defined by

P x
p u(x) :=







(ixpu)(x)−
x

x
u(x) on (0, x)

x− x

1− x
u(1) on (x, 1).

We have the following L∞ stability result for these two interpolation operators:

Lemma A.1 There is C > 0 independent of p, the mesh T and the mesh point x ∈ (0, 1)
such that there holds

‖ixpu‖L∞((0,1)) + ‖P x
p u‖L∞((0,1)) ≤ C(1 + ln p)‖u‖L∞((0,1)) ∀u ∈ C([0, 1]).

Proof : The stability result for the Gauss-Lobatto interpolation operator ixp was proved in
[25]. That result implies readily the stability of the operator P x

p . !

In analogy to condition (3.5) functions of boundary layer type satisfy in one dimension:

|∂n
xu(x)| ≤ Cγnmax {l−1, n}ne−dx/l ∀n ∈ N0, x ∈ (0, 1). (A.1)

Robust exponential approximations of such functions can be achieved with the projector
P x
p provided that the point x can be chosen such that x = O(pl) is a mesh point.

Lemma A.2 Let u satisfy (A.1). Then there are C, σ, κ0 > 0 independent of l and p such
that the following holds: Let T be an arbitrary mesh on (0, 1) and assume that for some
κ ∈ (0, κ0) the point x := min{1/2, κpl} is a mesh point of T . Then the projector P x

p u
(defined with this choice of the point x) satisfies

κpl‖(u− P x
p u)

′‖L2((0,1)) + ‖u− P x
p u‖L2((0,1)) ≤ Cl1/2e−σκp,

κpl‖(u− P x
p u)

′‖L∞(Ii) + ‖u− P x
p u‖L∞(Ii) ≤ Ce−σκp for Ii ⊂ (0, x),

κpl‖(u− P x
p u)

′‖L∞(Ii) + ‖u− P x
p u‖L∞(Ii) ≤ Ce−σxi/l for Ii = (xi, xi+1) ⊂ (x, 1).

Proof : This result is proved as Lemma 2.4 in [17]. Note that the special case of a two-
element mesh T = {(0, κpl), (κpl, 1)} is contained as a special case. !



A.2. Two Dimensional Approximation Results

Due to Lemma 3.4, we can restrict our attention in the two dimensional setting to a reference
configuration, and for the remainder of this section, we will assume that the function u is
defined on the closed reference square S = [0, 1]2 and satisfies there the growth conditions
in (3.5). We consider tensor product meshes on S in order to be able to exploit our one
dimensional results. To that end, we denote by iyp the one dimensional (piecewise) Gauss-
Lobatto interpolation operator as defined above but acting on the y-variable instead of the
x-variable. We have:

Lemma A.3 Let u satisfy (3.5). Then there are C, σ, κ0 > 0 independent of p and l such
that following holds: Let Tx, Ty be arbitrary meshes on (0, 1) and let T := Tx × Ty be the
tensor product mesh on S. Assume that for some κ ∈ (0, κ0) the point x := min {1/2, κpl}
is a mesh point of Tx. Then the interpolant πp := (iyp ◦ P x

p )u = (P x
p ◦ iy)u ∈ Sp(T ) satisfies

κpl‖∇(u− πp)‖L2(S) + ‖u− πp‖L2(S) ≤ Cl1/2(1 + ln p)e−σκp,

κpl‖∇(u− πp)‖L∞(Ix×Iy) + ‖u− πp‖L∞(Ix×Iy) ≤ C(1 + ln p)e−σκp for Ix ⊂ (0, x)

and
κpl‖∇(u− πp)‖L∞(Ix×Iy) + ‖u− πp‖L∞(Ix×Iy) ≤ C(1 + ln p)e−σxi/l

for Ix = (xi, xi+1) ⊂ (x, 1). In the last two estimates, Iy may be an arbitrary element of Ty.

Proof : We will only show the L∞-bounds. Let Ix = (xi, xi+1), Iy be elements of Tx, Ty. We
have

‖u− πp‖L∞(Ix×Iy) ≤ ‖u− iypu‖L∞(Ix×Iy) + ‖iyp(u− P x
p u)‖L∞(Ix×Iy)

≤ ‖u− iypu‖L∞(Ix×Iy) + C(1 + ln p)‖u− P x
p u‖L∞(Ix×Iy)

by the one-dimensional stability result Lemma A.1. Standard polynomial approximation
results (cf., e.g., [15]) give the existence of C, σ > 0 depending only on C and γ of (3.5)
such that

‖∂y(u− iypu)‖L∞(Ix×Iy) + ‖u− iypu‖L∞(Ix×Iy) ≤ Ce−dxi/le−σp. (A.2)

Using this and the one dimensional results of Lemma A.2 we arrive at

‖u− πp‖L∞(Ix×Iy) ≤ C(1 + ln p)e−σκp if Ix ⊂ (0, x),

‖u− πp‖L∞(Ix×Iy) ≤ C(1 + ln p)e−σxi/l if Ix ⊂ (x, 1).

For the estimates on the derivatives, we proceed similarly. We have, using the additional
fact that ∂y and P x

p commute,

‖∂y(u− iypP
x
p u)‖L∞(Ix×Iy) ≤ ‖∂y(u− P x

p u)‖L∞(Ix×Iy) + ‖∂y(P x
p u− P x

p i
y
pu)‖L∞(Ix×Iy)

≤ ‖(∂yu)− P x
p (∂yu)‖L∞(Ix×Iy) + ‖P x

p (∂y(u− iypu))‖L∞(Ix×Iy)

≤ ‖(∂yu)− P x
p (∂yu)‖L∞(Ix×Iy) + C(1 + ln p)‖∂y(u− iypu)‖L∞(Ix×Iy).

These last two terms can be estimated in the desired fashion using Lemma A.2. Finally,
for the derivative in the x-direction, we have

‖∂x(u− iypP
x
p u)‖L∞(Ix×Iy) ≤ ‖∂x(u− iypu)‖L∞(Ix×Iy) + ‖∂x(iypu− iypP

x
p u)‖L∞(Ix×Iy)

≤ ‖(∂xu)− iyp(∂xu)‖L∞(Ix×Iy) + ‖iyp(∂x(u− P x
p u))‖L∞(Ix×Iy)

≤ ‖(∂xu)− iyp(∂xu)‖L∞(Ix×Iy) + C(1 + ln p)‖∂x(u− P x
p u)‖L∞(Ix×Iy).



It it now easy to see from standard approximation results that there holds

‖(∂xu)− iyp(∂xu)‖L∞(Ix×Iy) ≤ Cl−1e−dxi/le−σp.

Next, ‖∂x(u − P x
p u)‖L∞(Ix×Iy)e can be bounded again by Lemma A.2. This completes the

proof. !

We note that Lemma A.3 proves Theorem 3.5. Lemma A.3 is also the basis for the proof
of Theorem 3.7.

Proof of Theorem 3.7 : The key observation to employ the preceding lemma is that by
our assumption that qL ≈ l there is k ∈ {0, . . . , L} such that qk+1 ≤ κ0pl ≤ qk. Hence,
there is always a mesh point in Tx of the form x = κpl with κ ∈ (κ0q, κ0]. In order to
simplify the notation for the remainder of this proof, we assume that qk = κ0pl. The first
two estimates therefore follow immediately. It remains to see that the last two ones hold.
For the elements Ii = (xi, xi+1) of Tx we write hi := xi+1 − xi and similarly, we write hj for
the length of the j-th element Ij of Ty. We now estimate for the elements near x = 0 with
Lemma A.3

L+1
∑

i=k

∑

j

hihj

l
l2‖∇(u− πp)‖2L∞(Ii×Ij) ≤ C

L+1
∑

i=k

hi

l
e−σp ≤ C

κ0pl

l
e−σp ≤ Ce−σp.

Now, for the elements that are “far” from x = 0, we have for i ≤ k, by the assumption that
the mesh is graded geometrically towards x = 0, that there holds hi ∼ xi with constants
independent of i and l. Hence, from Lemma A.3

k
∑

i=0

∑

j

hihj

l
l2‖∇(u− πp)‖2L∞(Ii×Ij) ≤ C

k
∑

i=0

xi

l
e−σxi/l ≤ C

k
∑

i=0

e−σ′xi/l ≤ Ce−σp.

This completes the proof of the third estimate. For the last one, we proceed similarly. We
have

L+1
∑

i=k

∑

j

min {hi, hj}‖∇(u− πp)‖2L2(Ii×Ij)
≤

L+1
∑

i=k

hi‖∇(u− πp)‖2L2(S)

≤ C
L+1
∑

i=k

hil
−1e−σp ≤ C

κ0pl

l
e−σp ≤ Ce−σp

and finally, again as hi ∼ xi for i ≤ k:

k
∑

i=0

∑

j

min {hi, hj}‖∇(u− πp)‖2L2(Ii×Ij)
≤

k
∑

i=0

∑

j

h2
ihj‖∇(u− πp)‖2L∞(Ii×Ij)

≤ C
k

∑

i=0

h2
i l

−2e−σxi/l ≤ C
k

∑

i=0

e−σxi/l ≤ Ce−σp.

This completes the proof of Theorem 3.7. !

The proof of Theorem 3.8 is a straightforward extension of the arguments above.
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99-10 D. Schötzau, C. Schwab Exponential Convergence in a Galerkin Least

Squares hp-FEM for Stokes Flow
99-09 A.M. Matache, C. Schwab Homogenization via p-FEM for Problems

with Microstructure
99-08 D. Braess, C. Schwab Approximation on Simplices with respect to

Weighted Sobolev Norms
99-07 M. Feistauer, C. Schwab Coupled Problems for Viscous Incompressible

Flow in Exterior Domains
99-06 J. Maurer, M. Fey A Scale-Residual Model for Large-Eddy

Simulation
99-05 M.J. Grote Am Rande des Unendlichen: Numerische Ver-

fahren für unbegrenzte Gebiete
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