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1 Introduction

Discontinuous Galerkin Finite Element Methods (DGFEM) were introduced
over quarter of a century ago for the numerical solution of first-order hyper-
bolic problems [14,11] and as nonstandard techniques for the approximation
of second-order elliptic equations [12] (see also [13] for a historical survey).
Although subsequently much of the research in the field of numerical anal-
ysis of partial differential equations has concentrated on the development
and the analysis of conforming finite element methods for self-adjoint el-
liptic problems, stabilised continuous finite element methods for convection-
diffusion equations, and finite difference and finite volume methods for hyper-
bolic problems, recent years have witnessed renewed interest in discontinuous
schemes. This paradigm shift was stimulated by several factors: the desire to
handle, within the finite element framework, nonlinear hyperbolic problems
(see [6] and [7]) which are known to exhibit discontinuous solutions even when
the data are perfectly smooth; the need to treat convection-dominated diffu-
sion problems without excessive numerical stabilisation; the computational
convenience of discontinuous finite element methods due to a large degree
of locality; and the necessity to accommodate high-order hp-adaptive finite
element discretisations in a flexible manner (see [5]).

The aim of this paper is to extend the error analysis of the hp-DGFEM,
developed in our earlier work [8] for first-order hyperbolic equations, to gen-
eral second-order partial differential equations with nonnegative character-
istic form. In [8] an error bound, optimal both in terms of the local mesh
size h and the local polynomial degree p, was derived for the hp-DGFEM
supplemented by a streamline-diffusion type stabilisation involving a stabil-
isation parameter δ of size h/p. Here, we focus on the more subtle situation
when δ = 0, corresponding to no stabilisation. By exploiting theoretical tools
similar to those in [8], we derive an error bound for the resulting scheme that
is of optimal order in terms of the mesh size h and 1 order less than optimal
in the polynomial degree p. For convection-dominated diffusion equations,
suboptimality in p is compensated by the fact that the leading term in the
error bound is multiplied by a small number, proportional to the square root
of the norm of the diffusion matrix. Indeed, in the case of a first-order hy-
perbolic equation, our error bound collapses to one that is h-optimal, with a
loss of only 1/2 an order in p. The approximation technique adopted in the
present paper involves a discontinuity-penalisation device based on the ideas
of Nitsche [12], Wheeler [18] and Arnold [1], albeit with a slight (but im-
portant) modification which permits us to pass to the hyperbolic limit with
inactive discontinuity-penalisation. The error analysis of the hp-DGFEM dis-
cretisation considered here can also be viewed as an extension of the work of
Baumann [3], Oden, Babuška and Baumann [13], and Riviere and Wheeler
[15] for a self-adjoint elliptic problem.
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2 Model Problem and Discretisation

Given that Ω is a bounded Lipschitz domain in IRd, d ≥ 2, we consider the
linear second-order partial differential equation

Lu ≡ −
d

∑

i,j=1

∂j (aij(x) ∂iu) +
d

∑

i=1

bi(x) ∂iu+ c(x)u = f(x) , (1)

where f is a real-valued function belonging to L2(Ω), and the real-valued
coefficients a, b, c have the following properties:

a(x) = {aij(x)}di,j=1 ∈ L∞(Ω)d×d
sym ,

b(x) = {bi(x)}di=1 ∈ W 1,∞(Ω)d, c(x) ∈ L∞(Ω) .
(2)

We shall suppose throughout that the characteristic form associated with the
principal part of the differential operator L is nonnegative; namely,

ξT a(x) ξ ≥ 0 ∀ξ ∈ IRd and a.e. x ∈ Ω̄ . (3)

For simplicity, we shall assume that the entries of the matrix a are piecewise
continuous on Ω̄; this hypothesis is sufficiently general to cover most situa-
tions of practical relevance. Let µ(x) = {µi(x)}di=1 denote the unit outward
normal vector to Γ = ∂Ω at x ∈ Γ and define the following subsets of Γ :

Γ0 = {x ∈ Γ : µT a(x)µ > 0} ,

Γ− = {x ∈ Γ\Γ0 : b · µ < 0} and Γ+ = {x ∈ Γ\Γ0 : b · µ ≥ 0} .

The sets Γ∓ will be referred to as the inflow and outflow boundary, respec-
tively. With these definitions we have that Γ = Γ0 ∪ Γ− ∪ Γ+. We shall
further decompose Γ0 into two connected parts, ΓD and ΓN, and supplement
the partial differential equation (1) with the following boundary conditions:

u = gD on ΓD ∪ Γ− and µTa∇u = gN on ΓN . (4)

We note that (1), (4) includes a range of physically relevant problems, such
as the mixed boundary value problem for an elliptic equation corresponding
to the case when (3) holds with strict inequality, as well as the case of a linear
transport problem associated with the choice of a ≡ 0 on Ω̄. Our aim here is
to develop, in a unified manner, the a priori error analysis of the hp-version
of a discontinuous finite element approximation to (1), (4).

2.1 Finite element spaces

Let T be a subdivision of Ω into open element domains κ such that Ω̄ =
∪κ∈T κ̄. We shall assume that the family of subdivisions T is shape regular
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and that each κ ∈ T is a smooth bijective image of a fixed master element
κ̂, that is, κ = Fκ(κ̂) for all κ ∈ T where κ̂ is either the open unit simplex or
the open unit hypercube in IRd. For an integer r ≥ 1, we denote by Pr(κ̂) the
set of polynomials of total degree < r on κ̂; when κ̂ is the unit hypercube, we
also consider Qr(κ̂), the set of all tensor-product polynomials of degree < r
in each coordinate direction. Thus, to κ ∈ T we assign an integer pκ ≥ 1,
collect the pκ and Fκ in the vectors p = {pκ : κ ∈ T } and F = {Fκ : κ ∈ T },
respectively, and consider the finite element space

Sp(Ω, T ,F) = {u ∈ L2(Ω) : u|κ ◦ Fκ ∈ Rpκ
(κ̂) ∀κ ∈ T } ,

where R is either P or Q. Given the subdivision T and s > 0, the associated
broken Sobolev space Hs(Ω, T ) is defined by

Hs(Ω, T ) =
∏

κ∈T

Hs(κ) = {u ∈ L2(Ω) : u|κ ∈ Hs(κ) ∀κ ∈ T } .

In the next section, we formulate the hp-DGFEM approximation of (1), (4).

2.2 The numerical method

Discretisation of the Low-Order Terms. Let us begin by considering the first-
order partial differential operator Lb defined by

Lbw = b ·∇w + cw .

Given that κ is an element in the partition T , we denote by ∂κ the union of
open faces of κ. This is non-standard notation in that ∂κ is a subset of the
boundary of κ. Let x ∈ ∂κ and suppose that µ(x) denotes the unit outward
normal vector to ∂κ at x. With these conventions, we define the inflow and
outflow parts of ∂κ, respectively, by

∂−κ = {x ∈ ∂κ : b(x) · µ(x) < 0} , ∂+κ = {x ∈ ∂κ : b(x) · µ(x) ≥ 0} .

For each v ∈ H1(Ω, T ) and any κ ∈ T , we denote by v+ the interior trace of
v on ∂κ (the trace taken from within κ). Now consider an element κ such that
the set ∂−κ\Γ− is nonempty; then for each x ∈ ∂−κ\Γ− (with the exception
of a set of (d − 1)-dimensional measure zero) there exists a unique element
κ′, depending on the choice of x, such that x ∈ ∂+κ′. If ∂−κ\Γ− is nonempty
for some κ ∈ T , then we can also define the outer trace v− of v on ∂−κ\Γ−

relative to κ as the inner trace v+ relative to those elements κ′ for which
∂+κ′ has intersection with ∂−κ\Γ− of positive (d− 1)-dimensional measure.
Further, we introduce the oriented jump of v across ∂−κ\Γ−:

) v * = v+ − v− .
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Supposing that v, w ∈ H1(Ω, T ), we define, as in [10], for example,

Bb(w, v) =
∑

κ∈T

∫

κ
(Lbw)v dx (5)

−
∑

κ∈T

∫

∂−κ\Γ−

(b · µ))w* v+ ds−
∑

κ∈T

∫

∂−κ∩Γ−

(b · µ)w+ v+ ds ,

and we put

&b(v) =
∑

κ∈T

∫

κ
fv dx−

∑

κ∈T

∫

∂−κ∩Γ−

(b · µ) gv+ ds .

Discretisation of the Leading Term. Let us suppose that the elements in
the partition have been numbered in a certain way, regardless of the flow
direction. We denote by E the set of element interfaces (edges for d = 2 or
faces for d = 3) associated with the subdivision T . Since hanging nodes are
permitted in the DGFEM, E will be understood to consist of the smallest
interfaces in ∂κ. With this notation, let Γint denote the union of all interfaces
e ∈ E . Given that e ∈ E , there exist indices i and j such that i > j and κi

and κj share the interface e; we define the (numbering-dependent) jump of
v ∈ H1(Ω, T ) across e and the mean value of v on e, respectively, by

[v] = v|∂κi∩e − v|∂κj∩e and 〈v〉 =
1

2

(

v|∂κi∩e + v|∂κj∩e

)

.

We note that, in general, [v] is distinct from )v* in that the latter depends
on the sign of the normal flux on an element boundary, while the former is
only dependent on the element numbering. With each face e ∈ E we associate
the normal vector ν which points from κi to κj; on boundary faces, we put
ν = µ. Finally, we introduce, as in [13], the bilinear form

Ba(w, v) =
∑

κ∈T

∫

κ
a(x)∇w ·∇v dx+

∫

ΓD

{w((a∇v) · ν)− ((a∇w) · ν)v}ds

+

∫

Γint

{[w]〈(a∇v) · ν〉 − 〈(a∇w) · ν〉[v]} ds , (6)

associated with the principal part of the partial differential operator L, and
the linear functional

&a(v) =

∫

ΓD

gD((a∇v) · ν) ds+
∫

ΓN

gNv ds .

Discontinuity-Penalisation Term. Let ā = ||a||2, with || · ||2 denoting the
matrix norm subordinate to the l2 vector norm on IRd, and let āκ = ā|κ. To
each e in E which is a common face of elements κi and κj in T we assign
the nonnegative function 〈āp2〉e = (p2κi

āκi
|e+p2κj

āκj
|e)/2. Letting ED denote
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the set of all faces contained in ΓD, to each e ∈ ΓD we assign the element
κ ∈ T with that face and define 〈āp2〉e = p2κāκ|e. Consider the function σ
defined on Γint ∪ ΓD by σ(x) = K〈āp2〉e/|e| for x ∈ e and e ∈ E ∪ ED, where
|e| = measd−1(e) and K is a positive constant (whose value is irrelevant for
the present analytical study, so we put K = 1), and introduce the bilinear
form and the linear functional, respectively, by

Bs(w, v) =

∫

ΓD

σwv ds+

∫

Γint

σ[w][v] ds , &s(v) =

∫

ΓD

σgDv ds . (7)

We highlight the fact that since the weight-function σ involves the norm of
the matrix a, in the hyperbolic limit of a ≡ 0 the bilinear form Bs(·, ·) and
the linear functional &s both vanish. This is a desirable property, since lin-
ear hyperbolic equations may possess solutions that are discontinuous across
characteristic hypersurfaces, and penalising discontinuities across faces which
belong to these would seem unnatural.

It is also worth noting here that, conceptually, the bilinear form Ba(·, ·)+
Bs(·, ·) should be regarded as a single entity, rather than a sum of two separate
bilinear forms; the same comment applies to &a(·) + &s(·). Although more
convenient from the point of view of the presentation, separation into Ba, &a
on the one hand and Bs, &s on the other is somewhat artificial and can only
be justified on historical grounds (see [12,18,1]).

Definition of the Method. Finally, we define the bilinear form BDG(·, ·) and
the linear functional &DG(·), respectively, by

BDG(w, v) = Ba(w, v) +Bb(w, v) +Bs(w, v) ,

&DG(v) = &a(v) + &b(v) + &s(v) .

The hp-DGFEM approximation of (1), (4) is: find uDG ∈ Sp(Ω, T ,F) such
that

BDG(uDG, v) = &DG(v) ∀v ∈ Sp(Ω, T ,F) . (8)

In the next section we state the key properties of this method. Before
we do so, however, we note that in the definitions of the bilinear forms and
linear functionals above and in the arguments which follow it has been tacitly
assumed that a ∈ C(κ) for each κ ∈ T , that the fluxes (a∇u) ·ν and (b ·µ)u
are continuous across element interfaces, and that u is continuous in an (open)
neighbourhood of the subset of Ω where a is not identically equal to zero.
If the problem under consideration violates these properties, the scheme and
the analysis have to be modified accordingly.

3 Analytical Results

Our first result concerns the positivity of the bilinear form BDG(·, ·) and the
existence and uniqueness of a solution to (8).



6

Theorem 1. Suppose that, in addition to the conditions (2) and (3), the
function γ ≡ c− 1

2∇ · b is nonnegative on Ω̄. Then,

|||w|||2DG ≡ BDG(w,w) = D +
∑

κ∈T

Eκ +
1

2

∑

κ∈T

Fκ , (9)

where

D ≡
∫

ΓD

σw2 ds+

∫

Γint

σ[w]2 ds , Eκ ≡ ‖
√
a∇w‖2L2(κ) + ‖

√
γw‖2L2(κ) ,

Fκ ≡
∫

∂−κ∩Γ−

|b · µ|w2
+ ds+

∫

∂+κ∩Γ+

|b · µ|w2
+ ds+

∫

∂−κ\Γ−

|b · µ|)w*2 ds ,

with
√
a denoting the (nonnegative) square-root of the matrix a, and σ as

in the definition of the discontinuity-penalisation. Furthermore, given that
either a is positive definite or γ > 0 on each element κ in the partition T ,
the hp-DGFEM (8) has a unique solution uDG in Sp(Ω, T ,F).

Proof. We begin by proving (9). First, we note that, trivially,

Bs(w,w) =

∫

ΓD

σw2 ds+

∫

Γint

σ[w]2 ds .

Further, as (b ·∇w)w = 1
2b ·∇(w2), after integration by parts we have that

Bb(w,w) =
1

2

∑

κ∈T

Fκ +
∑

κ∈T

∫

κ
|
√

γ(x)w(x)|2 dx .

Finally, we observe that

Ba(w,w) =
∑

κ∈T

∫

κ
|
√

a(x)∇w(x)|2 dx .

Upon adding these three identities, we arrive at (9).
To complete the proof of the lemma, we note that if either a is positive

definite or γ > 0 on each element κ in the partition T , then BDG(w,w) > 0 for
all w in Sp(Ω, T ,F)\{0}, and hence we deduce the uniqueness of the solution
uDG. Further, since the linear space Sp(Ω, T ,F) is finite-dimensional, the
existence of the solution to (8) follows from the fact that its homogeneous
counterpart has the unique solution uDG ≡ 0. /0

Our second result provides a bound on the discretisation error. For sim-
plicity, we shall assume that the entries of the matrix a are constant on each
element κ ∈ T (with possible discontinuities across faces e ∈ E) and b is a
constant vector. We require the following approximation result [16].
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Lemma 2. Suppose that u ∈ Hkκ(κ), kκ ≥ 0, κ ∈ T , and let Πhpu de-
note the orthogonal projection of u in L2(Ω) onto the finite element space
Sp(Ω, T ,F). Then, there exists a constant C dependent on kκ and the angle
condition of κ, but independent of u, hκ = diam(κ) and pκ, such that

‖u−Πhpu‖L2(κ) ≤ C
hτκ
κ

pkκ
κ

‖u‖Hkκ (κ) , (10)

where τκ = min(pκ, kκ), κ ∈ T .

Next, we state our main result, regarding the accuracy of the method (8).

Theorem 3. Assume that there exists a positive constant γ0 such that γ ≥ γ0
on each element κ in the partition T . Then, assuming that u ∈ Hkκ(κ),
kκ ≥ 2, for κ ∈ T , the solution uDG ∈ Sp(Ω, T ,F) of (8) obeys the error
bound

|||u− uDG|||2DG ≤ C
∑

κ∈T

(

āκ
h2(τκ−1)
κ

p2(kκ−2)
κ

+ b̄
h2(τκ−1/2)
κ

p2(kκ−1)
κ

)

‖u‖2Hkκ (κ) , (11)

where τκ = min(pκ, kκ) and b̄ is the l2 vector norm of b.

Proof. Let us decompose e = u − uDG as e = η + ξ where η = u − Πhpu,
ξ = Πhpu− uDG, and Πhp is as in Lemma 2. Then, by virtue of Theorem 1,

|||ξ|||2DG = BDG(ξ, ξ) = BDG(e− η, ξ) = −BDG(η, ξ) ,

where we have used the Galerkin orthogonality property:BDG(u−uDG, ξ) = 0
which follows from (8) with v = ξ and the definition of the boundary value
problem (1), (4), given the assumed smoothness of u. Thus, we deduce that

|||ξ|||2DG ≤ |Ba(η, ξ)|+ |Bb(η, ξ)|+ |Bs(η, ξ)| .

Now, from (7) we have that

|Bs(η, ξ)| ≤ |||ξ|||DG

(
∫

ΓD

σ|η|2 ds+
∫

Γint

σ[η]2 ds

)1/2

. (12)

As ∇ · b = 0 on each κ ∈ T , after integration by parts, we obtain

Bb(η, ξ) =
∑

κ

∫

κ
cηξ dx−

∑

κ∈T

∫

κ
η(b ·∇ξ) dx+

∑

κ∈T

∫

∂+κ∩Γ+

(b · µ)η+ξ+ ds

+
∑

κ∈T

∫

∂+κ\Γ+

(b · µ)η+ξ+ ds+
∑

κ∈T

∫

∂−κ\Γ−

(b · µ)η−ξ+ ds . (13)

Denoting by S4 + S5 the sum of the last two (of the five) terms in (13), we
find, after shifting the ‘indices’ in the summation in S4, that

|S4 + S5 | ≤
∑

κ∈T

(

∫

∂−κ\Γ−

|b · µ||η−|2 ds

)1/2 (
∫

∂−κ\Γ−

|b · µ|)ξ*2 ds

)1/2

.
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Also, since b is a constant vector,
∫

κ η(b ·∇ξ) dx = 0. Thus, (13) yields

|Bb(η, ξ)| ≤ C|||ξ|||DG

(

‖η‖2L2(Ω) +
∑

κ∈T

∫

∂+κ∩Γ+

|b · µ||η+|2 ds

+
∑

κ∈T

∫

∂−κ\Γ−

|b · µ||η−|2 ds

)1/2

, (14)

where C is a positive constant, as in the statement of the theorem.
Next,

|Ba(η, ξ)| ≤ I + II + III ,

where

I ≡

∣

∣

∣

∣

∣

∑

κ∈T

∫

κ
a∇η ·∇ξ dx

∣

∣

∣

∣

∣

, II ≡
∣

∣

∣

∣

∫

ΓD

{η((a∇ξ) · ν)− ((a∇η) · ν)ξ} ds
∣

∣

∣

∣

,

III ≡
∣

∣

∣

∣

∫

Γint

{[η]〈(a∇ξ) · ν〉 − 〈(a∇η) · ν〉[ξ]} ds

∣

∣

∣

∣

.

Now,

I2 ≤ |||ξ|||2DG

∑

κ∈T

‖
√
a∇η‖2L2(κ) ,

II2 ≤ C|||ξ|||2DG

∑

κ : ∂κ∩ΓD (=∅

(

āκp2κ
hκ

‖η‖2L2(∂κ∩ΓD) +
āκhκ

p2κ
‖∇η‖2L2(∂κ∩ΓD)

)

,

III2 ≤ C|||ξ|||2DG

∑

κ : ∂κ∩Γ=∅

(

āκp2κ
hκ

‖[η]‖2L2(∂κ)+
āκhκ

p2κ
‖∇η‖2L2(∂κ)

)

.

Collecting the bounds on the terms I, II and III gives

|Ba(η, ξ)| ≤ C|||ξ|||DG

(

∑

κ∈T

‖
√
a∇η‖2L2(κ)

+
∑

κ : ∂κ∩ΓD (=∅

(

āκp2κ
hκ

‖η‖2L2(∂κ∩ΓD) +
āκhκ

p2κ
‖∇η‖2L2(∂κ∩ΓD)

)

+
∑

κ : ∂κ∩Γ=∅

(

āκp2κ
hκ

‖[η]‖2L2(∂κ)+
āκhκ

p2κ
‖∇η‖2L2(∂κ)

)

)1/2

. (15)

The required result now follows by noting that

|||u− uDG|||DG ≤ |||η|||DG + |||ξ|||DG ,
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using the estimates (12), (14) and (15) to bound |||u − uDG|||DG in terms
of |||η|||DG and other norms of η, and applying Lemma 2, together with the
Trace Inequality

‖v‖2L2(e) ≤ C
(

‖v‖L2(κ)‖∇v‖L2(κ) + h−1
κ ‖v‖2L2(κ)

)

, v ∈ H1(κ), e ⊂ ∂κ ,

to estimate norms of η and ∇η over ∂κ ∩ ΓD and ∂κ in terms of norms of
over κ, κ ∈ T . The argument is fairly standard, so we omit the details. /0

We note that in the purely hyperbolic case of a ≡ 0 the error bound
in Theorem 3 collapses to O(hτ−1/2/pk−1); in the DG-norm, this is optimal
with respect to h, while in p it is 1/2 an order below the hp-optimal bound
established in [8]. In fact, for a ≡ 0, the error bound of Theorem 3 is identi-
cal to the p-suboptimal hp error estimate of Bey and Oden [4], except that
there a streamline-diffusion type stabilisation was included with stabilisation
parameter δ = h/p2; Theorem 3 corresponds to δ = 0.

In the case of non-constant b, (11) should be supplemented with the
term |b|2W 1,∞(κ)(h

2τκ/p2(kκ−2))‖u‖2Hkκ (κ) under the summation sign on the
right. When āκ ≥ c0 > 0 this additional term can be absorbed into the first
term on the right; otherwise it degrades the error bound with respect to p.
More generally, when streamline-diffusion stabilisation is added to (8), with
stabilisation parameter δ = (h/p)min

(

1, b̄h/āp3
)

, the bound (11) can be,
simultaneously, extended to the case of non-constant b and sharpened to one
that is still optimal in h, but now with only 1/2 a power of p below the
optimal rate in the diffusive part and of optimal order in p in the advective
part. Specifically, when b ≡ 0, we recover the bound O(hτ−1/pk−3/2) of
Riviere and Wheeler [15]; on the other hand, if a = 0, we arrive at the hp-
optimal error bound O(hτ−1/2/pk−1/2) of [8] in the DG-norm, proved with
δ = h/p, which represents the direct generalisation of the optimal h-version
bound for the DGFEM (see [9] and [10]) to the hp-version. The proof of this
is beyond the scope of the present paper and will be delivered in [17]. For
further developments regarding these theoretical questions for hyperbolic and
nearly-hyperbolic problems and numerical experiments, see [8,17].
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99-10 D. Schötzau, C. Schwab Exponential Convergence in a Galerkin Least

Squares hp-FEM for Stokes Flow
99-09 A.M. Matache, C. Schwab Homogenization via p-FEM for Problems

with Microstructure
99-08 D. Braess, C. Schwab Approximation on Simplices with respect to

Weighted Sobolev Norms
99-07 M. Feistauer, C. Schwab Coupled Problems for Viscous Incompressible

Flow in Exterior Domains
99-06 J. Maurer, M. Fey A Scale-Residual Model for Large-Eddy

Simulation
99-05 M.J. Grote Am Rande des Unendlichen: Numerische Ver-

fahren für unbegrenzte Gebiete
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