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Abstract

Inequalities of Jackson and Bernstein type are derived for polynomial ap-

proximation on simplices with respect to Sobolev norms. Although we cannot

use orthogonal polynomials, sharp estimates are obtained from a decomposi-

tion into orthogonal subspaces. The formulas reflect the symmetries of sim-

plices, but comparable estimates on rectangles show that we cannot expect

rotational invariance of the terms with derivatives.
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1 Introduction

The approximation of functions by polynomials with respect to a weighted
L2-norm is strongly related to orthogonal polynomials. This is well known
for functions on the real interval [−1,+1]. The orthogonal polynomials for
constant weights are the Legendre polynomials Pn which satisfy

+1
∫

−1

PnPmdx =
2

2n+ 1
δnm.

The Legendre polynomials are eigenfunctions of the singular Legendre differ-
ential operator,

LPn = µnPn, µn = n(n+ 1)

where L is given by (Lv)(x) := −((1−x2)v′)′. We therefore have also orthog-
onality of the derivatives with respect to a weight function which vanishes at
the boundaries

+1
∫

−1

(1− x2)P ′
nP

′
mdx = µn

2

2n+ 1
δnm.

If we expand an L2-function with respect to the Legendre polynomials for

the natural normalization v =
∞
∑

k=0
bk

(

k + 1
2

)1/2
Pk, then we have obviously,

‖v‖20 :=
+1
∫

−1
v2dx =

∞
∑

k=0

|bk|
2,

|v|21,w :=
+1
∫

−1
(1− x2)(v′)2dx =

∞
∑

k=1

µk|bk|
2

and more generally, for any " ∈ N0,

|v|2!,w := (−1)!
+1
∫

−1

vL!vdx =
∞
∑

k=1

(µk)
!|bk|

2

which is to be understood in the sense that the series converge if and only if
|v|!,w is finite. Correspondingly, we introduce for m ∈ N0 the sets

V m :=
{

v ∈ L2(−1, 1); |v|!,w < ∞ for " = 0, . . . , ".
}

From the definitions we obtain for v ∈ V m, ", m ∈ N0, m ≥ ", the approxi-
mation property (direct estimate)

inf
p∈Pn

|v − p|!,w ≤ (µn+1)
−(m−!)/2|v|m,w (1.1)

1



and the inverse estimate

|p|m,w ≤ (µn)
(m−!)/2|p|!,w for p ∈ Pn. (1.2)

Direct and inverse estimates estimates for the rectangle are easily ob-
tained from these results by tensor product arguments. To establish analo-
gous results for triangles and more generally for simplices in R

d is the purpose
of the present paper.

There are two approaches in the literature for obtaining explicit repre-
sentations of orthogonal polynomials. The first method is based on Appell’s
polynomials from 1881, see [1, 2]. They provide only a decomposition into fi-
nite dimensional subspaces and biorthogonal polynomials, see also [7, 8]. Or-
thogonal polynomials have been derived from Appell’s polynomials in [9, 4],
but the expressions are so involved that it seems to be hard to establish
approximation properties from those results. Another approach is obtained
from a transformation of the triangle to the square [12, 10, 11, 6, 5]. Orthogo-
nal polynomials are expressed in terms of Jacobi polynomials. Unfortunately
these polynomials are less suited for our intention since the transformation
makes that the derivatives are not directly achieved.

We will choose a different approach and consider subspaces of polyno-
mials as invariant subspaces of suitable differential operators. In contrast
to Derriennic [4] symmetric versions are chosen. After establishing the ap-
proximation properties the authors learnt that these operators have already
served for the treatment of Bernstein–Durrmeyer operators [3, 13]. Since we
can do without the representation of Appell’s polynomials, we obtain shorter
proofs for the eigenvalue problem. The consequences that we draw are also
new.

2 Preliminaries. An Inverse Estimate

We will discuss some facts which provide a motivation for the main results
or for the technique of the proofs. A reader who is already familiar with
approximation on spheres or simplices may directly pass to the next section.

First we conclude from L2 approximation on the rectangle [−1,+1]2 that
derivatives enter in an anisotropic way. The products of Legendre polyno-
mials Pk(x)P!(y), k, " = 0, 1, 2, . . . are orthogonal polynomials on the square.
The same holds for derivatives in the direction of the edges:

P ′
k(x)Pl(y) for the weight function (1− x2),

Pk(x)P
′
l (y) for the weight function (1− y2).

2



The natural norms are now

‖v‖0 :=
∫

v2dxdy,

‖v‖1,w :=
∫

[v2x(1− x2) + v2y(1− y2)] dxdy,

and the corresponding polynomial spaces Qn,n := span{xky!; 0 ≤ k, " ≤ n}.
By elementary calculations we obtain

inf
p∈Qn,n

‖v − p‖0 ≤
1

√

(n + 1)(n+ 2)
‖v‖1,w

‖p‖1,w ≤
√

2n(n + 1) ‖p‖0 for p ∈ Qn,n.

Next we derive an inverse estimate for a weighted H1-norm on triangles
by using results from univariate functions. Only a factor smaller than 3 is
lost in this way. We refer to the usual reference triangle

T := {(x, y) ∈ R
2; x ≥ 0, y ≥ 0, 1− x− y ≥ 0},

and the polynomials with fixed total degree

Pn := span{xky!; k + " ≤ n}.

If p ∈ Pn, then the restriction of p to constant y is a polynomial of degree
≤ n in the x-variable, and we conclude from the univariate case (1.2) that

1−y
∫

0

x(1 − x− y)p2xdx ≤ n(n + 1)

1−y
∫

0

p2dx for 0 ≤ y < 1.

Integration over y yields
∫

T

x(1 − x− y)p2xdxdy ≤ n(n + 1)
∫

T

p2dxdy, p ∈ Pn.

We may repeat the process for the directions given by the other two edges of
the triangle and obtain the inverse estimate

∫

T

[x(1 − x− y)

(

∂

∂x
p

)2

+ y(1− x− y)

(

∂

∂y
p

)2

+xy

(

∂

∂x
p−

∂

∂y
p

)2

dxdy ≤ 3n(n + 1)
∫

T

p2dxdy.

We will repeatedly meet expressions of this form. In order to present the
estimate in a more symmetric form, we recall that x, y, and 1−x− y are the

3



barycentric coordinates λ1,λ2,λ3. Let ∂k→j be the derivative in the direction
showing from the vertex k to the vertex j. With this we have an estimate
for a weighted H1-norm

∑

k<j

∫

T

λkλj(∂k→jp)
2dxdy ≤ 3n(n+ 1)

∫

T

p2dxdy for p ∈ Pn. (2.1)

3 Estimates on the Simplex in R
d

Now we are prepared to consider the original approximation problem on
a d-simplex Sd. It will be considered as the convex hull of d + 1 points
a0, a1, . . . , ad ∈ R

d which do not lie on a (d−1)-dimensional hyperplane. In or-
der to keep the symmetry we refer to the barycentric coordinates λ0,λ1, . . . ,λd

of the points x =
∑

j λjaj ∈ Sd. Specifically we have

λj ≥ 0, j = 0, 1, . . . , d,
∑

j

λj = 1,

We will make use of multiindex notation, in particular

λm := λm0

0 λm1

1 . . .λmd
d , λα = λα0

0 λα1

1 . . .λαd
d ,

and |m| =
∑

j mj , |α| =
∑

j αj . We assume that αj > −1 for all j. Hence,
wα := λα is a weight function for which the inner product

(f, g) =
∫

Sd

fgwα (3.1)

and the weighted L2-norm ‖f‖20,w := (f, f) is well defined. As before, we set

Pn := span{λm; |m| ≤ n} and Rn := Pn ∩ P⊥
n−1.

Due to the condition
∑

λj = 1, the representation of a function given in
terms of barycentric coordinates is not unique. Nevertheless we can write
the directional derivative for the direction from ak to aj in the form

∂

∂λj
−

∂

∂λk
or for short ∂j − ∂k.

Lemma 3.1 Let j (= k. Then the differential operator of second order

L0 := −λ−α(∂j − ∂k) λjλkλ
α (∂j − ∂k) (3.2)

is selfadjoint with respect to the inner product (·, ·). It maps Pn into Pn and
Rn into Rn.

4



Proof. Consider a segment on a line parallel to the direction from ak to aj .
The product λjλk vanishes at the two points at which the line intersects the
boundary of Sd. Therefore no boundary terms occur when performing partial
integration, and we have

∫

Sd

f(L0g)wα = −
∫

Sd

f(∂j − ∂k)λjλkλ
α(∂j − ∂k)g

=
∫

Sd

[(∂j − ∂k)f ]λjλkλ
α(∂j − ∂k)g. (3.3)

From the symmetry of the last expression we obtain
∫

Sd

f(L0g)wα =
∫

Sd

(L0f)gwα. (3.4)

The operator L0 maps Pn into Pn since the differential operators cause a
reduction of the degree of the polynomials which compensates the increase
of the degree by the multiplication with the factor λjλk.

Finally let p ∈ Rn and q ∈ Pn−1. Since L0q ∈ Pn−1 and p ∈ P⊥
n−1, we

conclude that
∫

Sd

q(L0p)wα =
∫

Sd

(L0q)pwα = 0, (3.5)

and L0p is orthogonal to Pn−1, i.e. L0p ∈ Rn.
We are now prepared to introduce a differential operator which due to its

symmetry can be regarded as a Laplacian for the simplex

Lw := −λ−α
∑

j<k

(∂j − ∂k)λjλkλ
α(∂j − ∂k). (3.6)

Similar mappings with less symmetries have been already considered by Der-
riennic [4] for the construction of orthogonal polynomials. After completing
the text the authors learnt that the operator was used in [3, 13] for the study
of Bernstein–Durrmeyer polynomials and that special cases of the eigenvalue
problem (3.7) have already been stated by Appell and Kampé de Fériet in
terms of Appell’s polynomials. We prefer a direct proof.

Theorem 3.2 The operator Lw is selfadjoint and

Lwp = µnp for all p ∈ Rn. (3.7)

with the eigenvalues µn explicitly given by

µn = µn(d,α) := n(n+ d+ |α|), n = 1, 2, . . . (3.8)

5



Proof. Let |m| = n. First we apply Lw to the monomials λm and use the
abbreviationHj(λ) := λ

mj−1
j

∏

k '=j λ
mk
k . By straight forward calculations mod

Pn−1 we obtain

−λαLwλ
m =

∑

j<k

(∂j − ∂k)λjλkλ
α(∂j − ∂k)λ

m

=
∑

j<k

[mj(mj + αj)λkHjλ
α −mk(mj + αj + 1)λm+α

−mj(mk + αk + 1)λm+α +mk(mk + αk)λjHkλ
α]

=
∑

j '=k

[mj(mj + αj)λkHjλ
α −mk(mj + αj + 1)λm+α]

=
∑

j

mj(mj + αj)(1− λj)Hjλ
α −

∑

j '=k

mk(mj + αj + 1)λm+α

≡ −
∑

j

mj(mj + αj)λjHjλ
α −

∑

j '=k

mk(mj + αj + 1)λm+α

= −n(n + |α|+ d)λm+α.

Since Lw is linear, we have

Lwp ≡ µn p (mod Pn−1)

for each p ∈ Pn. From the preceding lemma we know that we have even
equality if p ∈ Rn.

In accordance with (2.1) we now define a weighted H1-seminorm which
will form an appropriate pair together with ‖ · ‖0,w

|f |21,w :=
∑

j<k

∫

Sd

|(∂j − ∂k)f |
2λjλkwα.

From (3.4) we obtain our essential tool

|f |21,w =
∫

Sd

f(Lwf)wα. (3.9)

In particular assume that f is expanded into polynomials from the orthogonal
subspaces

f =
∞
∑

k=0

pk with pk ∈ Rk.

From the orthogonality relations (3.5) and Theorem 3.2 we conclude that

‖f‖20,w =
∞
∑

k=0

‖pk‖
2
0,w ,

|f |21,w =
∞
∑

k=0

∫

Sd

pk(Lwpk)wα =
∞
∑

k=0

µk‖pk‖
2
0,w ,

6



and, more generally, for any " ∈ N0,

|f |2!,w :=
∞
∑

k=0

∫

Sd

pk(L
!
wpk)wα =

∞
∑

k=0

(µn)
!‖pk‖

2
0,w.

The last equality is understood in the sense that the infinite series converges
if and only if |f |!,w is finite. Similar to |f |1,w, the seminorm |f |!,w admits the
following representation in terms of f and its derivatives:

|f |2!,w =























∫

Sd

(Lm
w f)

2wα if " = 2m,

∫

Sd

(Lm
w f)Lw(L

m
w f)wα if " = 2m+ 1.

(3.10)

Accordingly, for m ∈ N0, we define the weighted spaces

V m
w (Sd) :=

{

v ∈ L2(Sd); |f |!,w < ∞ for " = 0, 1, . . . , m
}

.

Then the main result is immediate and there is no gap between the direct
and the inverse estimate.

Theorem 3.3 Let ", m be nonnegative integers and m ≥ " and denote by
µn = n(n + d + |α|) the eigenvalues of Lw. Then, for any v ∈ V m

w (Sd), the
approximation property

inf
p∈Pn

|v − p|!,w ≤ (µn+1)
−(m−!)/2 |v|m,w n = 0, 1, 2, ...

holds, and for any p ∈ Pn we have the inverse estimate

|p|m,w ≤ (µn)
(m−!)/2 |p|!,w.

Both inequalities are sharp.

From Theorem 3.3 we conclude that the factor 3n(n+ 1) in the estimate
(2.1) may be replaced by n(n+2). To this end we set d = 2,α = 0, m = 1 and
" = 0. The norm | · |1,w refers to a weighted integral of first order derivatives.

The situation is more involved for | · |m,w if m > 1 although the case
m = 2 is still transparent in view of (3.10). Obviously the commutation rule
∂jλj = λj∂j + 1 implies

(∂j − ∂k)λjλkλ
α(∂j − ∂k) = λjλk(∂j − ∂k)

2 + (λk − λj)(∂j − ∂k)

From (3.10) and Young’s inequality we obtain

inf
p∈Pn

‖v − p‖20 ≤ 2µ−2
n+1

∑

j<k

{

∫

Sd

λ2
jλ

2
k[(∂j − ∂k)

2v]2 +
∫

Sd

(λk − λj)
2[(∂j − ∂k)v]

2
}

.

7



References

[1] P. Appell (1881), Sur des polynômes de deux variables analogues aux
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