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Abstract

The formulation of the fluid flow in an unbounded exterior domain Ω is
not always convenient for computations and, therefore, the problem is often
truncated to a bounded domain Ω−

⊂ Ω with an artificial exterior boundary Γ.
Then the problem of the choice of suitable “transparent” boundary conditions
on Γ appears. Another possibility is to simulate the presence of the fluid in
the domain Ω+ exterior to Γ with the use of a suitable (preferably linear)
approximation of the equations describing the flow. The interior and exterior
problems are coupled with the aid of transmission conditions on the interface
Γ.

Here we briefly describe the formulation and analysis of the coupling of
the interior Navier–Stokes problem and the exterior Stokes problem and Oseen
problem. At the end we give the reformulation of the coupled problems with
the aid of integral equations on the artificial interface.

1Charles University Prague, Faculty of Mathematics and Physics, Malostranské n. 25, 11800
Praha 1, Czech Republik, email: feist@ms.mff.cuni.cz



1 Coupling of interior Navier-Stokes problem with

exterior Stokes problem

Let Ω ⊂ IR3 be an unbounded domain which is the complement of the closure of a bounded
open set (representing, e. g., a body imerged into a moving fluid). We set Γ0 = ∂Ω and
introduce an artificial interface Γ dividing Ω into two subdomains, a bounded interior
domain Ω− with boundary ∂Ω− = Γ0 ∪ Γ and an unbounded domain Ω+ with ∂Ω+ = Γ.

Classical formulation of the coupled problem: Find the velocity u± = (u±
1 , u

±
2 , u

±
3 ) :

Ω
±
→ IR3 and the pressure p± : Ω

±
→ IR such that

(1.1)

a) u±
i ∈ C2(Ω

±
), i = 1, 2, 3, p± ∈ C1(Ω

±
),

b) −2ν
3∑

j=1

∂Dij(u−)

∂xj
+

3∑

j=1

u−
j

∂u−
i

∂xj
+

∂p−

∂xi
= fi, i = 1, 2, 3, in Ω−,

c) divu− = 0 in Ω−,

d) u−|Γ0
= 0,

e) −ν∆u+ +∇p+ = 0 in Ω+,

f) divu+ = 0 in Ω+,

g) lim|x|→∞u+(x) = u∞,

h) u− = u+ on Γ,

i)
(
p− +

1

2
|u−|2

)
n+ 2ν ID(u−)n = σn(u

+, p+) on Γ ,

j) σn(u+, p+) := σ[u+, p+]n, σ[u, p] = −p1 + 2νID(u).

Here σ[u, p] denotes the hydrostatic stress tensor for the Stokes problem.

We prescribe the following data: ν > 0 – constant viscosity, f = (f1, f2, f3) – volume
force with support suppf ⊂ Ω−, u∞ ∈ IR3 – the free-stream velocity at ∞. By n we
denote the unit outer normal to ∂Ω− on Γ (pointing from Ω− into Ω+). ID(u) is the
velocity deformation tensor with components IDij(u) = (∂ui/∂xj + ∂uj/∂xi)/2.

In the domain Ω− and Ω+ the Navier–Stokes system and the Stokes system are con-
sidered, respectively. The coupling conditions on Γ representing the continuity of the
velocity and the normal stress, augmented in Ω− by the kinetic energy, were chosen in
accordance with [16], [1].

1.1 Weak formulation

In order to reformulate the above problem in a weak sense, we introduce the following
function spaces ([4], [6], [10], [12], [13]): H1(Ω−) – the Sobolev space equipped with the
standard norm ‖ · ‖1,Ω−, H1/2(Γ) – Sobolev–Slobodetskii space of traces γ0u on Γ of
functions u ∈ H1(Ω−) equipped with norm ‖ ·‖1/2,Γ, H−1/2(Γ) – dual of H1/2(Γ), W 1(Ω+)
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– weighted Sobolev space = {u; (1+ |x|2)−1/2 u ∈ L2(Ω+), ∂u/∂xi ∈ L2(Ω+), i = 1, 2, 3},
equipped with the norm

‖u‖1,Ω+ =
{ ∫

Ω+

(1 + |x|2)−1/2 |u(x)|2 dx+ |u|21,Ω+

}1/2
,

where the seminorm
|u|1,Ω+ =

( ∫

Ω+

|∇u|2 dx
)1/2

is a norm equivalent to the norm ‖·‖1,Ω+ . We setW 1
0 (Ω

+) = {v ∈ W 1(Ω+); γ0 v = 0 on Γ}.
The space H1/2(Γ) can be interpreted as the space of traces γ0 u of all u ∈ W 1(Ω+) on Γ.
By 〈·, ·〉 we denote the duality between H−1/2(Γ) and H1/2(Γ) induced by the L2(Γ) –
scalar product.

If X is a Banach space with a norm ‖ · ‖, then we define the space X = X ×X ×X
equipped with the norm

‖u‖ =
( 3∑

i=1

‖ui‖
2
)1/2

, u = (u1, u2, u3) ∈ X.

Now we set

V (Ω−) = {v ∈ H1(Ω−); v|Γ0
= 0, divv = 0 in Ω−},

W 1
0(Ω

+) = {v ∈ W 1(Ω+); γ0v = 0 on Γ},

W (Ω+) = {v ∈ W 1(Ω+); divv = 0 in Ω+},

V 0(Ω+) = {v ∈ W (Ω+); γ0v = 0 on Γ},

H
1/2
0 (Γ) = {v ∈ H1/2(Γ);

∫

Γ

v · nds = 0} .

We have γ0 v ∈ H
1/2
0 (Γ) for v ∈ V (Ω−).

It is possible to show that for any u0 ∈ H
1/2
0 (Γ) there exists its extension IRu0 ∈

W (Ω+) such that γ0(IRu0) = u0.

For the weak formulation we introduce the following forms:

(1.2)

a0(u, v) = 2ν
∫

Ω−

3∑

i,j=1

Dij(u)Dij(v) dx,

a1(u, w, v) =
∫

Ω−

3∑

i,j=1

uj
∂wi

∂xj
vi dx,

a2(u,w, v) = −
1

2

∫

Γ

(u ·w) (v · n) ds,

a(u, v) = a0(u, v) + a1(u,u, v) + a2(u,u, v),

u, v, w ∈ H1(Ω−),

a+(z, v) =
∫

Ω+

3∑

i,j=1

∂zi
∂xj

∂vi
∂xj

dx, z, v ∈ W 1(Ω+) .
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Let us assume that f ∈ V ∗(Ω−) (= dual of V (Ω−)) and denote by 〈·, ·〉Ω− the duality
between V ∗(Ω−) and V (Ω−).

Starting from the classical formulation (1.1), using suitable (smooth) test functions
(with compact supports) and Green’s theorem, we arrive at the following weak formula-
tions:

Weak formulation in Ω−. Assume that σn(u+, p+) ∈ H−1/2(Ω) is given.
Find u− ∈ V (Ω−) such that

(1.3) a(u−, v)− 〈σn(u
+, p+), γ0 v〉 = 〈f , v〉Ω− ∀v ∈ V (Ω−) .

Weak formulation in Ω+. Assume that u0 ∈ H
1/2
0 (Γ) is given.

Find u+ satisfying the following conditions:

(1.4)
a) (u+ − u∞)− IR(u0 − u∞) ∈ V 0(Ω+),

b) a+(u+ − u∞, v) = 0 ∀v ∈ V 0(Ω+).

Using the Lax–Milgram lemma and results from [4] and [10], it is possible to establish

Theorem 1.1. There exists a unique solution u+ of problem (1.4). This solution is
independent of the choice of the extension IR(u0−u∞) ∈ W (Ω+) of u0−u∞ from Γ onto
Ω+. The velocity u+ can be associated with a uniquely determined pressure p+ ∈ L2(Ω+)
such that

(1.5) a+(u+ − u∞, v)−
∫

Ω+

p+ divv dx = 0 ∀v ∈ W 1
0(Ω

+) .

!

Assuming that it is possible to define a generalization σn(u+, p+) ∈ H−1/2(Γ) of the
normal stress for u+, p+ from Theorem 1.1, we arrive at the weak formulation of the
coupled problem:
Find u−, u+ satisfying (1.3) and (1.4) with

(1.6) u0 = γ0u
− on Γ .

1.2 Abstract problem

Let us assume for now that u− is known. Then we solve problem (1.4) with the Dirichlet
boundary condition (1.6). If the solution u+ and the pressure p+ associated with u+ by
Theorem 1.1 allow to express σn(u+, p+) ∈ H−1/2(Γ), we see that σn(u+, p+) is a function
of u0 = γ0 u−:

(1.7) σn(u
+, p+) = −Λ(u0).

The operator Λ : H1/2
0 (Γ) → H−1/2(Γ) converting Dirichlet data into “Neumann” data

via the solution of the exterior Stokes problem (1.4), is called the Steklov–Poincaré
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operator. It allows us to reformulate the coupled problem as the abstract problem:
Given Λ : H1/2

0 (Γ) → H−1/2(Γ) and f ∈ V ∗(Ω−), find u− such that

(1.8)
a) u− ∈ V (Ω−),

b) a(u−, v) + 〈Λ(γ0,u−), γ0v〉+ 〈f , v〉Ω− ∀v ∈ V (Ω−).

The investigation of problem (1.8) yields the following result:

Theorem 1.2. Let the operator Λ be weakly sequentially continuous and weakly
noncoercive, i. e.,

(1.9)
zn, z ∈ H

1/2
0 (Γ), zn → z weakly in H1/2(Γ) as n → ∞ =⇒

=⇒ 〈Λ(zn),w〉 −→ 〈Λ(z),w〉 ∀w ∈ H1/2(Γ) as n → ∞,

and there exist constants c3 ∈ IR, c4 ≥ 0 such that

(1.10) 〈Λ(z), z〉 ≥ c3 − c4‖z‖1/2,Γ ∀ z ∈ H
1/2
0 (Γ),

respectively. Then problem (1.8) has at least one solution.

Proof of this theorem is carried out by the Galerkin method, similarly as, e. g., in
[6, Par. 8.4.20] or [12, Theorem 1.2, page 280] with the aid of the compact imbeddings
H1(Ω−) ↪→↪→ L2(Ω−),H1(Ω−) ↪→↪→ L3(Γ), Korn’s inequality and the relation a1(u, v, v)+
a2(v, v,u) = 0 valid for all u, v ∈ V (Ω−). !

1.3 Properties of the Steklov–Poincaré operator Λ

It remains to establish the existence of the operator Λ and its properties (1.9) and (1.10):

Theorem 1.3. Let u+ be the solution of the exterior problem (1.4) and p+ be the asso-
ciated pressure by relation (1.5). Then, for all w ∈ H1/2(Γ) and v ∈ W 1(Ω+) such that
γ0v = w, the formula

(1.11) 〈σn(u
+, p+), w〉 = −2ν

∫

Ω+

3∑

i,j=1

Dij(u
+)Dij(v) dx+

∫

Ω+

p+ divv dx

determines a unique element σn(u+, p+) ∈ H−1/2(Γ). If u+ and p+ are sufficiently reg-
ular, then this element can be identified with the function σn(u+, p+) defined in (1.1, j).
Further, the Steklov-Poincaré operator Λ defined by (1.7) has properties (1.9) and (1.10).
!

The results of Theorem 1.1 – 1.3 imply the existence of a weak solution of the coupled
problem (1.1). All details can be found in [8].
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2 Coupling of interior Navier-Stokes problem with

exterior Oseen problem

In this section we are concerned with the modelling of viscous incompressible flow in an
unbounded exterior domain with the aid of the coupling of the nonlinear Navier–Stokes
equations considered in a bounded domain with the linear Oseen system in an exterior
domain.

Similarly as in the case of the coupling of the Navier–Stokes problem with the Stokes
problem, an important question is the choice of transmission conditions on the artificial
interface Γ. The transmission condition used in Section 1 is not suitable in the case of the
exterior Oseen problem and, therefore, we propose its modification resembling a ‘natural”
boundary condition from [3]. We arrive then at the following classical formulation of
the coupled problem:
Find u± = (u±

1 , . . . , u
±
N) : Ω

±
→ IRN , p± : Ω

±
→ IR such that

(2.1)

a) u±
i ∈ C2(Ω

±
), i = 1, . . . , N, p± ∈ C1(Ω

±
),

b) −ν∆u− + (u− ·∇)u− +∇ p− = f in Ω−,

c) divu− = 0 in Ω−,

d) u−|Γ0
= 0,

e) −ν∆u+ + (u∞ ·∇)u+ +∇ p+ = 0 in Ω+,

f) divu+ = 0 in Ω+,

g) lim|x|→∞u+(x) = u∞,

i) u− = u+ on Γ,

j) −p− n+ ν
∂u−

∂n
−

1

2
(u− · n)u− = σn(u

+, p+) on Γ .

Here, and throughout we understand σn(u, p) in the context of the Oseen problem as

σn(u
+, p+) := σ[u+, p+]n where σ[u, p] := −p1 + 2νID(u)−

1

2
uu%

∞

denotes the hydrostatic stress tensor for the Oseen problem.

Other than that, we use the same notation as in Section 1.

Remark 2.1. For simplicity we consider the terms ∂u±/∂n in (2.1,j), corresponding
naturally to equations (2.1,b) and e). If we use the relations

∆ui =
N∑

i=1

∂Dij(u)

∂xj
, Dij(u) =

1

2

(∂ui

∂xj
+

∂uj

∂xi

)
,

valid for u ∈ C2(Ω±) with divu = 0, then ∂u±/∂n can be replaced by
∑N

j=1Dij(u±)nj

as in Section 1.
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2.1 Weak formulation

In what follows we will assume that ∂Ω− = Γ0 ∪ Γ is Lipschitz-continuous. If Ω̃ ⊂ Ω
is a domain, then by Lp(Ω̃) and W k,p(Ω̃) we denote the Lebesgue and Sobolev spaces,
respectively, defined over Ω̃ (cf., [13]). For a bounded domain Ω̃ we set W 1,2

0 (Ω̃) = {v ∈
W 1,2(Ω); v|∂Ω̃ = the trace of v on ∂Ω̃ = 0}. In W 1,2

0 (Ω̃) we can use two equivalent norms

‖v‖
W 1,2

0
(Ω̃)

=
( ∫

Ω̃

(|v|2 + |∇v|2) dx
)1/2

and

|v|W 1,2
0

(Ω̃) =
( ∫

Ω

|∇v|2 dx
)1/2

.

It is well-known that

W 1,2
0 (Ω̃) = closure of C∞

0 (Ω̃) in W 1,2(Ω̃),

where C∞
0 (Ω̃) is the space of all infinitely continuously differentiable functions with com-

pact supports in Ω̃ : supp v ⊂ Ω̃ for v ∈ C∞
0 (Ω̃).

For the unbounded domain Ω we define the weighted Sobolev space

W 1(Ω) =
{
u; (1 + |x|2)−1/2 σN u ∈ L2(Ω),

∂u

∂xi
∈ L2(Ω)

}
,

where σN (x) = 1 for N = 3 and σN (x) = | ln(1 + |x|)|−1 for N = 2, equipped with the
norm

‖u‖W 1(Ω) =
{ ∫

Ω

[(1 + |x|2)−1σ2
N |u|2 + |∇u|2] dx

}1/2
,

which is equivalent to the seminorm

|u|W 1(Ω) =
{ ∫

Ω

|∇u|2 dx
}1/2

.

(See, e. g., [4, Theorem 1, page 118] or [10, Vol. I, page 60].)

Further, we put

W 1
0 (Ω) = closure of C∞

0 (Ω) in W 1(Ω).

Then

W 1
0 (Ω) =

{
v ∈ W 1(Ω); v|Γ0

= 0
}
.

We write v ∈ W k,p
loc (Ω), if v|Ω̃ ∈ W k,p(Ω̃) for every bounded domain Ω̃ ⊂ Ω.
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Let us define subspaces of W 1(Ω):

V(Ω) = {v ∈ C∞
0 (Ω); div v = 0 in Ω} ,

V (Ω) = closure of V(Ω) in W 1(Ω).

For functions v from subspaces of Sobolev spaces, the restrictions v|Γ, v|Γ0
etc. will

be understood in the sense of traces.

For v ∈ V (Ω), the limit at ∞ is zero and v|Γ0
= 0. In order to realize condition

(2.1, g) in the weak formulation, we introduce a function φ∞ defined in the following way.
Let B be a sufficiently large ball with centre at the origin such that Ω

−
⊂ B. Then

Ω∗ := (B ∩ Ω)− Ω
−
⊂ Ω+ and ∂Ω∗ = Γ ∪ Γ∗, where Γ and Γ∗ is the interior and exterior

component of ∂Ω∗, respectively. Since
∫
Γ u∞ · ndS = 0, in virtue of [12, Lemma 2.2,

page 24], there exists a function φ∗ such that

φ∗ ∈ W 1,2(Ω∗), φ∗|Γ = 0, φ∗|Γ∗ = u∞, divφ∗ = 0 in Ω∗.

Now we define φ∞ : Ω → IRN :

φ∞ =






0 in Ω
−
,

φ∗ in Ω∗,
u∞ in Ω+ − Ω∗.

Obviously, φ∞ ∈ W 1,2
loc(Ω̃) and divφ∞ = 0 a. e. (= almost everywhere) in Ω.

Let us assume that u±, p± form a classical solution of the coupled problem (2.1). Let
v ∈ V(Ω). Multiplying equation (2.1, b) by v|Ω− and (2.1, e) by v|Ω+, integrating over
Ω− and Ω+, respectively, summing these integrals, applying Green’s theorem and using
the fact that divv = 0 in Ω and v|Γ0

= 0, and putting

u =

{
u− in Ω

−
,

u+ in Ω
+
.

we obtain the identity

ν
∫

Ω−

N∑

i,j=1

∂ui

∂xj

∂vi
∂xj

dx+ ν
∫

Ω+

N∑

i,j=1

∂ui

∂xj

∂vi
∂xj

dx+
∫

Ω−

N∑

i,j=1

uj
∂ui

∂xj
vi dx

+
∫

Ω+

N∑

i,j=1

u∞j
∂ui

∂xj
vi dx−

1

2

∫

Γ

[(u− u∞) · n] [u · v] ds =
∫

Ω−

f · v dx .

7



Let us introduce the forms

(2.2)

a0(u, v) = ν
∫

Ω−

N∑

i,j=1

∂ui

∂xj

∂vi
∂xj

dx,

a1(u,w, v) =
∫

Ω−

N∑

i,j=1

uj
∂wi

∂xj
vi dx,

a2(u,w, v) = −
1

2

∫

Γ

[(u− u∞) · n] [w · v] ds,

b0(u, v) = ν
∫

Ω+

N∑

i,j=1

∂ui

∂xj

∂vi
∂xj

dx,

b1(u, v) =
∫

Ω+

N∑

i,j=1

u∞j
∂ui

∂xj
vi dx,

L(v) =
∫

Ω−

f · v dx,

a(u,u, v) = a0(u, v) + a1(u,u, v) + a2(u,u, v)

b(u, v) = b0(u, v) + b1(u, v),

for u, v : Ω → IRN , u, w ∈ W 1,2
loc(Ω), v ∈ C∞

0 (Ω).

On the basis of the above considerations we come to the following concept:

Definition 2.2. We call a vector valued function u : Ω → IRN a weak solution of the
coupled problem (2.1), if the following conditions are satisfied:

(2.3)
a) u− φ∞ ∈ V (Ω),

b) a(u,u, v) + b(u, v) = L(v) ∀v ∈ V(Ω).

Remark 2.3. From above it follows that the classical solution yields the weak solution.
In (2.2, a), conditions (2.1, c, d, f, g) are hidden and u ∈ W 1,2

loc(Ω). Since v ∈ V(Ω) has
compact support, all integrals over Ω in (2.2) have sense. Moreover, also the form a2 is
well defined as follows from the trace theorem for functions from W 1,2(Ω̃), where Ω̃ ⊂ Ω
is a bounded domain with Γ ⊂ ∂Ω̃. However, it is not possible to use v ∈ V (Ω) as
test functions in (2.3, b), because the form b1(u, v) is not defined for u ∈ W 1,2

loc(Ω) and
v ∈ V (Ω) in general (cf. [10]). This is the reason that we cannot carry out the existence
treatment as in Section 1. We apply now a completely different approach for proving the
existence of a solution of problem (2.3). In fact, this new technique can also be applied
to the coupling of the interior Navier–Stokes problem with the exterior Stokes problem.
(Details will appear in [9].)

Remark 2.4. On the basis of results from [10], Chap. VII, the weak solution u of
problem (2.3) can be associated with the pressure p ∈ L2

loc(Ω) such that

(2.4) a(u, v)− (p, div v) = L(v) ∀v ∈ C∞
0 (Ω).
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2.2 Existence of a weak solution

First we prove some important properties of the forms a0, a1, a2 defined in (2.2). These
forms have sense, of course, also for functions from the space W 1,2(Ω−), as follows from
the continuous imbedding W 1,2(Ω−) ↪→ L4(Ω−) and the continuity of the trace operator
from the space W 1,2(Ω−) into L3(Γ). (We simply write W 1,2(Ω−) ↪→ L3(Γ).)

Let us set

V (Ω−) =
{
v ∈ W 1,2(Ω−); v|Γ0

= 0, divv = 0 a.e. in Ω−
}
,

V0(Ω
−) =

{
v ∈ C∞(Ω

−
); supp v ⊂ Ω− ∪ Γ, divv = 0 in Ω−

}
,

ã(u, v) = −
1

2

∫

Γ

(u · n) |v|2 ds, u, v ∈ W 1,2(Ω−) .

Lemma 2.5. a0 is a continuous bilinear form on W 1,2(Ω−). Further, a1 and a2 are
continuous trilinear forms on W 1,2(Ω−).

For u, v, w ∈ V (Ω−) we have

(2.5) a1(u, v,w) = −a1(u,w, v)− ã(u, v +w) + ã(u, v) + ã(u,w) .

Let us define the form

(2.6) d(u, v,w) = a1(u, v,w) + a2(u, v,w), u, v, w ∈ W 1,2(Ω−) .

Then it holds: If z, v, zn ∈ V 0(Ω−), n = 1, 2, . . . , and if

(2.7)

a) |zn|W1,2(Ω−) ≤ C, n = 1, 2, . . . ,

b) zn −→ z strongly in L2(Ω−)

c) zn|Γ −→ z|Γ strongly in L3(Γ) as n → ∞,

then

(2.8) d(zn, zn, v) −→ d(z, z, v) as n → ∞.

!

The solvability of the coupled problem in the unbounded domain Ω is established with
the aid of coupled problems considered on a monotone sequence of bounded subdomains.
For any positive integer n we denote by Bn the ball with radius n and centre at the origin.
We will consider n ≥ n0 with fixed n0 such that B ⊂ Bn0

(⊂ Bn), where B is the ball used
in the definition of the function φ∞. Hence, ∂Bn ⊂ Ω+ and φ∞|∂Bn = u∞ for n ≥ n0. We
set Ωn = Ω∩Bn and Ω+

n = Ω+∩Bn. Then for n ≥ n0, we have Ω− ⊂ Ωn, Ωn = Ω−∪Γ∪Ω+
n ,

∂Ωn = Γ0 ∪ Γn and ∂Ω+
n = Γ ∪ Γn. Moreover, Ωn ⊂ Ωn+1 and

⋃∞
n=n0

Ωn = Ω. Γn is the
exterior component of ∂Ωn and ∂Ω+

n .
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For n ≥ n0 and u, v ∈ W 1,2(Ωn) we define the forms

(2.9)

bn0 (u, v) = ν
∫

Ω+
n

N∑

i,j=1

∂ui

∂xj

∂vi
∂xj

dx,

bn1 (u, v) =
∫

Ω+
n

N∑

i,j=1

φ∞j
∂ui

∂xj
vi dx,

an(u, v) = a0(u, v) + a1(u,u, v) + a2(u,u, v) + bn0 (u, v) + bn1 (u, v) .

For every n ≥ n0 we introduce the spaces

V(Ωn) = {v ∈ C∞
0 (Ωn); divv = 0 in Ωn} ,

V (Ωn) = closure of V(Ωn) in W 1,2(Ωn)

=
{
v ∈ W 1,2

0 (Ωn); div v = 0 in Ωn

}
,

and consider the following auxiliary problem in Ωn: Find un : Ωn → IRN such that

(2.10)
a) un − φ∞|Ωn ∈ V (Ωn),

b) an(un, v) = L(v) ∀v ∈ V (Ωn)

(the form L(v) has sense for v ∈ V (Ωn) extended by zero on Ω). Conditions (2.10)
represent the weak formulation of a coupled “Navier–Stokes – Oseen” problem in the
bounded domain Ωn = Ω− ∪ Γ ∪ Ω+

n .

The solution of problem (2.3) can be written in the form

(2.11) u = φ∞ + z, z ∈ V (Ω).

Hence, (2.3) is equivalent to finding z : Ω → IRN such that

(2.12)
a) z ∈ V (Ω),

b) a(φ∞ + z, v) = L(v) ∀v ∈ V(Ω).

Similarly we can reformulate problem (2.10): Find zn : Ωn → IRN such that

(2.13)
a) zn ∈ V (Ωn),

b) an(φ∞ + zn, v) = L(v) ∀v ∈ V (Ωn).

Then un = φ∞ + zn. From the definition of φ∞ it follows that un = zn in Ω
−
.

The solvability of the above auxiliary problems is proved with the aid of the following
results:

Lemma 2.6. For each z ∈ V (Ωn) we have

a1(z, z, z) + a2(z, z, z) + bn1 (φ∞ + z, z) =
∫

Ω+
n

N∑

i,j=1

u∞j
∂φ∞i

∂xj
zi dx .

!

10



Theorem 2.7. For each n ≥ n0 problem (2.13) has at least one solution zn. There
exists a constant K > 0 independent of n such that

(2.14) |zn|W1,2(Ωn) ≤ K, n ≥ n0.

Proof is carried out with the aid of the Galerkin method in a standard way as, e. g., in
[12], Theorem 1.2, page 280, [17], Chap. II, or [6], Par. 8.4.20. !

The main result of this section reads:

Theorem 2.8. There exists at least one solution u of problem (2.3). This u is a weak
solution of the coupled problem (2.1).

Proof. As was stated above, problem (2.3) is equivalent to problem (2.12). In order
to prove the solvability of problem (2.12), we extend the solution zn of problem (2.13)
(n ≥ n0) by zero from the domain Ωn onto Ω. For simplicity, we will denote this extension
again by zn. Hence, we have a sequence {zn}∞n=n0

such that

(2.15) zn ∈ V (Ω), n ≥ n0, |zn|W1(Ω) = |zn|W1,2(Ωn) ≤ K, n ≥ n0 .

Since the space V (Ω) is reflexive and the sequence {zn}∞n=n0
is bounded in V (Ω), there

exists z ∈ V (Ω) and a subsequence of {zn}∞n=n0
(let us denote it again by {zn}) such that

(2.16) zn −→ z weakly in V (Ω) as n → ∞.

Our goal is to show that z is a solution of problem (2.12).

Let v ∈ V(Ω). Then there exists n∗ ≥ n0 such that suppv ⊂ Ωn∗ and, in virtue of
(2.13), (2.2) and (2.9) we have v|Ωn ∈ V (Ωn) for n ≥ n∗ and

(2.17) a(φ∞ + zn, v) = an
∗

(φ∞ + zn, v) = an(φ∞ + zn, v) = L(v), n ≥ n∗.

Taking into account that |zn|W1,2(Ωn∗ ) ≤ |zn|W1(Ω), from (2.15) we see that the sequence
{zn|Ωn∗

} is bounded in W 1,2(Ωn∗). Thus, we can suppose that

(2.18) zn|Ωn∗
−→ z|Ωn∗

weakly in W 1,2(Ωn∗) as n → ∞.

This and the compact imbeddings W 1,2(Ωn∗) ↪→↪→ L2(Ωn∗) and W 1,2(Ωn∗) ↪→↪→ L3(Γ)
imply that

(2.19)
zn|Ωn∗

−→ z|Ωn∗
strongly in L2(Ωn∗),

zn|Γ −→ z|Γ strongly in L3(Γ), as n → ∞.
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Now we are ready to carry out the limit process in (2.17) for n → ∞. Linearity and
continuity of the forms a0(φ∞ + ·, v) = a0(·, v), b0(φ∞ + ·, v) and bn

∗

1 (φ∞ + ·, v) (let us
remind that φ∞ = 0 in Ω−) imply that

(2.20)

a0(φ∞ + zn, v) = a0(zn, v) −→ a0(z, v) = a0(φ∞ + z, v),

bn
∗

0 (φ∞ + zn, v) −→ bn
∗

0 (φ∞ + z, v),

bn
∗

1 (φ∞ + zn, v) −→ bn
∗

1 (φ∞ + z, v) as n → ∞.

From (2.15) and (2.19) we see that the sequence {zn}∞n=n0
satisfies conditions (2.7, a–c).

This and Lemma 2.5 imply that

(2.21) a1(zn, zn, v) + a2(zn, zn, v) −→ a1(z, z, v) + a2(z, z, v) as n → ∞.

Now, from (2.17), (2.20) and (2.21) we conclude that the function z ∈ V (Ω) satisfies
the identity

a(φ∞ + z, v) = L(v) for all v ∈ V(Ω),

which means that z is a solution of problem (2.12) and u = φ∞ + z is a solution of
problem (2.3), which we wanted to prove. !

3 Formulation of the coupled problems with the aid

of boundary integral equations

The fact that the Stokes equations as well as the Oseen equations possess fundamental
solutions allows us to reformulate the exterior Stokes and Oseen problem as integral equa-
tion on the coupling interface Γ. This may be used to reduce the coupled problems on the
unbounded domain analyzed above to equivalent problems in the bounded domain Ω−

which are equipped with nonlocal boundary conditions on Γ. In this section, we derive
explicit representations of the nonlocal boundary operators in terms of the Calderón Pro-
jector of the linear exterior problem which describes the far-field. The nonlocal boundary
operators for the Navier-Stokes equations coupled with the exterior Stokes and Oseen
problems will turn out to be strongly elliptic boundary integral operators which can be
discretized by Galerkin boundary element methods. This approach was used for the
solution of a number of elliptic problems in exterior domains in e.g., [2, 7, 11, 16].

As it is well-known, there are generally many possible approaches to reformulate exte-
rior boundary value problems in terms of boundary integral equations. Correspondingly
there are many ways to represent the Poincaré-Steklov operators. For the exterior Stokes
problem of Section 1, we present a formulation in terms of single layer potentials based on
indirect boundary reduction by potentials. The resulting representation of the Poincaré
Steklov operator requires the inversion of a coercive, self-adjoint boundary integral oper-
ator of order −1 on Γ.

For the Oseen problem, there is an analogous formulation; however, the coercivity of
the first kind boundary operator to be inverted is open - only a weaker Gårding-Inequality
can be established then. Therefore, we present a different formulation based on a pure
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double layer ansatz for the exterior velocity field u+ in the Oseen problem [5]. Contrary
to the Stokes problem, this is admissible in the Oseen case due to the different decay
behaviour of the Oseen fundamental solution as |x| →∞ . Here, the boundary reduction
is direct, via the Faxén-formulas on Γ.

3.1 Exterior Stokes Problem

For the integral equation of the exterior Stokes problem, we shall require hydrodynamic
potentials that are defined in terms of fundamental solutions of the Stokes operator (1.1, e).
We shall in particular require the velocity fundamental tensor E(z) given by

(3.1) Eij(z) = (δij ∆− ∂i∂j)Φ(z), z ∈ IR3\{0}

where 1 ≤ i, j ≤ 3 and Φ(z) = ΦSt(z) := |z|/(8πν).

Further, we shall also use the pressure fundamental vector e(z) given by

(3.2) ei(z) = −
1

4π
∂i
( 1

|z|

)
=

1

4π

zi
|z|3

where 1 ≤ i ≤ 3 .

To obtain an expression of Λ in (1.8) in terms of boundary integral operators, we
require a certain factor space of H−1/2(Γ): we set

(3.3) T := H−1/2(Γ)/R

where R denotes the equivalence relation

(3.4) t ∼ t′ ⇐⇒ t = t′ + λn

for some λ ∈ IR (recall that n denotes the exterior unit normal to Ω−, pointing into Ω+).
Then there holds

Theorem 3.1 Assume that the coupling boundary Γ is smooth. The solution of the
exterior Stokes Problem (1.1, e) - (1.1, h) in Ω+ can be represented in the form of the
Odqvist hydrodynamic potentials

(3.5, a) u+
i (x) = u∞,i +

3∑

k=1

∫

y∈Γ

Eki(x− y)tk(y) dsy, x ∈ Ω+, i = 1, 2, 3,

(3.5, b) p+(x) =
3∑

k=1

∫

y∈Γ

ek(x− y) tk(y)dsy, x ∈ Ω+

for some boundary densities t ∈ H−1/2(Γ) which are the unique solutions of the first kind
boundary integral equations:

(3.7) u∞,i +
3∑

k=1

∫

y∈Γ

tk(y)Eki(x− y)dsy = u+
i (x), i = 1, 2, 3, x ∈ Γ ,
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or, more precisely, in variational form: find t ∈ T such that

(3.8) b(t, t′) = 〈u+ − u∞, t′〉 ∀t′ ∈ T

where the bilinear form b(t, t′), given by

(3.9) b(t, t′) =
3∑

i,j=1

∫

Γ

∫

Γ

ti(x)Eij(x− y) t′j(y)dsy dsx ,

is symmetric and coercive on T : there exists β > 0 such that

(3.10) b(t, t) ≥ β ‖t‖2
H−

1
2 (Γ)

∀t ∈ T .

!

For the proof, we refer to [4], Chap. VI, Theorem 1. We remark that the symmetry
and coercivity of the bilinear form b(·, ·) in (3.9) gives, upon discretization with a Galerkin
boundary element method on Γ, a symmetric and positive-definite stiffness matrix corre-
sponding to the hydrodynamic single layer operator S on the left hand side of (3.7). The
operator S is continuous from H−1/2(Γ) → H1/2(Γ). Using (3.7) and (1.6), we get the
nonlocal boundary condition

(3.11) t ∈ T : 〈t′,S t〉 = 〈γ0u
− − u∞, t′〉 ∀t′ ∈ T

where 〈·, ·〉 denotes the H−1/2(Γ)×H1/2(Γ) duality pairing. By (3.10), S is invertible on
T and we get that

(3.12) t = S−1(u− − u∞) .

Having obtained t by (3.8), the exterior Stokes flow (u+, p+) is given by (3.5). In
particular, we get with normal stress operator σn(u+, p+), applied to (3.5), (3.6), for a
point x0 ∈ Γ with the jump relations of the Odqvist potentials that

(3.13)

σn(u+, p+)(x0) = lim
ε→0+

σn(u+, p+)(x0 + εn)

=
1

2
t(x0) + p.v.

∫

y∈Γ

n(x0) σx0
[E, e](x0 − y) t(y) dsy

=
((1

2
I +K ′

)
t
)
(x0)

where the integral over Γ has to be understood in the Cauchy principal value sense and
the subscript x0 indicates that the differentiations are with respect to x0. The expression
nσ[E, e] t is interpreted as the vector with components

∑3
j,k=1 nj σijk tk, i = 1, 2, 3, where

σijk, i, j = 1, 2, 3, are components of the tensor σ(Ek, ek), using the notation Ek and
ek for the k−th row of E and the k−th component of e, respectively.

We therefore obtain with the weak formulation (1.3) in Ω− the following, nonlocal
boundary problem in Ω− ∪ Γ which is equivalent to the weak formulation of the coupled
problem (1.8):
Find u− ∈ V (Ω−), t ∈ T such that

(3.14)
a(u−, v)−

〈(1

2
I +K ′

)
t, γ0 v

〉
= 〈f , v〉Ω− ∀v ∈ V (Ω−)

−〈γ0 u− − u∞, t′〉+ 〈St, t′〉 = 0 ∀t′ ∈ T .
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With (3.12) and (3.13) we obtain the representation of the Steklov–Poincaré operator
in terms of boundary integral operators

(3.15) Λ(u−) = −σn(u
+, p+) = −

1

2
(I +K ′)S−1(u− − u∞) .

Naturally, in a numerical implementation of the nonlocal boundary condition (1.1, i)
in (1.3), the discrete inverse of S should not be explicitly calculated, but rather realized
numerically by a fast algorithm.

3.2 Exterior Oseen Problem

We consider now the exterior Oseen Problem (2.1, e) - (2.1, j). We will use once again
the Odqvist hydrodynamic potentials to reduce the coupled problem (2.1) to a nonlocal
boundary value problem in Ω− ∪ Γ. We shall now, however, not use a single layer ansatz
(the so-called “indirect” method of boundary reduction), but rather the “direct” method
based on the Faxén representation formula on Γ, leading to the “one integral equation”
approach of [11].

To do so, we require once more for the exterior Oseen problem the velocity fundamental
tensorE(z) and the pressure fundamental vector e(z). To define them, we assume without
loss of generality that

(3.16) u∞ = (u∞, 0, 0)% .

Then E and e are once more defined by (3.1), (3.2), however now with Φ(z) given by [15]

(3.17) ΦOs(z) :=
1

4πu∞

u∞s(z)/2ν∫

0

(1− e−α)α−1dα, s(z) := |z|− z1 .

We recall further that for the Oseen problem the hydrostatic stress is given by

(3.18) σ[u, p] := −p 1+ 2ν ID(u)−
1

2
uu%

∞ .

We shall also require the adjoint stress operator

(3.19) σ∗[v, q] := q 1+ 2ν ID(v) +
1

2
vu%

∞ .

Then there holds the Faxén representation formula:
Any (u+ −u∞, p+) ∈ H2

loc(Ω
+)×H1

loc(Ω
+) solving (2.1, e) - (2.1, j) can be represented in

the form: for any x ∈ Ω+

(3.20) u+(x)−u∞ =
∫

y∈Γ

{(u+(y)−u∞) σ∗
y [E, e](x−y)n−E(x−y)σy[u

+−u∞, p]n)}dsy,
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(3.21) p+(x) =
∫

y∈Γ

{(u+ − u∞) σ∗
y [e, e

∗](x− y)n− e(x− y) σy[u
+ − u∞, p]n)}dsy,

where p(x) is determined only mod IR, σy, σ∗
y are as in (3.18), (3.19), with the subscript

y indicating that the differentiations are with respect to y and where

(3.22) e∗(z) =
u∞

4π
∂1

( 1

|z|

)
= −u∞ e1(z)

is the pressure corresponding to the velocity field e(z). The expression (u+−u∞) σ∗[E, e]n
is interpreted in an analogous way as n σ[E, e] t in Par. 3.1.

We observe that the leading singularities of E(z) and of e(z) at |z| = 0 in the Oseen
and the Stokes case are identical. More precisely, for small |z|

(3.23) E(z) = (δij∆− ∂i∂j)ΦOs(z) =
1

8πν
(δij∆− ∂i∂j) |z|+O(1) .

The hydrodynamic potentials admit therefore the same jump relations in the Stokes
and the Oseen case. We reduce the exterior Oseen problem to Γ by passing with x in
(3.20) to x0 ∈ Γ: For any x0 = lim

ε→0+
x0 + εn(x0) ∈ Γ, the jump relations give

lim
ε→0+

u+(x0 + εn)− u∞ = u+(x0)− u∞ =

−
∫

y∈Γ

E(x0 − y)σn(u
+ − u∞, p+)(y)dsy

−
1

2
(u+(x0)− u∞)− p.v.

∫

y∈Γ

{(u+(y)− u∞) · σ∗
y [E, e](x0 − y)n(y)}dsy

or, symbolically,

(3.24) γ0u
+(x0)− u∞ = −(S σn(u

+ − u∞, p+))(x0) +
(1

2
I +K

)
(u+ − u∞)(x0) ,

where K denotes the hydrodynamic double layer operator, or, equivalently

(3.25)
(1

2
I −K

)
(u+ − u∞) = −S σn .

We emphasize that now S is neither symmetric nor coercive, generally. Using the
continuity of the velocities (1.6), and casting (3.25) in weak form, we find the integral
equation for the hydrodynamic normal stress σn corresponding to the exterior Oseen
problem due to the velocity u− on Γ:

(3.26) σn ∈ H−1/2(Γ) : 〈τ ,Sσn〉+
〈
τ ,

(1

2
I −K

)
(u− − u∞)

〉
= 0

for all τ ∈ H−1/2(Γ).
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The hydrodynamic single layer potential S : H−1/2(Γ) → H1/2(Γ) is continuous and
satisfies, in virtue of (3.23) and of (3.9), the Gårding inequality: there is c > 0 such that

∀τ ∈ H−1/2(Γ) : 〈τ ,Sτ 〉 ≥ c ‖τ‖2H−1/2(Γ) − k(τ , τ )

where k(·, ·) is a compact form onH−1/2(Γ). Equation (3.26) gives now, together with the
(formal) weak form (1.3) of the Navier-Stokes system in Ω− the desired nonlocal boundary
value problem in Ω− ∪ Γ: Find u− ∈ V (Ω−), σn ∈ H−1/2(Γ) such that

(3.27)
a(u−, v)− 〈σn, γ0v〉 = 〈f , v〉Ω− ∀v ∈ V (Ω−) ,

〈
τ ,

(1

2
I −K

)
(u− − u∞)

〉
+ 〈τ ,Sσn〉 = 0 ∀τ ∈ H−1/2(Γ) .

Here the nonlinear form a(·, ·) is as in (1.2).

Whereas the nonlocal problem (3.14) and the corresponding one (3.27) for the exterior
Stokes equation are mathematically on solid ground due to Theorem 1.3 and 3.1, in the
Oseen case research is in progress on the following questions:

a) Existence of solutions to the nonlocal problems (3.14), (3.27) in the exterior Oseen
case,

b) Coercivity of S in the Oseen case,

c) Convergence of Galerkin-discretizations of (3.14), (3.27) in the Stokes and Oseen
case (note that the nonlinearity is not of the type treated in [11]).
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