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1 Introduction

The efficient numerical solution of problems in fluid mechanics is of significant engineer-
ing interest. There are basically two reasons why the Finite Element approximation of
such problems turns out to be difficult: Firstly, the presence of corner singularities and
boundary layers in the solutions requires properly designed meshes. Secondly, the design
of stable methods is a non-trivial issue. Intrinsic stability problems arise in the vari-
ational formulations due to incompressibility constraints or due to strongly convective
terms.

Let us first discuss briefly the question of approximability: Although the solutions of
fluid flow problems exhibit boundary layer or corner singularity phenomena, they are
typically piecewise analytic. In that case it is well known, see e.g. [5, 20, 35, 37| and the
references therein, that exponential rates of convergence can be obtained by the use of
the hp version of a stable Finite Element Method (FEM). That is, in the case of corner
singularities, by the use of an increasing polynomial approximation order and of meshes
that are refined geometrically towards the singularities. One of the first implementations
of hp methods for problems in fluid mechanics was developed by Oden et al. [23] during
the 80ies. Their implementation has also been the basis of the commercial code PHLEX
of COMCO Corp. in Austin, TX. The original code has recently been developed into the
general and object oriented code HP90 [14] which we use for our numerical experiments.

In this work, stability aspects in the numerical approximation of Stokes flow are ad-
dressed in the context of hp FEM. In particular, we compare stable and stabilized
schemes. The Stokes equations describe viscous incompressible fluid flow at moderate
Reynolds number (or, alternatively, isotropic incompressible materials). These equa-
tions have become a very important model problem in computational fluid dynamics,
as discretizations for Stokes flow based on mixed Galerkin formulations have to face
some of the stability problems that are also encountered when solving the full incom-
pressible Navier-Stokes equations (NSE). Namely, in order to fulfill the incompressibility
constraint at the discrete level the velocity and pressure spaces cannot be chosen inde-
pendently. Stability is only guaranteed as long as the discrete Babuska-Brezzi or inf-sup
condition is satisfied by the velocity and the pressure spaces. This condition has been
established for various velocity and pressure pairings (see, e.g., [12, 19, 24, 38] and the
references there for the h-version FEM; and [8, 9, 34, 36, 39] and the references there
for the p-, hp-version and spectral FEM). The use of hp methods for classical mixed
Galerkin formulations with stable velocity and pressure space pairs (of different approx-
imation order) is already well established in the FE community. Sophisticated hp and
spectral element codes have been developed and many issues of practical importance
have been addressed. We mention here only [13, 22, 26, 27, 28, 29, 30, 32, 42] and the
references therein. In particular, adaptivity and a-posteriori error estimation aspects are
dealt with in [1, 26, 28, 42], and domain decomposition and parallelization aspects are
analyzed in [29, 30]. For hp/spectral implementations based on unstructered triangular
meshes we refer to [22, 32] and the references therein.

Unfortunately, implementationally very attractive pairings, such as equal-order elements
for the velocity and the pressure, do not fulfill the Babuska-Brezzi stability condition
and lead to unphysical spurious pressure modes in computations. This inspired the
development of numerous methods where the inf-sup condition is relaxed. We mention



here [27, 42|, where penalty methods combined with reduced integration are analyzed in
the hp context and exponential convergence is numerically observed. In [28, 42] a three-
step hp adaptive strategy is proposed (based on pressure projection-correction methods)
where equal-order elements can be used. Splitting schemes are also known in the spectral
context (see, e.g., [13, 32] and the references therein).

In the pioneering work [21] a stabilized approach based on a Galerkin Least Squares
formulation (GLS) has been presented by Hughes and his coworkers. The idea is to aug-
ment the bilinear form stemming from a Galerkin approach with appropriately weighted
residuals of the differential equation. This method features in particular the possibility of
equal-order interpolation for velocity and pressure. Closely related GLS-methodologies
have already been applied successfully to a variety of problems in fluid flow, elasticity
and continuum mechanics (see, e.g., [11, 15, 17, 21] and the references there). We also
refer to the survey article [16].

However, the above mentioned GLS-stabilized methods have all been formulated in the
context of the h-version of the FEM, i.e. the convergence is obtained by reducing the
meshsize h at a fixed (low) polynomial degree which results in algebraic rates of conver-
gence. Only most recently there have been attempts to extend the idea of GLS-stabilized
methods to the context of the hp or spectral FEM. In [18] stabilized spectral element
methods have been applied to solve the linearized NSE. However, no exponential rates
of convergence have been proved and the analysis is confined to quasiuniform meshes.
In [33] the authors presented a stabilized method of GLS type and exponential rates of
convergence for equal-order interpolation in the velocities and pressure are established
for singular solutions (see also Theorem 2.4 ahead). The same method has been analyzed
in [10] where the error analysis gives algebraic rates of convergence for the p FEM but
is restricted by regularity assumptions that are unrealistic in many practical situations.

In this paper we present the hp version of a stabilized method of Galerkin Least Squares
type for the Stokes problem. The comparison of this Ap—GLS Finite Element Method
with the classical mixed Galerkin formulation is the goal of this paper. Both formulations
lead to exponential rates of convergence under realistic assumptions on the input data
and the mesh design. We present the theoretical results and confirm the exponential
convergence of the Ap FEM by an intensive numerical convergence study. We emphasize
in this context the practical (implementational) advantages and disadvantages of both
methods.

The outline of the paper is as follows: In Section 2 we establish the precise weak formu-
lations and the hp FE spaces. With this setting we state the exponential convergence
results for the Galerkin and GLS hp-FEM. In Section 3 we reveal details of the stabilized
and the mixed hp-FE implementation. In Section 4 we define model problems that we
use in our numerical convergence studies and present our numerical results. We finish
the presentation with a comparison of the Galerkin and GLS hp FEM together with
conclusions in Section 5.

2 Stable and stabilized hp FEM for Stokes flow

In this section we briefly present the mathematical background concerning the hp Finite
Element discretization of Stokes flow. First we review the Stokes equations and their



mixed formulation. Then we introduce hp-FE spaces and discretize the Stokes problem
using first a Galerkin approach satisfying the Babuska-Brezzi stability condition and
then a Galerkin Least Squares approach. We finally show that both schemes may lead
to exponential rates of convergence.

2.1 The Stokes problem

In a bounded polygonal domain € C IR* we consider the Stokes boundary value problem
for viscous incompressible fluid flow: Find a velocity field @ and a pressure p such that

—vA@+Vp = f inQ, (2.1)
V- = 0 inQ, (2.2)
@ =0 ondQ. (2.3)

Here, v > 0 is the kinematic viscosity which is related to the Reynolds number Re of
the flow by v = 1/Re. The right hand side fis a given body force per unit mass. We
restrict ourselves in (2.3) to homogeneous boundary conditions, inhomogeneous ones are
treated in the usual way (see, e.g., [40]).

On © we use the space L?(Q2) of real-valued square-integrable functions, and we introduce
its subspace

L) = {f € L*®) : | f(a)dz =0}

of functions with vanishing mean value. We denote by H'(Q) the standard Sobolev space
of order 1, and by H}(Q) its subspace of all functions vanishing on the boundary 9Q (in
the sense of trace). Both spaces are provided with the usual norms and seminorms, and
(-,-) is the L?(2) inner product.

The weak mixed formulation of (2.1)-(2.3) is to find a velocity field @ € H;(2)* and a
pressure p € L2(€2) such that

v(Vii, Vi) — (V-
(V-

,q) € H}(Q)? x LZ(Q). The equations
) € H}(Q2)? x L2(Q) such that

By(il,p; U,q) = Fo(v,q)  for all (¥,q) € Hy(Q)? x L3(2), (2.6)

= (f.9), (2.4)
= 0 (2.5)

Q3
~—

S Sy

for all (7.
Find (4,

—~
[N

4)-(2.5) are equivalent to the problem:

where the bilinear form By and the functional Fyy (defined on H'(Q)? x L?({2)) are given
by

FO(an) = (faU)

It is well known (see, e.g., [12, 19]) that for f € L%()? there exists a unique weak
solution (i, p) of (2.6) due to the (continuous) inf-sup condition

inf sup (V-9.9)

: — >C=0(Q) >0. (2.9)
0£4ELG() § e ) () ||U||H1(Q) ||q||L2(Q)



2.2 The hp FE spaces

A mesh 7 on the polygon Q C IR? is a partition of © into disjoint and open quadrilateral
and/or triangular elements { K} such that Q = Ugc7K. The mesh T is called regular if
the intersection K N K’ of two elements K and K’ is either empty, a single vertex or an
entire side. Otherwise, the mesh is irregular and contains hanging nodes and we restrict
ourselves to 1-irregular meshes only. We denote, as usual, by hx the diameter of K and
by px the diameter of the largest circle inscribed into K. The fraction ox = hg/px
is called the aspect ratio of K. We consider only s-uniform mesh families where there
exists a constant x > 0 such that

maxog < kK < 00.
KeT
The meshwidth h of T is A(T) = maxger{hx}. T is quasi-uniform if there exists
K1, ko > 0 such that
Iﬁ)lh(T) S hK S RopPK VK € T

We assume that for each K € T there is a diffecomorphism Fi such that K = Fi(K)
where K is a generic reference element which is either the reference triangle 7' = {(x, y) :
0<z<1,0<y <z} orthe reference square Q= (0,1)2. The mesh T is called affine if
it only consists of triangles and parallelograms. In that case the mappings Fx are affine
transformations. Let now

k={kx:KeT (2.10)

be a polynomial degree distribution on 7 which associates with each element K € T an
elemental polynomial degree kx. We then introduce the hp-FE spaces

SEYTY = {feL*Q): flgoFx € S (K), K eT}, (2.11)
SEYT) = {feH'(Q): flxoFx € S*(K), K e T}. (2.12)

Here, Sk(f() denotes a generic polynomial space on K which is to be understood as

Qk(k) if K is the reference square Q

N 2.13
PH(T) if K is the reference triangle T, (2.13)

st - {
where, on a domain D C IR?, P*¥(D) is the space of all polynomials of total degree < k
and QF(D) the set of all polynomials of degree < k in each variable.

The second index [ for the spaces SE/(T) in (2.11)-(2.12) refers to the degree of con-
tinuity. The functions in S&%(T) are elementwise (mapped) polynomials that may be
discontinuous across element boundaries. Functions in S&!(T) are piecewise (mapped)
polynomials that are globally continuous. Implementationally, some care is required to
ensure the interelement continuity in the space SE1(T) if ki is variable. In some ele-
ments the external (or side) modes in the polynomial spaces must be reduced whereas
the internal (or bubble) modes are of full degree k. This can be achieved by splitting
kr into edge- and bubble-degrees (cf. Section 3). If the polynomial degree is constant
throughout the mesh 7 (i.e. kx = k VK € T), we use the shorthand notations S%*(T)
and S¥O(T). For a given polynomial degree vector k we set |k| = max{kyx : K € T}.



2.3 (Galerkin and Galerkin Least Squares discretizations

Let now 7 be a (possibly irregular) x-uniform and affine mesh on Q and let £ = {kx} =
{kY-} and k¥ = {k%} be two polynomial degree distributions as in (2.10) for the velocity
and the pressure, respectively. The FE-spaces Vv and My that approximate the velocity
and the pressure are then

Vv = SEY(T)? (2.14)
My = S¥NT), I=0ori=1. (2.15)

Thus, for [ = 0 we admit discontinuous pressures whereas in the case [ = 1 we use
continuous pressure interpolation. We define further

Vo=V NHy(Q)?  Myy= MynNLAQ). (2.16)

The Galerkin discretization (G) of (2.6) is now:

—

Find a discrete velocity @n € Vi and a discrete pressure py € My such that
Bo(i, p; T, q) = Fo(7,q)  for all (7,q) € Vo x Myy, (2.17)

where By and Fj are given in (2.7) and (2.8).

If the FE-spaces Vy and My satisfy the following discrete inf-sup stability condition due
to 1. Babuska and F. Brezzi

nf osup 0D Sy s 2.18
p Y )
0£IEMN,0 GrieVy o ||U||Hl(9) ||Q||L2(Q)

then the problem (2.17) has a unique solution (@, py) € VN,O X My and we have the
error estimates

IN

1T — N g1 (o) Cy(N)™" inf ||ﬁ_77||H1(Q)+Cy_lq€iﬂr}[£,0”p_qnl,2(9) (2.19)

17EVN,0

lp — pN||L2(Q) < Cuy(N)™ aigf @ — 77||H1(Q) +Cy(N)™ inf |[p— Q||L2(Q) (2.20)
TEVN 0 q€Mn o

with C' = C(Q) independent of N and v. The inf-sup constant v(N) enters in these
estimates, and in order to obtain optimal error estimates in both the velocity and the
pressure one should try to select the spaces Vy and My in such a way that ()
depends as little as possible on the discretization parameter N (i.e. the meshwidths and
the polynomial degrees). A possible choice are the “S* x S¥=2” elements, that is

Vy = SEYT)?, My =SE2(T) (1=0,1), (2.21)

where the difference between the velocity and pressure polynomial degree is always 2,
kY = kY% —2 = kg —2. Tt is shown in [34, 35, 39] for regular and certain irregular meshes
7T that these spaces satisfy the discrete inf-sup condition (2.18) with v(N) > C [k|™° (C
just depends on €2 and the shape regularity constant k) where 5 = % if 7 consists only
of parallelograms, and with 3 = 3 otherwise. These spaces do not lead to optimal error
estimates in the h- or p-version of the FEM. However, exponential convergence in the hp-
FEM can be achieved using “S* x 8¥~2” elements. Various other velocity and pressure
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hp-space pairs are known which are stable in the sense of (2.18) with (V) independent of
the diameter of the elements but depending (algebraically) on the polynomial or spectral
order (see, e.g., [39]). Most recently, Bernardi and Maday [9] proved that “QF x Pk-1”
elements are even stable independently of the polynomial order k (on meshes consisting
of parallelograms) and hence this choice leads to optimal error estimates in the h- or
p-version FEM. Nevertheless, this choice seems to be not very attractive due to the
additional complications in the implementation because quadrilateral and triangular
degrees of freedom have to be used together on a quadrilateral mesh.

The easiest choice of the FE-spaces from an implementational point of view would be
elements of equal polynomial order in the velocity and the pressure, i.e.

Vv =SEY T, My=S2(T) (1=0,1), (2.22)

with an identical degree distribution k for both the velocity and the pressure. However,
in that case the inf-sup constant v(N) in (2.18) is zero [9]. In computations the violation
of the inf-sup condition often leads to unphysical pressure oscillations and during the last
decade this problem has been studied thoroughly. In the pioneering work [21] a possible
relaxation of the Babuska-Brezzi condition based on a Galerkin Least Squares (GLS)
approach that accomodates equal-order interpolation in the velocities and the pressure
has been proposed. In the meantime these GLS-stabilizations techniques have already
been applied successfully to a variety of problems in fluid mechanics and elasticity.
However, most of the methods have been formulated in the context of the h version. We
refer to [11, 15, 17, 21], to the survey article [16] and to the references there. Only most
recently some attention has been turned to the issue of extending the schemes to the Ap
or spectral context (see [18, 10, 33]).

We consider here an hp approach of Galerkin Least Square type proposed by [10, 17, 21].
We define for an user-specified parameter o > 0 and the equal-order spaces in (2.22) an
augmented bilinear form B, and a functional F,, by

Ba(ﬁap; Ua Q) = V(Vﬁ, VU) o (v ’ 77? p) o (v ’ ﬁa Q) (223)
h?
—a Yy k—4K(—1/Aﬁ+ Vp, —vAT+ Vq),
KeT VK
B} n2o
Fa(ga(I) = (fag)_a Z k_4(f7_VA17+Vp)K (224)

KeT "K

Above, (-,+) is the L?*(K) inner product on the element K. The bilinear form B, is
obtained by a modification of the original Galerkin form By in (2.7). The elementwise
Galerkin Least Squares terms (—vA@ + Vp, —vA¥ + Vq) i containing residuals of the
Stokes equation (2.1) are weighted by adx = ah% /k} and added to By. F, is obtained
analogously. The crucial point in connection with higher order methods is the proper
choice of the mesh-dependent weights dx in dependence on the approximation order k.
Note that for & = 0 the form B, equals By. The choice of a is completely independent
of the element sizes hx and the polynomial degrees ki (see also Section 4.2 ahead).

The Galerkin Least Squares (GLS) formulation is:
Find a discrete velocity @n € Vi, and a pressure py € My such that

B, (tin,pN; v, q) = Fu(U, q) for all (v,q) € Vyo X Myp. (2.25)



Again, for & = 0, (2.25) reduces to the Galerkin approach given in (2.17). The GLS-
method (2.25) was analyzed in the context of the h-version FEM in [17, 21] and optimal
error estimates for the velocity and pressure were established. In [10] it is investigated in
the Ap context and the error analysis given there results in algebraic rates of convergence
for the p FEM but is restricted by regularity assumptions that are unrealistic in many
practical situations. In [33] the hp-version (2.25) is analyzed for singular solutions.

The stability of (2.25) is also addressed in [33]: Under the assumption that kg > 2 there
exists a constant ., (not known in general and depending on v but independent of
the element size hx and the approximation orders kg ) such that for 0 < o < aumaqs

B, (i, p; v, q)
sup

~2 2 T =02 2 T Z 1 (2.26)

6,02@a)eVn0xMyo @51 ) + 1PT20) 2 (T3 o) + [1allz2())? ||
for all (0,0) # (@,p) € VN,O X My with C independent of «, k, and the meshwidths. As
a consequence, (2.25) has an unique solution. Different polynomial degree distributions
for the velocity and the pressure as in (2.14)-(2.15) are of course also imaginable in
(2.22), but not that attractive from an impementational point of view.

2.4 Exponential convergence results

If the right hand side f in (2.1) is analytical in the closure Q of Q it follows that # and
p are analytical in 2\ UM, A; where {A;}M, denote the vertices of 2. However, there
are corner singularities arising at the vertices of 2. It is well known for closely related
elasticity and potential problems that under the analyticity assumption on the data the
solutions belong to countably normed spaces Bj(€2) [3]. For the Stokes problem the
corresponding regularity assumption is

i€ Bj(Q)?,  pe ByQ), for some 3 € (0,1). (2.27)

We refer to [3] for the exact definition of these spaces which model the singular behaviour
at the vertices and the analytical one in the interior. We emphasize that in general
B3(Q)* ¢ H*(Q)? and By(2) ¢ H'(2). In polar coordinates (r,¢) near a vertex A;
solutions (4, p) € B3(€2)* x Bj(Q) are typically of the form

i@(r, ) = r®(r, p) + smoother, p(r, ) = r* " 1W(r, ) 4 smoother, (2.28)

for some A € (0,1) and with ¥ and & analytical in 2.

In order to capture the singular behaviour of (i, p) near corners we introduce meshes
that are geometrically refined towards the vertices {A;}.

Definition 2.1 On the reference square Q = (0,1)2, the basic geometric mesh A,, , with
grading factor o € (0,1) and n + 1 layers is created recursively as follows: If n = 0,
Ay = {Q} Api1, 18 generated by subdividing the element K € A, , with 0 € K into
four smaller rectangles by dividing its sides in a o : (1 — o) ratio. Thereby, the hanging
nodes can be removed or not as indicated in Figure 1.
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Figure 1: The basic geometric meshes A,, , with n =3 and ¢ = 0.5.

Figure 1 depicts basic geometric meshes A, , on the reference square with n = 3 and
o = 0.5. The quadrilateral elements in the left mesh are numbered as shown in Figure
1. The elements K,;, Ky; and K3; constitute the layer j, j = 2,...,n 4+ 1. The layer 1
consists only of the smallest element K, near the origin.

Definition 2.2 A geometric mesh T, , in the polygon 2 C IR? is obtained by mapping
the basic geometric meshes A, , from Q affinely to a vicinity of each convex corner of
Q2. At reentrant corners three suitably scaled copies of A, , are used (as is indicated
in Figure 2). The remainder of ) is subdivided with a fized affine quasi-uniform and
reqular partition.

In Figure 2 this local geometric refinement is illustrated. For ease of exposition we
consider only mesh patches that are identically refined with a fixed ¢ and n, although
different grading factors and numbers of layers may be used for the partition of each
corner patch. It is clear that also other geometric refinement strategies towards the
vertices are imaginable.

We consider now polynomial degree distributions on geometric meshes which we also
assume to be identical in each geometric corner patch.

Definition 2.3 A polynomial degree distribution k on a geometric mesh T, , is called
linear with slope p > 0 if the elemental polynomial degrees are layerwise constant in the
geometric patches and are given by k; := max(2, |uj|) in layer j, j =1,...,n+1. In the
interior of the domain the elemental polynomial degree is set constant to max(2, | p(n +

D).

Under assumption (2.27) the following theorem establishes exponential rates of conver-
gence.

Theorem 2.4 Let (i, p) be the exact solution of the Stokes problem (2.1)-(2.3) satisfying
(2.27). Let (iy,pn) be the discrete solution of the G- or GLS-formulation obtained on
a geometric mesh T, , with a linear degree vector. Then there exists a jig > 0 such that
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Figure 2: A geometric mesh 7, , on .

for linear degree vectors k with slope > o, k; = max(2, |pjl), j=1,...,n+1, the
discrete solution (@y,pn) € Vyo X My with Vy = SBY(T,»)? and

M — SE=2H(T, ) for the G-method, | = 0,1
N SENT,) for the GLS-method with 0 < o < Qpgq, | = 0,1
satisfies .
1@ — @nll 1y + 1P = Pl 20y < C exp(=bN3). (2.29)

Here, N = dim(Vy) ~ dim(My) and the constants C and b are independent of N. In
the case of the GLS-method the constant C depends on «.

Remark 2.5 In the Galerkin approach as well as in the GLS approach the pressure can
be approzimated continuously (I = 1) or discontinuously (I =0). In both cases Theorem

2.4 holds true.

For the G-method and [ = 0 this result is proved in [36] using the hp-approximation
results of [20]. The results in the case of the GLS-method for [ = 0,1 can be found in
[33]. The case | = 1 for the G-scheme follows from a general approximation result in
[33]. Note that the dependence on the viscosity v in (2.29) seems not to be known at
present.

Remark 2.6 If the polynomial degree is chosen to be constant throughout the mesh,
i.e. kg =k for all K € T, Theorem 2.4 still holds true: The exponential rates of
convergence (2.29) are obtained by choosing k proportionally to the number of layers,
that is k = max(2, [pu(n+1)]).

2.5 h—version and p—version FEM

The weak formulations (2.17) and (2.25) are based on general hp—FE spaces such as the
ones in (2.21) and (2.22). Exponential convergence in the hp-FEM is then obtained by



the use of geometric meshes and increasing polynomial degrees. But the h- and p-version
of our two methods are also covered by the framework in Section 2.3. The spaces are
chosen again as

Vy=SEY(T)%,  My=S"*(T), (=01
for the Galerkin approach and as
Vy=S84(T)%  My=S"(T)%, 1=0,1

for the Galerkin Least Squares scheme. (The index [ indicates as before whether the
pressure is approximated continuously or discontinuously.) The h-version is now ob-
tained by fixing the (possibly low) polynomial degree k& on a quasiuniform mesh 7 of
meshwidth h. The convergence is obtained by uniformly h—refining this mesh. The
following optimal convergence rate for the h—version GLSFEM has been established in
[17]

1@ — dn o)+ llp — pllez@) < c (hk|ﬁ|H’“+1(Q) + hk+1|p|H’“(Q)) . (2.30)

The corresponding convergence result for the h—version GFEM is [19, 36, 39]
i — ﬁNHHl(Q) +lp —pNHL?(Q) <chtt (|ﬁ|Hk(Q) + |p|H’“*1(Q)) : (2.31)

Here, |-[ 1) denotes the usual semi-norm in the Sobolev space HY(Q) of order . How-
ever, the regularity assumptions in (2.30) and (2.31) are unrealistic in many practical
situations due to corner singularities where only regularity assumptions as in (2.27) hold
true.

Similarly, the p—version is obtained by fixing a quasiuniform grid 7 and increasing con-
tinuously the polynomial degree k. We remark that the p—version convergence rates are
suboptimal because the inf-sup constants in (2.18) and (2.26) depend on the polynomial
degree (see [10] for GLSFEM and [36, 39] for GFEM). If the exact solution (i,p) is
analytical in the whole domain © (including the corners), the p-version leads also to
exponential rates of convergence (which is not the case if the solution exhibits corner
singularities as in (2.27)).

3 Implementational details

We concentrate from now on the following two discretizations of the Stokes problem
which we implemented numerically and which we restate here shortly:

Let k£ be a polynomial degree distribution on 7.

The Galerkin formulation (G): Let
Vy=SEYT)2, My =S"2(T).
The G-method is to find (dy,pn) € VN,O X My such that

By(tin,pn; T, q) = Fo(7,q) for all (7,q) € VN,O X My .
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Figure 3: Quadrilateral reference element @ with nodes (a!,...,a%).

The Galerkin Least Squares formulation (GLS): Let
Vy = SEY(T)?, My = SBY(T).
The GLS-method is to find (dy,py) € VN,U X My such that
B, (tin,pN; ¥, q) = Fu(U, q) for all (¥, q) € VN,O X M.

Observe that we consider a continuous pressure approximation in the GLSFEM while
the pressure is discontinuously interpolated in the GFEM. This choice has been made
since it points out the principal advantages of implementing GLSFEM: In the GLSFEM
velocity and pressure are treated in exactly the same way. For the GFEM difficulties
arise if one enforces different polynomial degrees for the velocity and the pressure and
different interelement continuity requirements for @y and py.

Our hp-FE implementation for the Stokes problem is based on HP90, a flexible FE code
for general elliptic problems in Fortran 90 [14]. HP90 allows for isotropic and anisotropic
mesh refinements, both h- and p-refinements. In particular, h-refinements can lead to
irregular meshes with hanging nodes and HP90 is designed to handle such meshes and
enforces the appropriate continuity requirements by constraining these irregular nodes.
We refer to [14, 23] for a detailed description of the constraining procedure.

In our numerical examples we use quadrilateral finite elements to discretize the domain 2.
Implementationally, the elemental polynomial degrees kg in (2.10) are further split into
edge and internal degrees that can vary within the element, i.e. kg is to be understood
as the vector ki = {ki, k%, k3 ki, k%}. Here k%, i =1,... 4, is the polynomial degree
on the i-th edge, and k3 the polynomial degree in the interior of the element. The nodes
ak, ... a3 correspond to kg, where k..., a% denote the vertex nodes, a3, ... a5 the
mid-side nodes and a% is the middle node. This is shown schematically in Figure 3 for
the reference square Q = (0,1)2. The shape functions that are associated with the nodes
ar of the reference elment are the nodal based Lagrange shape functions but other shape
functions can be used as well (cf. [14]).

In the case of the GLS method we need to interpret the reference element Q as a vector
valued reference element, i.e. we use the shape functions and degrees of freedom (dof)
that correspond to Q to approximate each velocity component and the pressure. The
stabilization term in (2.23) involves second derivatives and therefore we also need the
second derivatives of the reference element shape functions (&, &) with respect to the
physical coordinates (x1,23) = Fx(&1,&). In the case of an affine element mapping Fx
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the chain rule gives

92 20 (06\° 0 [06,\°
= (o) + o2 (2] 51)

But the terms 0;/0x; are not constant in the case of a general (e.g. bilinear) element
mapping which leads to

Po _ 0006 | 0006 | Pp0g | 0p DG
Or? — OFF 0wy 06 0x7 06 Ox;  0& Oc}

(3.2)

The terms 9¢;/0x; and 9%§;/dx? are rational functions and can thus not be integrated
exactly, but the use of a higher order integration rule reduces the error in the element
computations. Nevertheless, the element computations are completely standard and for
an element K the local element stiffness matrix Fx , and load vector F , result in an
element system of equations that is of the well known form

ﬁ Aa 0 B{,C{ U/l F17a
Lk [ l =| 0 A, Bi,||u|=|Fun (3.3)
b Bioa Bia oM || p 0

where @ = (u1, u2), Aa, Bia, Baa as well as M correspond to the usual velocity and
pressure combinations in (2.23) and X' it the transpose of X.

In the context of geometric refinements with irregular nodes we have to modify Fx , in
order to account for these irregular nodes. HP90 is designed to enforce the appropriate
constraints automatically on the local element stiffness matrix and load vector. This
procedure [14] results in a modified local stiffness matrix Ex,, that corresponds to the
actual globally existing dof. This modified matrix E K, can then be assembled to obtain
the global stiffness matrix.

In the case of the G method the situation is somewhat more complicated due to the
different approximation orders for the velocities and the pressure and additionally the
pressure being discontinuous. Here we use the shape functions of order k£ on Q to approx-
imate the velocity components and the shape functions of order £ —2 to approximate the
pressure. The dof for the velocity components are interpreted in the standard way but
the pressure dof are now all interpreted as dof that belong to bubble shape functions,
although the shape functions of order k£ —2 contain vertex and side shape functions. It is
obvious that the number of bubble shape functions of order &£ on Q is exactly the same
as the total number of shape functions of order £ — 2. This motivates to interprete Q as
a vector valued reference element with two components for the vertex and side dof and
three components for the bubble dof and the shape functions being chosen as decribed
above. The element computations for the G method are then again standard but we
have to consider the unusual element definition. The local element stiffness matrix Ex
is of a form similar to (3.3) with & = 0. We further emphasize that we do not need
the second derivatives of the shape functions to compute E. For an irregular mesh,
i.e. irregular nodes being present, we again have to modify Ex to a local matrix Ex
that corresponds to globally existing dof. But now we apply the constraints only to
the velocity components because the pressure is discontinuous accross element bound-
aries. The element matrices Ex are then assembled in principle in the usual way but the
non standard element definition requires a generalization of the assembling procedure
to account for the presence of continuous and discontinuous field variables.
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In both the G & GLS method we have to enforce Dirichlet boundary conditions that
correspond to the boundary values of the exact solutions. The standard procedure very
often used in practice is to interpolate the boundary data at equidistant points, but
this procedure is known to be numerically instable for higher approximation orders. In
connection with higher order methods interpolation at the Gauss Lobatto points is better
suited (cf. [14]). We enforce the Dirichlet data for the G & GLS method in exactly the
same way at the element level.

Although we apply Dirichlet boundary conditions to the velocity components, the global
stiffness matrix is not invertible in both formulations, because the constant pressure
mode is still not eliminated. To obtain invertibility of the global system we fix the pres-
sure at one dof. Then the global system can be solved and we only have to postprocess

the pressure so that the mean value is zero, i.e. so that the pressure is an element of

4 Numerical results for G & GLS hp FEM

In the following we first describe the two model problems that we use. Both model
problems have exact solutions and therefore allow for a numerical convergence study.
These two exact solutions have significantly different characteristics, i.e. one solution is
smooth and the other one has a corner singularity at the reentrant corner. These two
model problems are well suited for a comparison of the G- and GLS- hp-FEM.

In our numerical results we present always the relative errors that we obtained with
our hp-FE implementation. We show only the errors for the first velocity component
(the results for the second one being completely similar) and the pressure. The velocity
error is computed in the H'-norm and the pressure error in the L?-norm. In order to
be consistent with the pressure being in L2, we subtract the mean value from the exact
pressure p and the numerical pressure py , i.e. we subtract terms of the form

1 1
p=— [ pde, Py = —/ dz, 4.4

and the relative error in the pressure is computed as

|(p—P) — (pv — Z_QN)HZP(Q).

— (4.5)
1P = Dlle2 )

The relative H'-error in the velocity components is computed in the standard way. We
remark finally that the Gauss integration rule that we use to compute the errors is of
significantly higher order than the integration rule in the element computations.

4.1 Model problems

In our model problems we consider the Stokes equation (2.1)-(2.3) with viscosity ¥ = 1 in
the L-shaped domain €2 shown in Figure 4. Such domains appear also in the backward
facing step flow problem or in the so-called 4:1 contraction problem. On 2 we use
geometric meshes 7, , with n + 1 layers. Such a mesh (with irregular nodes) is shown
for 0 = 0.5 in Figure 4.
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Figure 4: L-shaped domain €2 and a geometric mesh on €.

We use two exact solutions (i1, p1) and (@s, p2), the first one exhibiting corner singularity
phenomena at the reentrant corner 0, the second one being analytical in ©Q (including
the corners). In polar coordinates (r, @) at the origin the first exact solution is given by
(cf. [41, p. 113])

. o (M4 N)sin(e)P(p) + cos(@) ¥ (p)
509 = (Sl (1 e ) o
o= = )P () + ()] /(1 - N) (4.7)
with
U(p) = sin((14 X)) cos(Aw)/(1 4+ X) — cos((1 + N)yp)
—sin((1 = X)) cos(Aw) /(1 — X) 4+ cos((1 — N)yp),
3
w o= o
The exponent A is the smallest positive solution of

sin(2Aw) + Asin(2w) = 0, (4.8)

which is A ~ 0.5444838205973307. This solution satisfies the homogeneous Stokes equa-
tion, i.e. —At; + Vp; =0 in Q, and we have @; = 0 on the segments 'y, 'y shown in
Figure 4. We emphasize that (i1, p;) is analytical in 2\ {0}, but Vi, and p, are singular
at the origin. Especially, @, ¢ H*(Q)? and p; € H*(Q). (@1, p1) is of the form (2.28)
and satisfies (2.27). This first solution reflects perfectly the typical (singular) behavior
of solutions of the Stokes equations near reentrant corners.

The second exact solution we use is somehow artificial, since it is analytical in Q (in-
cluding the corners). In practice, one can not expect solutions to behave so nicely at
reentrant corners. Nevertheless, smooth solutions arise for example in smooth domains
and it is hence reasonable to validate the numerical performance for such exact solutions
too. We take

- — exp(x)[y cos(y) + sin(y)]
i2(z,y) ( exp(z)y sin(y) ) ’ (49)
pe = 2exp(x)sin(y). (4.10)
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As above, —Aty, + Vpy = 0.

4.2 Choice of o for the GLSFEM

The theoretical results in Section 2 guarantee stability of the GLSFEM as long as the
parameter o remains in a range 0 < & < gz Omaz 1S independent of the element sizes
hx and the approximations orders ki and is essentially given by the best constant C'
for which the inverse inequality

IVl 2y < OB Il (4.11)

holds on the reference element K for all polynomials 7 € S¥(K) and all k € IV (cf. [33]).
In one dimension the best constant C' in (4.11) is explicitly known and equal to 3v2
(if K = (—1,1)). In two space dimensions this best constant seems not to be available,
but we expect it to be of about the same order. In addition, one may ask whether this
upper bound «,,; is just an artefact of the stability proof or whether it can really be
observed in practice. On the other hand, we expect the GLSFEM to become instable
as « approaches 0. In fact, for & = 0 the G- and GLS-discretization coincide and it is
well known that the Galerkin method is instable for velocity and pressure spaces of the
same polynomial order.

Dependence on « (k=4, n=4, 5=0.5) Dependence on « (k=8, n=10, 0=0.5)
T T T

T T
* — —x  velocity * — —x  velocity
&——=  pressure &——=  pressure

Relative Error
=)
Relative Error

Figure 5: Dependence of the relative error on a.

We addressed these questions numerically by varying « in a large range. We considered
two configurations for the model problem (4.6)-(4.7) in the L-shaped domain, the first
one being £k = 4, n = 4 and o = 0.5, the second one £ = 8, n = 10 and o = 0.5,
where k is the polynomial degree and n, o determine the geometric mesh 7, , with
n + 1 layers and grading factor o. In Figure 5 the relative errors of the first velocity
component and the pressure are plotted for these two configurations against o ranging
from 1071% to 10'°. Very soonly the error curves become oscillatory for increasing . The
“existence” of an upper bound a,,,, can not be answered affirmatively with absolute
certainty. Anyway, the performance of the GLSFEM is rather poor in the range oo > 10°.
But the deteroriation of the GLS-scheme as « approaches zero can indeed be observed:
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Dependence on o (k=4, n=4, 6=0.5) Dependence on « (k=8, n=10, 0=0.5)

* — —x  velocity . * — —x  velocity
6—=  pressure| o——  pressure

Relative Error
Relative Error

Figure 6: Dependence of the relative error on « .

The errors begin to grow and finally to explode for a < 107°. In this range the velocities
are still more or less accurate but the obtained pressures become strongly oscillatory.
This phenomena already mentioned in [21] is reasonable since the pressure terms are in
fact the terms that are stabilized. It can be seen that the best results are obtained for
a € (107°,10%). This range is depicted separately in Figure 6 and therein the scheme
seems to be more or less robust in the parameter a. Therefore, in all our numerical
results that we present in the following we use oo = 0.1.

4.3 Numerical experiments for the smooth solution

In Figure 7 we present convergence rates for the h— and p—version G & GLSFEM that
we obtained by approximating the smooth solution (4.9)-(4.10) to the Stokes problem.
In the h—version we use uniform meshes and expect convergence rates as in (2.30) and
(2.31). The approximation order for the velocity is choosen to be cubic and this implies
a linear approximation of the pressure in the G method. We start with 3 elements in the
L-shaped domain and uniformly h-refine the mesh. Note that the meshwidth A is given
by CN%, where N is the number of dof. It is evident from Figure 7 that the h—version
yields a convergence rate of 2 for the G method, which is in agreement to (2.31). For
the GLS method the h—version convergence rate is 3, which is optimal, compare (2.30).

Since the exact solution (4.9)-(4.10) is analytic in Q, we expect exponential convergence
of the p—version. We start again with a 3 element mesh and increase the polynomial
approximation order from 3 to 8 for the velocity. Here, we have p =~ N 5. The convergence
rates displayed in Figure 7 indicate the exponential convergence of the G & GLS FEM
for this smooth solution.

4.4 Numerical experiments for the singular solution

In this section we present numerical results for the first model problem (4.6)-(4.7).
We recall that the solution has a singularity at the reentrant corner. Therefore, it is
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Figure 7: h— and p—version G & GLS FEM convergence rates.

necessary to perform mesh refinements towards the singularity in order to capture the
singular behavior of the exact solution. In Figures 8 to 11 we present convergence
rates that correspond to meshes of affine elements that have been refined geometrically
towards the reentrant corner with a grading factor of ¢ = 0.5. An example of such a
mesh is displayed in Figure 4. This mesh contains [ = 8 layers of elements, which have
been generated by successively refining 3 initial elements. The irregular nodes in this
mesh are constrained automatically by HP90.

In Figures 8 and 9 we show the performance of the p—version FEM by fixing a grid with
[ layers, and increasing the polynomial approximation order k£ from 3 to 8. As to be
expected with the p—version, the graphs indicate algebraic rates of convergence which
in fact are very close to the a-priori bound of £%%=2* ~ N%2~2 where ) is the constant
in (4.8). This a-priori bound is optimal in view of [4] and the fact that the inf-sup
constant (2.18) is Ck~%® in the G method [8, 39]. In Figure 9 the same plot is depicted

First Velocity Component Pressure

10 T T 10 T 4
—t =1 —t =1
x x |=2 x x  |=2
o- -0 |=3 o- -0 |=3
* = =% |=4 * = =% |=4
o 5 —=o =5
<& O I=6] <& O I=6]
*—-—%  |=7 *—-—%  |=7
107 . : Xl - % |=8:, 10k - % |=8:,
%
%
&iox

Relative Error
o
Y bor
s/ /
74 O K
/
L) KB
%0
; * [
Relative Error

10° 10 10° 10
# Degrees of Freedom # Degrees of Freedom

Figure 8: p—version GFEM convergence rates for geometric meshes with hanging nodes.
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for the GLSFEM and shows a convergence similar to the GFEM. This indicates that
the dependence of the inf-sup constant on the approximation order in (2.26) is probably
suboptimal. We expect the p—version of the GLSFEM to be comparable to the GFEM,
however, the corresponding theoretical results have to be established.

First velocity component Pressure
o o
10 : - 10 :

—t =1 —t =
x x |=2 x x  |=2
o- -0 |=3 o- -0 |=3
* = =% |=4 * = =% |=4
o 5 —=o =5
<& o 1=6 <& o 1=6
*—-—%  |=7 *—-—%  |=7
10! : & — - =8| 107" &= - —u =8|

Relative Error
Relative Error

i
10° 10° 10" 10° 10° 10° 10" 10°
# Degrees of Freedom # Degrees of Freedom

Figure 9: p—version GLSFEM conv. rates for geometric meshes with hanging nodes.

For the hp—version we show the convergence rates in Figures 10 and 11. Here we do
not only vary the polynomial degree but also the grid, i.e. the number of layers in the
mesh. We do this with respect to the parameter 4 (cf. Remark 2.6), where

l=p-k. (4.12)

Again, here [ is the number of layers and k£ the polynomial degree. If 4 -k is not an
integer, then we round it to the nearest integer. The hAp convergence rates for various
parameters p indicate the exponential convergence of the hp—version, as expected and
predicted by Theorem 2.4.

The affine geometric meshes with hanging nodes are obtained by bisecting elements
in the middle, which results in a mesh grading factor of ¢ = 0.5. With this o we
obtain reliable results, but the optimal grading factor is o & 0.15 in one dimension [2].
Although the optimal ¢ is not explicitly known for two dimensions, we expect it to be of
approximately the same order. To study the dependence on o, we use geometric meshes
with variable order elements that have bilinear element mappings. An example mesh
with geometric refinement toward the reentrant corner with 0 = 0.3 and 8 layers of
elements is shown in Figure 12. We emphasize that there are really 8 layers of elements
because the elements in the layers at the reentrant corner are so small that they are not
visible in Figure 12.

We demonstrate the dependence of the GFEM on the geometric mesh grading in Figure
13. It can be seen that the hp—version GFEM is converging exponentially for all values
of o on these geometric meshes. Further, the performance is best for o0 = 0.15 and
o = 0.2, which are very close to the optimal o in one dimension. In particular, for
o = 0.5 the error is about one order of magnitude larger than for the optimal grading
factor. The best result with o = 0.5 is obtained with N ~ 5000 while for 0 = 0.15
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Figure 10: hp—version GFEM conv. rates for geometric meshes with hanging nodes.
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Figure 11: hp—version GLSFEM conv. rates for geometric meshes with hanging nodes.

the same accuracy is already obtained with 1500 dof. This supports the importance of
refining towards the singularity with the grading factor 0.15.

5 Conclusions

In this work we have studied stable and stabilized hp—FE approximations for the Stokes
problem. For both the stable GFEM and the stabilized GLSFEM we presented theoret-
ical results of exponential convergence, which rely on geometric mesh refinement. The
geometric meshes as well as the corresponding hp—FE spaces are described in this work.
Details of the non standard Ap implementation are given for both methods.

The numerical results obtained on an L-shaped domain are consistent with the theo-
retical estimates and demonstrate clearly the exponential convergence of both methods.
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Figure 12: Geometric mesh with 8 layers of elements.
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Figure 13: hp—version GFEM convergence rates for geometric meshes with ¢ = 1 and
varying o.

For the GLSFEM the stabilization factor o can be chosen independently of the element
sizes and the approximation orders and, in a certain range, this method gives robust re-
sults. Further, the question of the optimal grading factor is addressed and our numerical
experiments confirm the optimal one-dimensional mesh grading results.

The general code HP90 [14] was used for the computations. This implementation allows
for a variable polynomial approximation order of up to eight and geometric meshes with
possibly irregular nodes. From the implementational point of view we remark that the
GLS method provides the convenient setting of equal order continuous FE spaces for all
field variables, whereas this is not the case in the mixed Galerkin approach. On the other
hand, it is necessary to compute the second derivatives of the shape functions in the
GLS method, which is not necessary in the G method. In our G & GLS implementation
there was no significant conceptual difference in implementing either one of them and
also in the hp context stabilized methods represent a competitive alternative to stable
elements.
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